KR101053305B1 - Low decarburized wire and its manufacturing method - Google Patents

Low decarburized wire and its manufacturing method Download PDF

Info

Publication number
KR101053305B1
KR101053305B1 KR1020080124813A KR20080124813A KR101053305B1 KR 101053305 B1 KR101053305 B1 KR 101053305B1 KR 1020080124813 A KR1020080124813 A KR 1020080124813A KR 20080124813 A KR20080124813 A KR 20080124813A KR 101053305 B1 KR101053305 B1 KR 101053305B1
Authority
KR
South Korea
Prior art keywords
less
wire
low
weight
wire rod
Prior art date
Application number
KR1020080124813A
Other languages
Korean (ko)
Other versions
KR20100066143A (en
Inventor
이재승
권정석
이환희
임성욱
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020080124813A priority Critical patent/KR101053305B1/en
Publication of KR20100066143A publication Critical patent/KR20100066143A/en
Application granted granted Critical
Publication of KR101053305B1 publication Critical patent/KR101053305B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Abstract

본 발명은 저탈탄형 선재 및 그 제조방법에 관한 것으로서, 고온에서 균일하게 유지한 후 급냉하여 탈탄을 방지하고 저온조직을 억제한 선재와 그 선재의 제조방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low decarburized wire rod and a method for manufacturing the same. The present invention relates to a wire rod and a method for manufacturing the wire rod, which are uniformly maintained at high temperature and then quenched to prevent decarburization and suppress low temperature structure.

본 발명은 중량%로, C: 0.2~0.8%, Si: 1.5~3.0%, Mn: 0.3~1.0%, Cr: 0.01~1.5%, Ni: 0.01~1.0%, Cu: 0.01~1.0%, B: 0.005~0.02%, Al: 0.1%이하, O(산소): 0.0015%이하, P: 0.02%이하, S: 0.02%이하, N: 0.02%이하, V: 0.005~0.5%와 Ti: 0.005~0.5% 중 1종 또는 2종 모두, 잔부 Fe 및 기타 불가피한 불순물을 포함한 저탈탄형 선재를 제공한다.The present invention is in weight%, C: 0.2-0.8%, Si: 1.5-3.0%, Mn: 0.3-1.0%, Cr: 0.01-1.5%, Ni: 0.01-1.0%, Cu: 0.01-1.0%, B : 0.005 ~ 0.02%, Al: 0.1% or less, O (oxygen): 0.0015% or less, P: 0.02% or less, S: 0.02% or less, N: 0.02% or less, V: 0.005 ~ 0.5% and Ti: 0.005 ~ One or both of 0.5% provides a low decarburized wire rod containing the balance Fe and other unavoidable impurities.

또한, 상기 조성을 갖는 강편을 선재압연 후 선재를 800℃이상의 온도에서 40~50초 동안 유지하는 단계 및 상기 40~50초 동안 유지한 선재를 유지 종료 후부터 50~60초 까지를 5℃/s 이상의 냉각속도로 급냉하는 단계를 포함하는 것을 특징으로 하는 저탈탄형 선재의 제조방법을 제공한다.Further, after rolling the steel strip having the composition, the wire is maintained at a temperature of 800 ° C. or more for 40 to 50 seconds, and the wire is maintained for 40 to 50 seconds from the end of the maintenance to 50 to 60 seconds after 5 ° C./s or more. It provides a method for producing a low decarburized wire, comprising the step of quenching at a cooling rate.

탈탄, 펄라이트, 저온조직, 냉간가공성  Decarburization, Pearlite, Low Temperature Structure, Cold Workability

Description

저탈탄형 선재 및 그 제조방법{STEEL FOR LOW DECARBURIZATION AND MANUFACTURING METHOD OF THE SAME}Low decarburized wire and its manufacturing method {STEEL FOR LOW DECARBURIZATION AND MANUFACTURING METHOD OF THE SAME}

본 발명은 저탈탄형 선재 및 그 제조방법에 관한 것으로서, 보다 상세하게는 탈탄 및 저온조직을 최소화하는 저탈탄형 선재 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a low decarburized wire and a method for manufacturing the same, and more particularly, to a low decarburized wire and a method for manufacturing the same to minimize the decarburization and low-temperature structure.

최근, 자동차 제조사는 연비를 향상시키기 위해 자동차를 구성하는 부품을 고강도화 함으로써 보다 경량화된 차체를 제조하고자 한다. 선재제품은 CHQ, 베어링강 및 스프링강 등의 다양한 형태로 제조되어 자동차 부품으로서 사용되고 있다. 이러한 선재제품의 고강도화는 부품자체의 직접적인 경량화의 효과보다는 엔진블럭 및 조향장치 등의 설계컨셉의 변화를 통해 각 부품파트의 컴팩트화에 큰 영향을 줄 수 있다. 따라서, 이러한 부품의 소형화를 위해서는 소재자체의 내구성 향상과 함께 제품 표면상태의 무결함 기술이 중요한 관건이 되고 있다. In recent years, car manufacturers are trying to manufacture a lighter body by increasing the strength of the components constituting the vehicle to improve fuel efficiency. Wire rod products are manufactured in various forms such as CHQ, bearing steel and spring steel, and are used as automotive parts. The higher strength of the wire rod product can have a greater impact on the compactness of each part through the change of design concept such as engine block and steering device, rather than the effect of direct weight reduction of the parts themselves. Therefore, for the miniaturization of such parts, the technology of the material itself and the flawlessness of the surface state of products are important.

대표적인 표면결함 중 하나인 탈탄은 확산반응에 의해 속도가 결정되기 때문 에, 강재표면의 탄소 확산반응에 필수적인 조건을 제어하는 것이 중요하다. 따라서, 탄소 원자의 확산에 필요한 온도, 시간 및 농도구배의 요소 중 적어도 어느 하나 이상을 제어할 수 있는 측면에서 많은 검토가 이루어져 오고 있다.Since decarburization, one of the representative surface defects, is determined by the diffusion reaction, it is important to control the conditions essential for the carbon diffusion reaction of the steel surface. Therefore, many studies have been made in terms of being able to control at least one or more of the factors of temperature, time and concentration gradient required for the diffusion of carbon atoms.

지금까지 이러한 문제점을 해결하기 위한 접근방법으로 제어냉각이 도입되었다. CCT(연속냉각변태)상에서 페라이트 생성역을 회피하고, 펄라이트 상변태 개시 및 종료영역을 신속히 통과하여 저온조직 및 표면탈탄을 억제하는 방안이 주로 검토되었다. So far, control cooling has been introduced as an approach to solve this problem. In order to avoid ferrite generation in CCT (continuous cooling transformation) and to quickly pass through the region of initiation and termination of pearlite phase transformation, it was mainly studied to suppress low temperature structure and surface decarburization.

하지만, 소재의 고강도화가 이루어짐에 따라 다양한 합금원소의 첨가로 인해 CCT상의 페라이트 영역이 확장되거나 혹은 펄라이트 상변태 영역이 축소되고 소재내의 온도편차가 증가하게 되어 기존 개념의 제어냉각만을 통해서는 소재의 저온조직 및 표면탈탄을 완벽하게 제어하는 데에 문제가 있었다.However, as the strength of the material increases, the ferrite region on the CCT is expanded or the pearlite phase transformation region is reduced due to the addition of various alloying elements, and the temperature deviation in the material is increased. And there was a problem in controlling the surface decarburization completely.

상기에서 살펴본 바와 같이 동시에 저온조직과 표면탈탄을 효과적으로 제어할 수 있는 방법은 아직 제안되지 않았다. As described above, a method for effectively controlling low temperature tissue and surface decarburization at the same time has not been proposed yet.

본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로서, 본 발명의 일측면에 따르면, 탈탄과 저온조직이 최소화된 고강도의 저탈탄형 선재와 그 제조방법을 제공하고자 한다.The present invention is to solve the above-mentioned problems of the prior art, according to one aspect of the present invention, to provide a high-strength low-decarburized wire rod and a method of manufacturing the minimized decarburization and low-temperature structure.

상기 본 발명의 과제를 해결하기 위한 저탈탄형 선재는 중량%로, C: 0.2~0.8%, Si: 1.5~3.0%, Mn: 0.3~1.0%, Cr: 0.01~1.5%, Ni: 0.01~1.0%, Cu: 0.01~1.0%, B: 0.005~0.02%, Al: 0.1%이하, O(산소): 0.0015%이하, P: 0.02%이하, S: 0.02%이하, N: 0.02%이하, V: 0.005~0.5%와 Ti: 0.005~0.5% 중 1종 또는 2종 모두, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 가지는 것을 특징으로 한다.Low carbonaceous wire for solving the problems of the present invention is by weight%, C: 0.2 ~ 0.8%, Si: 1.5 ~ 3.0%, Mn: 0.3 ~ 1.0%, Cr: 0.01 ~ 1.5%, Ni: 0.01 ~ 1.0%, Cu: 0.01 to 1.0%, B: 0.005 to 0.02%, Al: 0.1% or less, O (oxygen): 0.0015% or less, P: 0.02% or less, S: 0.02% or less, N: 0.02% or less, One or both of V: 0.005 to 0.5% and Ti: 0.005 to 0.5% are characterized by having a composition containing the balance Fe and other unavoidable impurities.

상기 선재는 내부 조직이 펄라이트가 면적분율 90%이상 포함하고 잔부는 페라이트로 이루어진 것이 바람직하다. 또한, 베이나이트와 마르텐사이트 조직의 면적분율의 합은 1% 이하로 이루어진 것이 바람직하다.The wire is preferably an internal structure of the pearlite containing an area fraction of more than 90% and the balance is made of ferrite. Moreover, it is preferable that the sum of the area fractions of bainite and martensite structure is made 1% or less.

또한, 상기 선재는 페라이트 탈탄층의 최대 깊이가 30㎛ 이하인 것이 바람직하다.In addition, the wire rod is preferably a maximum depth of the ferrite decarburization layer is 30㎛ or less.

본 발명의 다른 일측면인 저탈탄형 선재의 제조방법은 중량%로, C: 0.2~0.8%, Si: 1.5~3.0%, Mn: 0.3~1.0%, Cr: 0.01~1.5%, Ni: 0.01~1.0%, Cu: 0.01~1.0%, B: 0.005~0.02%, Al: 0.1%이하, O(산소): 0.0015%이하, P: 0.02%이하, S: 0.02%이하, N: 0.02%이하, V: 0.005~0.5%와 Ti: 0.005~0.5% 중 1종 또는 2종 모두, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강편을 선재압연 후 선재를 800℃이상의 온도에서 40~50초 동안 유지하는 단계 및 상기 40~50초 동안 유지한 선재를 유지 종료 후부터 50~60초 까지를 5℃/s 이상의 냉각속도로 급냉하는 단계를 포함하는 것을 특징으로 한다.Another aspect of the present invention is a method for producing a low decarburized wire, in weight%, C: 0.2-0.8%, Si: 1.5-3.0%, Mn: 0.3-1.0%, Cr: 0.01-1.5%, Ni: 0.01 -1.0%, Cu: 0.01-1.0%, B: 0.005-0.02%, Al: 0.1% or less, O (oxygen): 0.0015% or less, P: 0.02% or less, S: 0.02% or less, N: 0.02% or less , V: 0.005 ~ 0.5% and Ti: 0.005 ~ 0.5%, one or both of them, after the wire rods containing the remaining Fe and other unavoidable impurities, the wire is maintained for 40 to 50 seconds at a temperature above 800 ℃ And a step of quenching the wire rod maintained for 40 to 50 seconds from the end of the maintenance to 50 to 60 seconds at a cooling rate of 5 ° C./s or more.

본 발명에 의해 고강도 선재를 제조할 경우에는 저온조직과 표면탈탄을 동시에 효율적으로 억제할 수 있어 연화 열처리 및 탈탄, 필링 등의 공정을 생략할 수 있다.In the case of manufacturing the high strength wire rod according to the present invention, low-temperature structure and surface decarburization can be effectively suppressed at the same time, so that processes such as softening heat treatment, decarburization and peeling can be omitted.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 탈탄과 저온조직이 최소화된 고강도의 저탈탄형 선재와 그 제조방법을 제공한다.The present invention provides a high strength low decarburized wire rod and a method of manufacturing the same to minimize decarburization and low temperature structure.

이하, 본 발명의 성분계에 대하여 보다 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the component system of this invention is demonstrated in detail.

C : 0.2~0.8중량%C: 0.2-0.8 wt%

C는 선재의 강도를 확보하기 위하여 첨가되는 필수적인 원소이다. 상기 C의 함량이 0.2중량% 미만인 경우에는 충분한 강도가 확보되지 않아서 고강도용 선재에 요구되는 강도를 확보할 수 없다. 또한, C 함량이 0.8중량%를 초과하는 경우에는 초석 세멘타이트 조직이 형성되어 소재에 균열이 발생하기 때문에 피로강도가 현저히 저하된다. 그리고 고강도화에 따른 충분한 인성확보와 고 Si 첨가에 의해 발생되는 소재의 탈탄을 억제하는 것이 어렵다. 따라서 C 함량은 0.2~0.8중량%로 제한하는 것이 바람직하다. C is an essential element added to secure the strength of the wire rod. If the content of C is less than 0.2% by weight, sufficient strength is not secured, and thus the strength required for the high strength wire rod cannot be secured. In addition, when the C content is more than 0.8% by weight, the cementitious cementite structure is formed and cracks occur in the material, thereby significantly reducing the fatigue strength. In addition, it is difficult to secure sufficient toughness due to the high strength and to suppress the decarburization of the material generated by the addition of high Si. Therefore, the C content is preferably limited to 0.2 to 0.8% by weight.

Si : 1.5~3.0중량%Si: 1.5-3.0 wt%

Si는 페라이트 내에 고용되어 모재강도를 강화시킨다. 상기 Si 함량이 1.5중량% 미만인 경우에는 Si이 페라이트 내에 고용되어 모재강도를 강화시키는 효과가 충분하지 못하다. 그리고 Si 함량이 3.0중량%를 초과하는 경우에는 중심편석이 발생활 가능성이 높아지며, 열처리시 C의 활동도(Activity)를 높여 표면탈탄을 조장하므로 Si의 함량은 1.5~3.0중량%으로 제한하는 것이 바람직하다. Si is dissolved in ferrite to strengthen the base material strength. If the Si content is less than 1.5% by weight, the effect of strengthening the base material strength is not sufficient because Si is dissolved in the ferrite. And if the Si content exceeds 3.0% by weight, the possibility of the central segregation is increased, and the C content is increased to 1.5 to 3.0% by weight since it promotes surface decarburization by increasing the activity of C during heat treatment. desirable.

Mn : 0.3~1.0중량%Mn: 0.3 ~ 1.0 wt%

Mn은 강재내에 존재할 경우 강재의 소입성을 향상시켜 강도를 확보하는데 유익한 원소이다. 따라서,상기 Mn 함량이 0.3중량% 미만인 경우에는 고강도 선재로서 요구되는 충분한 강도 및 소입성을 얻기 어렵고, 반대로 1.0중량%를 초과하는 경우 에는 인성이 저하된다. 따라서 상기 Mn의 함량은 0.3~1.0중량%로 제한하는 것이 바람직하다. Mn is an element that is beneficial to secure strength by improving the hardenability of steel when present in steel. Therefore, when the Mn content is less than 0.3% by weight, it is difficult to obtain sufficient strength and hardenability required as a high strength wire rod, whereas when the Mn content exceeds 1.0% by weight, toughness is lowered. Therefore, the content of Mn is preferably limited to 0.3 to 1.0% by weight.

Cr : 0.01~1.5중량%Cr: 0.01 ~ 1.5 wt%

Cr은 표면탈탄 방지, 내산화성, 템퍼 연화성 및 소입성을 확보하는데 유용한 원소이다. 그런데, Cr 함량이 0.01중량% 미만인 경우에는 충분한 내산화성, 템퍼 연화성, 표면 탈탄 및 소입성 효과 등을 확보하기 어렵다. 반면에, 1.5중량%를 초과하는 경우에는 변형저항성의 저하를 초래하여 오히려 강도가 저하될 수 있다. 따라서 상기 Cr의 함량은 0.01~1.5중량%로 제한하는 것이 바람직하다. Cr is an element useful for preventing surface decarburization, oxidation resistance, temper softening and hardening. However, when the Cr content is less than 0.01% by weight, it is difficult to secure sufficient oxidation resistance, temper softening property, surface decarburization and quenching effect. On the other hand, when the content exceeds 1.5% by weight, the deformation resistance may be lowered and the strength may be lowered. Therefore, the content of Cr is preferably limited to 0.01 to 1.5% by weight.

Ni : 0.01~1.0중량%Ni: 0.01-1.0 wt%

Ni는 모재와 밀착성이 높은 스케일층을 생성하여 표면탈탄을 효율적으로 억제시키는 원소이다. 그 외에 강재의 인성을 효율적으로 개선할 수 있다. Ni의 함량이 0.01중량% 미만인 경우에는 그 효과가 충분하지 못하고, 1.0 중량% 초과하는 경우에는 잔류오스테나이트 양이 증가하여 피로수명을 감소시키고, 고가인 Ni 특성으로 인하여 급격한 제조 단가의 상승을 유발한다. 따라서 상기 Ni의 함량은 0.01~1중량%로 제한하는 것이 바람직하다. Ni is an element which forms a scale layer with high adhesiveness with a base material, and suppresses surface decarburization efficiently. In addition, the toughness of steel can be improved efficiently. If the content of Ni is less than 0.01% by weight, the effect is not sufficient. If the content of Ni is more than 1.0% by weight, the amount of retained austenite is increased to reduce the fatigue life. do. Therefore, the content of Ni is preferably limited to 0.01 to 1% by weight.

Cu : 0.01~1.0중량%Cu: 0.01 ~ 1.0 wt%

Cu의 첨가는 상기 Ni와 더불어 모재와 밀착성이 높은 스케일층을 생성하여 탈탄방지에 효과적이며 내식성 향상에도 유효하다. 이러한 효과는 0.01중량% 미만에서는 미약하고, 1.0중량%를 초과하는 경우에는 취화에 의한 압연결함의 원인이 되기 쉽다. 따라서 상기 Cu의 함량은 0.01~1.0중량%로 제한하는 것이 바람직하다.The addition of Cu is effective to prevent decarburization and to improve corrosion resistance by forming a scale layer having high adhesion with the base material together with Ni. This effect is weak at less than 0.01% by weight, and more than 1.0% by weight is likely to cause rolling defects due to embrittlement. Therefore, the content of Cu is preferably limited to 0.01 to 1.0% by weight.

B : 0.005~0.02중량%B: 0.005 to 0.02 wt%

상기 B의 첨가는 표면에 생성하는 녹을 치밀화하고 내식성을 높이며 담금질성의 향상으로 입자경계의 강도를 높이는 효과를 갖는다. 0.005중량% 미만에서는 소입성이 확보되지 않아 고강도용 선재에 요구되는 강도를 확보할 수 없다. 반면에 0.02중량%을 초과하면 탄질화물계 석출물이 조대화되어 피로특성에 악영향을 미치게 된다. 따라서 상기 B의 함량은 0.005~0.02중량%로 제한하는 것이 바람직하다.The addition of B has an effect of densifying rust generated on the surface, increasing corrosion resistance, and enhancing the strength of the grain boundary by improving hardenability. If less than 0.005% by weight, the hardenability is not secured and the strength required for the high strength wire rod cannot be secured. On the other hand, when it exceeds 0.02% by weight, the carbonitride-based precipitates are coarsened, which adversely affects the fatigue characteristics. Therefore, the content of B is preferably limited to 0.005 to 0.02% by weight.

O(산소) : 0.0015중량% 이하O (oxygen): 0.0015% by weight or less

상기 O의 함량은 0.0015중량% 이하로 한정하는데, 0.0015중량%를 초과하면 산화물계 비금속 개재물이 조대하게 형성되어 피로수명이 급격히 저하하게 된다. 따라서 상기 O의 함량은 0.0015중량% 이하로 제한하는 것이 바람직하다.The content of O is limited to 0.0015% by weight or less. When it exceeds 0.0015% by weight, oxide-based nonmetallic inclusions are coarsened, and fatigue life is drastically reduced. Therefore, the content of O is preferably limited to 0.0015% by weight or less.

Al : 0.1중량% 이하Al: 0.1 wt% or less

상기 Al을 첨가하면 결정 입도가 미세화되고 인성이 향상된다. Al 함량이 0.1중량%를 초과하게 되면 산화물계 석출물의 생성량이 증대되는 동시에 그 크기도 조대화되어 피로특성에 악영향을 미치게 된다. 따라서 상기 Al의 함량은 0.1중량% 이하로 제한하는 것이 바람직하다.When the Al is added, the grain size is refined and the toughness is improved. When the Al content exceeds 0.1% by weight, the amount of oxide-based precipitates is increased and the size thereof is coarsened to adversely affect the fatigue characteristics. Therefore, the content of Al is preferably limited to 0.1% by weight or less.

P 및 S : 각각 0.02중량% 이하P and S: 0.02% by weight or less

상기 P와 S의 함량은 각각 0.02중량% 이하로 한정하는데, P는 결정립계에 편석하여 인성을 저하시키기 때문에 그 상한을 0.01중량%로 제한하고, S는 저융점 원소로 입계 편석하여 인성을 저하시키고 유화물을 형성시켜 스프링 특성에 유해한 영향을 미치기 때문에, 그 상한을 각각 0.02중량%로 제한하는 것이 바람직하다.The content of P and S is limited to 0.02% by weight or less, respectively, because P is segregated at grain boundaries to lower toughness, so the upper limit thereof is limited to 0.01% by weight, and S is low-melting element, and the grain boundary is segregated to lower toughness. Since the formation of an emulsion has a detrimental effect on the spring properties, it is preferable to limit the upper limit to 0.02% by weight, respectively.

N : 0.02중량% 이하N: 0.02% by weight or less

N는 B와 반응하여 BN을 형성하기 쉬우며, 소입효과를 감소시키는 원소이다. 따라서, N의 함량은 가급적이면 낮은 것이 좋으나, 공정부하를 고려할 경우 0.02중량%이하로 제한하는 것이 바람직하다.N is an element that easily reacts with B to form BN and reduces the quenching effect. Therefore, the content of N is preferably as low as possible, but considering the process load is preferably limited to 0.02% by weight or less.

V : 0.005~0.5중량%, Ti : 0.005~0.5중량%V: 0.005 to 0.5% by weight, Ti: 0.005 to 0.5% by weight

단독 또는 복합첨가에 의해 탄/질화물을 형성하여 석출경화 작용을 일으킴으로써 스프링 특성을 개선하는 원소이다. V 및 Ti의 함량이 각각 0.005중량% 미만인 경우에는 V 및 Ti계 탄/질화물의 석출이 줄어들어 결정립도 제어와 스프링 특성(피로특성과 영구변형저항성)의 개선효과가 충분하지 못하다. It is an element that improves the spring characteristics by forming carbon / nitride by single or multiple addition to cause precipitation hardening. When the content of V and Ti is less than 0.005% by weight, respectively, the precipitation of V and Ti-based carbon / nitride is reduced, and the effect of improving grain size control and spring characteristics (fatigue and permanent strain resistance) is not sufficient.

각각 함량이 0.5중량%를 초과하는 경우에는 제조 단가가 급격히 상승하고 석 출물에 의한 스프링 특성 개선효과가 포화되며, 오스테나이트 열처리시 모재에 용해되지 않은 조대한 합금 탄화물량이 증가하게 되어 비금속 개재물과 같은 작용을 하기 때문에 피로특성 및 석출강화 효과가 저하하게 된다. 그 함량을 각각 0.005~0.5중량% 범위로 한정하는 것이 바람직하다.When the content exceeds 0.5% by weight, the manufacturing cost rises sharply, and the spring property improvement effect due to the precipitate is saturated, and the coarse alloy carbide which is not dissolved in the base metal during the austenite heat treatment increases, such as nonmetallic inclusions. Because of this action, fatigue properties and precipitation strengthening effects are lowered. It is preferable to limit the content in the range of 0.005 to 0.5% by weight, respectively.

이하, 상기와 같은 성분계를 갖는 저탈탄형 선재를 제조하는 방법에 대하여 설명한다. Hereinafter, the method of manufacturing the low decarburization type wire rod which has a component system as mentioned above is demonstrated.

탈탄이 적은 스프링용 강재를 제조하기 위해서는 우선 성분계를 상술한 범위로 한 강재를 압연한 이후 냉각시 냉각속도를 적절히 제어할 필요가 있다. 즉, 냉각시 800℃이상의 오스테나이징 온도역에서 강재의 표층에 페라이트의 탈탄이 없이 유지하고 급냉하여 신속하게 상변태를 개시하고 종료하여 저온조직 및 표면탈탄을 억제할 필요가 있다.In order to manufacture spring steel with less decarburization, it is necessary to first control the cooling rate during cooling after rolling the steel having the component system in the above-described range. That is, during cooling, it is necessary to maintain the surface layer of steel without decarburization in the austenitic temperature range of 800 ° C. or more, and rapidly cool to start and end phase transformation to suppress low temperature structure and surface decarburization.

1. 선재 압연 후 40~50초 사이는 800℃ 이상 유지1. Maintain over 800 ℃ for 40 ~ 50 seconds after wire rod rolling

선재 압연 후 40~50초간은 오스테나이징 온도역인 800℃이상에서 선재를 유지한다. 상기와 같이 800℃ 이상 유지하는 것은 급속한 냉각으로 인하여 발생하는 저온조직을 최소화하기 위함이다.For 40-50 seconds after the wire is rolled, keep the wire above 800 ° C, the austenizing temperature range. Maintaining more than 800 ℃ as described above is to minimize the low-temperature tissue generated due to rapid cooling.

2. 상기 40~50초 동안 유지한 선재를 유지 종료 후부터 50~60초 까지를 5℃ /s 이상의 냉각속도로 급냉2. Rapid cooling of the wire rod maintained for 40 to 50 seconds from the end of the maintenance to 50 to 60 seconds at a cooling rate of 5 ℃ / s or more

선재 압연 후 40~50초 사이는 800℃ 이상 유지하고, 상기 40~50초 유지 후 50~60초 사이의 냉각시에는 냉각속도를 빠르게 하여 페라이트의 생성 및 성장역을 신속히 통과하여 탈탄발생이 일어나는 시간을 최소화하고 펄라이트 개시점과 종료점을 빠르게 통과시킨다. 따라서, 냉각속도는 일정 수준 이상으로 높게 할 필요가 있다. 본 발명의 성분계로 선재를 제조할 경우 적절한 냉각속도는 5℃/초 이상인 것이 바람직하다. After the wire is rolled, it is maintained at 800 ° C. or higher for 40 to 50 seconds, and when the cooling is performed for 50 to 60 seconds after maintaining the 40 to 50 seconds, the cooling rate is accelerated to quickly pass through the ferrite generation and growth zones, where decarburization occurs. Minimize time and pass through pearlite start and end points quickly. Therefore, the cooling rate needs to be higher than a certain level. When the wire rod is manufactured by the component system of the present invention, an appropriate cooling rate is preferably 5 ° C / sec or more.

이하, 상기 공정으로 제공하는 선재의 내부조직에 대하여 설명한다.Hereinafter, the internal structure of the wire rod provided in the process will be described.

1. 조직분율1. Organizational fraction

상기와 같은 성분계에 더하여 선재는 페라이트와 펄라이트로 이루어진 내부조직을 가지는 것이 바람직하다. 강재의 내부조직이 상기 조직이 아닌 마르텐사이트나 베이나이트와 같은 저온조직이 형성될 경우에는 냉간가공성이 매우 열악해지기 때문이다. 따라서 펄라이트를 분율 90%이상을 포함하고 잔부는 페라이트를 포함한다.In addition to the above component system, the wire rod preferably has an internal structure composed of ferrite and pearlite. This is because the cold workability is very poor when the internal structure of the steel is a low temperature structure such as martensite or bainite, which is not the above structure. Therefore, the pearlite contains a fraction of 90% or more and the balance includes ferrite.

선재의 냉간가공성을 확보하기 위해서는 상기 마르텐사이트나 베이나이트와 같은 저온조직은 포함하지 않는 것이 바람직하나 편석에 의하여 불가피하게 포함되는 경우 면적분율로 1% 이하의 페라이트가 마르텐사이트 및 베이나이트 조직 중 1종 또는 2종으로 대체되는 것이 바람직하다. In order to secure the cold workability of the wire rod, it is preferable not to include a low-temperature structure such as martensite or bainite, but when it is inevitably included by segregation, ferrite having an area fraction of 1% or less is one of the martensite and bainite structures. It is preferred to be replaced by two or two species.

2. 페라이트 탈탄의 깊이2. Depth of Ferrite Decarburization

페라이트 탈탄의 깊이가 30㎛를 초과할 경우에는 상기 페라이트 탈탄을 제거하기가 어렵기 때문에 30㎛ 이하로 유지하는 것이 바람직하다.When the depth of ferrite decarburization exceeds 30 mu m, it is preferable to keep it at 30 mu m or less because it is difficult to remove the ferrite decarburization.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 이하의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, it should be noted that the following examples are only for illustrating the present invention in more detail and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.

(실시예)(Example)

하기 표 1과 같은 조성을 가지는 강들을 주조하고 강편을 제작한 후, 하기 표 2에 나타낸 다양한 냉각조건을 통해 선재를 제조하였다. 이때 레잉헤드(Laying head)에서 냉각 초기온도 및 50초, 100초 후 온도를 측정하고 최종 생성 강재의 표층 페라이트 탈탄의 발생여부를 관찰하였다. 또한, 상온까지 냉각완료 후 제조된 선재로부터 임의의 부위를 선택하여 저온조직 분율 및 가장 깊은 페라이트 탈탄의 깊이를 측정하여 하기 표 2에 나타내었다.After casting steels having a composition as shown in Table 1 and fabricating steel strips, wires were manufactured through various cooling conditions shown in Table 2 below. At this time, the initial temperature of the cooling head and the temperature after 50 seconds and 100 seconds were measured in the laying head, and the occurrence of surface ferrite decarburization of the final product steel was observed. In addition, by selecting any site from the prepared wire rod after cooling to room temperature, the low-temperature tissue fraction and the depth of the deepest ferrite decarburization were measured, and are shown in Table 2 below.

구분division CC SiSi MnMn NiNi CrCr VV TiTi CuCu BB PP SS AlAl NN OO 비교예1Comparative Example 1 0.530.53 1.31.3 0.70.7 -- 0.70.7 -- -- -- -- 0.010.01 0.030.03 0.0010.001 5050 1616 비교예2Comparative Example 2 0.500.50 2.22.2 0.50.5 0.40.4 1.01.0 0.10.1 -- -- -- 0.0080.008 0.0080.008 0.010.01 4949 1616 비교예3Comparative Example 3 0.550.55 2.22.2 0.70.7 0.40.4 1.01.0 0.20.2 0.070.07 0.40.4 0.0020.002 0.0090.009 0.0070.007 0.060.06 5555 1414 발명예1Inventive Example 1 0.450.45 2.52.5 0.70.7 0.50.5 1.01.0 0.20.2 0.050.05 0.30.3 0.0020.002 0.0080.008 0.0090.009 0.030.03 4949 1818 발명예2Inventive Example 2 0.480.48 2.22.2 0.70.7 0.40.4 1.21.2 0.140.14 0.040.04 0.40.4 0.0030.003 0.0120.012 0.0080.008 0.020.02 5151 1919 발명예3Inventive Example 3 0.520.52 2.12.1 0.50.5 0.50.5 1.01.0 0.100.10 0.020.02 0.50.5 0.0030.003 0.0090.009 0.0150.015 0.050.05 5353 1717 발명예4Honorable 4 0.530.53 2.42.4 0.70.7 0.30.3 0.70.7 0.130.13 0.050.05 0.40.4 0.0050.005 0.0150.015 0.0090.009 0.060.06 5252 1717 발명예5Inventory 5 0.550.55 2.22.2 0.70.7 0.40.4 1.01.0 0.20.2 0.070.07 0.40.4 0.0020.002 0.0070.007 0.0060.006 0.060.06 5050 1515

단, 상기 표 1에서 각 성분들의 함량은 중량%를 의미한다.(단, N과 O는 ppm 단위)However, in Table 1, the content of each component means weight% (wherein N and O are in ppm).


구분

division
냉각
초기온도
(℃)
Cooling
Initial temperature
(℃)
50s 냉각
후 온도(℃)
50s cooling
Temperature (℃)
100s 냉각 후 온도(℃)Temperature after cooling 100s (℃) 50s~100s
사이의 평균 냉각속도
(℃/s)
50s ~ 100s
Average cooling rate between
(℃ / s)
페라이트
탈탄층의
깊이
(㎛)
ferrite
Decarburized
depth
(Μm)
저온조직
분율
(%)
Cold tissue
Fraction
(%)
비교예1Comparative Example 1 930930 460460 280280 3.63.6 00 1515 비교예2Comparative Example 2 900900 500500 220220 5.65.6 00 1212 비교예3Comparative Example 3 880880 820820 600600 4.44.4 4545 00 발명예1Inventive Example 1 900900 850850 320320 10.610.6 1212 00 발명예2Inventive Example 2 930930 880880 300300 11.611.6 00 00 발명예3Inventive Example 3 970970 890890 270270 12.412.4 00 00 발명예4Honorable 4 880880 800800 250250 1111 00 00 발명예5Inventory 5 890890 830830 300300 12.612.6 22 00

단, 상기 표2에서 저온조직 분율은 면적분율을 의미한다.However, the low temperature tissue fraction in Table 2 means the area fraction.

비교예1,2는 초기 50초 동안 급냉을 하여 페라이트 핵생성 및 성장을 억제하였다. 따라서 페라이트 탈탄층은 관찰되지 않았으나 저온조직 분율이 12%,15% 발생하였다. 비교예3은 초기 50초 동안은 오스테나이징 영역을 유지하였지만 50~100초까지 서냉을 하여 페라이트역에서 장시간 유지되어 강재표면에 페라이트 탈탄이 발생하였다. 도2의 (a)는 비교예1의 미세조직 사진으로써 저온조직 분율이 15% 정도 생성되었음을 알 수 있다. 또한 도2의 (c)는 비교예3의 미세조직 사진으로써 탈탄층이 45㎛ 정도 생성되었음을 알 수 있다.Comparative Examples 1 and 2 were quenched for the first 50 seconds to inhibit ferrite nucleation and growth. Therefore, no ferrite decarburized layer was observed, but low temperature tissue fractions occurred 12% and 15%. In Comparative Example 3, the austenizing region was maintained for the first 50 seconds, but was slowly cooled to 50 to 100 seconds to be maintained in the ferrite region for a long time, so that ferrite decarburization occurred on the steel surface. Figure 2 (a) is a microstructure photograph of Comparative Example 1 can be seen that the low-temperature tissue fraction was generated about 15%. In addition, Figure 2 (c) is a microstructure photograph of Comparative Example 3 it can be seen that the decarburized layer was generated about 45㎛.

반면, 발명예1 내지 5는 초기 50초 동안 800℃이상의 오스테나이징 영역을 유지하도록 한 후 50~100초 동안에 급냉을 한 경우에는 페라이트의 핵생성은 가능하나 그 성장을 최대로 억제하고 펄라이트의 개시 및 종료를 빠른 속도로 제어한 경우에는 탈탄 및 저온조직 생성이 효율적으로 억제되었다. On the other hand, Inventive Examples 1 to 5 maintain the austenizing region of 800 ° C. or higher for the first 50 seconds, and then rapidly quench for 50 to 100 seconds, but the nucleation of ferrite is possible, but the growth of the pearlite is suppressed to the maximum. When the start and end were controlled at high speed, decarburization and low temperature tissue formation were effectively suppressed.

도2의 (b)는 발명예2의 미세조직 사진으로써 저온조직이 생성되지 않았음을 알 수 있다. 도2의 (d)는 발명예4의 미세조직 사진으로써 탈탄층이 생성되지 않았음을 알 수 있다.Figure 2 (b) is a microstructure photograph of the invention example 2 it can be seen that the low-temperature tissue was not produced. Figure 2 (d) is a microstructure photograph of Inventive Example 4 it can be seen that the decarburization layer was not produced.

도1은 800℃이상의 온도를 유지한 후 펄라이트 개시점과 종료점을 신속히 통과하여 저온조직 및 탈탄을 억제할 수 있는 냉각패턴을 나타내는 그래프;1 is a graph showing a cooling pattern capable of suppressing low-temperature structure and decarburization by rapidly passing through the pearlite starting point and ending point after maintaining a temperature of 800 ° C. or higher;

도2의 (a)는 비교예1의 미세조직 사진, (b)는 발명예2의 미세조직 사진, (c)는 비교예3의 미세조직 사진, (d)는 발명예4의 미세조직 사진. Figure 2 (a) is a microstructure photograph of Comparative Example 1, (b) is a microstructure photograph of Example 2, (c) is a microstructure photograph of Comparative Example 3, (d) is a microstructure photograph of Example 4 .

Claims (5)

중량%로, C: 0.2~0.8%, Si: 1.5~3.0%, Mn: 0.3~1.0%, Cr: 0.01~1.5%, Ni: 0.01~1.0%, Cu: 0.01~1.0%, B: 0.005~0.02%, Al: 0.1%이하, O(산소): 0.0015%이하, P: 0.02%이하, S: 0.02%이하, N: 0.02%이하를 포함하며, 추가로 V: 0.005~0.5%와 Ti: 0.005~0.5% 중 1종 또는 2종 모두를 포함하고, 잔부 Fe 및 기타 불가피한 불순물로 이루어지며, 페라이트 탈탄층의 최대 깊이는 30㎛ 이하인 것을 특징으로 하는 저탈탄형 선재.By weight%, C: 0.2-0.8%, Si: 1.5-3.0%, Mn: 0.3-1.0%, Cr: 0.01-1.5%, Ni: 0.01-1.0%, Cu: 0.01-1.0%, B: 0.005- 0.02%, Al: 0.1% or less, O (oxygen): 0.0015% or less, P: 0.02% or less, S: 0.02% or less, N: 0.02% or less, additionally V: 0.005-0.5% and Ti: A low decarburized wire, comprising one or both of 0.005 to 0.5%, consisting of the balance Fe and other unavoidable impurities, and the maximum depth of the ferrite decarburized layer is 30 μm or less. 제 1 항에 있어서, The method of claim 1, 상기 선재의 내부조직은 펄라이트가 면적분율 90%이상 포함되고 잔부는 페라이트로 이루진 것을 특징으로 하는 저탈탄형 선재.The internal structure of the wire rod is a low-decarburized wire rod, characterized in that the pearlite is contained in an area fraction of more than 90% and the remainder is made of ferrite. 제 2항에 있어서,3. The method of claim 2, 면적분율로 1% 이하의 상기 페라이트가 베이나이트 및 마르텐사이트 조직 중 1종 또는 2종으로 대체된 것을 특징으로 하는 저탈탄형 선재.A low-decarburized wire rod, wherein the ferrite having an area fraction of 1% or less is replaced by one or two of bainite and martensite structures. 삭제delete 중량%로, C: 0.2~0.8%, Si: 1.5~3.0%, Mn: 0.3~1.0%, Cr: 0.01~1.5%, Ni: 0.01~1.0%, Cu: 0.01~1.0%, B: 0.005~0.02%, Al: 0.1%이하, O(산소): 0.0015%이하, P: 0.02%이하, S: 0.02%이하, N: 0.02%이하를 포함하며, 추가로 V: 0.005~0.5%와 Ti: 0.005~0.5% 중 1종 또는 2종 모두를 포함하고, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강편을 선재압연 후 선재를 800℃이상의 온도에서 40~50초 동안 유지하는 단계 및By weight%, C: 0.2-0.8%, Si: 1.5-3.0%, Mn: 0.3-1.0%, Cr: 0.01-1.5%, Ni: 0.01-1.0%, Cu: 0.01-1.0%, B: 0.005- 0.02%, Al: 0.1% or less, O (oxygen): 0.0015% or less, P: 0.02% or less, S: 0.02% or less, N: 0.02% or less, additionally V: 0.005-0.5% and Ti: Maintaining the wire at a temperature of 800 ° C. or higher for 40 to 50 seconds after rolling the wire rod including one or both of 0.005 to 0.5% and containing the remaining Fe and other unavoidable impurities; 상기 40~50초 동안 유지한 선재를 유지 종료 후부터 50~60초 까지를 5℃/s 이상의 냉각속도로 급냉하는 단계Quenching the wire rod maintained for 40 to 50 seconds from the end of maintenance to 50 to 60 seconds at a cooling rate of 5 ° C./s or more. 를 포함하는 것을 특징으로 하는 저탈탄형 선재의 제조방법.Method for producing a low decarburized wire, characterized in that it comprises a.
KR1020080124813A 2008-12-09 2008-12-09 Low decarburized wire and its manufacturing method KR101053305B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080124813A KR101053305B1 (en) 2008-12-09 2008-12-09 Low decarburized wire and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080124813A KR101053305B1 (en) 2008-12-09 2008-12-09 Low decarburized wire and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20100066143A KR20100066143A (en) 2010-06-17
KR101053305B1 true KR101053305B1 (en) 2011-08-01

Family

ID=42365274

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080124813A KR101053305B1 (en) 2008-12-09 2008-12-09 Low decarburized wire and its manufacturing method

Country Status (1)

Country Link
KR (1) KR101053305B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2484172C1 (en) * 2012-01-10 2013-06-10 Открытое акционерное общество "Металлургический завод имени А.К. Серова" Round gaged profiled tolled bars

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797327B1 (en) * 2006-10-11 2008-01-22 주식회사 포스코 Steel wire rod for high strength and high toughness spring having excellent cold workability, method for producing the same and method for producing spring by using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797327B1 (en) * 2006-10-11 2008-01-22 주식회사 포스코 Steel wire rod for high strength and high toughness spring having excellent cold workability, method for producing the same and method for producing spring by using the same

Also Published As

Publication number Publication date
KR20100066143A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
KR102470965B1 (en) Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
KR101010971B1 (en) Steel sheet for forming having low temperature heat treatment property, method for manufacturing the same, method for manufacturing parts using the same and parts manufactured by the method
KR101027285B1 (en) High strength steel sheet for hot forming with excellent heat treatment property, hot formed hardening member and manufacturing methods thereof
EP3631021B1 (en) Method for producing a steel part and corresponding steel part
KR101225246B1 (en) High strength cold-rolled dual phase steel sheet for automobile with excellent formability and method of manufacturing the cold-rolled multi phase steel sheet
KR102493548B1 (en) Cold-rolled and heat-treated steel sheet and its manufacturing method
KR20120113588A (en) High strength trip steel with excellent galvanizing property and method of manufacturing the same
KR20150133759A (en) Bainitic microalloy steel with enhanced nitriding characteristics
KR101830538B1 (en) Ultra high strength steel sheet having excellent yield ratio, and method for manufacturing the same
KR102222614B1 (en) Cold-rolled steel sheet having high resistance for hydrogen embrittlement and manufacturing method thereof
KR101115761B1 (en) Steel restrained from surface decarborization and manufacturing method for the same
KR20080057844A (en) Hot-rolled steel sheet and pipe having superior characteristics of normalizing and method of manufacturing the same
KR20080057845A (en) Hot-rolled steel sheet and pipe having superior characteristics of normalizing and method of manufacturing the same
KR101053305B1 (en) Low decarburized wire and its manufacturing method
KR20200021668A (en) Wire rod and steel wire for spring with improved toughness and corrosion fatigue resistance and method for manufacturing the same
KR101289132B1 (en) High strength and toughness spring steel wire having excellent fatigue life, spring for the same and method for manufacturing thereof
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
KR20120138900A (en) High strength cold-rolled steel sheet for automobile with excellent formability and method of manufacturing the steel sheet
KR101808430B1 (en) Cold-rolled steel sheet for car and method of manufacturing the same
CN114207168B (en) Wire rod and steel wire for high strength spring and method of manufacturing the same
KR20100067522A (en) Steel wire rod for spring with high strength and high toughness and manufacturing method of steel wire rod and spring
KR102464387B1 (en) High strength galva-annealed steel sheet and method of manufacturing the same
KR102510214B1 (en) Hot stamping galvanized iron steel, hot stamping product having iron-nickel alloy layer to prevent liquid metal embrittlement and method of manufacturing the same
KR101461731B1 (en) Boron-added high carbon steel for nitriding, nitriding method for the same and nitrided boron-added high carbon steel
KR101344549B1 (en) Cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140728

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150727

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160726

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170727

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180726

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190724

Year of fee payment: 9