KR101047976B1 - New Solvatochromic Dyes - Google Patents

New Solvatochromic Dyes Download PDF

Info

Publication number
KR101047976B1
KR101047976B1 KR1020080101024A KR20080101024A KR101047976B1 KR 101047976 B1 KR101047976 B1 KR 101047976B1 KR 1020080101024 A KR1020080101024 A KR 1020080101024A KR 20080101024 A KR20080101024 A KR 20080101024A KR 101047976 B1 KR101047976 B1 KR 101047976B1
Authority
KR
South Korea
Prior art keywords
formula
dye
solvent
dimethyl
solvatochromic
Prior art date
Application number
KR1020080101024A
Other languages
Korean (ko)
Other versions
KR20100041960A (en
Inventor
김성훈
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020080101024A priority Critical patent/KR101047976B1/en
Publication of KR20100041960A publication Critical patent/KR20100041960A/en
Application granted granted Critical
Publication of KR101047976B1 publication Critical patent/KR101047976B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0098Organic pigments exhibiting interference colours, e.g. nacrous pigments

Abstract

본 발명은 용매의 극성 정도에 따라 흡광 파장 및 발광 형광 파장의 범위가 변화하는 하기 식 Ⅰ의 솔바토크로믹 염료를 제공하는 것이다. 또한 본 발명은 용매의 극성 정도에 따라 흡광 파장 및 발광 형광 파장의 범위가 변화하는 하기 식 Ⅱ의 솔바토크로믹 염료를 제공하는 것이다.The present invention provides a solvatochromic dye of formula (I) in which a range of absorption wavelength and emission fluorescence wavelength is changed depending on the degree of polarity of the solvent. The present invention also provides a solvatochromic dye of the following formula II in which the ranges of the absorption wavelength and the emission fluorescence wavelength are changed according to the polarity of the solvent.

용매, 극성, 흡광, 형광, 발광, 파장, 솔바토크로믹 염료 Solvent, Polarity, Absorption, Fluorescence, Luminescence, Wavelength, Solvatochromic Dye

Description

신규한 솔바토크로믹 염료{Novel solvatochromic dye}Novel solvatochromic dyes

본 발명은 신규한 솔바토크로믹 염료에 관한 것이다. 더욱 상세하게는 용매의 극성화도에 따라 그 흡광 파장 및 형광 발광 파장의 범위가 변화하는 신규한 솔바토크로믹 염료에 관한 것이다. The present invention relates to novel solvatochromic dyes. More specifically, the present invention relates to a novel solvatochromic dye in which the absorption wavelength and the range of the fluorescence emission wavelength change according to the degree of polarization of the solvent.

솔바토크로믹 염료는 용매의 극성도 실험에서 탐침으로나 휘발성 유기 용매 분석에 비색계와 같은 탐지제로의 사용 가능성으로 주목을 받고 있다. 솔바토크로미즘은 분자가 서로 다른 용매에 용해되었을 때 흡광 또는 발광 스펙트럼의 차이에 의한 스펙트럼 변화로 화합물이 색상이 변화하는 현상으로 정의될 수 있다. 최근 피리디님 베타인(pyridinim betaine), 2',2-비티오펜(bithiophene), 스틸바졸리움(stilbazolium), Brooker의 메로시아닌 염료와 같은 솔바토크로믹 염료가 합성 연구되고 있다. Solvatochromic dyes have attracted attention for their potential as probes in solvent polarity experiments and as colorants such as colorimetric systems for the analysis of volatile organic solvents. Solvatochromism may be defined as a phenomenon in which a compound changes color due to a spectral change caused by a difference in absorption or emission spectra when molecules are dissolved in different solvents. Recently, solvatochromic dyes such as pyridinim betaine, 2 ', 2-bithiophene, stilbazolium and Brooker's merocyanine dye have been studied.

이러한 솔바토크로믹 염료분자와 메로시아닌 염료는 사진 감광제나 비선형 렌즈 및 화학요법과 같은 다양한 분야에 사용 가능할 것으로 예상되어 많은 관심을 끌고 있다. 메로시아닌 염료는 전자 구조의 특성으로 솔바토크로믹 염료에 유력한 물질로 간주되고 있으며 헤테로사이클릭 발색단을 지니는 것이다. 푸쉬-풀(push-pull) 시스템을 가진 기저상태 메로시아닌 염료의 전자 구조는 2개의 스테이트가 결합된 모델로 설명할 수 있다. 이러한 모델은 중성의 분자구조와 쯔비터이온(zwitterionic) 분자구조 간의 공명 상태를 예측하고 있으며 솔바토크로미즘과 결합길이 교대 현상에 유용한 해석 방법을 제공한다. These solvatochromic dye molecules and merocyanine dyes are expected to be used in various fields such as photographic photosensitizers, nonlinear lenses, and chemotherapy. Merocyanine dyes are considered to be a potent material for sorbatochromic dyes because of their electronic structure and have heterocyclic chromophores. The electronic structure of the ground state merocyanine dye with a push-pull system can be explained by a model in which two states are combined. This model predicts the resonance state between neutral and zwitterionic molecular structures and provides a useful analytical method for solbatochromism and bond length alternation.

일반적으로 N,N-디메틸아미노 벤즈알데히드 유도체와 멜드럼산(Meldrum's acid)과 바르비투르산(barbituric acid) 또는 그의 유도체간의 축합 반응은 메로시아닌 염료를 형성하였으며 이 염료는 분광분석에 유용한 것이다. 따라서 멜드럼산과 바르비투르산은 솔바토크로믹 메로시아닌 염료를 설계하는 잠재적으로 유용한 부분으로 간주될 수 있다. In general, condensation reactions between N, N-dimethylamino benzaldehyde derivatives, Meldrum's acid and barbituric acid, or derivatives thereof, form merocyanine dyes, which are useful for spectroscopic analysis. Thus, meldmic acid and barbituric acid can be considered as potentially useful parts for designing solvatochromic merocyanine dyes.

본 발명에서는 솔바토크로믹 메로시아닌 염료 동족체를 4-((2-하이드록시에틸)(메틸)아미노)벤즈알데히이드와 5-(2,6-디메틸-4H-피란-4-일리덴) 멜드럼 산, 5-(2,6-디메틸-4H-피란-4-일리덴) 바르비투르산의 축합을 통해 합성하였다. UV-가시광선 흡광 실험으로 22종의 서로 다른 용매에서의 염료 반응을 분광 분석하여 흡광도와 발광도를 측정하였다. 다양한 용매의 솔바토크로믹 특성은 주목할 만한 색상 차이를 보였다. 이러한 특성은 휘발성 유기 물질의 검출에 효과적인 탐침으로서 적용 가능성을 나타낸다.In the present invention, the sorbatochromic merocyanine dye homologue is 4-((2-hydroxyethyl) (methyl) amino) benzaldehyde and 5- (2,6-dimethyl-4H-pyran-4-ylidene). ) Was synthesized through the condensation of meldmic acid, 5- (2,6-dimethyl-4H-pyran-4-ylidene) barbituric acid. The absorbance and luminescence were measured by spectroscopic analysis of dye reactions in 22 different solvents by UV-Vis absorbance experiment. Solvatochromic properties of the various solvents showed notable color differences. This property shows applicability as a probe effective for the detection of volatile organics.

따라서 본 발명자들은 용매의 종류에 따라 색상이 변화하는 솔바토크로믹 염료를 개발함으로서 본 발명을 완성하게 된 것이다. 본 발명의 솔바토크로믹 염료는 사진 감광제나 비선형 렌즈 및 화학요법과 같은 다양한 분야에 휘발성 유기 물질의 검출의 효과적인 탐침으로 적용 가능할 것으로 예측된다.Therefore, the present inventors have completed the present invention by developing a solvatochromic dye whose color changes depending on the type of solvent. The solvatochromic dye of the present invention is expected to be applicable as an effective probe for the detection of volatile organic substances in various fields such as photographic photosensitizers, nonlinear lenses and chemotherapy.

본 발명이 해결하고자 하는 과제는 다양한 용매에 대해 주목할 만한 색상의 차이를 나타내는 솔바토크로믹 특성을 지닌 염료를 개발코자 하는 것이다. 본 발명에서는 솔바토크로믹 메로시아닌 염료 유사체를 4-((2-하이드록시에틸)(메틸)아미노)벤즈알데히드와 5-(2,6-디메틸-4H-피란-4-일리덴) 멜드럼산, 5-(2,6-디메틸-4H-피란-4-일리덴) 바르비투르산의 축합을 통해 합성코자 한 것이다.The problem to be solved by the present invention is to develop a dye having a solvatochromic properties showing a noticeable color difference for various solvents. In the present invention, the sorbatochromic merocyanine dye analogue is a 4-((2-hydroxyethyl) (methyl) amino) benzaldehyde and 5- (2,6-dimethyl-4H-pyran-4-ylidene) meldum. It was synthesized through condensation of acid, 5- (2,6-dimethyl-4H-pyran-4-ylidene) barbituric acid.

본 발명의 목적은 용매의 극성 정도에 따라 흡광 파장 및 발광 형광 파장의 범위가 변화하는 하기 식 Ⅰ의 솔바토크로믹 염료를 제공하는 것이다.It is an object of the present invention to provide a solvatochromic dye of formula I, wherein the range of absorption wavelength and emission fluorescence wavelength is changed depending on the degree of polarity of the solvent.

Figure 112008071703820-pat00002
Figure 112008071703820-pat00002

식 ⅠEquation Ⅰ

한편 본 발명의 또다른 목적은 용매의 극성 정도에 따라 흡광 파장 및 발광 형광 파장의 범위가 변화하는 하기 식 Ⅱ의 솔바토크로믹 염료를 제공하는 것이다.On the other hand, another object of the present invention is to provide a solvatochromic dye of the following formula II in which the range of absorption wavelength and emission fluorescence wavelength is changed according to the degree of polarity of the solvent.

Figure 112008071703820-pat00003
Figure 112008071703820-pat00003

식 ⅡEquation II

한편 본 발명의 또다른 목적은 식 1로 표시되는 원료 물질(2,6-디메틸-4H-피란-4-온)에 식 2로 표시되는 화합물을 축중합시켜 식 4로 표시되는 화합물(5-(2,6-디메틸-4H-피란-4-일리덴)-1,3-디메틸피리미딘-2,4,6(1H,3H,5H)-트리온)을 수득한 후 식 6으로 표시되는 화합물(4-((2-하이드록시에틸)(메틸)아미노)벤즈알데히드)과 축합시켜 식 I로 표시되는 솔바토크로믹 염료의 제조방법을 제공하는 것이다. On the other hand, another object of the present invention is a compound represented by the formula (4) by condensation polymerization of the compound represented by the formula (2) to the raw material represented by the formula (2,6-dimethyl-4H-pyran-4-one) (5- After obtaining (2,6-dimethyl-4H-pyran-4-ylidene) -1,3-dimethylpyrimidine-2,4,6 (1H, 3H, 5H) -trione) It is condensed with a compound (4-((2-hydroxyethyl) (methyl) amino) benzaldehyde) to provide a method for producing a sorbatochromic dye represented by the formula (I).

Figure 112008071703820-pat00004
Figure 112008071703820-pat00004

한편 본 발명의 또다른 목적은 식 1로 표시되는 원료 물질(2,6-디메틸-4H-피란-4-온)에 식 3으로 표시되는 화합물을 축중합시켜 식 5로 표시되는 화합물(5- (2,6-디메틸-4H-피란-4-일리덴)-2,2-디메틸-1,3-디옥산-4,6-디온)을 수득한 후 식 6으로 표시되는 화합물(4-((2-하이드록시에틸)(메틸)아미노)벤즈알데히드)과 축합시켜 식 Ⅱ로 표시되는 솔바토크로믹 염료의 제조방법을 제공하는 것이다. On the other hand, another object of the present invention is to condense the compound represented by the formula 3 to the raw material represented by the formula (2,6-dimethyl-4H-pyran-4-one) represented by the formula (3) (5- After obtaining (2,6-dimethyl-4H-pyran-4-ylidene) -2,2-dimethyl-1,3-dioxane-4,6-dione), the compound represented by formula 6 (4- ( It is a condensation with (2-hydroxyethyl) (methyl) amino) benzaldehyde) to provide a method for producing a solvatochromic dye represented by the formula (II).

Figure 112008071703820-pat00005
Figure 112008071703820-pat00005

또한 상기 용매는 자일렌, 톨루엔, 벤젠, 1,2-디클로로벤젠, 클로로포름, 디클로로메탄, 1,2-디클로로에탄, 트리클로로에틸렌, 에틸아세테이트, 아세톤, 에탄올, 메탄올, 프로판올, n-부탄올, THF, DMF, DMSO, 피리딘, 포름아마이드, 디에틸에테르, 1,4-디옥산, 아세토니트릴에서 선택된 용매임을 특징으로 한다.In addition, the solvent is xylene, toluene, benzene, 1,2-dichlorobenzene, chloroform, dichloromethane, 1,2-dichloroethane, trichloroethylene, ethyl acetate, acetone, ethanol, methanol, propanol, n-butanol, THF , DMF, DMSO, pyridine, formamide, diethyl ether, 1,4-dioxane, acetonitrile.

또한 상기 식 Ⅰ의 솔바토크로믹 염료는 용매의 극성이 증가함에 따라 흡광 파장이 증가하고 최대 바소크로믹 이동은 73 nm까지 가능함을 특징으로 한다.In addition, the sorbatochromic dye of Formula I is characterized in that the absorption wavelength increases and the maximum vasochromic shift is possible up to 73 nm as the polarity of the solvent increases.

한편 상기 식 Ⅱ의 솔바토크로믹 염료는 용매의 극성이 증가함에 따라 흡광 파장이 증가하고 최대 바소크로믹 이동은 81 nm까지 가능함을 특징으로 한다.On the other hand, the sorbatochromic dye of Formula II is characterized in that the absorption wavelength increases as the polarity of the solvent increases and the maximum vasochromic shift is possible up to 81 nm.

본 발명의 효과는 다양한 용매에 대해 주목할 만한 색상의 차이를 나타내는 솔바토크로믹 특성을 지닌 염료를 제공하는 것이다. 본 발명에서는 솔바토크로믹 메로시아닌 염료 유사체를 4-((2-하이드록시에틸)(메틸)아미노)벤즈알데히드와 5-(2,6-디메틸-4H-피란-4-일리덴) 멜드럼산, 5-(2,6-디메틸-4H-피란-4-일리덴) 바르비투르산의 축합을 통해 합성 제공하는 것이다.The effect of the present invention is to provide dyes with solvatochromic properties that exhibit notable color differences for various solvents. In the present invention, the sorbatochromic merocyanine dye analogue is a 4-((2-hydroxyethyl) (methyl) amino) benzaldehyde and 5- (2,6-dimethyl-4H-pyran-4-ylidene) meldum. Synthesis is provided through condensation of acid, 5- (2,6-dimethyl-4H-pyran-4-ylidene) barbituric acid.

멜드럼산이나 바르비투르산에서 유도된 두 가지 형태의 솔바토크로믹 메로시아닌 염료가 4-((2-하이드록시에틸)(메틸)아미노) 벤즈알데히드와 5-(2,6-디메틸-4H-피란-4-일리덴) 멜드럼산, 5-(2,6-디메틸-4H-피란-4-일리덴) 바르비투르산의 축합반응으로 합성되었다. 확연히 다른 극성도가 측정된 22가지의 서로 다른 용매에서 메로시아닌 염료의 솔바토크로믹 반응이 자일렌에서 DMSO 등의 용매의 극성이 증가함에 따라 바소크로믹 이동으로 인한 형광 발광 최대 파장의 증가가 관찰되었다. 이러한 염료는 휘발성 유기 화합물 검출시 효과적인 탐침으로서 사용할 수 있다. Two forms of sorbatochromic merocyanine dyes derived from meldrumic acid or barbituric acid are 4-((2-hydroxyethyl) (methyl) amino) benzaldehyde and 5- (2,6-dimethyl-4H It was synthesized by condensation reaction of pyran-4-ylidene) meldmic acid, 5- (2,6-dimethyl-4H-pyran-4-ylidene) barbituric acid. Solvatochromic reaction of merocyanine dyes in 22 different solvents with distinctly different polarities measured increased the maximum wavelength of fluorescence due to vasochromic shift as the polarity of solvents such as DMSO in xylene increased. Was observed. Such dyes can be used as effective probes in detecting volatile organic compounds.

이하 본 발명을 더욱 상세히 설명한다.The present invention is described in more detail below.

실험 계획과 설계 과정에서 다음과 같은 요소들을 고려하였다. 첫 번째로 멜드럼 산(2,2,-디메틸-1,3-디옥산-4,6-디온)과 바르비투르산 또는 이러한 염료의 유도체가 다양한 종의 케톤과 축합하여 다양한 종류의 메로시아닌 염료를 생성할 수 있다. 두 번째로 이러한 메로시아닌 염료는 투명한 용매 내에서 분광 분석시 뛰어난 반응성을 보이고 다양한 용매에서 가시범위 내에서의 실험시 다양한 흡광 감도, 흡수도를 나타내며 다양한 유기 용매에서 우수한 용해도를 나타낸다. 컨쥬게이트된 π-시스템의 양 말단 부분에 현격한 전자 공여체와 수용체가 통합된 메로시아닌 염료는 긴 파장 범위에서 용매 환경에 따라 민감하게 변하는 흡광 및 발광을 유도하는 것으로 알려져 있다. 세 번째로 2,6-디메틸-4H-피란 형태의 염료는 염료 레이저 분야에서의 PL과 전계발광체(EL)로서 활용이 가능하고, 형광 센서 또는 로직 메모리, OLED로서의 적용이 주목받고 있다. The following factors were considered in the design and design of the experiment. Firstly, meldmic acid (2,2, -dimethyl-1,3-dioxane-4,6-dione) and barbituric acid or derivatives of these dyes are condensed with ketones of various species to produce various kinds of merocyanine Dye can be produced. Secondly, these merocyanine dyes show excellent reactivity in spectroscopic analysis in transparent solvents, show various absorbance sensitivities and absorbances when tested in the visible range in various solvents, and excellent solubility in various organic solvents. Merocyanine dyes incorporating prominent electron donors and acceptors at both ends of the conjugated [pi] -system are known to induce absorbance and luminescence that varies sensitively with the solvent environment over a long wavelength range. Thirdly, 2,6-dimethyl-4H-pyran type dyes can be utilized as PL and electroluminescent material (EL) in the dye laser field, and their application as fluorescent sensors, logic memories, and OLEDs is attracting attention.

염료 12가 축합반응으로 생성되고 바르비투르산 2, 2,6-디메틸-4H-피란-4-온과 축합된 멜드럼산(2,2,-디메틸-1,3-디옥산-4,6-디온) 3과 각각 반응하여 주요한 중간생성물인 5-(2,6-디메틸-4H-피란-4-일리덴) 바르비투르산 4와 5-(2,6-디메틸-4H-피란-4-일리덴) 멜드럼 산 5가 합성되었다. 그 후 이 중간물들은 4-((2-하이드로에틸)(메틸)아미노)벤즈알데히드와 축합반응하였다. 1H 핵자기공명과 질량 분석, 성분분석으로 모든 중간생성물과 염료 1 2의 화학 구조를 규명하였다. 다양한 용매와 E T(30)에서의 용매 의존적인 흡광과 형광 발광을 나타내는 염료 1과 2의 λmax λem 값은 표 1에 기재하였다. Dyes 1 and 2 is produced by the condensation reaction is barbie acid 2, 6-dimethyl -4H- pyran-4-one condensed with Meldrum's acid (2,2-dimethyl-1,3-dioxan -4 , 6-dione), and 3 5- (2,6-dimethyl--4H- of each reaction leading to intermediates pyran-4-ylidene) barbie acid 4 with 5- (2,6-dimethyl--4H- pyran- 4-ylidene) meldmic acid 5 was synthesized. These intermediates then condensed with 4-((2-hydroethyl) (methyl) amino) benzaldehyde. 1 H nuclear magnetic resonance, mass spectrometry, and component analysis revealed the chemical structures of all intermediates and dyes 1 and 2 . Λ max of dyes 1 and 2 exhibiting various solvents and solvent dependent absorption and fluorescence at E T (30) λ em values are listed in Table 1.

Figure 112008071703820-pat00006
Figure 112008071703820-pat00006

표 1에 기재된 바와 같이 염료 12는 벤젠과 같은 비극성 용매 등 다양한 용매에 용해된다. 염료 12는 명백한 솔바토크로믹 특성을 보였다.As shown in Table 1, the dyes 1 and 2 are dissolved in various solvents such as nonpolar solvents such as benzene. Dyes 1 and 2 showed obvious solvatochromic properties.

서로 다른 극성도를 가진 다양한 용매에서 염료 1이 나타내는 표준화된 흡광과 발광 스펙트럼을 도 1에 나타냈다. 용매의 극성이 증가함에 따라 염료 1의 강한 장파장 범위의 흡수 밴드가 적색편이(red shift)를 나타내었다. 예를 들면 자일렌에서 DMSO로 용매의 극성이 증가함에 따라 21 nm 파장의 증가가 나타난다. 이러한 결과는 전하 이동의 특성과 함께 π-π* 전이가 가능함을 나타낸다. 2-(메틸아미노)에탄올 그룹에서 바르비투르산 단편으로의 분자간 전하 이동(ICT) 상호작용은 극성 용매에서 형광 최대치의 바소크로믹 이동이 최대화됨을 나타내는 증거로 여기상태에서 강화되었다. 용매의 극성이 자일렌에서 DMSO로 변화함에 따라 염료 1의 발광 최대치는 73 nm까지 바소크로믹 이동이 관찰되었다. 이러한 특성은 극성 용매에서의 양극성 여기상태의 안정화를 나타낸다. 최대 스트로크 이동(stroke shift)은 아세토니트릴 용매에서 161 nm이었다. 도 2는 UV-가시광선에 나타난 염료 1의 다양한 용매에서의 흡광과 형광 발광을 나타내는 사진이며 서로 다른 용매에서의 색상과 형광 발광 정도의 차이는 육안으로 쉽게 관찰할 수 있었다. The standardized absorption and emission spectra of dye 1 in various solvents with different polarities are shown in FIG. 1. As the polarity of the solvent increased, the absorption band of the strong long wavelength range of the dye 1 exhibited a red shift. For example, as the polarity of the solvent increases from xylene to DMSO, an increase in wavelength of 21 nm appears. These results indicate that π-π * transitions are possible with the nature of charge transfer. The intermolecular charge transfer (ICT) interaction from the 2- (methylamino) ethanol group to the barbituric acid fragments was enhanced in the excited state with evidence indicating that the basochromic transfer of fluorescence maximums in polar solvents is maximized. As the polarity of the solvent changed from xylene to DMSO, the emission peak of dye 1 was observed up to 73 nm. This property indicates stabilization of the bipolar excited state in polar solvents. Maximum stroke shift was 161 nm in acetonitrile solvent. Figure 2 is a photograph showing the absorption and fluorescence in various solvents of the dye 1 shown in the UV-visible light, the difference in color and the degree of fluorescence in different solvents can be easily observed with the naked eye.

또한 본 발명은 다양한 용매에서 염료 2의 솔바토크믹 특성을 조사하였다. 도 3은 비슷한 범위의 용매에서 염료 2의 표준화된 흡광과 발광 스펙트럼을 나타낸다. 염료 2는 용매의 극성이 증가함에 따라 흡광과 발광 모두에서 적색편이를 보였으며 이는 분자간 전하이동 작용에 따른 여기상태 쌍극자 모멘트에서의 큰 변화를 나타낸다. 염료 2의 최대 흡수 밴드는 용매 극성이 증가함에 따라 큰 적색편이를 나타냈다. 스펙트럼의 적색 말단으로 이동함에 따라 염료 2의 최대 발광은 81 nm 전이를 나타내었다. 메탄올 용액에서 최대 스트로크 이동은 139 nm이었다. 도 4는 염료 2의 대표적 용매에서 UV-가시광선 흡광과 형광발광 사진이며 이들 용매에서 염료 2는 다양한 색과 형광 발광을 나타냈다. The present invention also investigated the solvatomic properties of dye 2 in various solvents. 3 shows normalized absorbance and emission spectra of dye 2 in a similar range of solvents. Dye 2 showed a red shift in both absorption and emission as the solvent polarity increased, indicating a large change in the excited state dipole moment due to intermolecular charge transfer. The maximum absorption band of dye 2 showed a large red shift as the solvent polarity increased. The maximum luminescence of Dye 2 showed a 81 nm transition as it moved to the red end of the spectrum. The maximum stroke shift in methanol solution was 139 nm. FIG. 4 is a UV-visible absorption and fluorescence photograph in a representative solvent of Dye 2. In these solvents, Dye 2 showed various colors and fluorescence.

염료 12를 비교하여 바르비투르산에 기초한 메로시아닌 염료인 염료 1은 멜드럼산에 기초한 메로시아닌 염료인 염료 2에 비해 지속적으로 더 적은 전이 에너지 (더 큰 λmax)를 나타낸다고 추론하였다. 분자구조에 따라 염료 1과 2는 서로 다른 수용체 단편에 유사하게 결합되었으며 동일한 공여체 그룹을 공유한다고 볼 수 있다. 그들의 상대적 전이에너지는 수용체 단편의 상대적 전자 친화력에 의존한다. 염료 1의 피리미딘트리온 모이어티는 염료 2의 디옥산디온 단편보다 음전하를 쉽게 수용할 수 있다. 염료 2의 더 큰 전이에너지를 이러한 추론에 의해 선형화하였다. 기저 상태보다 여기 상태가 큰 극성을 나타낼 때 염료 분자가 강한 쌍극자를 지닌다면 더 많은 극성 용매에 의해 그 안정성이 선호된다. 스펙트럼에서 전이에너지의 감소와 바소크로믹 이동이 나타난다. A dye as compared to the dyes 1 and 2, merocyanine based on barbie acid dye 1 was deduced exhibit a consistently lower transition energy (higher λ max) than the dyes of the dye 2 merocyanine based on Meldrum's acid . Depending on the molecular structure, dyes 1 and 2 are similarly bound to different receptor fragments and can be said to share the same donor group. Their relative transition energy depends on the relative electron affinity of the receptor fragment. The pyrimidinetrione moiety of dye 1 can more readily accept negative charges than the dioxanedione fragment of dye 2. The larger transition energy of dye 2 was linearized by this inference. If the dye molecule has a strong dipole when the excited state exhibits a greater polarity than the ground state, its stability is favored by more polar solvents. Reduction of transition energy and vasochromic shift appear in the spectrum.

Dimroth 등은 극성 파라미터로서 kcal mol-1로 나타낸 피리디늄-N-페녹시드 베테인 염료의 전이에너지를 제안하였다. 이러한 수치는 E T 값으로 나타낼 수 있다. 표 1에 용매의 E T 값과 염료 1과 염료 2의 UV-가시광선 스펙트럼 데이터를 제시하였다. 도 5에 나타난 바와 같이 플롯팅(plotting)하여 염료 1과 2의 용매의 E T 값에 대한 λmax의 값을 직선으로 도출하였다. 용매 극성이 증가함에 따라 염료 1과 염료 2의 솔바토크로믹 이동의 증가가 관찰되었다. Dimroth et al. Proposed the transition energy of the pyridinium-N-phenoxide betaine dye represented by kcal mol -1 as the polarity parameter. This figure can be expressed as an E T value. Table 1 shows the E T values of the solvent and the UV-visible spectral data of the dyes 1 and 2. As shown in FIG. 5, the values of λ max with respect to the E T values of the solvents of the dyes 1 and 2 were linearly derived by plotting. As the solvent polarity increased, an increase in the solvatochromic migration of Dye 1 and Dye 2 was observed.

이러한 결과는 도 6에 나타난 이론적인 추정치와 일치한다. 밀도 함수 이론을 사용하는 양자역학적 코드인 Materials Studio 4.2 Package의 DMol3 프로그램으로 이론적 계산을 수행하였다. 이중 분수 분극화 기초 세트로의 일반화된 경사도 근사치(generalized gradient approximation, GGA)의 Perdew-Burke-Ernzerhof(PBE) 함수가 경계부 분자 궤도의 에너지 수치를 계산하는데 사용되었다. 도 6은 염료 1과 2의 HOMO와 LUMO의 예측된 분자 구조와 전자 배치이다. 경계부 분자 궤도(MO) 내 전자 분포 비교는 HOMO-LUMO 여기가 전자 분포를 아미노 모이어티에서 바르비투르/멜드럼 및 피란 모이어티로 이동시켰고, 이는 염료의 분자내 전하-전이의 강한 이동을 나타냄을 나타내었다. HOMO-LUMO시 전자 밀도 재배치는 치환기의 효과 또는 염료 분자와 그의 용매, 복합체 기질과 같은 환경의 상호작용과 같은 염료의 요소에 영향을 주어 색상 특성에 영향을 미친다. This result is consistent with the theoretical estimates shown in FIG. 6. Theoretical calculations were performed with the DMol 3 program in Materials Studio 4.2 Package, a quantum mechanical code using density function theory. The Perdew-Burke-Ernzerhof (PBE) function of the generalized gradient approximation (GGA) to the double fractional polarization foundation set was used to calculate the energy values of the boundary molecular orbits. 6 is the predicted molecular structure and electron arrangement of HOMO and LUMO of dyes 1 and 2. Comparison of electron distribution in the boundary molecular orbital (MO) showed that HOMO-LUMO excitation shifted the electron distribution from the amino moiety to the Barbitur / meldrum and pyran moiety, indicating a strong shift of the intramolecular charge-transfer of the dye. Indicated. Electron density rearrangement during HOMO-LUMO affects color properties by affecting the effect of substituents or other factors of the dye, such as the interaction of the dye molecule with its environment, such as its solvent and composite substrate.

바르비투르산과 멜드럼 산에 기초한 2종류 솔바토크로믹 메로시아닌 염료가 제조되었다. 염료는 다양한 용매에서 양성의 솔바토크로믹 특성을 나타냈다. 두 새로운 솔바토크로믹 메로시아닌 염료 중 염료 2가 더 큰 민감성을 나타냈다. 이러한 염료들은 휘발성 유기 용매의 검출을 위한 센서 개발에 유용하게 사용될 수 있다. Two types of sorbatochromic merocyanine dyes based on barbituric acid and meldrumic acid were prepared. The dyes exhibited positive solvatochromic properties in various solvents. Of the two new solvatochromic merocyanine dyes, dye 2 showed greater sensitivity. These dyes can be usefully used in the development of sensors for the detection of volatile organic solvents.

이하 실시예를 통해 본 발명을 더욱 상세히 설명한다. 그러나 이러한 실시예들로 본 발명의 범위를 한정하는 것은 아니다.The present invention will be described in more detail with reference to the following examples. However, these examples do not limit the scope of the present invention.

Electrothermal IA 900 장비를 사용하여 녹는점을 측정하였다. Carlo Elba Model 1106 분석기로 성분분석을 진행하고 기록하였다. FAB 이온 소스를 이용한 질량 스펙트럼을 JMS-700 고해상도 질량 분광계에 기록하였다. 1H 핵자기공명 스펙트럼을 TMS를 내부표준으로 사용한 Varian Inova 400 MHz FT-핵자기공명 분광기를 이용하여 CDC13에 기록하였다. Agilent 84575 UV-vis 분광광도계로 UV-가시광선 스펙트럼과 투과도를 측정하였다. SHMADZU RF-5301 PC 형광 분광광도계로 형광 스펙트럼을 측정하였다. Melting points were measured using an Electrothermal IA 900 instrument. Component analysis was performed and recorded with the Carlo Elba Model 1106 analyzer. Mass spectra using FAB ion sources were recorded on a JMS-700 high resolution mass spectrometer. 1 H nuclear magnetic resonance spectra were recorded on CDC1 3 using a Varian Inova 400 MHz FT-nuclear magnetic resonance spectrometer using TMS as an internal standard. UV-visible spectra and transmittance were measured with an Agilent 84575 UV-vis spectrophotometer. Fluorescence spectra were measured with a SHMADZU RF-5301 PC fluorescence spectrophotometer.

재료material

Aldrich사의 1,3-디메틸피리미딘-2,4,6(1H,3H,5H)-트리온, 2,2-디메틸-1,3-디옥산-4,6-디온 및 4-((2-하이드록시에틸)(메틸)아미노)벤즈알데히드를 사용하였으며 다른 시약은 순도가 높아 추가적인 정제 과정 없이 사용하였다. 모든 용매는 순수하여 건조나 정제 없이 사용하였다. 화합물 5는 문헌에 기재된 바에 따라 합성하였다.Aldrich's 1,3-dimethylpyrimidine-2,4,6 (1H, 3H, 5H) -trione, 2,2-dimethyl-1,3-dioxane-4,6-dione and 4-((2 -Hydroxyethyl) (methyl) amino) benzaldehyde was used and the other reagents were of high purity and used without further purification. All solvents were pure and used without drying or purification. Compound 5 was synthesized as described in the literature.

(실시예 1) 5-(2,6-디메틸-4H-피란-4-일리덴)-1,3-디메틸피리미딘-2,4,6 (1H,3H,5H)-트리온의 합성 (4)(Example 1) Synthesis of 5- (2,6-dimethyl-4H-pyran-4-ylidene) -1,3-dimethylpyrimidine-2,4,6 (1H, 3H, 5H) -trione ( 4 )

15 ml의 아세트 알데히드에서 2시간 동안 1.24 g, 0.01 mol의 2,6-디메틸-4H-피란-4-온 1과 1.56g, 0.01 mol의 1,3-디메틸피리미딘-2,4,6(1H, 3H, 5H)-트리온 2를 환류하였다. 냉각 후 응결된 물질을 메탄올에서 여과하고 재결정화하여 80% 수율의 2.25g 황색 분말을 수득하였다. 1.24 g, 0.01 mol of 2,6-dimethyl-4H-pyran-4-one 1 and 1.56 g, 0.01 mol of 1,3-dimethylpyrimidine-2,4,6 in 15 ml of acetaldehyde for 2 hours ( 1H, 3H, 5H) -trione 2 was refluxed. After cooling the condensed material was filtered off in methanol and recrystallized to yield 2.25 g yellow powder in 80% yield.

M.p. 264℃. 1H NMR (400 MHz, CDCl3, ppm) δ: 6.67 (s, 2H, 피란-H), 3.30 (s, 6H, NCH3), 1.56 (s, 6H, CH3), EI-MS, m/z=262 원소 분석: C, 59.49; H, 5.30; N, 10.59%. C13H14N2O4 필요로 함: C, 59.54; H, 5.38; N, 10.68%.Mp 264 ° C. 1 H NMR (400 MHz, CDCl 3 , ppm) δ: 6.67 (s, 2H, pyran-H), 3.30 (s, 6H, NCH 3 ), 1.56 (s, 6H, CH 3 ), EI-MS, m elemental analysis: C, 59.49; H, 5. 30; N, 10.59%. C 13 H 14 N 2 O 4 requires: C, 59.54; H, 5. 38; N, 10.68%.

(실시예 2) 5-(2,6-디메틸-4H-피란-4-일리덴)-2,2-디메틸-1,3-디옥산-4,6-디온 (5)의 합성Example 2 Synthesis of 5- (2,6-dimethyl-4H-pyran-4-ylidene) -2,2-dimethyl-1,3-dioxane-4,6-dione ( 5 )

질소 충전된 상태에서 1.24 g, 0.01 mol의 2,6-디메틸-4H-피란-4-온 1과 3,5-디메틸-1,3,5-옥사디아지난-2,4,6-트리온 3의 혼합물을 10 ml의 아세트 알데히드에서 2.5 시간 동안 환류하였다. 냉각 후에 응결된 물질을 아세트산에서 여과하고 재결정화 하여 55.9의 수율로 담황색의 분말 1.5 g을 수득하였다. 1.24 g, 0.01 mol of 2,6-dimethyl-4H-pyran-4-one 1 and 3,5-dimethyl-1,3,5-oxadiazinane-2,4,6-trione in a nitrogen-filled state The mixture of 3 was refluxed in 10 ml of acetaldehyde for 2.5 hours. After cooling the condensed material was filtered off in acetic acid and recrystallized to give 1.5 g of a pale yellow powder in a yield of 55.9.

M.p. 219∼226℃. 1H NMR (400 MHz, CDCl3, ppm) δ: 6.68 (s, 2H, 피란-H), 2.23 (s, 6H, -NCH3), 1.58 (s, 6H, CH3), EI-MS, m/z=250. 원소 분석: C, 62.20; H; 5.50%. C13H14O5 필요로 함: C, 62.39; H, 5.64%.Mp 219-226 ° C. 1 H NMR (400 MHz, CDCl 3 , ppm) δ: 6.68 (s, 2H, pyran-H), 2.23 (s, 6H, —NCH 3 ), 1.58 (s, 6H, CH 3 ), EI-MS, m / z = 250. Elemental analysis: C, 62.20; H; 5.50%. C 13 H 14 O 5 requires: C, 62.39; H, 5.64%.

(실시예 3) 5-(2-(4-((2-하이드록시에틸)(메틸)아미노)스티릴)-6-메틸-4H-피란-4-일리덴)-1,3-디메틸피리미딘-2,4,6(1H,3H,5H)-트리온 (염료 1)의 합성Example 3 5- (2- (4-((2-hydroxyethyl) (methyl) amino) styryl) -6-methyl-4H-pyran-4-ylidene) -1,3-dimethylpyri Synthesis of midine-2,4,6 (1H, 3H, 5H) -trione (dye 1 )

5 mmol, 1.31 g의 5-(2,6-디메틸-4H-피란-4-일리덴)-1,3-디메틸피리미딘-2,4,6 (1H, 3H,5H)-트리온 4와 5 mmol, 0.88 g의 4-((2-하이드록시에틸)(메틸)아미노)벤즈알데히드 6, 30 ml의 아세토니트릴에 혼합한 0.45 ml의 피페리딘 용액을 Dean-Stark 트랩을 이용하여 8시간 동안 환류하고 가열하였다. 반응의 혼합물을 실온에서 냉각시킨 후 조생성물은 분리하여 건조시켰다. 클로로포름과 메탄올의 혼합물(v/v=50:1)을 이동상으로 사용한 칼럼 크로마토그래피로 조생성물을 정제 후, 에탄올로부터 재결정화하여 35%의 수율로 정제된 흑적색의 분말을 수득하였다. 5 mmol, 1.31 g of 5- (2,6-dimethyl-4H-pyran-4-ylidene) -1,3-dimethylpyrimidine-2,4,6 (1H, 3H, 5H) -trione 4 5 mmol, 0.88 g of 4-((2-hydroxyethyl) (methyl) amino) benzaldehyde 6 , 0.45 ml of piperidine solution mixed with 30 ml of acetonitrile for 8 hours using Dean-Stark trap Reflux and heated. After cooling the mixture of reactions at room temperature the crude product was separated and dried. The crude product was purified by column chromatography using a mixture of chloroform and methanol (v / v = 50: 1) as the mobile phase, and then recrystallized from ethanol to give a black red powder that was purified in 35% yield.

M.p. 284℃. 1H NMR (400 MHz, CDCl3, ppm) δ: 8.82 (d, 2H, Ar-H, J=7.8 Hz), 7.46 (d, 1H, J=9.0 Hz, Ar-H), 7.42 (d, 2H, J=9.0 Hz, Ar-H), 6.77 (d, 1H, 〓CH), 6.75 (d, 1H, 〓CH), 6.67 (s, 1H, 피란-H), 6.62 (s, 1H, 피란-H), 4.54 (s, 1H, OH), 3.88 (m, 2H, -CH2-O), 3.58 (m, 2H, -NCH2-), 3.35 (s, 6H, -NCH3), 3.0 (s, 3H, -NCH3), 1.55 (s, 3H, -CH3). EI-MS, m/z=423.0. 원소 분석: C, 65.20; H, 5.90; N, 9.90%. 화학식: C23H25N3O5 필요로 함: C, 65.24; H, 5.95; N, 9.92%.Mp 284 ° C. 1 H NMR (400 MHz, CDCl 3 , ppm) δ: 8.82 (d, 2H, Ar-H, J = 7.8 Hz), 7.46 (d, 1H, J = 9.0 Hz, Ar-H), 7.42 (d, 2H, J = 9.0 Hz, Ar-H), 6.77 (d, 1H, 〓CH), 6.75 (d, 1H, 〓CH), 6.67 (s, 1H, pyran-H), 6.62 (s, 1H, pyran -H), 4.54 (s, 1H, OH), 3.88 (m, 2H, -CH 2 -O), 3.58 (m, 2H, -NCH 2- ), 3.35 (s, 6H, -NCH 3 ), 3.0 (s, 3H, -NCH 3 ), 1.55 (s, 3H, -CH 3 ). EI-MS, m / z = 423.0. Elemental analysis: C, 65.20; H, 5. 90; N, 9.90%. Formula: C 23 H 25 N 3 O 5 Requires: C, 65.24; H, 5.95; N, 9.92%.

(실시예 4) 5-(2-(4-((2-하이드록시에틸)(메틸)아미노)스티릴)-6-메틸-4H-피란-4-일리덴)-2,2-디메틸-1,3-디옥산-4,6-디온 (염료 2)의 합성Example 4 5- (2- (4-((2-hydroxyethyl) (methyl) amino) styryl) -6-methyl-4H-pyran-4-ylidene) -2,2-dimethyl- Synthesis of 1,3-dioxane-4,6-dione (dye 2 )

5 mmol, 1.25 g의 5-(2,6-디메틸-4H-피란-4-일리덴)-2,2-디메틸-1,3-디옥산-4,6-디온 5와 5 mmol, 0.88 g의 4-((2-하이드록시에틸)(메틸)아미노)벤즈알데히드 6, 30 ml 아세토니트릴에 혼합한 0.45 ml 피페리딘 용액을 Dean-Stark 트랩을 사용하여 8시간 동안 환류하며 가열하였다. 반응 용액은 실온에서 냉각하고 조생성물은 분리 건조시켰다. 클로로포름과 메탄올의 혼합물(v/v=100:1)을 이동상으로 사용한 컬럼 크로마토그래피로 조생성물을 정제한 후 에탄올로부터 재결정화하여 30%의 수율로 정제된 흑적색의 분말을 수득하였다. 5 mmol, 1.25 g of 5- (2,6-dimethyl-4H-pyran-4-ylidene) -2,2-dimethyl-1,3-dioxane-4,6-dione 5 with 5 mmol, 0.88 g of A 0.45 ml piperidine solution mixed with 4-((2-hydroxyethyl) (methyl) amino) benzaldehyde 6, 30 ml acetonitrile was heated to reflux for 8 hours using Dean-Stark trap. The reaction solution was cooled at room temperature and the crude product was separated and dried. The crude product was purified by column chromatography using a mixture of chloroform and methanol (v / v = 100: 1) as the mobile phase and then recrystallized from ethanol to give a black red powder which was purified in a yield of 30%.

M.p. 190℃. 1H NMR (400 MHz, CDCl3, ppm) δ: 8.89 (d, 1H, J=7.58 Hz, Ar-H), 8.70 (d, 1H, J=7.48 Hz, Ar-H), 7.74 (d, 1H, J=9.0 Hz, Ar-H), 7.72 (d, 1H, J=8.48 Hz, Ar-H), 7.42 (s, 1H, 〓CH), 6.69 (s, 1H, 〓CH), 6.67 (s, 1H, 피란-H), 6.66 (s, 1H, 피란-H), 4.88 (s, 1H, OH), 3.72 (m, 2H, -CH2-O), 3.54 (m, 2H, -NCH2-), 3.36 (s, 3H, -NCH3), 2.48 (s, 6H, -NCH3), 2.0 (s, 3H, -CH3). EI-MS, m=411.0. 원소 분석: C, 67.0; H, 6.0; N, 3.35%. 화학식: C23H25NO6 필요로 함: C, 67.14; H, 6.12; N, 3.40%.Mp 190 ° C. 1 H NMR (400 MHz, CDCl 3 , ppm) δ: 8.89 (d, 1H, J = 7.58 Hz, Ar-H), 8.70 (d, 1H, J = 7.48 Hz, Ar-H), 7.74 (d, 1H, J = 9.0 Hz, Ar-H), 7.72 (d, 1H, J = 8.48 Hz, Ar-H), 7.42 (s, 1H, 〓CH), 6.69 (s, 1H, 〓CH), 6.67 ( s, 1H, pyran-H), 6.66 (s, 1H, pyran-H), 4.88 (s, 1H, OH), 3.72 (m, 2H, -CH 2 -O), 3.54 (m, 2H, -NCH 2- ), 3.36 (s, 3H, -NCH 3 ), 2.48 (s, 6H, -NCH 3 ), 2.0 (s, 3H, -CH 3 ). EI-MS, m = 411.0. Elemental analysis: C, 67.0; H, 6.0; N, 3.35%. Formula: C 23 H 25 NO 6 Requires: C, 67.14; H, 6. 12; N, 3.40%.

도 1은 각각 염료 1(ca. 10-5 molL-1)의 자일렌(1), 아세톤(2), CHCl3(3) 및 DMSO(4) 내의 표준화된 UV-가시광선 흡광도(a) 및 형광 발광 스펙트럼(b)을 나타낸 것이다.1 shows normalized UV-visible absorbance (a) in xylene (1), acetone (2), CHCl 3 (3) and DMSO (4) of dye 1 (ca. 10 −5 molL −1 ), respectively; Fluorescence emission spectrum (b) is shown.

도 2는 다양한 용매 내 염료 1의 UV-vis 흡광 및 형광 발광 사진이다.2 is a UV-vis absorption and fluorescence photograph of Dye 1 in various solvents.

도 3은 각각 염료 2(ca. 10-5 molL-1)의 자일렌(1), 아세톤(2), CHCl3(3), 에탄(4) 및 DMSO(5) 내의 표준화된 UV-가시광선 흡광도(a) 및 형광 발광 스펙트럼(b)을 나타낸 것이다.3 shows normalized UV-visible light in xylene (1), acetone (2), CHCl 3 (3), ethane (4) and DMSO (5) of dye 2 (ca. 10 −5 molL −1 ), respectively. Absorbance (a) and fluorescence emission spectrum (b) are shown.

도 4는 다양한 용매 내 염료 1의 UV-가시광선 흡광 및 형광 발광 사진이다.4 is a UV-Visible Absorption and Fluorescence Picture of Dye 1 in various solvents.

도 5는 염료 1 및 염료 2의 용매 파라미터 E T에 대한 λmax(최대 흡광도) 플롯팅 상의 선형 플롯을 나타낸 것이다.FIG. 5 shows a linear plot on λ max (maximum absorbance) plotting for solvent parameter E T of dye 1 and dye 2. FIG.

도 6은 염료 1 및 2의 HOMO 및 LUMO 에너지 수치의 전자 분포를 나타낸 것이 다.Figure 6 shows the electron distribution of HOMO and LUMO energy values of the dyes 1 and 2.

Claims (7)

용매의 극성 정도에 따라 흡광 파장 및 발광 형광 파장의 범위가 변화하는 하기 식 Ⅰ의 솔바토크로믹 염료Solvatochromic dyes of the following formula I in which the ranges of the absorption wavelength and the emission fluorescence wavelength vary depending on the polarity of the solvent:
Figure 112008071703820-pat00007
Figure 112008071703820-pat00007
식 ⅠEquation Ⅰ
용매의 극성 정도에 따라 흡광 파장 및 발광 형광 파장의 범위가 변화하는 하기 식 Ⅱ의 솔바토크로믹 염료 Solvatochromic dyes of the following formula II in which the ranges of absorption wavelengths and emission fluorescence wavelengths vary depending on the polarity of the solvent.
Figure 112008071703820-pat00008
Figure 112008071703820-pat00008
식 ⅡEquation II
식 1로 표시되는 원료 물질(2,6-디메틸-4H-피란-4-온)에 식 2로 표시되는 화합물을 축중합시켜 식 4로 표시되는 화합물(5-(2,6-디메틸-4H-피란-4-일리덴)-1,3-디메틸피리미딘-2,4,6(1H,3H,5H)-트리온)을 수득한 후 식 6으로 표시되는 화합물(4-((2-하이드록시에틸)(메틸)아미노)벤즈알데히드)과 축합시켜 식 I로 표시되는 솔바토크로믹 염료의 제조방법 Compound (5- (2,6-dimethyl-4H) represented by the formula 4 by condensation polymerization of the compound represented by the formula 2 to the raw material represented by the formula (2,6-dimethyl-4H-pyran-4-one) -Pyran-4-ylidene) -1,3-dimethylpyrimidine-2,4,6 (1H, 3H, 5H) -trione) to obtain a compound represented by the formula (4-((2- Hydroxyethyl) (methyl) amino) benzaldehyde) condensation method for preparing sorbatochromic dye represented by formula (I)
Figure 112008071703820-pat00009
Figure 112008071703820-pat00009
식 1로 표시되는 원료 물질(2,6-디메틸-4H-피란-4-온)에 식 3으로 표시되는 화합물을 축중합시켜 식 5로 표시되는 화합물(5-(2,6-디메틸-4H-피란-4-일리덴)-2,2-디메틸-1,3-디옥산-4,6-디온)을 수득한 후 식 6으로 표시되는 화합물(4-((2-하이드록시에틸)(메틸)아미노)벤즈알데히드)과 축합시켜 식 Ⅱ로 표시되는 솔바토크로믹 염료의 제조방법 Compound (5- (2,6-dimethyl-4H) represented by Formula 5 by condensation polymerization of the compound represented by Formula 3 to the raw material represented by Formula 1 (2,6-dimethyl-4H-pyran-4-one) -Pyran-4-ylidene) -2,2-dimethyl-1,3-dioxane-4,6-dione, followed by the compound represented by formula 6 (4-((2-hydroxyethyl) ( Method for preparing solvatochromic dye represented by formula II by condensation with methyl) amino) benzaldehyde)
Figure 112008071703820-pat00010
Figure 112008071703820-pat00010
제 1항 또는 제 2항에 있어서, 상기 용매는 자일렌, 톨루엔, 벤젠, 1,2-디클로로벤젠, 클로로포름, 디클로로메탄, 1,2-디클로로에탄, 트리클로로에틸렌, 에틸아세테이트, 아세톤, 에탄올, 메탄올, 프로판올, n-부탄올, THF, DMF, DMSO, 피리딘, 포름아마이드, 디에틸에테르, 1,4-디옥산, 아세토니트릴에서 선택된 용매임을 특징으로 하는 솔바토크로믹 염료 The method of claim 1 or 2, wherein the solvent is xylene, toluene, benzene, 1,2-dichlorobenzene, chloroform, dichloromethane, 1,2-dichloroethane, trichloroethylene, ethyl acetate, acetone, ethanol, Solvatochromic dyes characterized in that the solvent is selected from methanol, propanol, n-butanol, THF, DMF, DMSO, pyridine, formamide, diethyl ether, 1,4-dioxane, acetonitrile 제 1항에 있어서, 상기 식 Ⅰ의 솔바토크로믹 염료는 용매의 극성이 증가함에 따라 흡광 파장이 증가하고 최대 바소크로믹 이동은 73 nm까지 가능함을 특징으로 하는 솔바토크로믹 염료 2. The solvatochromic dye according to claim 1, wherein the solvatochromic dye of formula I is characterized in that the absorption wavelength increases and the maximum vasochromic shift is possible up to 73 nm as the polarity of the solvent increases. 제 2항에 있어서, 상기 식 Ⅱ의 솔바토크로믹 염료는 용매의 극성이 증가함에 따라 흡광 파장이 증가하고 최대 바소크로믹 이동은 81 nm까지 가능함을 특징으로 하는 솔바토크로믹 염료 The solvatochromic dye according to claim 2, wherein the solvatochromic dye of formula II is characterized in that the absorption wavelength increases and the maximum vasochromic shift is possible up to 81 nm as the polarity of the solvent increases.
KR1020080101024A 2008-10-15 2008-10-15 New Solvatochromic Dyes KR101047976B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080101024A KR101047976B1 (en) 2008-10-15 2008-10-15 New Solvatochromic Dyes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080101024A KR101047976B1 (en) 2008-10-15 2008-10-15 New Solvatochromic Dyes

Publications (2)

Publication Number Publication Date
KR20100041960A KR20100041960A (en) 2010-04-23
KR101047976B1 true KR101047976B1 (en) 2011-07-13

Family

ID=42217451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080101024A KR101047976B1 (en) 2008-10-15 2008-10-15 New Solvatochromic Dyes

Country Status (1)

Country Link
KR (1) KR101047976B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545806B1 (en) * 2014-01-14 2015-08-19 충남대학교산학협력단 Dye compound and method of preparing the dye compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456177A (en) * 2022-01-10 2022-05-10 安徽师范大学 Preparation of dye based on tetraphenylethylene-phenazine derivative and application of dye in selective differentiation of methanol solvent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050105358A (en) * 2004-04-30 2005-11-04 주식회사 에이스 디지텍 Dye for display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050105358A (en) * 2004-04-30 2005-11-04 주식회사 에이스 디지텍 Dye for display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101545806B1 (en) * 2014-01-14 2015-08-19 충남대학교산학협력단 Dye compound and method of preparing the dye compound

Also Published As

Publication number Publication date
KR20100041960A (en) 2010-04-23

Similar Documents

Publication Publication Date Title
Umezawa et al. Bright, color‐tunable fluorescent dyes in the Vis/NIR region: establishment of new “tailor‐made” multicolor fluorophores based on borondipyrromethene
Achelle et al. Donor–linker–acceptor (D–π–A) diazine chromophores with extended π-conjugated cores: synthesis, photophysical and second order nonlinear optical properties
Chen et al. Photoinduced intramolecular charge-transfer state in thiophene-π-conjugated donor–acceptor molecules
PL227162B1 (en) New, highly fluorescent heterocyclic substances and their preparation
Zhan et al. Mechanofluorochromism based on BOPIM complexes: the effect of substituents and regulation of the direction of the emission color changes
Zhan et al. Reversible mechanofluorochromism and acidochromism using a cyanostyrylbenzimidazole derivative with aggregation-induced emission
EP3172203B1 (en) Molecules presenting dual emission properties
Telore et al. Push–pull fluorophores with viscosity dependent and aggregation induced emissions insensitive to polarity
Chemate et al. Novel iminocoumarin derivatives: synthesis, spectroscopic and computational studies
nee Pant et al. Synthesis, characterization and fluorescence studies of 3, 5-diaryl substituted 2-pyrazolines
Vala et al. Novel, soluble diphenyl-diketo-pyrrolopyrroles: Experimental and theoretical study
Melekhina et al. Dihetarylethene photocyclization as a synthetic route to fluorescent compounds
Li et al. New anisopleural spindle-like nonlinear optic (NLO) chromophores with a D–D′–π–A′–A or D–A′–π–D′–A structure: interesting optical behavior and DFT calculation results
Gupta et al. Novel Y-shaped AIEE-TICT active π-extended quinoxalines-based donor–acceptor molecules displaying acidofluorochromism and temperature dependent emission
KR101047976B1 (en) New Solvatochromic Dyes
Sakr et al. Novel far UV–Vis absorbing bis (dihydrophenanthro [9, 10-e][1, 2, 4] triazine) derivative dyes: Synthesis, optical, photophysical and solvatochromic properties
Altinolcek et al. Carbazole-based D-π-A molecules: Determining the photophysical properties and comparing ICT effects of π-spacer and acceptor groups
Pariat et al. 2, 2-Dipicolylamino substituted 2-(2′-hydroxybenzofuranyl) benzoxazole (HBBO) derivative: Towards ratiometric sensing of divalent zinc cations
KR102216794B1 (en) Organic molecules for direct singlet collection with short emission decay times and their application in optoelectronic devices
Wang et al. New solvatochromic merocyanine dyes based on Barbituric acid and Meldrum's acid
Peterson et al. Improving the kinetics and dark equilibrium of donor–acceptor Stenhouse adduct by triene backbone design
Bilokin et al. 3-Hydroxybenzo [g] quinolones: dyes with red-shifted absorption and highly resolved dual emission
Duan et al. Design and synthesis of novel organic luminescent materials based on pyrazole derivative
Rajesha et al. Synthesis of new benzocoumaryl oxadiazolyls as strong blue-green fluorescent brighteners
Du et al. One pot solvent-free solid state synthesis, photophysical properties and crystal structure of substituted azole derivatives

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150624

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170623

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180626

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 9