KR101053247B1 - Method for preparing functional brush polymer having mercury ion sensing molecules at the end and sensing mercury ions using surface plasmon spectroscopy - Google Patents

Method for preparing functional brush polymer having mercury ion sensing molecules at the end and sensing mercury ions using surface plasmon spectroscopy Download PDF

Info

Publication number
KR101053247B1
KR101053247B1 KR1020080136585A KR20080136585A KR101053247B1 KR 101053247 B1 KR101053247 B1 KR 101053247B1 KR 1020080136585 A KR1020080136585 A KR 1020080136585A KR 20080136585 A KR20080136585 A KR 20080136585A KR 101053247 B1 KR101053247 B1 KR 101053247B1
Authority
KR
South Korea
Prior art keywords
oco
coo
nhco
conh
carbon atoms
Prior art date
Application number
KR1020080136585A
Other languages
Korean (ko)
Other versions
KR20100078351A (en
Inventor
이문호
김진철
노예철
김희수
정정운
박삼대
권원상
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020080136585A priority Critical patent/KR101053247B1/en
Publication of KR20100078351A publication Critical patent/KR20100078351A/en
Application granted granted Critical
Publication of KR101053247B1 publication Critical patent/KR101053247B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2636Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing sulfur
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명은 화학식 1로 표시되는 수은 검출 기능성 브러쉬 고분자 화합물, 이의 제조방법 및 표면 플라스몬 분광법(SPR, Surface plasmon resonance spectroscopy)을 이용한 검출법에 관한 것이다. The present invention relates to a mercury detection functional brush polymer compound represented by Formula 1, a method for preparing the same, and a detection method using surface plasmon resonance spectroscopy (SPR).

Figure 112008090357826-pat00001
(1)  
Figure 112008090357826-pat00001
(One)

상기식에서 α, β는 R1 및 R2를 포함하는 탄소의 반복 단위를 나타내는 것으로 서로에 관계없이 0 내지 20의 값이고;Wherein α, β represent a repeating unit of carbon including R 1 and R 2 and are a value from 0 to 20 regardless of each other;

R1 및 R2는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이고;R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms;

m 및 n는 폴리에테르 단위체의 함량(mol %)을 나타낸 것으로, 0<m≤100 이고, 0≤n<100이며, m + n = 100이고; m and n represent the content (mol%) of the polyether unit, where 0 <m ≦ 100, 0 ≦ n <100, and m + n = 100;

Y는 H, 탄소 수 1내지 20의 알킬기 또는 -W 말단에 E, G, J, M, Q, Z를 포함하는 고리이고; Y is H, an alkyl group having 1 to 20 carbon atoms, or a ring containing E, G, J, M, Q, Z at the -W end;

W는 링커이며, W is a linker,

G 및 Z는 C, N, O, P 또는S로 이루어진 군으로부터 선택되고; G and Z are selected from the group consisting of C, N, O, P or S;

E, J, M 및 Q는 -CHO, COOH, -H, -N3, -NO2, -NH2, -OH, -PO3H, -SH, -SO3H, =O, =N, =S, -C6H5 및 탄소 수 1 내지 20의 알킬기로 이루어진 군으로부터 선택되며; 상기 수은 이온 검출 기능 브러쉬 고분자 화합물의 중량평균 분자량은 5,000 내지 5,000,000, 바람직하게는 5,000 내지 500,000이다.  E, J, M and Q are -CHO, COOH, -H, -N 3 , -NO 2, -NH 2 , -OH, -PO 3 H, -SH, -SO 3 H, = O, = N, = S, -C 6 H 5 and an alkyl group having 1 to 20 carbon atoms; The weight average molecular weight of the mercury ion detection function brush polymer compound is 5,000 to 5,000,000, preferably 5,000 to 500,000.

자기조립 Self-assembly

Description

수은 이온 감지 분자를 말단에 가지는 기능성 브러쉬 고분자의 제조법 및 표면 플라스몬 분광법을 이용한 수은 이온의 감지 방법 {BRUSH POLYETHER-BASED POLYMERS FOR A MERCURY ION DETECTION, PREPARATION THEREOF AND DETECTION METHOD USING SURFACE PLASMON RESONANCE SPECTROSCOPY}Method for manufacturing functional brush polymer having mercury ion sensing molecule at the end and detection method of mercury ion using surface plasmon spectroscopy {BRUSH POLYETHER-BASED POLYMERS FOR A MERCURY ION DETECTION

본 발명은 수은 이온 감지 분자 말단을 가지는 기능성 브러쉬 고분자의 제조법 및 표면 플라스몬 분광법을 이용한 수은 이온의 감지 방법에 관한 것이다.The present invention relates to a method for preparing a functional brush polymer having mercury ion sensing molecule ends and a method for detecting mercury ions using surface plasmon spectroscopy.

현재 수은 이온을 검출하는 널리 알려진 방법은 수은 이온을 검출할 수 있는 기능기를 포함한 이온선택성전극(ISE, Ion Selective Electrode), 형광단분자물질(fluorescent material), 전도성고분자(conducting polymer)를 이용한 검출법이다. 이에 따라, 수은 이온을 검출할 수 있으면서도, 가공이 쉬운 고분자 형태의 새로운 화합물에 대한 요구가 계속되고 있다.Currently known methods for detecting mercury ions are detection methods using ion selective electrodes (ISE), fluorescent materials, and conductive polymers containing functional groups capable of detecting mercury ions. . Accordingly, there is a continuing need for new compounds in the form of polymers that can detect mercury ions and are easy to process.

본 발명의 목적은 새로운 수은 이온 검출법을 제공하는 것이다. It is an object of the present invention to provide a new mercury ion detection method.

본 발명의 다른 목적은 표면 플라스몬 분광법을 통한 새로운 수은 이온 검출법을 개발하는 것이다. Another object of the present invention is to develop a new mercury ion detection method through surface plasmon spectroscopy.

본 발명의 또 다른 목적은 표면 플라즈몬 분광법을 이용한 수은 이온 검출에 사용되는 새로운 기능성 브러쉬 고분자 물질을 제공하는 것이다. Another object of the present invention is to provide a novel functional brush polymer material used for mercury ion detection using surface plasmon spectroscopy.

본 발명의 또 다른 목적은 표면 플라즈몬 분광법을 이용한 수은 이온 검출에 사용되는 새로운 기능성 브러쉬 고분자 물질을 제조하는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for producing a novel functional brush polymer material used for mercury ion detection using surface plasmon spectroscopy.

상기와 기술적 과제를 해결하기 위해, 본 발명에서는 화학식 1로 표시되는 수은 검출 기능기를 포함한 브러쉬 고분자 화합물을 제공한다.In order to solve the above and technical problems, the present invention provides a brush polymer compound containing a mercury detection functional group represented by the formula (1).

Figure 112008090357826-pat00002
(1)
Figure 112008090357826-pat00002
(One)

상기식에서 α, β는 R1 및 R2를 포함하는 탄소의 반복 단위를 나타내는 것 으로 서로에 관계없이 0 내지 20의 값이고;Wherein α, β represent a repeating unit of carbon including R 1 and R 2 , and are values of 0 to 20 regardless of each other;

R1 및 R2는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이고;R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms;

m 및 n는 폴리에테르 단위체의 함량(mol %)을 나타낸 것으로, 0<m≤100 이고, 0≤n<100이며, m + n = 100이고; m and n represent the content (mol%) of the polyether unit, where 0 <m ≦ 100, 0 ≦ n <100, and m + n = 100;

Y는 H, 탄소 수 1내지 20의 알킬기 또는 -W 말단에 E, G, J, M, Q, Z를 포함하는 고리이고; Y is H, an alkyl group having 1 to 20 carbon atoms, or a ring containing E, G, J, M, Q, Z at the -W end;

G 및 Z는 C, N, O, P 또는S로 이루어진 군으로부터 선택되고; G and Z are selected from the group consisting of C, N, O, P or S;

말단 고리의 E, J, M 및 Q는 -CHO, COOH, -H, -N3, -NO2, -NH2, -OH, -PO3H, -SH, -SO3H, =O, =N, =S, -C6H5 및 탄소 수 1 내지 20의 알킬기로 이루어진 군으로부터 선택되며; E, J, M and Q of the terminal ring are -CHO, COOH, -H, -N 3 , -NO 2, -NH 2 , -OH, -PO 3 H, -SH, -SO 3 H, = O, = N, = S, -C 6 H 5 and an alkyl group having 1 to 20 carbon atoms;

상기 W는 상기 말단 고리와 폴리에테르 고분자의 링커이다. W is a linker of the terminal ring and the polyether polymer.

본 발명에 있어서, 상기 수은 이온 검출 기능 브러쉬 고분자 화합물의 중량평균 분자량은 5,000 내지 5,000,000, 바람직하게는 5,000 내지 500,000이다.In the present invention, the weight average molecular weight of the mercury ion detection function brush polymer compound is 5,000 to 5,000,000, preferably 5,000 to 500,000.

본 발명에 있어서, 상기 링커W는 -CH2S(CR3R4)γO-, -CH2S(CR3R4)γO(CR5R6)τ-, -CH2S(CR3R4)γOCO-, -CH2S(CR3R4)γOCO(CR5R6)τ-, -CH2S(CR3R4)γCOO-, -CH2S(CR3R4)γCOO(CR5R6)τ-, -CH2S(CR3R4)γNHCO-, -CH2S(CR3R4)γNHCOO(CR5R6)τ-, -CH2S(CR3R4)γOCO(CH2)2OCO-, -CH2S(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2S(CR3R4)γCO-, -CH2S(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γO-, -CH2SO2(CR3R4)γO(CR5R6)τ-, -CH2SO(CR3R4)γOCO-, -CH2SO(CR3R4)γOCO(CR5R6)τ-, -CH2SO(CR3R4)γCOO-, -CH2SO(CR3R4)γCOO(CR5R6)τ-, -CH2SO(CR3R4)γNHCO-, -CH2SO(CR3R4)γNHCO(CR5R6)τ-, -CH2SO(CR3R4)γOCO(CH2)2OCO-, -CH2SO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO(CR3R4)γCO-, -CH2SO(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO-, -CH2SO2(CR3R4)γOCO(CR5R6)τ-, -CH2SO2(CR3R4)γCOO-, -CH2SO2(CR3R4)γCOO(CR5R6)τ-, -CH2SO2(CR3R4)γNHCO-, -CH2SO2(CR3R4)γNHCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO(CH2)2OCO-, -CH2SO2(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO2(CR3R4)γCO-, -CH2SO2(CR3R4)γCO(CR5R6)τ-, -OCO(CR3R4)γO-, -OCO(CR3R4)γO(CR5R6)τ-, -OCO(CR3R4)γOCO-, -OCO(CR3R4)γOCO(CR5R6)τ-, -OCO(CR3R4)γCOO-, -OCO(CR3R4)γCOO(CR5R6)τ-, -OCO(CR3R4)γNHCO-, -OCO(CR3R4)γNHCO(CR5R6)τ-, -OCO(CR3R4)γOCO(CH2)2OCO-, -OCO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OCO(CR3R4)γCO-, -OCO(CR3R4)γCO(CR5R6)τ-, -COO(CR3R4)γO-, -COO(CR3R4)γO(CR5R6)τ-, -COO(CR3R4)γOCO-, -COO(CR3R4)γOCO (CR5R6)τ-, -COO(CR3R4)γCOO-, -COO(CR3R4)γCOO(CR5R6)τ-, -COO(CR3R4)γNHCO-, -COO(CR3R4)γNHCO(CR5R6)τ-, -COO(CR3R4)γOCO(CH2)2OCO-, -COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -COO(CR3R4)γCO-, -COO(CR3R4)γCO(CR5R6)τ-, -O(CR3R4)γO-, -O(CR3R4)γO(CR5R6)τ-, -O(CR3R4)γOCO-, -O(CR3R4)γOCO(CR5R6)τ-, -O(CR3R4)γCOO-, -O(CR3R4)γCOO(CR5R6)τ-, -O(CR3R4)γNHCO-, -O(CR3R4)γNHCO(CR5R6)τ-, -O(CR3R4)γOCO(CH2)2OCO-, -O(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -O(CR3R4)γCO-, -O(CR3R4)γCO(CR5R6)τ-, -NH(CR3R4)γO-, -NH(CR3R4)γO(CR5R6)τ-, -NH(CR3R4)γOCO-, -NH(CR3R4)γOCO(CR5R6)τ-, -NH(CR3R4)γCOO-, -NH(CR3R4)γCOO(CR5R6)τ-, -NH(CR3R4)γNHCO-, -NH(CR3R4)γNHCO(CR5R6)τ-, -NH(CR3R4)γOCO(CH2)2OCO-, -NH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -NH(CR3R4)γCO-, -NH(CR3R4)γCO(CR5R6)τ-, -(CR3R4)γO-, -(CR3R4)γO(CR5R6)τ-, -(CR3R4)γOCO-, -(CR3R4)γOCO(CR5R6)τ-, -(CR3R4)γ(CH2)nCOO-, -(CR3R4)γ(CH2)nCOO(CR5R6)τ-, -(CR3R4)γNHCO-, -(CR3R4)γNHCO(CR5R6)τ-, -(CR3R4)γOCO(CH2)2OCO-, -(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4(CR3R4)γO-, -OC6H4(CR3R4)γO(CR5R6)τ-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γCOO(CR5R6)τ-, -OC6H4(CR3R4)γNHCO-, -OC6H4(CR3R4)γNHCO(CR5R6)τ-, -OC6H4(CR3R4)γ-, -OCO(CH2)2OCO-, -OCO(CH2)2OCO(CR3R4)γ-, -OC6H4(CR3R4)γCO-, -OC6H4(CR3R4)γCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO-, -OC6H4COO(CR3R4)γOCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCOO-, -OC6H4COO(CR3R4)γCOO(CR5R6)τ-, -OC6H4COO(CR3R4)γO-, -OC6H4COO(CR3R4)γO(CR5R6)τ-, -OC6H4COO(CR3R4)γNHCO-, -OC6H4COO(CR3R4)γNHCO(CR5R6)τ-, -OC6H4COO(CR3R4)γ OCO(CH2)2OCO-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCO-, -OC6H4COO(CR3R4)γCO(CR5R6)τ- 또는 -OC6H4CONHR(CR3R4)γOCO-, -OC6H4CONHR(CR3R4)γOCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCOO-, -OC6H4CONH(CR3R4)γCOO(CR5R6)τ-, -OC6H4CONH(CR3R4)γO-, -OC6H4CONH(CR3R4)γO(CR5R6)τ-, -OC6H4CONH(CR3R4)γNHCO-, -OC6H4CONH(CR3R4)γNHCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCO-, -OC6H4CONH(CR3R4)γCO(CR5R6)τ-로 이루어진 군으로부터 선택되는 지방족 또는 방향족 유도체이며; In the present invention, the linker W is -CH 2 S (CR 3 R 4 ) γ O-, -CH 2 S (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ COO-, -CH 2 S (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4) γ NHCO-, -CH 2 S (CR 3 R 4) γ NHCOO (CR 5 R 6) τ -, - CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ CO-, -CH 2 S (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ O-, -CH 2 SO 2 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ COO-, -CH 2 SO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ NHCO -, -CH 2 SO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ CO-, -CH 2 SO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ COO-, -CH 2 SO 2 (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ -, -CH 2 SO 2 (CR 3 R 4) γ NHCO-, -CH 2 SO 2 (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ CO-, -CH 2 SO 2 (CR 3 R 4) γ CO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ O-, -OCO (CR 3 R 4) γ O ( CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO-, -OCO (CR 3 R 4) γ OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ COO- , -OCO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ NHCO-, -OCO (CR 3 R 4) γ NHCO (CR 5 R 6) τ - , -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO-, -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ CO-, -OCO (CR 3 R 4) γ CO (CR 5 R 6) τ -, -COO (CR 3 R 4) γ O-, -COO (CR 3 R 4) γ O (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO-, -COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ COO-,- COO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -COO (CR 3 R 4) NHCO-, -COO (CR 3 R 4 ) γ NHCO (CR 5 R 6) τ -, -COO (CR 3 R 4) γ OCO (CH 2) 2 OCO-, -COO (CR 3 R 4) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ CO-, -COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ O-, -O (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO-, -O (CR 3 R 4 ) γ OCO ( CR 5 R 6) τ -, -O (CR 3 R 4) γ COO-, -O (CR 3 R 4) γ COO (CR 5 R 6) τ -, -O (CR 3 R 4) γ NHCO- , -O (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ CO-, -O (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ O-, -NH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO-, -NH (CR 3 R 4 ) γ OCO (CR 5 R 6) τ -, -NH ( CR 3 R 4) γ COO-, -NH (CR 3 R 4) γ COO (CR 5 R 6) τ -, -NH (CR 3 R 4) γ NHCO-, - NH (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ CO-, -NH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -,-(CR 3 R 4) γ O-, - (CR 3 R 4) γ O (CR 5 R 6) τ -, - (CR 3 R 4) γ OCO-, - (CR 3 R 4) γ OCO (CR 5 R 6) τ -,-(CR 3 R 4 ) γ (CH 2 ) n COO-,-(CR 3 R 4 ) γ (CH 2 ) n COO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ NHCO-,-(CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ O-, -OC 6 H 4 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ -,- OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4) γ NHCO-, -OC 6 H 4 (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ -, -OCO (CH 2 ) 2 OCO-, -OCO (CH 2 ) 2 OCO (CR 3 R 4 ) γ- , -OC 6 H 4 (CR 3 R 4 ) γ CO-, -OC 6 H 4 ( CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ COO-, -OC 6 H 4 COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ O-, -OC 6 H 4 COO (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ NHCO-, -OC 6 H 4 COO (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 COO (CR 3 R 4) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ CO-, -OC 6 H 4 COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -or -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO-, -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ COO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ O-, -OC 6 H 4 CONH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 CONH ( CR 3 R 4) γ NHCO-, -OC 6 H 4 CONH (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 CONH (CR 3 R 4) γ OCO (CH 2) 2 OCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ CO-,- OC 6 H 4 CONH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ −, an aliphatic or aromatic derivative selected from the group consisting of;

여기에서γ, τ는 서로에 관계없이 각각R3 및 R4 와 R5 및 R6를 포함하는 탄소 반복단위로서 탄소 수 1 내지 20의 값을 지니고 R3, R4, R5 및 R6는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이다. Γ and τ are each carbon repeating unit including R 3 and R 4 and R 5 and R 6 irrespective of each other and have a value of 1 to 20 carbon atoms and R 3 , R 4 , R 5 and R 6 are Irrespective of each other, they are hydrogen and an alkyl group having 1 to 20 carbon atoms.

본 발명에 실시에 있어서, 상기 화학식 1의 수은 이온 검출 기능 브러쉬 고분자 화합물은 대표적인 예로서 하기 화학식 2의 구조를 갖는 폴리[옥시((티민메틸옥시카보닐)운데실티오메틸)에틸렌-랜-옥시(도데실티오메틸)에틸렌]이 있다 (이하 PECH-T라 약칭함). In the embodiment of the present invention, the mercury ion detection function brush polymer compound of Chemical Formula 1 is a poly [oxy ((thiminemethyloxycarbonyl) undecylthiomethyl) ethylene-lan-oxy having a structure of Chemical Formula 2 as a representative example. (Dodecylthiomethyl) ethylene] (hereinafter abbreviated as PECH-T).

Figure 112008090357826-pat00003
(2)
Figure 112008090357826-pat00003
(2)

상기 식에서, m 및 n는 상기 화학식 1에서 정의한 바와 같다. Wherein m and n are as defined in the formula (1).

상기 화학식 1의 수은 이온 검출 기능 브러쉬 고분자 화합물에서, 브러쉬 고분자 화합물 단위체의 함량(mol%)을 나타내는 m는 0 내지 100, 바람직하게는 50 내지 100이다. In the mercury ion detection function brush polymer compound of Chemical Formula 1, m representing the content (mol%) of the brush polymer compound unit is 0 to 100, preferably 50 to 100.

본 발명은 일 측면에서, 하기 화학식 3로 표현되는 폴리에테르 고분자를 The present invention in one aspect, the polyether polymer represented by the following formula (3)

Figure 112008090357826-pat00004
Figure 112008090357826-pat00004

(3)(3)

유기 용매 중에서 하기 화학식 4의 화합물The compound of formula 4 in an organic solvent

Figure 112008090357826-pat00005
(4)
Figure 112008090357826-pat00005
(4)

또는 이들의 유도체와의 반응을 통하여 화학식 1의 화합물을 제조하고,Or through the reaction with derivatives thereof to prepare a compound of formula (1),

여기서, L1 및 L2는 반응을 통해서 상기 화학식(1)의 W를 이루는 링커이며, Here, L1 and L2 are linkers forming the W of the formula (1) through a reaction,

Y1은 수소, 탄소수 1-20의 알킬기, 또는 L1이다. Y1 is hydrogen, a C1-C20 alkyl group, or L1.

본 발명에 있어서, 상기 반응은 화학식 3의 폴리에테르 고분자 화합물을 유기 용매 중에서 화학식4의 화합물과 반응시켜, 수은 검출 기능기를 포함하는 폴리에테르 고분자를 제조하는 단계이다. 사용되는 유기 용매로는 클로로포름, 디클로 로메탄, 디메틸아세트아마이드, 디메틸포름아미드 또는 그 혼합용액 등이 있다.In the present invention, the reaction is a step of preparing a polyether polymer including a mercury detection functional group by reacting the polyether polymer of Formula 3 with a compound of Formula 4 in an organic solvent. Organic solvents to be used include chloroform, dichloromethane, dimethylacetamide, dimethylformamide or a mixed solution thereof.

본 발명의 일 실시에 있어서, 상기 화학식 1의 링커 W는 화학식 3의 폴리에테르 고분자 화합물의 링커 L1과 Z에 형성된 링커 L2의 반응으로 제조될 수 있으며, 일예로 L1이 -OH 말단이고, L2가 산기로서 에스테르 축합 반응이다.In one embodiment of the present invention, the linker W of Formula 1 may be prepared by the reaction of the linker L2 formed in the linker L1 and Z of the polyether polymer compound of Formula 3, for example, L1 is -OH terminal, L2 is It is ester condensation reaction as an acidic radical.

본 발명에 실시에 있어서, 상기 OH말단의 화학식(3)의 폴리에테르 고분자 화합물은 하기 화학식(5)의 폴리에테르 화합물에 할로겐 치환 반응을 통해서 제조될 수 있다. In the present invention, the polyether polymer compound of the general formula (3) of the OH terminal can be prepared through a halogen substitution reaction to the polyether compound of the general formula (5).

Figure 112008090357826-pat00006
(5)
Figure 112008090357826-pat00006
(5)

여기서, 상기 R1 및 R2는 수소 또는 탄소수 1-20의 알킬이며, γ는 0-20정수의 반복단위이며, x는 F, Cl, Br 및 I이고, d는 50내지 50,000이며, A는 수소, 알킬, 또는 CH2X이다. Wherein R1 and R2 are hydrogen or alkyl of 1-20 carbon atoms, γ is a repeating unit of 0-20 integer, and x is F, Cl, Br And I, d is 50 to 50,000 and A is hydrogen, alkyl, or CH2X.

본 발명의 실시에 있어서, 상기 할로겐 치환 반응은 CH2X기를 NaSROH와 NaSR의 혼합물과 반응시켜 도입될 수 있으며, R과 ROH는 탄소수 1-20의 알킬, 및 알콕시이다. 용매로는 디메틸아세트아마이드, 디메틸포름아마이드, 디에틸에테르, 디클로로메탄, 테트라하이드로퓨란 또는 그 혼합용액 등이 있다. 이 단계에서의 반응은 -100 내지 100 ℃의 온도 및 1 내지 5 atm의 압력에서 이루어지는 것이 좋다.In the practice of the present invention, the halogen substitution reaction may be introduced by reacting a CH2X group with a mixture of NaSROH and NaSR, wherein R and ROH are alkyl having 1-20 carbon atoms, and alkoxy. Examples of the solvent include dimethylacetamide, dimethylformamide, diethyl ether, dichloromethane, tetrahydrofuran or a mixed solution thereof. The reaction in this step is preferably carried out at a temperature of -100 to 100 ℃ and a pressure of # 1 to 5 atm.

상기 화학식(5)의 폴리에테르 고분자 화합물은 공지된 방법으로 제조될 수 있으며, 고리형 에테르 화합물을 용매를 사용하지 않거나 디클로로메탄, 클로로포 름, 다이에틸에테르 등의 용매 중에서 트라이페닐카베니움 헥사플루오로포스페이트 또는 트라이페닐카베니움 헥사클로로안티모니에이트, 알킬 알루미늄 등의 양이온 개시제의 존재하에 양이온 개환 중합 반응하는 단계를 포함한다. The polyether high molecular compound of Formula (5) can be prepared by a known method, the triphenylcarbenium hexa in a solvent such as dichloromethane, chloroform, diethyl ether, without using a cyclic ether compound or a solvent Cation ring-opening polymerization in the presence of a cationic initiator such as fluorophosphate or triphenylcarbenium hexachloroantimoniate, alkyl aluminum, and the like.

본 발명은 일 측면에 있어서, 수은 이온 검출 방법에 관한 것으로서, 상기 화학식(1)의 고분자 화합물을 이용하여 표면 플라스몬 공명 분광법을 통해 수은 이온의 실시간 검출하는 것을 특징으로 한다. The present invention relates to a mercury ion detection method, characterized in that the real-time detection of mercury ions by surface plasmon resonance spectroscopy using the polymer compound of the formula (1).

본 발명의 일 실시에 있어서, 상기 수은 이온의 검출은 표면플라즈몬 공명 분광기를 이용하여 화학식(1)의 고분자 화합물이 코팅된 프리즘에 광을 입사시켜 수은 이온 감지에 따른 반사도의 변화를 측정하여 이루어진다. In one embodiment of the present invention, the detection of the mercury ion is made by measuring the change in reflectivity according to the detection of mercury ion by injecting light into the prism coated with the polymer compound of the formula (1) using a surface plasmon resonance spectroscopy.

본 발명은 일 측면에서, 수소 이온 측정용 플라스몬 공명 분광기에 관한 것으로서, 상기 화학식(1)의 고분자 화합물이 코팅된 프리즘을 포함하는 것을 특징으로 한다. In one aspect, the present invention relates to a plasmon resonance spectrometer for hydrogen ion measurement, characterized in that it comprises a prism coated with a polymer compound of the formula (1).

본 발명은 일 측면에 있어서, 상기 화학식(1)로 이루어진 나노 박막에 관한 것으로서, 자기조립성 표면을 가지는 것을 특징으로 한다. In one aspect, the present invention relates to a nano-film consisting of the formula (1), characterized in that it has a self-assembled surface.

본 발명의 화학식(1)로 이루어진 나노 박막은 수은 감지 기능기가 표면에 정렬하는 자기조립성 박막을 이루며, 바람직하게는 수용액 속에서 나노 박막의 표면에 수은 감지 기능기가 수용액쪽으로 정렬하여, 수은 이온의 감지 특성이 극대화된다. Nano-thin film made of the formula (1) of the present invention forms a self-assembled thin film in which the mercury sensing function is aligned on the surface, preferably in the aqueous solution of the mercury sensing functional group on the surface of the nano thin film, Sensing characteristics are maximized.

본 발명에 따른 화학식(1)로 이루어진 나노 박막은 nm 단위의 두께, 예를 들어 1-1000 nm, 바람직하게는 50-900nm 정도의 두께를 가진다. Nano-thin film consisting of formula (1) according to the present invention has a thickness in nm, for example 1-1000 nm, preferably about 50-900nm.

본 발명의 실시에 있어서, 상기 나노 박막은 스핀 코팅 (spin coating) 기법을 통해 쉽게 제조가 가능하다. In the practice of the present invention, the nano thin film can be easily manufactured through a spin coating technique.

본 발명에 사용된 고분자는 가공이 용이하고 다양한 기질에 쉽게 코팅될 수 있는 경제적인 물질로써 수은 이온을 실시간으로 검출할 수 있는 표면 플라스몬 분광법에서 요구되는 나노 필름을 제조하기 용이하다.  The polymer used in the present invention is an economical material that can be easily processed and easily coated on various substrates, and thus it is easy to prepare nano films required by surface plasmon spectroscopy capable of detecting mercury ions in real time.

또한 이 고분자 필름은 고분자의 수은 검출 기능기가 수용액 상에서 표면에 수직한 방향으로 배향되기 때문에 수은 이온과의 접촉 확률을 극대화할 수 있다. 뿐만 아니라 유연한 브러쉬 특성으로 말단 기능기가 수은 이온과 효과적으로 흡착될 수 있으며, 가역적 흡착 기작을 통해 검출 셀의 재활용도 가능하다. The polymer film also maximizes the probability of contact with mercury ions because the mercury detection functional groups of the polymer are oriented in a direction perpendicular to the surface of the aqueous solution. In addition, the flexible brush characteristics allow terminal functional groups to be effectively adsorbed with mercury ions, and reversible adsorption mechanisms allow for the recycling of detection cells.

<합성예 1> Synthesis Example 1

Figure 112008090357826-pat00007
   
Figure 112008090357826-pat00007
   

100mL의 둥근바닥 플라스크에 40mL(512mmol)의 에피클로로히드린을 넣고 질소분위기 하에서 5°C로 냉각시켰다. 여기에 2.56mmol의 개시제를 디클로로메탄에 녹인 용액을 첨가한 후 상온에서 4일간 교반하였다. 이 반응물을 소량의 디클로로메탄에 녹인 후 메탄올에 재침전시켜 정제하고, 이를 40°C 진공 하에서 8시간 건 조하여 폴리에피클로로히드린을 제조하였다. 수율: 65%. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.89-3.49 (br, 3H, OCH, OCH2,CH2Cl); 13C-NMR (75 MHz, CDCl3):δ(ppm)= 79.70, 70.32, 44.31; FTIR(in film):ν(cm-1)= 2960, 2915, 2873, 1427, 1348, 1299, 1263, 1132, 750, 707. 40 mL (512 mmol) of epichlorohydrin was added to a 100 mL round bottom flask and cooled to 5 ° C. under a nitrogen atmosphere. A solution of 2.56 mmol of an initiator dissolved in dichloromethane was added thereto, followed by stirring at room temperature for 4 days. The reaction was dissolved in a small amount of dichloromethane and purified by reprecipitation in methanol, which was then dried for 8 hours at 40 ° C. to prepare polyepichlorohydrin. Yield 65%. 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.89-3.49 (br, 3H, OCH, OCH 2 , CH 2 Cl); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.70, 70.32, 44.31; FTIR (in film): ν (cm −1 ) = 2960, 2915, 2873, 1427, 1348, 1299, 1263, 1132, 750, 707.

<합성예 2> (m=0, PECH_OH0)  Synthesis Example 2 (m = 0, PECH_OH0)

Figure 112008090357826-pat00008
합성예 1에서 얻은 폴리에피클로로히드린 화합물 558mg (6.03mmol)을 5mL의 디메틸아세트아마이드에 녹인 용액에, 나트륨 도데실싸이올레이트 1350mg (6.03mmol)을 10mL의 디메틸아세트아마이드에 녹인 용액을 첨가하였다. 이 혼합액을 50℃에서 2 시간 교반한 후 클로로포름으로 추출하고 물로 씻어 용매를 제거한 후, 헥산에 침전시켰다. 이 침전물을 40°C 진공 하에서 8 시간 건조하여 목적 화합물 (PECH_OH0)을 얻었다. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.70-3.59 (br, 3H, OCH, OCH2), 2.75-2.52 (m, 4H, CH2SCH2), 1.57-1.13 (m, 20H, CH2), 0.88 (t, 3H, CH3); 13C-NMR (75 MHz, CDCl3):δ(ppm)=79.36-78.72, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76; IR (in film): ν (cm-1)=2960, 2854, 1460, 1110, 732.
Figure 112008090357826-pat00008
To a solution of 558 mg (6.03 mmol) of polyepichlorohydrin compound obtained in Synthesis Example 1 in 5 mL of dimethylacetamide, a solution of 1350 mg (6.03 mmol) of sodium dodecylthiolate in 10 mL of dimethylacetamide was added. . The mixture was stirred at 50 ° C. for 2 hours, extracted with chloroform, washed with water to remove the solvent, and then precipitated in hexane. This precipitate was dried under vacuum at 40 ° C. for 8 hours to obtain the title compound (PECH_OH0). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.75-2.52 (m, 4H, CH 2 SCH 2 ), 1.57-1.13 (m , 20H, CH 2 ), 0.88 (t, 3H, CH 3 ); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.36-78.72, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76; IR (in film): ν (cm −1 ) = 2960, 2854, 1460, 1110, 732.

<합성예 3> (m=25, PECH_OH25) Synthesis Example 3 (m = 25, PECH_OH25)

Figure 112008090357826-pat00009
합성예 1에서 얻은 폴리에피클로로히드린 화합물 894mg (9.66mmol)을 6mL의 디메틸아세트아마이드에 녹인 용액에, 나트륨 11-하이드록시운데실싸이올레이트 548mg (2.42mmol)과 나트륨 도데실싸이올레이트 1630mg (7.25mmol)을 30mL의 디메틸아세트아마이드에 녹인 용액을 첨가하였다. 이 혼합액을 실온에서 하루 동안 교반한 후 클로로포름으로 추출하고 물로 씻어 용매를 제거한 후, 헥산에 침전시켰다. 이 침전물을 40°C 진공 하에서 8 시간 건조하여 목적 화합물 (PECH_OH20)을 얻었다. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.70-3.59 (br, OCH, OCH2), 2.75-2.52 (m, CH2SCH2), 1.57-1.13 (m, CH2), 0.88 (t, CH3); 13C-NMR (75 MHz, CDCl3):δ(ppm)=79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm-1)=3590-3100, 2960, 2854, 1460, 1110, 732.
Figure 112008090357826-pat00009
894 mg (9.66 mmol) of the polyepichlorohydrin compound obtained in Synthesis Example 1 was dissolved in 6 mL of dimethylacetamide, 548 mg (2.42 mmol) of sodium 11-hydroxyundecylthiolate and 1630 mg of sodium dodecylthiolate. (7.25 mmol) was added to a solution of 30 mL of dimethylacetamide. The mixture was stirred for one day at room temperature, extracted with chloroform, washed with water to remove the solvent, and then precipitated in hexane. This precipitate was dried under vacuum at 40 ° C. for 8 hours to obtain the title compound (PECH_OH20). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.70-3.59 (br, OCH, OCH 2 ), 2.75-2.52 (m, CH 2 SCH 2 ), 1.57-1.13 (m, CH 2 ) , 0.88 (t, CH 3 ); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm −1 ) = 3590-3100, 2960, 2854, 1460, 1110, 732.

<합성예 4> (m=50, PECH_OH50) Synthesis Example 4 (m = 50, PECH_OH50)

Figure 112008090357826-pat00010
합성예 1에서 얻은 폴리에피클로로히드린 화합물 894mg (9.66mmol)을 6mL의 디메틸아세트아마이드에 녹인 용액에, 11-하이드록시운데실싸이올레이트 1093mg (4.83mmol)과 도데실싸이올레이트 1083mg (4.83mmol)을 30mL의 디메틸아세트아마이드에 녹인 용액을 첨가하였다. 이 혼합액을 실온에서 하루 동안 교반한 후 클로로포름으로 추출하고 물로 씻어 용매를 제거한 후, 헥산에 침전시켰다. 이 침전물을 40°C 진공 하에서 8 시간 건조하여 목적 화합물 (PECH_OH40)을 얻었다. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.70-3.59 (br, OCH, OCH2), 2.75-2.52 (m, CH2SCH2), 1.57-1.13 (m, CH2), 0.88 (t, CH3); 13C-NMR (75 MHz, CDCl3):δ(ppm)=79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm-1)=3590-3100, 2960, 2854, 1460, 1110, 732.
Figure 112008090357826-pat00010
894 mg (9.66 mmol) of the polyepichlorohydrin compound obtained in Synthesis Example 1 was dissolved in 6 mL of dimethylacetamide. mmol) was added to 30 mL of dimethylacetamide. The mixture was stirred for one day at room temperature, extracted with chloroform, washed with water to remove the solvent, and then precipitated in hexane. This precipitate was dried under vacuum at 40 ° C. for 8 hours to obtain the title compound (PECH_OH40). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.70-3.59 (br, OCH, OCH 2 ), 2.75-2.52 (m, CH 2 SCH 2 ), 1.57-1.13 (m, CH 2 ) , 0.88 (t, CH 3 ); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm −1 ) = 3590-3100, 2960, 2854, 1460, 1110, 732.

<합성예 5> (m=75, PECH_OH75) Synthesis Example 5 (m = 75, PECH_OH75)

Figure 112008090357826-pat00011
Figure 112008090357826-pat00011

합성예 1에서 얻은 폴리에피클로로히드린 화합물 894mg (9.66mmol)을 6mL의 디메틸아세트아마이드에 녹인 용액에, 11-하이드록시운데실싸이올레이트 1630mg (7.25mmol)과 도데실싸이올레이트 542mg (2.41mmol)을 30mL의 디메틸아세트아마이드에 녹인 용액을 첨가하였다. 이 혼합액을 실온에서 하루 동안 교반한 후 클로로포름으로 추출하고 물로 씻어 용매를 제거한 후, 헥산에 침전시켰다. 이 침전물을 40°C 진공 하에서 8 시간 건조하여 목적 화합물 (PECH_OH60)을 얻었다. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.70-3.59 (br, OCH, OCH2), 2.75-2.52 (m, CH2SCH2), 1.57-1.13 (m, CH2), 0.88 (t, CH3); 13C-NMR (75 MHz, CDCl3):δ(ppm)=79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm-1)=3590-3100, 2960, 2854, 1460, 1110, 732. In a solution of 894 mg (9.66 mmol) of the polyepichlorohydrin compound obtained in Synthesis Example 1 in 6 mL of dimethylacetamide, 1630 mg (7.25 mmol) of 11-hydroxyundecylthiolate and 542 mg of dodecylthiolate (2.41 mmol) was added to 30 mL of dimethylacetamide. The mixture was stirred for one day at room temperature, extracted with chloroform, washed with water to remove the solvent, and then precipitated in hexane. This precipitate was dried under vacuum at 40 ° C. for 8 hours to obtain the title compound (PECH_OH60). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.70-3.59 (br, OCH, OCH 2 ), 2.75-2.52 (m, CH 2 SCH 2 ), 1.57-1.13 (m, CH 2 ) , 0.88 (t, CH 3 ); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm −1 ) = 3590-3100, 2960, 2854, 1460, 1110, 732.

<합성예 6> (m=100, PECH_OH100) Synthesis Example 6 (m = 100, PECH_OH100)

Figure 112008090357826-pat00012
합성예 1에서 얻은 폴리에피클로로히드린 화합물 500mg (5.4mmol)을 2mL의 디메틸아세트아마이드에 녹인 용액에, 11-하이드록시운데실싸이올레이트 1,382mg (5.4mmol)을 10mL의 디메틸아세트아마이드에 녹인 용액을 첨가하였다. 이 혼합액을 상온에서 2 시간 교반한 후 클로로포름으로 추출하고 물로 씻어 용매를 제거한 후, 헥산에 침전시켰다. 이 침전물을 40°C 진공 하에서 8 시간 건조하여 목적 화합물(PECH_OH100)을 얻었다. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.70-3.59 (br, 3H, OCH, OCH2), 2.75-2.52 (m, 4H, CH2SCH2), 1.57-1.13 (m, 18H, CH2); 13C-NMR (75 MHz, CDCl3):δ(ppm)=79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76; IR (in film): ν (cm-1)=3590-3100, 2960, 2854, 1460, 1110, 732.
Figure 112008090357826-pat00012
500 mg (5.4 mmol) of the polyepichlorohydrin compound obtained in Synthesis Example 1 was dissolved in 2 mL of dimethylacetamide, and 1,382 mg (5.4 mmol) of 11-hydroxyundecylthiolate was dissolved in 10 mL of dimethylacetamide. The solution was added. The mixture was stirred at room temperature for 2 hours, extracted with chloroform, washed with water to remove the solvent, and then precipitated in hexane. This precipitate was dried under vacuum at 40 ° C. for 8 hours to obtain the target compound (PECH_OH100). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.75-2.52 (m, 4H, CH 2 SCH 2 ), 1.57-1.13 (m , 18H, CH 2 ); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76; IR (in film): ν (cm −1 ) = 3590-3100, 2960, 2854, 1460, 1110, 732.

<합성예 7> (m=25, PECH-T25) Synthesis Example 7 (m = 25, PECH-T25)

Figure 112008090357826-pat00013
 
Figure 112008090357826-pat00013
 

합성예 3에서 얻은 화합물 260 mg (0.25 OH mmol)과 N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로크로라이드 116 mg (0.750 mmol), 4-(디메틸아미노)피리딘 46 mg (0.375 mmol), 티민-1-아세틱에시드 46 mg (0.25 mmol)을 20 ml 디메틸포름아마이드에 녹인 후 50 ℃에서 24 시간 동안 가열하면서 교반한다. 반응이 완료되면 상온으로 식힌 후 200 ml 디에틸 에테르에 침전한 후 침전용매를 제거하고 남은 고상 물질을 실리카겔 크로마토그래피로 정제한다 (메틸렌크로라이드 : 메탄올 = 20 vol% :80 vol%, Rf=0.8). 1H-NMR (300 MHz, DMSO-d 6 ):δ(ppm)= 11.4 (s, 1H, NH), 7.53 (s, 1H, Ar-H), 4.45 (s, 2H, CH2), 4.08 (s, 2H, CH2), 3.70- 3.59 (br, 3H, OCH, OCH2), 2.75-2.52 (m, 4H, CH2SCH2), 1.71 (s, 3H, Ar-CH3), 1.57-1.13 (m, 18H, CH2), 0.88 (t, 3H, CH3); 13C-NMR (75 MHz, DMSO-d 6 ):δ(ppm)=169.3, 165.4, 152.8, 142.6, 109.7, 79.36-78.72, 69.42, 66.14, 49.5, 39.23, 33.44, 32.82, 29.75-28.53, 25.76, 14.75, 13.04; IR (KBr): ν (cm-1)=3590-3100, 2960, 2854, 1707, 1664, 1632, 1460, 1419, 1200, 1110, 830, 732. 260 mg (0.25 OH mmol) of the compound obtained in Synthesis Example 3 and 116 mg (0.750 mmol) of 4-N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride, 46 mg of 4- (dimethylamino) pyridine (0.375 mmol) and 46 mg (0.25 mmol) of thymine-1-acetic acid are dissolved in 20 ml dimethylformamide and stirred with heating at 50 ° C. for 24 hours. After the reaction was completed, the mixture was cooled to room temperature, precipitated in 200 ml of diethyl ether, the precipitated solvent was removed, and the remaining solid was purified by silica gel chromatography (methylene chloride: methanol = 20 vol%: 80 vol%, R f = 0.8). 1 H-NMR (300 MHz, DMSO- d 6 ): δ (ppm) = 11.4 (s, 1H, NH), 7.53 (s, 1H, Ar-H), 4.45 (s, 2H, CH 2 ), 4.08 (s, 2H, CH 2 ), 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.75-2.52 (m, 4H, CH 2 SCH 2 ), 1.71 (s, 3H, Ar-CH 3 ), 1.57 -1.13 (m, 18H, CH 2 ), 0.88 (t, 3H, CH 3 ); 13 C-NMR (75 MHz, DMSO- d 6 ): δ (ppm) = 169.3, 165.4, 152.8, 142.6, 109.7, 79.36-78.72, 69.42, 66.14, 49.5, 39.23, 33.44, 32.82, 29.75-28.53, 25.76 , 14.75, 13.04; IR (KBr): ν (cm -1 ) = 3590-3100, 2960, 2854, 1707, 1664, 1632, 1460, 1419, 1200, 1110, 830, 732.

<합성예 8> (m=50, PECH-T50) Synthesis Example 8 (m = 50, PECH-T50)

합성예 4에서 얻은 화합물 260 mg (0.50 OH mmol)과 N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로크로라이드 233 mg (1.50 mmol), 4-(디메틸아미노)피리딘 92 mg (0.75 mmol), 티민-1-아세틱에시드 92 mg (0.50 mmol)을 20 ml 디메틸포름아마이드에 녹인 후 50 ℃에서 24 시간 동안 가열하면서 교반한다. 반응이 완료되면 상온으로 식힌 후 200 ml 디에틸 에테르에 침전한 후 침전용매를 제거하고 남은 고상 물질을 실리카겔 크로마토그래피로 정제한다 (메틸렌크로라이드 : 메탄올 = 20 vol% :80 vol%, Rf=0.8). 1H-NMR (300 MHz, DMSO-d 6 ):δ(ppm)= 11.4 (s, 1H, NH), 7.53 (s, 1H, Ar-H), 4.45 (s, 2H, CH2), 4.08 (s, 2H, CH2), 3.70-3.59 (br, 3H, OCH, OCH2), 2.75-2.52 (m, 4H, CH2SCH2), 1.71 (s, 3H, Ar-CH3), 1.57-1.13 (m, 18H, CH2), 0.88 (t, 3H, CH3); 13C-NMR (75 MHz, DMSO-d 6 ):δ(ppm)=169.3, 165.4, 152.8, 142.6, 109.7, 79.36-78.72, 69.42, 66.14, 49.5, 39.23, 33.44, 32.82, 29.75-28.53, 25.76, 14.75, 13.04; IR (KBr): ν (cm-1)=3590-3100, 2960, 2854, 1707, 1664, 1632, 1460, 1419, 1200, 1110, 830, 732. 260 mg (0.50 OH mmol) of the compound obtained in Synthesis Example 4 and 233 mg (1.50 mmol) of N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride, 92 mg of 4- (dimethylamino) pyridine (0.75 mmol) and 92 mg (0.50 mmol) of thymine-1-acetic acid are dissolved in 20 ml dimethylformamide and stirred with heating at 50 ° C. for 24 hours. After the reaction was completed, the mixture was cooled to room temperature, precipitated in 200 ml of diethyl ether, the precipitated solvent was removed, and the remaining solid was purified by silica gel chromatography (methylene chloride: methanol = 20 vol%: 80 vol%, R f = 0.8). 1 H-NMR (300 MHz, DMSO- d 6 ): δ (ppm) = 11.4 (s, 1H, NH), 7.53 (s, 1H, Ar-H), 4.45 (s, 2H, CH 2 ), 4.08 (s, 2H, CH 2 ), 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.75-2.52 (m, 4H, CH 2 SCH 2 ), 1.71 (s, 3H, Ar-CH 3 ), 1.57 -1.13 (m, 18H, CH 2 ), 0.88 (t, 3H, CH 3 ); 13 C-NMR (75 MHz, DMSO- d 6 ): δ (ppm) = 169.3, 165.4, 152.8, 142.6, 109.7, 79.36-78.72, 69.42, 66.14, 49.5, 39.23, 33.44, 32.82, 29.75-28.53, 25.76 , 14.75, 13.04; IR (KBr): ν (cm -1 ) = 3590-3100, 2960, 2854, 1707, 1664, 1632, 1460, 1419, 1200, 1110, 830, 732.

<합성예 9> (m=75, PECH-T75) Synthesis Example 9 (m = 75, PECH-T75)

합성예 5에서 얻은 화합물 260 mg (0.75 OH mmol)과 N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로크로라이드 349 mg (2.25 mmol), 4-(디메틸아미노)피리딘 137 mg (1.13 mmol), 티민-1-아세틱에시드 138 mg (0.75 mmol)을 20 ml 디메틸포름아마이드에 녹인 후 50 ℃에서 24 시간 동안 가열하면서 교반한다. 반응이 완료되면 상온으로 식힌 후 200 ml 디에틸 에테르에 침전한 후 침전용매를 제거하고 남은 고상 물질을 실리카겔 크로마토그래피로 정제한다 (메틸렌크로라이드 : 메탄올 = 20 vol% :80 vol%, Rf=0.8). 1H-NMR (300 MHz, DMSO-d 6 ):δ(ppm)= 11.4 (s, 1H, NH), 7.53 (s, 1H, Ar-H), 4.45 (s, 2H, CH2), 4.08 (s, 2H, CH2), 3.70-3.59 (br, 3H, OCH, OCH2), 2.75-2.52 (m, 4H, CH2SCH2), 1.71 (s, 3H, Ar-CH3), 1.57-1.13 (m, 18H, CH2), 0.88 (t, 3H, CH3); 13C-NMR (75 MHz, DMSO-d 6 ):δ(ppm)=169.3, 165.4, 152.8, 142.6, 109.7, 79.36-78.72, 69.42, 66.14, 49.5, 39.23, 33.44, 32.82, 29.75-28.53, 25.76, 14.75, 13.04; IR (KBr): ν (cm-1)=3590-3100, 2960, 2854, 1707, 1664, 1632, 1460, 1419, 1200, 1110, 830, 732. 260 mg (0.75 OH mmol) of the compound obtained in Synthesis Example 5 and 349 mg (2.25 mmol) of N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride, 137 mg of 4- (dimethylamino) pyridine (1.13 mmol) and 138 mg (0.75 mmol) of thymine-1-acetic acid are dissolved in 20 ml dimethylformamide and stirred with heating at 50 ° C. for 24 hours. After the reaction was completed, the mixture was cooled to room temperature, precipitated in 200 ml of diethyl ether, the precipitated solvent was removed, and the remaining solid was purified by silica gel chromatography (methylene chloride: methanol = 20 vol%: 80 vol%, R f = 0.8). 1 H-NMR (300 MHz, DMSO- d 6 ): δ (ppm) = 11.4 (s, 1H, NH), 7.53 (s, 1H, Ar-H), 4.45 (s, 2H, CH 2 ), 4.08 (s, 2H, CH 2 ), 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.75-2.52 (m, 4H, CH 2 SCH 2 ), 1.71 (s, 3H, Ar-CH 3 ), 1.57 -1.13 (m, 18H, CH 2 ), 0.88 (t, 3H, CH 3 ); 13 C-NMR (75 MHz, DMSO- d 6 ): δ (ppm) = 169.3, 165.4, 152.8, 142.6, 109.7, 79.36-78.72, 69.42, 66.14, 49.5, 39.23, 33.44, 32.82, 29.75-28.53, 25.76 , 14.75, 13.04; IR (KBr): ν (cm -1 ) = 3590-3100, 2960, 2854, 1707, 1664, 1632, 1460, 1419, 1200, 1110, 830, 732.

<합성예 10> (m=100, PECH-T100) Synthesis Example 10 (m = 100, PECH-T100)

합성예 3에서 얻은 화합물 260 mg (1.00 OH mmol)과 N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로크로라이드 465 mg (3 mmol), 4-(디메틸아미노)피리딘 183 mg (1.5 mmol), 티민-1-아세틱에시드 184 mg (0.25 mmol)을 20 ml 디메틸포름아마이드에 녹인 후 50 ℃에서 24 시간 동안 가열하면서 교반한다. 반응이 완료되면 상온으로 식힌 후 200 ml 디에틸 에테르에 침전한 후 침전용매를 제거하고 남은 고상 물질을 실리카겔 크로마토그래피로 정제한다 (메틸렌크로라이드 : 메탄올 = 20 vol% :80 vol%, Rf=0.8). 1H-NMR (300 MHz, DMSO-d 6 ):δ(ppm)= 11.4 (s, 1H, NH), 7.53 (s, 1H, Ar-H), 4.45 (s, 2H, CH2), 4.08 (s, 2H, CH2), 3.70-3.59 (br, 3H, OCH, OCH2), 2.75-2.52 (m, 4H, CH2SCH2), 1.71 (s, 3H, Ar-CH3), 1.57-1.13 (m, 18H, CH2); 13C-NMR (75 MHz, DMSO-d 6 ):δ(ppm)=169.3, 165.4, 152.8, 142.6, 109.7, 79.36-78.72, 69.42, 66.14, 49.5, 39.23, 33.44, 32.82, 29.75-28.53, 25.76, 13.04; IR (KBr): ν (cm-1)=3590-3100, 2960, 2854, 1707, 1664, 1632, 1460, 1419, 1200, 1110, 830, 732. 260 mg (1.00 OH mmol) of the compound obtained in Synthesis Example 3 and 465 mg (3 mmol) of N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride, 183 mg of 4- (dimethylamino) pyridine (1.5 mmol) and 184 mg (0.25 mmol) of thymine-1-acetic acid are dissolved in 20 ml dimethylformamide and stirred with heating at 50 ° C. for 24 hours. After the reaction was completed, the mixture was cooled to room temperature, precipitated in 200 ml of diethyl ether, the precipitated solvent was removed, and the remaining solid was purified by silica gel chromatography (methylene chloride: methanol = 20 vol%: 80 vol%, R f = 0.8). 1 H-NMR (300 MHz, DMSO- d 6 ): δ (ppm) = 11.4 (s, 1H, NH), 7.53 (s, 1H, Ar-H), 4.45 (s, 2H, CH 2 ), 4.08 (s, 2H, CH 2 ), 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.75-2.52 (m, 4H, CH 2 SCH 2 ), 1.71 (s, 3H, Ar-CH 3 ), 1.57 -1.13 (m, 18H, CH 2 ); 13 C-NMR (75 MHz, DMSO- d 6 ): δ (ppm) = 169.3, 165.4, 152.8, 142.6, 109.7, 79.36-78.72, 69.42, 66.14, 49.5, 39.23, 33.44, 32.82, 29.75-28.53, 25.76 , 13.04; IR (KBr): ν (cm -1 ) = 3590-3100, 2960, 2854, 1707, 1664, 1632, 1460, 1419, 1200, 1110, 830, 732.

<실시예 1> &Lt; Example 1 >

위에 상기된 PECH-T100을 테트라하이드로퓨란을 용매로 하여 1wt% 농도의 용액으로 녹인다. 이 용액을 금이 코팅된 프리즘 위에 스핀 코팅하여 60 ℃ 진공 오븐에서 하루 동안 건조한다. 고분자가 코팅된 프리즘은 표면 플라스몬 공명 분광기 를 이용하여 수은 이온에 대한 감지 실험을 하였다. 실험 방법은 프리즘을 표면 플라스몬 공명 분광기에서 레이저의 입사각을 변화시키면서 반사도를 측정하였으며 고분자의 코팅과 수은의 감지에 따른 반사도의 변화를 입사각에 따라 측정하여 도 1에 나타내었다. The above-described PECH-T100 is dissolved in a solution of 1wt% concentration using tetrahydrofuran as a solvent. The solution is spin coated onto a gold coated prism and dried in a 60 ° C. vacuum oven for one day. The prism coated with polymer was tested for mercury ions using surface plasmon resonance spectroscopy. In the experimental method, the prism was measured reflectivity while changing the incident angle of the laser in the surface plasmon resonance spectroscopy, and the change in reflectivity according to the coating of the polymer and the detection of mercury was measured according to the incident angle and is shown in FIG.

<실시예 2> <Example 2>

실시예 1에서 준비한 프리즘에 표면 플라즈몬 공명 분광기를 이용하여 레이저의 입사각을 고정한 후 반사도의 변화를 측정하였다. 수은 이온의 농도를 달리하면서 10분간 고분자에 접촉 시켜 농도에 따른 반사도의 변화를 측정하였고 농도에 따른 반사도의 변화를 도식화 하여 이를 도 2에 나타내었다. After fixing the incident angle of the laser to the prism prepared in Example 1 using a surface plasmon resonance spectroscopy, the change in reflectance was measured. The change in reflectivity according to the concentration was measured by contacting the polymer for 10 minutes while varying the concentration of mercury ions, and the change in reflectivity according to the concentration is shown in FIG. 2.

<실시예 3> <Example 3>

실시예 1에서 준비한 프리즘에 레이저의 입사각을 고정 시키고 같은 농도의 수은, 구리, 은, 아연, 철 이온을 번갈아 가며 고분자에 접촉 시켜 반사도를 측정하여 고분자가 수은과 먼저 접촉할 경우와 나중에 접촉할 경우의 이온 선택성에 관한 실험을 하여 도 3에 나타내었다. When the incident angle of the laser is fixed to the prism prepared in Example 1, and the mercury, copper, silver, zinc and iron ions of the same concentration are alternately contacted with the polymer to measure the reflectivity, so that the polymer contacts with mercury first and later An experiment on ion selectivity of was shown in FIG. 3.

<실시예 4> <Example 4>

실시예 1에서 준비한 프리즘에 수은 ,구리, 은, 아연, 철 이온을 각각 흘려 주어 각 이온에 대한 반사도의 변화량을 측정하여 도 4에 나타내었고, 수은을 1로 두었을 때의 변화량을 표 1에 나타내었다. Mercury, copper, silver, zinc, and iron ions were respectively flowed into the prism prepared in Example 1, and the amount of change in reflectivity for each ion was measured and shown in FIG. 4, and the amount of change when mercury was 1 is shown in Table 1. Indicated.

금속이온Metal ion 변화량Change 수은Mercury 1One silver 0.140.14 iron 0.120.12 아연zinc 0.030.03 구리Copper 0.020.02

금속이온의 반사도의 변화량 Change in reflectance of metal ions

<실시예 5> Example 5

위에 상기된 PECH-T100을 테트라하이드로퓨란을 용매로 하여 1wt% 농도의 용액으로 녹인다. 상기 용액 각각을 실리콘 기질 슬라이드글라스에 약 2000rpm의 속도로 스핀 코팅하여 약 100nm 두께의 박막을 제조하였다. 상기의 박막을 질소분위기 하에서 60 ℃ 진공 오븐에서 하루 동안 건조한다. The above-described PECH-T100 is dissolved in a solution of 1wt% concentration using tetrahydrofuran as a solvent. Each solution was spin coated on a silicon substrate slide glass at a speed of about 2000 rpm to prepare a thin film having a thickness of about 100 nm. The thin film is dried for one day in a vacuum oven at 60 ° C. under a nitrogen atmosphere.

<실시예 6> <Example 6>

상기 박막의 용액 상에서 자기조립성에 의한 분자의 배향 및 구조 분석을 위하여, 포항 방사광 가속기의 4C2 빔라인을 이용하여 고분자 박막 구조를 분석하는 스침각 입사 엑스선 산란(Grazing Incidence X-ray Scattering; GIXS) 장치를 사용하였다. Grazing Incidence X-ray Scattering (GIXS) device for analyzing the polymer thin film structure using 4C2 beamline of Pohang Emission Accelerator for self-assembly of molecules on the thin film solution. Used.

상기 실시 예 5에 따라 제조된 박막에 대한 상기 측정 결과는 도 5와 도 6에 나타내었다. 도 5에서 보는 것과 같이 유연한 브러쉬 특성을 가지며, 금속이온이 없는 수용액 상에서 자기조립성에 의하여 말단의 반응기가 수용액 쪽으로 배향하는 것을 알 수 있다. 도 6에서 수은 이온 용액 상에서 반응기가 수은이온과 접촉하며 도 5와 다르게 배향성이 달라지는 것을 알 수 있다. The measurement results of the thin film prepared according to Example 5 are shown in FIGS. 5 and 6. As shown in FIG. 5, it has a flexible brush property, and it can be seen that the terminal of the reactor is oriented toward the aqueous solution by self-assembly in the aqueous solution free of metal ions. It can be seen from FIG. 6 that the reactor is in contact with mercury ions on the mercury ion solution and the orientation differs from FIG. 5.

도 1은 본 실험에 사용된 막의 수은 감지 방법을 도식한 그래프로, (a)는 수은 감지 방법, (b)는 수은을 감지했을 때의 신호 변화이다. 1 is a graph illustrating a method of detecting mercury in a film used in this experiment, (a) is a method of detecting mercury, and (b) is a signal change when mercury is detected.

   도 2는 수은 이온의 농도를 변화시키면서 10분간 접촉시켰을 때의 반사율의 변화를 측정한 것으로, (a)는 농도의 차이에 따른 반사율의 변화를 시간별로 측정한 것이고, (b)는 반사율의 변화 정도를 농도에 따라 나타낸 것이다. 2 is a measurement of the change in reflectance when contacted for 10 minutes while changing the concentration of mercury ions, (a) is a measure of the change in reflectance according to the difference in concentration over time, (b) is a change in reflectance The degree is shown according to the concentration.

   도 3은 같은 농도의 수은, 구리, 은, 아연, 철 이온을 차례로 접촉시켰을 때의 반사율의 변화를 측정한 것으로 (a)는 수은을 먼저 접촉시켰을 때, (b)는 수은을 가장 마지막에 접촉시켰을 때이다. Figure 3 is a measure of the change in reflectivity when mercury, copper, silver, zinc, iron ions of the same concentration in contact with each other (a) when contacting mercury first, (b) is the last contacting mercury It's time.

   도 4는 같은 농도의 금속 이온을 각각 흘려주었을 때 금속의 종류에 따른 반사도의 변화 정도를 나타낸 것이다. Figure 4 shows the degree of change in reflectivity according to the type of metal when each of the same concentration of metal ions flowing.

   도 5는 금속 이온이 없는 수용액 상태에서 포항 방사광 가속기의 4C2 빔라인을 이용하여 고분자 박막 구조를 분석하는 스침각 입사 엑스선 산란(Grazing Incidence X-ray Scattering; GIXS) 장치를 이용하여 브러쉬의 유연성 및 말단 기능기의 배향성을 측정한 결과이다. 5 is the flexibility and end function of the brush using a Grazing Incidence X-ray Scattering (GIXS) device that analyzes the polymer thin film structure using the 4C2 beamline of the Pohang Radiation Accelerator in the absence of metal ions. It is a result of measuring the orientation of group.

   도 6은 수은 이온이 있는 수용액 상태에서 포항 방사광 가속기의 4C2 빔라인을 이용하여 고분자 박막 구조를 분석하는 스침각 입사 엑스선 산란 장치를 이용하여 말단 반응기의 배향성을 측정한 결과이다. 6 is a result of measuring the orientation of the terminal reactor using a grazing angle incident X-ray scattering apparatus that analyzes the polymer thin film structure using the 4C2 beamline of the Pohang emission accelerator in the aqueous solution state with mercury ions.

Claims (18)

하기 화학식 1로 표시되는 수은 이온 검출 기능 브러쉬 고분자 화합물: Mercury ion detection function brush polymer compound represented by the following formula (1):
Figure 112008090357826-pat00014
(1)
Figure 112008090357826-pat00014
(One)
상기식에서 α, β는 R1 및 R2를 포함하는 탄소의 반복 단위를 나타내는 것으로 서로에 관계없이 0 내지 20의 값이고;Wherein α, β represent a repeating unit of carbon including R 1 and R 2 and are a value from 0 to 20 regardless of each other; R1 및 R2는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이고;R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms; m 및 n는 폴리에테르 단위체의 함량(mol %)을 나타낸 것으로, 0<m≤100 이고, 0≤n<100이며, m + n = 100이고; m and n represent the content (mol%) of the polyether unit, where 0 <m ≦ 100, 0 ≦ n <100, and m + n = 100; Y는 H, 탄소 수 1내지 20의 알킬기 또는 -W 말단에 E, G, J, M, Q, Z를 포함하는 고리이고;Y is H, an alkyl group having 1 to 20 carbon atoms, or a ring containing E, G, J, M, Q, Z at the -W end; W는 폴리에테르 고분자와 상기 고리를 연결하는 링커이며, W is a linker connecting the polyether polymer and the ring, G 및 Z는 C, N, O, P 또는S로 이루어진 군으로부터 선택되고; G and Z are selected from the group consisting of C, N, O, P or S; E, J, M 및 Q는 -CHO, COOH, -H, -N3, -NO2, -NH2, -OH, -PO3H, -SH, -SO3H, =O, =N, =S, -C6H5 및 탄소 수 1 내지 20의 알킬기로 이루어진 군으로부터 선택된다. E, J, M and Q are -CHO, COOH, -H, -N 3 , -NO 2, -NH 2 , -OH, -PO 3 H, -SH, -SO 3 H, = O, = N, = S, -C 6 H 5 and an alkyl group having 1 to 20 carbon atoms.
제1항 있어서, 상기 W는 -CH2S(CR3R4)γO-, -CH2S(CR3R4)γO(CR5R6)τ-, -CH2S(CR3R4)γOCO-, -CH2S(CR3R4)γOCO(CR5R6)τ-, -CH2S(CR3R4)γCOO-, -CH2S(CR3R4)γCOO(CR5R6)τ-, -CH2S(CR3R4)γNHCO-, -CH2S(CR3R4)γNHCOO(CR5R6)τ-, -CH2S(CR3R4)γOCO(CH2)2OCO-, -CH2S(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2S(CR3R4)γCO-, -CH2S(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γO-, -CH2SO2(CR3R4)γO(CR5R6)τ-, -CH2SO(CR3R4)γOCO-, -CH2SO(CR3R4)γOCO(CR5R6)τ-, -CH2SO(CR3R4)γCOO-, -CH2SO(CR3R4)γCOO(CR5R6)τ-, -CH2SO(CR3R4)γNHCO-, -CH2SO(CR3R4)γNHCO(CR5R6)τ-, -CH2SO(CR3R4)γOCO(CH2)2OCO-, -CH2SO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO(CR3R4)γCO-, -CH2SO(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO-, -CH2SO2(CR3R4)γOCO(CR5R6)τ-, -CH2SO2(CR3R4)γCOO-, -CH2SO2(CR3R4)γCOO(CR5R6)τ-, -CH2SO2(CR3R4)γNHCO-, -CH2SO2(CR3R4)γNHCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO(CH2)2OCO-, -CH2SO2(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO2(CR3R4)γCO-, -CH2SO2(CR3R4)γCO(CR5R6)τ -, -OCO(CR3R4)γO-, -OCO(CR3R4)γO(CR5R6)τ-, -OCO(CR3R4)γOCO-, -OCO(CR3R4)γOCO(CR5R6)τ-, -OCO(CR3R4)γCOO-, -OCO(CR3R4)γCOO(CR5R6)τ-, -OCO(CR3R4)γNHCO-, -OCO(CR3R4)γNHCO(CR5R6)τ-, -OCO(CR3R4)γOCO(CH2)2OCO-, -OCO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OCO(CR3R4)γCO-, -OCO(CR3R4)γCO(CR5R6)τ-, -COO(CR3R4)γO-, -COO(CR3R4)γO(CR5R6)τ-, -COO(CR3R4)γOCO-, -COO(CR3R4)γOCO (CR5R6)τ-, -COO(CR3R4)γCOO-, -COO(CR3R4)γCOO(CR5R6)τ-, -COO(CR3R4)γNHCO-, -COO(CR3R4)γNHCO(CR5R6)τ-, -COO(CR3R4)γOCO(CH2)2OCO-, -COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -COO(CR3R4)γCO-, -COO(CR3R4)γCO(CR5R6)τ-, -O(CR3R4)γO-, -O(CR3R4)γO(CR5R6)τ-, -O(CR3R4)γOCO-, -O(CR3R4)γOCO(CR5R6)τ-, -O(CR3R4)γCOO-, -O(CR3R4)γCOO(CR5R6)τ-, -O(CR3R4)γNHCO-, -O(CR3R4)γNHCO(CR5R6)τ-, -O(CR3R4)γOCO(CH2)2OCO-, -O(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -O(CR3R4)γCO-, -O(CR3R4)γCO(CR5R6)τ-, -NH(CR3R4)γO-, -NH(CR3R4)γO(CR5R6)τ-, -NH(CR3R4)γOCO-, -NH(CR3R4)γOCO(CR5R6)τ-, -NH(CR3R4)γCOO-, -NH(CR3R4)γCOO(CR5R6)τ-, -NH(CR3R4)γNHCO-, -NH(CR3R4)γNHCO(CR5R6)τ-, -NH(CR3R4)γOCO(CH2)2OCO-, -NH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -NH(CR3R4)γCO-, -NH(CR3R4)γCO(CR5R6)τ-, -(CR3R4)γO-, -(CR3R4)γO(CR5R6)τ-, -(CR3R4)γOCO-, -(CR3R4)γOCO(CR5R6)τ-, -(CR3R4)γ(CH2)nCOO-, -(CR3R4)γ(CH2)nCOO(CR5R6)τ-, -(CR3R4)γNHCO-, -(CR3R4)γNHCO(CR5R6)τ-, -(CR3R4)γOCO(CH2)2OCO-, -(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4(CR3R4)γO-, -OC6H4(CR3R4)γO(CR5R6)τ-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γCOO(CR5R6)τ-, -OC6H4(CR3R4)γNHCO-, -OC6H4(CR3R4)γNHCO(CR5R6)τ-, -OC6H4(CR3R4)γ-, -OCO(CH2)2OCO-, -OCO(CH2)2OCO(CR3R4)γ-, -OC6H4(CR3R4)γCO-, -OC6H4(CR3R4)γCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO-, -OC6H4COO(CR3R4)γOCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCOO-, -OC6H4COO(CR3R4)γCOO(CR5R6)τ-, -OC6H4COO(CR3R4)γO-, -OC6H4COO(CR3R4)γO(CR5R6)τ-, -OC6H4COO(CR3R4)γNHCO-, -OC6H4COO(CR3R4)γNHCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCO-, -OC6H4COO(CR3R4)γCO(CR5R6)τ- -OC6H4CONHR(CR3R4)γOCO-, -OC6H4CONHR(CR3R4)γOCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCOO-, -OC6H4CONH(CR3R4)γCOO(CR5R6)τ-, -OC6H4CONH(CR3R4)γO-, -OC6H4CONH(CR3R4)γO(CR5R6)τ-, -OC6H4CONH(CR3R4)γNHCO-, -OC6H4CONH(CR3R4)γNHCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCO-, -OC6H4CONH(CR3R4)γCO(CR5R6)τ-로 이루어진 군으로부터 선택되는 지방족 또는 방향족 유도체이며; The method according to claim 1, wherein W is -CH 2 S (CR 3 R 4 ) γ O-, -CH 2 S (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ COO-, -CH 2 S (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4) γ NHCO-, -CH 2 S (CR 3 R 4) γ NHCOO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 S ( CR 3 R 4 ) γ CO-, -CH 2 S (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ O-, -CH 2 SO 2 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -, -CH 2 SO (CR 3 R 4) γ COO-, -CH 2 SO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO (CR 3 R 4) γ NHCO- , -CH 2 SO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ CO-, -CH 2 SO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ COO-, -CH 2 SO 2 (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ NHCO-, -CH 2 SO 2 (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -CH 2 SO 2 (CR 3 R 4) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ CO-,- CH 2 SO 2 (CR 3 R 4) γ CO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ O-, -OCO (CR 3 R 4) γ O (CR 5 R 6) τ -, -OCO (CR 3 R 4 ) γ OCO-, -OCO (CR 3 R 4) γ OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ COO-, -OCO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ NHCO-, -OCO (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO (CH 2 ) 2 OCO-, -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ CO-, -OCO (CR 3 R 4) γ CO (CR 5 R 6) τ -, -COO (CR 3 R 4) γ O-, -COO (CR 3 R 4) γ O (CR 5 R 6) τ -, -COO (CR 3 R 4 ) γ OCO-, -COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ COO-, -COO (CR 3 R 4) ) γ COO (CR 5 R 6 ) τ -, -COO (CR 3 R 4) γ NHCO-, -CO O (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ CO-, -COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ O-, -O (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO-, -O (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -, -O (CR 3 R 4) γ COO-, -O (CR 3 R 4) γ COO (CR 5 R 6) τ -, -O (CR 3 R 4) γ NHCO-, -O ( CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ CO-, -O (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ O -, -NH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO-, -NH (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -, -NH (CR 3 R 4 ) γ COO-, -NH (CR 3 R 4) γ COO (CR 5 R 6) τ -, -NH (CR 3 R 4) γ NHCO-, -NH (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ CO-, -NH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ O-, - (CR 3 R 4) γ O (CR 5 R 6) τ -, - (CR 3 R 4) γ OCO-, - (CR 3 R 4) γ OCO (CR 5 R 6) τ -, - (CR 3 R 4 ) γ (CH 2 ) n COO-,-(CR 3 R 4 ) γ (CH 2 ) n COO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ NHCO-,-(CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ O-, -OC 6 H 4 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4) γ NHCO- , -OC 6 H 4 (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ -, -OCO (CH 2 ) 2 OCO-, -OCO (CH 2 ) 2 OCO (CR 3 R 4 ) γ- , -OC 6 H 4 (CR 3 R 4 ) γ CO-, -OC 6 H 4 (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -,- OC 6 H 4 COO (CR 3 R 4 ) γ COO-, -OC 6 H 4 COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ O-, -OC 6 H 4 COO (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4) γ NHCO-, -OC 6 H 4 COO (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 COO (CR 3 R 4) γ OCO (CH 2) 2 OCO -, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ CO-, -OC 6 H 4 COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ --OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO-, -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO ( CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ COO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ O-, -OC 6 H 4 CONH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ NHCO -, -OC 6 H 4 CONH (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ CO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -which is an aliphatic or aromatic derivative selected from the group consisting of;  여기에서γ, τ는 서로에 관계없이 각각R3 및 R4 와 R5 및 R6를 포함하는 탄 소 반복단위로서 탄소 수 1 내지 20의 값을 지니고 R3, R4, R5 및 R6는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기인 수은 이온 검출 기능 브러쉬 고분자 화합물.Γ and τ are carbon repeating units including R 3 and R 4 and R 5 and R 6 irrespective of each other and have a value of 1 to 20 carbon atoms, and R 3 , R 4 , R 5 and R 6 Mercury ion detection function brush high molecular compound which is an alkyl group of hydrogen and C1-C20 irrespective of each other. 제1항에 있어서, 상기 수은 이온 검출 기능 브러쉬 고분자 화합물의 중량평균 분자량은 5,000 내지 5,000,000인 수은 이온 검출 기능 브러쉬 고분자 화합물.The mercury ion detection brush polymer compound of claim 1, wherein the mercury ion detection brush polymer compound has a weight average molecular weight of 5,000 to 5,000,000. 제1항에 있어서, 상기 화합물은 폴리[옥시((티민메틸옥시카보닐)운데실티오메틸)에틸렌-랜-옥시(도데실티오메틸)에틸렌]인 수은 이온 검출 기능성 브러쉬 고분자 화합물. The mercury ion detection functional brush polymer compound according to claim 1, wherein the compound is poly [oxy ((thiminemethyloxycarbonyl) undecylthiomethyl) ethylene-lan-oxy (dodecylthiomethyl) ethylene].  상기 화학식 1의 수은 이온 검출 기능 브러쉬 고분자 화합물을 제조하는 방법에 있어서, 하기 화학식 3로 표현되는 폴리에테르 고분자를 In the method for producing a mercury ion detection function brush polymer compound of Formula 1, the polyether polymer represented by the formula
Figure 112008090357826-pat00015
(3)
Figure 112008090357826-pat00015
(3)
유기 용매 중에서 하기 화학식 4의 화합물The compound of formula 4 in an organic solvent
Figure 112008090357826-pat00016
(4)
Figure 112008090357826-pat00016
(4)
또는 이들의 유도체와의 반응시키고, Or react with derivatives thereof, 여기서, 상기식에서 α, β는 R1 및 R2를 포함하는 탄소의 반복 단위를 나타내는 것으로 서로에 관계없이 0 내지 20의 값이고;Where α and β represent repeating units of carbon including R 1 and R 2 and are values of 0 to 20 regardless of each other; R1 및 R2는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이고;R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms; m 및 n는 폴리에테르 단위체의 함량(mol %)을 나타낸 것으로, 0<m≤100 이고, 0≤n<100이며, m + n = 100이고; m and n represent the content (mol%) of the polyether unit, where 0 <m ≦ 100, 0 ≦ n <100, and m + n = 100; Y1는 H, 탄소 수 1내지 20의 알킬기 또는 L1이며,Y1 is H, an alkyl group having 1 to 20 carbon atoms or L1, G 및 Z는 C, N, O, P 또는S로 이루어진 군으로부터 선택되고; G and Z are selected from the group consisting of C, N, O, P or S; E, J, M 및 Q는 -CHO, COOH, -H, -N3, -NO2, -NH2, -OH, -PO3H, -SH, -SO3H, =O, =N, =S, -C6H5 및 탄소 수 1 내지 20의 알킬기로 이루어진 군으로부터 선택되고, E, J, M and Q are -CHO, COOH, -H, -N 3 , -NO 2, -NH 2 , -OH, -PO 3 H, -SH, -SO 3 H, = O, = N, = S, -C 6 H 5 and an alkyl group having 1 to 20 carbon atoms, 상기 L1과 상기 L2는 반응해서 하기 W를 이루며, 상기 W는 -CH2S(CR3R4)γO-, -CH2S(CR3R4)γO(CR5R6)τ-, -CH2S(CR3R4)γOCO-, -CH2S(CR3R4)γOCO(CR5R6)τ-, -CH2S(CR3R4)γCOO-, -CH2S(CR3R4)γCOO(CR5R6)τ-, -CH2S(CR3R4)γNHCO-, -CH2S(CR3R4)γ NHCOO(CR5R6)τ-, -CH2S(CR3R4)γOCO(CH2)2OCO-, -CH2S(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2S(CR3R4)γCO-, -CH2S(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γO-, -CH2SO2(CR3R4)γO(CR5R6)τ-, -CH2SO(CR3R4)γOCO-, -CH2SO(CR3R4)γOCO(CR5R6)τ-, -CH2SO(CR3R4)γCOO-, -CH2SO(CR3R4)γCOO(CR5R6)τ-, -CH2SO(CR3R4)γNHCO-, -CH2SO(CR3R4)γNHCO(CR5R6)τ-, -CH2SO(CR3R4)γOCO(CH2)2OCO-, -CH2SO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO(CR3R4)γCO-, -CH2SO(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO-, -CH2SO2(CR3R4)γOCO(CR5R6)τ-, -CH2SO2(CR3R4)γCOO-, -CH2SO2(CR3R4)γCOO(CR5R6)τ-, -CH2SO2(CR3R4)γNHCO-, -CH2SO2(CR3R4)γNHCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO(CH2)2OCO-, -CH2SO2(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO2(CR3R4)γCO-, -CH2SO2(CR3R4)γCO(CR5R6)τ -, -OCO(CR3R4)γO-, -OCO(CR3R4)γO(CR5R6)τ-, -OCO(CR3R4)γOCO-, -OCO(CR3R4)γOCO(CR5R6)τ-, -OCO(CR3R4)γCOO-, -OCO(CR3R4)γCOO(CR5R6)τ-, -OCO(CR3R4)γNHCO-, -OCO(CR3R4)γNHCO(CR5R6)τ-, -OCO(CR3R4)γOCO(CH2)2OCO-, -OCO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OCO(CR3R4)γCO-, -OCO(CR3R4)γCO(CR5R6)τ-, -COO(CR3R4)γO-, -COO(CR3R4)γO(CR5R6)τ-, -COO(CR3R4)γOCO-, -COO(CR3R4)γOCO (CR5R6)τ-, -COO(CR3R4)γCOO-, -COO(CR3R4)γCOO(CR5R6)τ-, -COO(CR3R4)γNHCO-, -COO(CR3R4)γNHCO(CR5R6)τ-, -COO(CR3R4)γ OCO(CH2)2OCO-, -COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -COO(CR3R4)γCO-, -COO(CR3R4)γCO(CR5R6)τ-, -O(CR3R4)γO-, -O(CR3R4)γO(CR5R6)τ-, -O(CR3R4)γOCO-, -O(CR3R4)γOCO(CR5R6)τ-, -O(CR3R4)γCOO-, -O(CR3R4)γCOO(CR5R6)τ-, -O(CR3R4)γNHCO-, -O(CR3R4)γNHCO(CR5R6)τ-, -O(CR3R4)γOCO(CH2)2OCO-, -O(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -O(CR3R4)γCO-, -O(CR3R4)γCO(CR5R6)τ-, -NH(CR3R4)γO-, -NH(CR3R4)γO(CR5R6)τ-, -NH(CR3R4)γOCO-, -NH(CR3R4)γOCO(CR5R6)τ-, -NH(CR3R4)γCOO-, -NH(CR3R4)γCOO(CR5R6)τ-, -NH(CR3R4)γNHCO-, -NH(CR3R4)γNHCO(CR5R6)τ-, -NH(CR3R4)γOCO(CH2)2OCO-, -NH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -NH(CR3R4)γCO-, -NH(CR3R4)γCO(CR5R6)τ-, -(CR3R4)γO-, -(CR3R4)γO(CR5R6)τ-, -(CR3R4)γOCO-, -(CR3R4)γOCO(CR5R6)τ-, -(CR3R4)γ(CH2)nCOO-, -(CR3R4)γ(CH2)nCOO(CR5R6)τ-, -(CR3R4)γNHCO-, -(CR3R4)γNHCO(CR5R6)τ-, -(CR3R4)γOCO(CH2)2OCO-, -(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4(CR3R4)γO-, -OC6H4(CR3R4)γO(CR5R6)τ-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γCOO(CR5R6)τ-, -OC6H4(CR3R4)γNHCO-, -OC6H4(CR3R4)γNHCO(CR5R6)τ-, -OC6H4(CR3R4)γ-, -OCO(CH2)2OCO-, -OCO(CH2)2OCO(CR3R4)γ-, -OC6H4(CR3R4)γCO-, -OC6H4(CR3R4)γCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO-, -OC6H4COO(CR3R4)γOCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCOO-, -OC6H4COO(CR3R4)γCOO(CR5R6)τ-, -OC6H4COO(CR3R4)γO-, -OC6H4COO(CR3R4)γO(CR5R6)τ-, -OC6H4COO(CR3R4)γNHCO-, -OC6H4COO(CR3R4)γNHCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCO-, -OC6H4COO(CR3R4)γCO(CR5R6)τ- 또는 -OC6H4CONHR(CR3R4)γOCO-, -OC6H4CONHR(CR3R4)γOCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCOO-, -OC6H4CONH(CR3R4)γCOO(CR5R6)τ-, -OC6H4CONH(CR3R4)γO-, -OC6H4CONH(CR3R4)γO(CR5R6)τ-, -OC6H4CONH(CR3R4)γNHCO-, -OC6H4CONH(CR3R4)γNHCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCO-, -OC6H4CONH(CR3R4)γCO(CR5R6)τ-로 이루어진 군으로부터 선택되는 지방족 또는 방향족 유도체이며; L1 and L2 react to form the following W, wherein W is -CH 2 S (CR 3 R 4 ) γ O-, -CH 2 S (CR 3 R 4 ) γ O (CR 5 R 6 ) τ − , -CH 2 S (CR 3 R 4 ) γ OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ −, -CH 2 S (CR 3 R 4 ) γ COO-, -CH 2 S (CR 3 R 4 ) γ COO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4) γ NHCO-, -CH 2 S (CR 3 R 4) γ NHCOO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ CO-, -CH 2 S (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ O-, -CH 2 SO 2 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ COO-, -CH 2 SO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -CH 2 SO ( CR 3 R 4) γ NHCO-, -CH 2 SO (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -CH 2 SO (CR 3 R 4) γ OCO (CH 2) 2 OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ CO-, -CH 2 SO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ COO-, -CH 2 SO 2 (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO 2 (CR 3 R 4) γ NHCO-, -CH 2 SO 2 (CR 3 R 4) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6) τ -, -CH 2 SO 2 (CR 3 R 4) γ CO-, -CH 2 SO 2 (CR 3 R 4) γ CO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ O-, -OCO (CR 3 R 4) γ O (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO-, -OCO (CR 3 R 4) γ OCO (CR 5 R 6 ) τ -, -OCO (CR 3 R 4) γ COO-, -OCO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ NHCO-, -OCO ( CR 3 R 4) γ NHCO ( CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO-, -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO (CR 5 R 6) τ - , -OCO (CR 3 R 4) γ CO-, -OCO (CR 3 R 4) γ CO (CR 5 R 6) τ -, -COO (CR 3 R 4) γ O -, -COO (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO-, -COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -, -COO (CR 3 R 4 ) γ COO-, -COO (CR 3 R 4 ) γ COO (CR 5 R 6) τ -, -COO (CR 3 R 4) γ NHCO-, -COO (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -COO (CR 3 R 4) γ OCO (CH 2 ) 2 OCO-, -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ CO-, -COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ O-, -O (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO-, -O (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ COO-, -O (CR 3 R 4 ) γ COO (CR 5 R 6) τ -, -O (CR 3 R 4) γ NHCO-, -O (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -O (CR 3 R 4) γ OCO (CH 2) 2 OCO-, -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ CO-, -O (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ O-, -NH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO-, -NH (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ COO-, -NH (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ -, -NH (CR 3 R 4) γ NHCO-, -NH (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -NH (CR 3 R 4) γ OCO (CH 2) 2 OCO -, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ CO-, -NH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ O-,-(CR 3 R 4 ) γ O (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ OCO- ,-(CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ (CH 2 ) n COO-,-(CR 3 R 4 ) γ (CH 2 ) n COO ( CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ NHCO-,-(CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ O-, -OC 6 H 4 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ NHCO-, -OC 6 H 4 (CR 3 R 4) γ NHCO (CR 5 R 6 ) τ -, -OC 6 H 4 (CR 3 R 4) γ -, -OCO (CH 2) 2 OCO-, -OCO (CH 2) 2 OCO (CR 3 R 4) γ -, -OC 6 H 4 (CR 3 R 4 ) γ CO-, -OC 6 H 4 (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ COO-, -OC 6 H 4 COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ O-, -OC 6 H 4 COO (CR 3 R 4 ) Γ O (CR 5 R 6 ) τ -, -OC 6 H 4 COO (CR 3 R 4) γ NHCO-, -OC 6 H 4 COO (CR 3 R 4) γ NHCO (CR 5 R 6) τ - , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ -, -OC 6 H 4 COO (CR 3 R 4 ) γ CO-, -OC 6 H 4 COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -or -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO-, -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ COO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ O-, -OC 6 H 4 CONH (CR 3 R 4 ) γ O ( CR 5 R 6) τ -, -OC 6 H 4 CONH (CR 3 R 4) γ NHCO-, -OC 6 H 4 CONH (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ CO—, —OC 6 H 4 CONH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ −, an aliphatic or aromatic derivative selected from the group consisting of; 여기에서γ, τ는 서로에 관계없이 각각R3 및 R4 와 R5 및 R6를 포함하는 탄소 반복단위로서 탄소 수 1 내지 20의 값을 지니고 R3, R4, R5 및 R6는 서로에 관계없이 수소, 또는 탄소 수 1 내지 20의 알킬기이며;Γ and τ are each carbon repeating unit including R 3 and R 4 and R 5 and R 6 irrespective of each other and have a value of 1 to 20 carbon atoms and R 3 , R 4 , R 5 and R 6 are Irrespective of each other, hydrogen or an alkyl group having 1 to 20 carbon atoms; G 및 Z는 C, H, N, O, P 또는S로 이루어진 군으로부터 선택되고; G and Z are selected from the group consisting of C, H, N, O, P or S; E, J, M 및 Q는 -CHO, COOH, -H, -N3, -NO2, -NH2, -OH, -PO3H, -SH, -SO3H, =O, =N, =S, -C6H5 및 탄소 수 1 내지 20의 알킬기로 이루어진 군으로부터 선택되는 것을 특징으로 하는 수소이온 검출용 화합물 제조 방법.E, J, M and Q are -CHO, COOH, -H, -N 3 , -NO 2, -NH 2 , -OH, -PO 3 H, -SH, -SO 3 H, = O, = N, = S, -C 6 H 5 and hydrogen ion detection compound production method characterized in that it is selected from the group consisting of alkyl groups having 1 to 20 carbon atoms.
제5항에 있어서, 상기 링커 L1과 상기 링커L2의 반응은 에스테르 축합반응인 것을 특징으로 하는 수소이온 검출용 화합물 제조 방법.The method of claim 5, wherein the reaction of the linker L1 with the linker L2 is an ester condensation reaction. 제6항에 있어서, 상기 링커 L1는 -OH말단기인 것을 특징으로 하는 수소이온 검출용 화합물 제조 방법.7. The method of claim 6, wherein the linker L1 is a -OH terminal group. 화학식 1로 표시되는 수은 이온 검출 기능 브러쉬 고분자 화합물을 포함하는 막을 구비하고 있는 것을 특징으로 하는 분석용 재료. An analysis material characterized by comprising a membrane containing a mercury ion detection function brush polymer compound represented by the formula (1).
Figure 112008090357826-pat00017
(1)
Figure 112008090357826-pat00017
(One)
상기식에서 α, β는 R1 및 R2를 포함하는 탄소의 반복 단위를 나타내는 것으로 서로에 관계없이 0 내지 20의 값이고;Wherein α, β represent a repeating unit of carbon including R 1 and R 2 and are a value from 0 to 20 regardless of each other; R1 및 R2는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이고;R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms; m 및 n는 폴리에테르 단위체의 함량(mol %)을 나타낸 것으로, 0<m≤100 이고, 0≤n<100이며, m + n = 100이고; m and n represent the content (mol%) of the polyether unit, where 0 <m ≦ 100, 0 ≦ n <100, and m + n = 100; Y는 H, 탄소 수 1내지 20의 알킬기 또는 -W 말단에 E, G, J, M, Q, Z를 포함하는 고리이고; Y is H, an alkyl group having 1 to 20 carbon atoms, or a ring containing E, G, J, M, Q, Z at the -W end; W는 -CH2S(CR3R4)γO-, -CH2S(CR3R4)γO(CR5R6)τ-, -CH2S(CR3R4)γOCO-, -CH2S(CR3R4)γOCO(CR5R6)τ-, -CH2S(CR3R4)γCOO-, -CH2S(CR3R4)γCOO(CR5R6)τ-, -CH2S(CR3R4)γNHCO-, -CH2S(CR3R4)γNHCOO(CR5R6)τ-, -CH2S(CR3R4)γOCO(CH2)2OCO-, -CH2S(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2S(CR3R4)γCO-, -CH2S(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γO-, -CH2SO2(CR3R4)γO(CR5R6)τ-, -CH2SO(CR3R4)γOCO-, -CH2SO(CR3R4)γOCO(CR5R6)τ-, -CH2SO(CR3R4)γCOO-, -CH2SO(CR3R4)γCOO(CR5R6)τ-, -CH2SO(CR3R4)γNHCO-, -CH2SO(CR3R4)γNHCO(CR5R6)τ-, -CH2SO(CR3R4)γOCO(CH2)2OCO-, -CH2SO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO(CR3R4)γCO-, -CH2SO(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO-, -CH2SO2(CR3R4)γOCO(CR5R6)τ-, -CH2SO2(CR3R4)γCOO-, -CH2SO2(CR3R4)γCOO(CR5R6)τ-, -CH2SO2(CR3R4)γNHCO-, -CH2SO2(CR3R4)γNHCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO(CH2)2OCO-, -CH2SO2(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO2(CR3R4)γCO-, -CH2SO2(CR3R4)γCO(CR5R6)τ -, -OCO(CR3R4)γO-, -OCO(CR3R4)γO(CR5R6)τ-, -OCO(CR3R4)γOCO-, -OCO(CR3R4)γOCO(CR5R6)τ-, -OCO(CR3R4)γCOO-, -OCO(CR3R4)γCOO(CR5R6)τ-, -OCO(CR3R4)γNHCO-, -OCO(CR3R4)γNHCO(CR5R6)τ-, -OCO(CR3R4)γOCO(CH2)2OCO-, -OCO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OCO(CR3R4)γCO-, -OCO(CR3R4)γCO(CR5R6)τ-, -COO(CR3R4)γO-, -COO(CR3R4)γO(CR5R6)τ-, -COO(CR3R4)γOCO-, -COO(CR3R4)γOCO (CR5R6)τ-, -COO(CR3R4)γCOO-, -COO(CR3R4)γCOO(CR5R6)τ-, -COO(CR3R4)γNHCO-, -COO(CR3R4)γNHCO(CR5R6)τ-, -COO(CR3R4)γOCO(CH2)2OCO-, -COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -COO(CR3R4)γCO-, -COO(CR3R4)γCO(CR5R6)τ-, -O(CR3R4)γO-, -O(CR3R4)γO(CR5R6)τ-, -O(CR3R4)γOCO-, -O(CR3R4)γOCO(CR5R6)τ-, -O(CR3R4)γCOO-, -O(CR3R4)γCOO(CR5R6)τ-, -O(CR3R4)γNHCO-, -O(CR3R4)γNHCO(CR5R6)τ-, -O(CR3R4)γOCO(CH2)2OCO-, -O(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -O(CR3R4)γCO-, -O(CR3R4)γCO(CR5R6)τ-, -NH(CR3R4)γO-, -NH(CR3R4)γO(CR5R6)τ-, -NH(CR3R4)γOCO-, -NH(CR3R4)γOCO(CR5R6)τ-, -NH(CR3R4)γCOO-, -NH(CR3R4)γCOO(CR5R6)τ-, -NH(CR3R4)γNHCO-, -NH(CR3R4)γNHCO(CR5R6)τ-, -NH(CR3R4)γOCO(CH2)2OCO-, -NH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -NH(CR3R4)γCO-, -NH(CR3R4)γCO(CR5R6)τ-, -(CR3R4)γO-, -(CR3R4)γO(CR5R6)τ-, -(CR3R4)γOCO-, -(CR3R4)γOCO(CR5R6)τ-, -(CR3R4)γ(CH2)nCOO-, -(CR3R4)γ(CH2)nCOO(CR5R6)τ-, -(CR3R4)γNHCO-, -(CR3R4)γNHCO(CR5R6)τ-, -(CR3R4)γOCO(CH2)2OCO-, -(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4(CR3R4)γO-, -OC6H4(CR3R4)γO(CR5R6)τ-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γCOO(CR5R6)τ-, -OC6H4(CR3R4)γNHCO-, -OC6H4(CR3R4)γNHCO(CR5R6)τ-, -OC6H4(CR3R4)γ-, -OCO(CH2)2OCO-, -OCO(CH2)2OCO(CR3R4)γ-, -OC6H4(CR3R4)γCO-, -OC6H4(CR3R4)γCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO-, -OC6H4COO(CR3R4)γOCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCOO-, -OC6H4COO(CR3R4)γCOO(CR5R6)τ-, -OC6H4COO(CR3R4)γO-, -OC6H4COO(CR3R4)γO(CR5R6)τ-, -OC6H4COO(CR3R4)γNHCO-, -OC6H4COO(CR3R4)γNHCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCO-, -OC6H4COO(CR3R4)γCO(CR5R6)τ- 또는 -OC6H4CONHR(CR3R4)γOCO-, -OC6H4CONHR(CR3R4)γOCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCOO-, -OC6H4CONH(CR3R4)γCOO(CR5R6)τ-, -OC6H4CONH(CR3R4)γO-, -OC6H4CONH(CR3R4)γO(CR5R6)τ-, -OC6H4CONH(CR3R4)γNHCO-, -OC6H4CONH(CR3R4)γNHCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCO-, -OC6H4CONH(CR3R4)γCO(CR5R6)τ-로 이루어진 군으로부터 선택되는 지방족 또는 방향족 유도체이며; W is -CH 2 S (CR 3 R 4 ) γ O-, -CH 2 S (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ OCO- , -CH 2 S (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ COO-, -CH 2 S (CR 3 R 4 ) γ COO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4) γ NHCO-, -CH 2 S (CR 3 R 4) γ NHCOO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ CO-, -CH 2 S (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ O-, -CH 2 SO 2 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4) γ COO- , -CH 2 SO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO (CR 3 R 4) γ NHCO-, -CH 2 SO ( CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ CO-, -CH 2 SO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -,- CH 2 SO 2 (CR 3 R 4) γ COO-, -CH 2 SO 2 (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO 2 (CR 3 R 4) γ NHCO- , -CH 2 SO 2 (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO 2 ( CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ CO-, -CH 2 SO 2 (CR 3 R 4 ) γ CO (CR 5 R 6) τ - , -OCO (CR 3 R 4) γ O-, -OCO (CR 3 R 4) γ O (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO -, -OCO (CR 3 R 4 ) γ OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ COO-, -OCO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OCO (CR 3 R 4 ) γ NHCO-, -OCO (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO- , -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ CO-, -OCO (CR 3 R 4) γ CO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ O-, -COO (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO-, -COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ COO-, -COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ NHCO-, -COO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ -,- COO (CR 3 R 4 ) γ CO-, -COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ O-, -O (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO-, -O (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ COO-, -O (CR 3 R 4) γ COO (CR 5 R 6) τ -, -O (CR 3 R 4) γ NHCO-, -O (CR 3 R 4) γ NHCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -O ( CR 3 R 4 ) γ CO-, -O (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ O-, -NH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO-, -NH (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ COO -, -NH (CR 3 R 4 ) γ COO (CR 5 R 6) τ -, -NH (CR 3 R 4) γ NHCO-, -NH (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ CO-, -NH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ O-,-(CR 3 R 4 ) γ O (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ OCO-,-(CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ (CH 2 ) n COO-,- (CR 3 R 4) γ ( CH 2) n COO (CR 5 R 6) τ -, - (CR 3 R 4) γ NHCO-, - (CR 3 R 4) γ NHCO (CR 5 R 6) τ - ,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ O-, -OC 6 H 4 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 ( CR 3 R 4) γ OCO-, -OC 6 H 4 (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ NHCO-, -OC 6 H 4 (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ -, -OCO (CH 2) 2 OCO-, -OCO (CH 2) 2 OCO (CR 3 R 4 ) γ- , -OC 6 H 4 (CR 3 R 4 ) γ CO-, -OC 6 H 4 (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ COO- , -OC 6 H 4 COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ O-, -OC 6 H 4 COO (CR 3 R 4) γ O (CR 5 R 6) τ -, -OC 6 H 4 COO (CR 3 R 4) γ NHCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ CO-, -OC 6 H 4 COO (CR 3 R 4 ) γ CO ( CR 5 R 6 ) τ -or -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO-, -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ COO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ O -, -OC 6 H 4 CONH ( CR 3 R 4) γ O (CR 5 R 6) τ -, -OC 6 H 4 CONH (CR 3 R 4) γ NHCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ CO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -an aliphatic or aromatic derivative selected from the group consisting of; 여기에서γ, τ는 서로에 관계없이 각각R3 및 R4 와 R5 및 R6를 포함하는 탄소 반복단위로서 탄소 수 1 내지 20의 값을 지니고 R3, R4, R5 및 R6는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이며;Γ and τ are each carbon repeating unit including R 3 and R 4 and R 5 and R 6 irrespective of each other and have a value of 1 to 20 carbon atoms and R 3 , R 4 , R 5 and R 6 are Irrespective of one another, hydrogen, an alkyl group having 1 to 20 carbon atoms; G 및 Z는 C, N, O, P 또는S로 이루어진 군으로부터 선택되고; G and Z are selected from the group consisting of C, N, O, P or S; E, J, M 및 Q는 -CHO, COOH, -H, -N3, -NO2, -NH2, -OH, -PO3H, -SH, -SO3H, =O, =N, =S, -C6H5 및 탄소 수 1 내지 20의 알킬기로 이루어진 군으로부터 선택되며; E, J, M and Q are -CHO, COOH, -H, -N 3 , -NO 2, -NH 2 , -OH, -PO 3 H, -SH, -SO 3 H, = O, = N, = S, -C 6 H 5 and an alkyl group having 1 to 20 carbon atoms; 상기 수은 이온 검출 기능 브러쉬 고분자 화합물의 중량평균 분자량은 5,000 내지 5,000,000, 바람직하게는 5,000 내지 500,000이다.The weight average molecular weight of the mercury ion detection function brush polymer compound is 5,000 to 5,000,000, preferably 5,000 to 500,000.
제8항에 있어서, 상기 박막은 프리즘에 코팅된 것을 특징으로 하는 분석용 재료.The analytical material of claim 8, wherein the thin film is coated on a prism. 제9항에 있어서, 상기 프리즘에는 금이 더 코팅된 것을 특징으로 하는 분석용 재료.10. The analytical material of claim 9, wherein the prism is further coated with gold. 제8항 또는 제9항에 따른 분석용 재료를 표면 플라스몬 공명 분광기를 이용하여 빛의 입사각에 따른 반사도를 측정함으로써 수은을 검출하는 방법.Method for detecting mercury by measuring the reflectivity according to the angle of incidence of the light of the analytical material according to claim 8 or 9 using a surface plasmon resonance spectroscopy. 제11항에 있어서, 빛의 입사각을 고정한 상태에서 반사도의 변화량을 측정함 으로써 수은이 검출되는 것을 특징으로 하는 방법.12. The method of claim 11, wherein mercury is detected by measuring an amount of change in reflectivity with a fixed angle of incidence of light. 제1항에 따른 고분자 화합물로 이루어진 나노 박막.Nano thin film made of the polymer compound according to claim 1. 제13항에 있어서, 상기 나노박막은 자기 조립성인 것을 특징으로 하는 나노 박막.The nano thin film of claim 13, wherein the nano thin film is self-assembling. 제13항에 있어서, 상기 나노 박막은 스핀 코팅에 의해 제조되는 것을 특징으로 하는 나노 박막.The nano thin film of claim 13, wherein the nano thin film is manufactured by spin coating. 제14항에 있어서, 상기 나노 박막은 수용액에서 자기조립성인 것을 특징으로 하는 나노 박막.The nano thin film of claim 14, wherein the nano thin film is self-assembled in an aqueous solution. 제1항에 따른 고분자 화합물을 이용하여 수은을 측정하는 방법.Method for measuring mercury using the polymer compound according to claim 1. 삭제delete
KR1020080136585A 2008-12-30 2008-12-30 Method for preparing functional brush polymer having mercury ion sensing molecules at the end and sensing mercury ions using surface plasmon spectroscopy KR101053247B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080136585A KR101053247B1 (en) 2008-12-30 2008-12-30 Method for preparing functional brush polymer having mercury ion sensing molecules at the end and sensing mercury ions using surface plasmon spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080136585A KR101053247B1 (en) 2008-12-30 2008-12-30 Method for preparing functional brush polymer having mercury ion sensing molecules at the end and sensing mercury ions using surface plasmon spectroscopy

Publications (2)

Publication Number Publication Date
KR20100078351A KR20100078351A (en) 2010-07-08
KR101053247B1 true KR101053247B1 (en) 2011-08-01

Family

ID=42639581

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080136585A KR101053247B1 (en) 2008-12-30 2008-12-30 Method for preparing functional brush polymer having mercury ion sensing molecules at the end and sensing mercury ions using surface plasmon spectroscopy

Country Status (1)

Country Link
KR (1) KR101053247B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218759B1 (en) * 2010-12-22 2013-01-08 포항공과대학교 산학협력단 Carbohydrates and their mimics containing self-assembled brush polyether-based polymers for bio-applications, preparation thereof, and products comprising the polymers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637641B1 (en) * 2014-03-21 2016-07-08 포항공과대학교 산학협력단 Brush polymer bearing nucleobase-mimic functional groups and its synthesis and digital memory devices
KR101836967B1 (en) * 2016-05-31 2018-03-12 주식회사 쎄코 Self-healing polyethers and process for the preparation thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798596B1 (en) 2006-12-21 2008-01-28 포항공과대학교 산학협력단 Brush polyether-based polymer having chemical sensing capability, preparation thereof and chemical sensor comprising the polymer
KR100838124B1 (en) 2007-02-01 2008-06-13 포항공과대학교 산학협력단 Biocompatible aliphatic brush polymers and manufacturing methods thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798596B1 (en) 2006-12-21 2008-01-28 포항공과대학교 산학협력단 Brush polyether-based polymer having chemical sensing capability, preparation thereof and chemical sensor comprising the polymer
KR100838124B1 (en) 2007-02-01 2008-06-13 포항공과대학교 산학협력단 Biocompatible aliphatic brush polymers and manufacturing methods thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Polym.Sci.A2006

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101218759B1 (en) * 2010-12-22 2013-01-08 포항공과대학교 산학협력단 Carbohydrates and their mimics containing self-assembled brush polyether-based polymers for bio-applications, preparation thereof, and products comprising the polymers

Also Published As

Publication number Publication date
KR20100078351A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
US20060276618A1 (en) Activated forms of water-soluble polymers
Duan et al. Synthesis of functional catechols as monomers of mussel-inspired biomimetic polymers
Obadia et al. Cationic and dicationic 1, 2, 3-triazolium-based poly (ethylene glycol ionic liquid) s
CN109438700B (en) Polymethyl triazole formate and preparation method and application thereof
KR101053247B1 (en) Method for preparing functional brush polymer having mercury ion sensing molecules at the end and sensing mercury ions using surface plasmon spectroscopy
EP3663328A1 (en) Hydrophilic polyamide or polyimide
JP2022114240A (en) Crown ether structure-containing polyimide
Fan et al. Synthesis and investigation of a novel luminous hydrogel
EP3028051A1 (en) Water soluble polyfluorene functionalized with glucuronic acid useful in bilirubin sensing
US7732561B2 (en) Random copolymers of oxazoline
Cardiano et al. Synthesis, CO2 sorption and capacitive properties of novel protic poly (ionic liquid) s
US11136470B2 (en) Self-healing functional polyvinvyl-based compound and preparation method thereof
JP2003335846A (en) Novel conductive polymer and sensor and method of detecting target substance using the polymer
CN114989337A (en) Polymer containing valine and mannose in side chain and preparation method thereof
EP1454906A1 (en) Conductive compound, electrode and sensor containing the same, and target molecule detection method using the sensor
US10907068B2 (en) Cell membrane-mimicking brush polymer and method for preparding same
CN113583245A (en) Hyperbranched poly (benzoic acid ester) and preparation method and application thereof
KR101836967B1 (en) Self-healing polyethers and process for the preparation thereof
Masseroni et al. pH-responsive host–guest polymerization and blending
KR101053246B1 (en) Self-assembled polymer having Purin Mimic at the brush end and its manufacturing method
JP4873570B2 (en) POLY [2] CATENAN COMPOUND AND MONOMER THEREOF AND METHOD FOR PRODUCING THEM
US7955705B2 (en) Electronic device substrate, method for manufacturing substrate, compound used for substrate, method for manufacturing compound and polymerization initiator including compound
Paşahan et al. Synthesis, characterization of pyridine-based polyimides and their use as glucose oxidase immobilization media
US20130153815A1 (en) Polymer comprising a dye, nanoparticle comprising the polymer, and methods of preparing the same
KR100601999B1 (en) A method for detecting a target molecule using a novel electrically conductive polymer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee