KR101044634B1 - Stabilization Method of PGH2 and Activity Assay Method of mPGES-1 - Google Patents

Stabilization Method of PGH2 and Activity Assay Method of mPGES-1 Download PDF

Info

Publication number
KR101044634B1
KR101044634B1 KR1020090009458A KR20090009458A KR101044634B1 KR 101044634 B1 KR101044634 B1 KR 101044634B1 KR 1020090009458 A KR1020090009458 A KR 1020090009458A KR 20090009458 A KR20090009458 A KR 20090009458A KR 101044634 B1 KR101044634 B1 KR 101044634B1
Authority
KR
South Korea
Prior art keywords
mpges
prostaglandin
pgh2
activity
measuring
Prior art date
Application number
KR1020090009458A
Other languages
Korean (ko)
Other versions
KR20100090145A (en
Inventor
유연규
최경아
박성준
Original Assignee
국민대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국민대학교산학협력단 filed Critical 국민대학교산학협력단
Priority to KR1020090009458A priority Critical patent/KR101044634B1/en
Publication of KR20100090145A publication Critical patent/KR20100090145A/en
Application granted granted Critical
Publication of KR101044634B1 publication Critical patent/KR101044634B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/88Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving prostaglandins or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 프로스타글란딘 H2(prostaglandin H2; PGH2)의 안정화 방법 및 프로스타글란딘 합성효소(mPGES-1)의 활성 측정방법에 관한 것으로서, 보다 상세하게는 PGH2의 퍼옥시기(peroxy group)가 수산기(hydroxy group)로 분해되어 프로스타글란딘 F2(prostaglandin F2 ; PGF2)로 전환되는 것을 막기 위하여, 프로스타글란딘 H2 기질에 포스포몰리브딕 산(phosphomolybdic acid ; PMA)을 첨가하는 프로스타글란딘 H2(PGH2)의 안정화 방법 및 이 PGH2 기질에 포스포몰리브딕 산(PMA) 및 프로스타글란딘 디하이드로게나제(15-PGDH)와 mPGES-1 두 종류의 효소의 이중 효소 활성 측정을 이용한 프로스타글란딘 합성효소(mPGES-1)의 활성 측정방법에 관한 것이다. 본 발명의 mPGES-1의 활성 측정방법은 종래의 염화주석(Tin chloride; SnCl2)을 사용해야 하는 불편이 없을 뿐만 아니라 반응 생성물인 PGE2를 정량하기 위하여 고가의 항체를 이용하지 않고도 UV-vis 영역에서 흡광도로 mPGES-1의 활성을 용이하게 측정할 수 있다. 따라서, 본 발명은 항염증 치료제 개발의 표적 단백질인 mPGES-1의 활성 억제물질을 대량으로 검색하는데 필요한 효과적이고 저비용의 mPGES-1의 활성 측정방법을 제공한다.The present invention relates to a method for stabilizing prostaglandin H2 (PGH2) and a method for measuring activity of prostaglandin synthase (mPGES-1), and more specifically, a peroxy group of PGH2 is a hydroxyl group. to prevent the switch to; (PGF2 prostaglandin F 2), phosphine pomol rib Dick acid to prostaglandin H2 substrate decomposes prostaglandin F2; force to the stabilization method and the PGH2 substrate for prostaglandin H2 (PGH2), which was added to (phosphomolybdic acid PMA) The present invention relates to a method for measuring the activity of prostaglandin synthase (mPGES-1) using double enzyme activity measurement of two types of enzymes, formolibic acid (PMA) and prostaglandin dehydrogenase (15-PGDH) and mPGES-1. The method for measuring activity of mPGES-1 of the present invention is not only inconvenient to use conventional tin chloride (Tin chloride; SnCl 2 ), but also in the UV-vis region without using an expensive antibody to quantify the reaction product PGE2. By absorbance, the activity of mPGES-1 can be easily measured. Accordingly, the present invention provides an effective and low-cost method for measuring the activity of mPGES-1, which is required for the mass screening of the inhibitory activity of mPGES-1, a target protein for the development of anti-inflammatory drugs.

항염증 질환, PGH2, PGE2, mPGES-1, 포스포몰리브딕 산 Anti-inflammatory diseases, PGH2, PGE2, mPGES-1, phosphomolybdic acid

Description

프로스타글란딘 H2(PGH2)의 안정화 방법 및 프로스타글란딘 합성효소(mPGES―1)의 활성 측정방법{Stabilization Method of PGH2 and Activity Assay Method of mPGES-1}Stabilization Method of PGH2 and Activity Assay Method of Staphization Method of Stabilization of Prostaglandin H2 (PPH2) and Prostaglandin Synthetase (MPPES-1)

본 발명은 프로스타글란딘 합성효소(이하 "mPGES-1"이라 함)의 기질인 프로스타글란딘 H2(prostaglandin H2; 이하 "PGH2"라 함)를 안정화시키는 물질인 포스포몰리브딕산(PMA)과 프로스타글란딘 디하이드로게나제(이하 "15-PGDH"라 함)를 이용하여 mPGES-1의 활성을 측정하는 방법에 관한 것이다. The present invention relates to phosphomolybdic acid (PMA) and prostaglandin dehydrogenase, which are substances that stabilize prostaglandin H2 (prostaglandin H2; hereinafter referred to as "PGH2"), which are substrates of prostaglandin synthase (hereinafter referred to as "mPGES-1"). (Hereinafter referred to as "15-PGDH") to a method for measuring the activity of mPGES-1.

염증 반응, 혈압 조절 등 다양한 생리 작용을 조절하는 프로스타노이드들은 아라키도닉산으로부터 생합성 된다(도 1). 아라키도닉산으로부터 COX-1/COX-2에 의하여 프로스타글란딘 H2(PGH2)가 합성되며, 이들 PGH2로부터 프로스타글란딘 E2(이하 "PGE2"라 함), TXA, PGI 등 다양한 프로스타노이드가 합성된다. 이러한 아라키도닉산으로부터 생합성 되는 프로스타노이드의 일종인 PGH2는 세 종류의 프로스타노이드 E2의 생합성 효소들에 의해 PGE2로 변환되고, 이들 PGE2는 염증 반응과 관련된다. 이들 3 종류의 PGE2 생합성 효소는 수용성 단백질인 cPGES-1과 두 종류의 마이크로좀 멤브레인(microsome membrane)에 결합된 단백질인 프로스타글란딘 합성효소인 mPGES-1과 mPGES-2이다. 이러한 3 종류의 PGE2 합성 효소 중 mPGES-1은 자극에 의하여 염증 반응을 일으키는 PGE2의 합성을 담당하며 염증 치료제의 표적 단백질로 간주되고 있다(Murakami, M., Naraba, H., Tanioka, T., Semmyo, N., Nakatami, Y., Kojima, F. Iked,a T., Fueki, M., Ueno, A, Oh S. and Kudo, I. Regulation of prostaglandin E2 biosynthesis by inducible membrane associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. (2000) J. Biol. Chem. 275, 32783-32792).Prostanoids that regulate various physiological effects, such as inflammatory response and blood pressure control, are biosynthesized from arachidonic acid (FIG. 1). Prostaglandin H2 (PGH2) is synthesized by COX-1 / COX-2 from arachidonic acid, and various prostanoids such as prostaglandin E2 (hereinafter referred to as "PGE2"), TXA, and PGI are synthesized from these PGH2. PGH2, a type of prostanoid biosynthesized from such arachidonic acid, is converted into PGE2 by three kinds of biosynthetic enzymes of prostanoid E2, and these PGE2 are associated with an inflammatory response. These three PGE2 biosynthetic enzymes are cPGES-1, a water-soluble protein, and mPGES-1 and mPGES-2, a prostaglandin synthetase, a protein bound to two microsome membranes. Among these three types of PGE2 synthase, mPGES-1 is responsible for the synthesis of PGE2, which stimulates the inflammatory response by stimulation, and is considered as a target protein of inflammatory drugs (Murakami, M., Naraba, H., Tanioka, T., Semmyo, N., Nakatami, Y., Kojima, F. Iked, a T., Fueki, M., Ueno, A, Oh S. and Kudo, I. Regulation of prostaglandin E2 biosynthesis by inducible membrane associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. (2000) J. Biol. Chem . 275, 32783-32792).

mPGES-1의 억제물질을 검색할 때 사용되는 mPGES-1의 활성을 측정하는 방법으로서 반응 생성물을 HPLC로 분리한 후 생성된 PGE2의 양을 측정하는 방법이 개발되었으나, 1회 분석시 HPLC 작동 시간이 소요되어 mPGES-1의 활성 억제물질을 대량으로 검색하는 목적으로 사용하는 데는 적합하지 않다(Per-Johan Jakobsson, Staffan Thore′N, Ralf Morgenstern, Bengt Samuelsson. Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. (1999) Vol. 96, pp. 7220-7225).As a method of measuring the activity of mPGES-1 used to search for inhibitors of mPGES-1, a method of measuring the amount of PGE2 generated after separation of a reaction product by HPLC has been developed. Is not suitable for use in the search for large quantities of active inhibitors of mPGES-1 (Per-Johan Jakobsson, Staffan Thore′N, Ralf Morgenstern, Bengt Samuelsson. Identification of human prostaglandin E synthase: A microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. (1999) Vol. 96, pp. 7220-7225).

또한, mPGES-1의 활성을 대량으로 검색하는 방법으로 기존에 사용되는 방법으로 PGE2에 대한 항체를 이용하는 방법이 상용화되어 있다(Journal of Biomolecule Screening, 2005, vol 10, page 599-605, Assay Design Kit, USA). 상기 방법은 PGE2의 항체를 이용하여 생성된 소량의 PGE2를 확인하여 mPGES-1의 활성을 측정할 수 있는 assay design kit(USA)를 사용하는 장점이 있지만, 고비용이 요구된다. 또한, mPGES-1의 기질로 이용되는 PGH2는 자신이 가지고 있는 불안정한 퍼옥시기(peroxy group)는 낮은 안정성 때문에 의해 쉽게 자연 분해되는 성질을 갖고 있기 때문에 30초 이내에 염화주석(SnCl2)를 사용하여 반응을 종료시켜야 하므로 대량으로 활성을 검색하는데 제한성을 갖는다. 따라서, 이러한 기존의 방법은 mPGES-1의 억제 물질의 대량 검색에는 제약을 주고 있다.In addition, the method of using the antibody against PGE2 is commercially available as a method for mass-detecting the activity of mPGES-1 (Journal of Biomolecule Screening, 2005, vol 10, page 599-605, Assay Design Kit , USA). The method has the advantage of using an assay design kit (USA) that can measure the activity of mPGES-1 by identifying a small amount of PGE2 generated using an antibody of PGE2, but requires a high cost. In addition, PGH2, which is used as a substrate of mPGES-1, reacts with tin chloride (SnCl 2 ) within 30 seconds since its unstable peroxy group is easily decomposed naturally due to its low stability. Because it must terminate, it is limited to searching activities in large quantities. Therefore, this conventional method has limited the mass screening of inhibitors of mPGES-1.

따라서, 보다 저비용의 mPGES-1 활성 측정방법이면서 mPGES-1의 기질인 PGH2의 안정성을 높임으로서 대량 검색에 적합한 활성 측정 방법의 개발이 요구되어 왔다. Accordingly, there has been a demand for development of a method for measuring activity that is suitable for mass screening by increasing the stability of PGH2, which is a substrate of mPGES-1, as well as a method of measuring mPGES-1 activity at a lower cost.

이에, 본 발명자들은 기질인 PGH2의 안정성을 높여 mPGES-1 활성 측정방법을 찾고자 노력하던 중, PMA가 PGH2의 퍼옥시기를 안정화시켜 mPGES-1의 활성 측정 시간인 30분 이상의 반응 시간 동안에도 PGH2가 분해되지 않도록 안정성을 유지시킴을 확인함으로써 mPGES-1의 활성을 대량으로 검색하는데 충분한 조건을 확립하였다. 또한 PGE2와 니코틴아미드 아데닌 디뉴클레오티드(nicotin amide adenine dinucleotide; 이하 "NAD+"라 함)를 기질로 사용하여 15-케토-프로스타글란딘 E2(이하 "15-케토-PGE2"라 함)와 1,4-디히드로니코틴아미드 아데닌 디뉴클레오티드(1,4-dihydronicotin amide adenine dinucleotide, 이하 "NADH"라 함)를 합성하는 효소인 15-PGDH를 mPGES-1과 동시에 사용하여 반응하여 생성되는 NADH의 형광을 측정하여 보다 간편하게 mPGES-1의 활성을 측정하는 방법을 개발함으로써 본 발명을 완성하였다.Thus, the present inventors are trying to find a method for measuring mPGES-1 activity by increasing the stability of the substrate PGH2, PMA2 stabilizes the peroxy group of PGH2 PGH2 even during the reaction time of 30 minutes or more, which is the measurement time of the activity of mPGES-1 Sufficient conditions were established for the mass retrieval of mPGES-1 activity by confirming its stability to prevent degradation. In addition, 15-keto-prostaglandin E2 (hereinafter referred to as "15-keto-PGE2") and 1,4- using PGE2 and nicotin amide adenine dinucleotide (hereinafter referred to as "NAD + ") as substrates. 15-PGDH, an enzyme that synthesizes 1,4-dihydronicotin amide adenine dinucleotide (hereinafter referred to as "NADH"), was synthesized using mPGES-1 to measure the fluorescence of NADH. The present invention has been completed by developing a method to more easily measure the activity of mPGES-1.

본 발명의 목적은 mPGES-1의 억제 물질의 대량 검색에 사용 될 수 있는 저비용의 활성 측정방법을 제공하는 것이다. 이를 위하여, 본 발명은 PGH2의 안정성을 증가시키고 15-PGDH과 mPGES-1을 동시에 이용하여 NADH의 생성양을 측정함으로써 효소 반응의 진행을 측정하는 방법을 개발하여 저비용으로 mPGES-1의 억제물질을 검색하는 방법을 제공하는 것이다.It is an object of the present invention to provide a low cost activity measurement method that can be used for mass screening of inhibitors of mPGES-1. To this end, the present invention develops a method for measuring the progress of enzyme reaction by increasing the stability of PGH2 and measuring the amount of NADH produced by simultaneously using 15-PGDH and mPGES-1, thereby reducing the inhibitor of mPGES-1 at low cost. To provide a way to search.

상기 과제를 해결하기 위하여, 본 발명은 PGH2(prostaglandin H2; PGH2)의 퍼옥시기가 수산기로 분해되어 프로스타글란딘 F2(prostaglandin F2; PGF2)로 전환되는 것을 막기 위한 포스포몰리브딕산(phosphomolybdic acid ; PMA)을 이용한 PGH2의 안정화 방법을 제공한다.In order to achieve the foregoing object, the present invention PGH2; peroxy groups are decomposed into hydroxyl prostaglandin F2 of (prostaglandin H2 PGH2) (prostaglandin F 2; PGF2) phosphine pomol rib diksan to prevent the transition to (phosphomolybdic acid; PMA) It provides a method of stabilizing PGH2 using.

또한, 본 발명은 PGH2 기질에 PMA 및 프로스타글란딘 디하이드로게나제(15-PGDH)와 프로스타글란딘 합성효소(mPGES-1) 두 종류의 효소의 이중 효소 활성 측정을 이용한 mPGES-1의 활성 측정방법을 제공한다.In addition, the present invention provides a method for measuring activity of mPGES-1 using dual enzyme activity measurement of PMA and prostaglandin dehydrogenase (15-PGDH) and prostaglandin synthase (mPGES-1) on two PGH2 substrates. .

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 항염증 치료제의 표적 단백질인 프로스타글란딘 E2 (prostaglandin E2; PGE2) 합성 효소인 mPGES-1의 활성을 효과적으로 측정할 수 있는 mPGES-1의 활성 검색 방법을 제공한다. 앞서 설명한 바와 같이, mPGES-1의 기질인 프로스타글란딘 H2(prostaglandin H2; PGH2)는 퍼옥시기의 불안정성에 의해 자연적으로 수산기으로 분해되어 PGF2로 변환되기 때문에 종래에는 mPGES-1의 활성을 측정할 때 PGH2가 분해되기 전에 30초 이내에 염화주석(SnCl2)를 이용하여 반응을 종료해야하는 단점이 있다. 또한, 반응 생성물인 PGE2는 형광이나 UV-vis 영역에서 흡광도가 매우 낮아 분광학적 방법으로 측정하지 못하고 단지 PGE2에 선택적인 고가의 항체를 이용하는 방법이 mPGES-1의 활성 측정에 사용되고 있었다. 이에, 본 발명은 포스포몰리브딕산(phosphomolybdic acid; PMA)를 이용하여 기질인 PGH2의 퍼옥시기를 활성 측정시간 동안 충분히 안정화시킨 방법을 제공하다. 또한, mPGES-1의 생성물인 PGE2와 NAD+(nicotinamide adenine dinucleotide)를 기질로 15-케토-PGE2와 NADH(1,4-dihydronicotinamide adenine dinucleotide)를 생성하는 효소인 15-PGDH와 mPGES-1가 동시에 사용되는 이중 효소 활성 측정(two-enzyme assay) 시스템을 구축하여 생성물 중 하나인 NADH의 형광을 형광분광기로 용이하게 측정하는 방법을 제공한다.The present invention provides a method for screening the activity of mPGES-1, which can effectively measure the activity of mPGES-1, a prostaglandin E2 (PGE2) synthase, a target protein of an anti-inflammatory drug. As described above, prostaglandin H2 (PGH2), which is a substrate of mPGES-1, is naturally degraded to a hydroxyl group and converted to PGF2 by peroxy group instability. Therefore, when PGH2 is measured when mPGES-1 activity is measured, There is a disadvantage in that the reaction must be terminated using tin chloride (SnCl 2 ) within 30 seconds before decomposition. In addition, PGE2, which is a reaction product, has a very low absorbance in the fluorescence or UV-vis region, which cannot be measured by spectroscopic method. Thus, the present invention provides a method of sufficiently stabilizing the peroxy group of the substrate PGH2 using the phosphomolybdic acid (PMA) during the activity measurement time. In addition, 15-keto-PGE2 and 15-PGDH and mPGES-1, enzymes that produce 15-keto-PGE2 and NADH (1,4-dihydronicotinamide adenine dinucleotide) based on PGE2 and NAD + (nicotinamide adenine dinucleotide) A two-enzyme assay system used is provided to provide a method for easily measuring the fluorescence of one of the products, NADH, by fluorescence spectroscopy.

본 발명은 PGH2(prostaglandin H2 ; PGH2)의 퍼옥시기를 안정화시키는 물질로 PMA를 이용하여 활성 측정 기간 동안 기질인 PGH2의 안정성을 증가시키는 방법을 제공한다. 구체적으로, 본 발명은 PGH2의 퍼옥시기가 수산기로 분해되어 프로스타글란딘 F2(prostaglandin F2 ; PGF2)로 전환되는 것을 막기 위한 포스포몰리브딕산(phosphomolybdic acid ; PMA)을 이용한 PGH2의 안정화 방법을 제공한다. 상기 PGH2의 안정화 방법에 있어서, 상기 PGH2와 PMA의 농도비는 1 : 1~100인 것이 바람직하고, 6 : 100인 것이 가장 바람직하다.The present invention provides a method of increasing the stability of the substrate PGH2 during the activity measurement period using PMA as a substance to stabilize the peroxy group of PGH2 (prostaglandin H2; PGH2). Specifically, the present invention provides a method for stabilizing PGH2 using phosphomolybdic acid (PMA) to prevent the peroxy group of PGH2 from being decomposed to hydroxyl groups and converted to prostaglandin F 2 (PGF2). In the stabilization method of the PGH2, the concentration ratio of the PGH2 and PMA is preferably 1: 1 to 100, and most preferably 6: 100.

또한, 본 발명은 PGH2 기질에 PMA 및 프로스타글란딘 디하이드로게나제(15-PGDH)와 프로스타글란딘 합성효소(mPGES-1) 두 종류의 효소의 이중 효소 활성 측정을 이용한 mPGES-1의 활성 측정방법을 제공한다. 구체적으로, 상기와 같이 PMA를 이용하여 PGH2의 퍼옥시기의 안정성을 증가시킴으로써 mPGES-1에 의해 합성되는 PGE2와 NAD+를 기질로 이용하여 15-케토-PGE2와 NADH를 합성하는 반응을 촉매하는 효소인 15-PGDH를 mPGES-1과 동시에 사용하여 반응 산물인 NADH의 형광을 측정하는 방법을 제공한다.In addition, the present invention provides a method for measuring activity of mPGES-1 using dual enzyme activity measurement of PMA and prostaglandin dehydrogenase (15-PGDH) and prostaglandin synthase (mPGES-1) on two PGH2 substrates. . Specifically, the enzyme catalyzing the reaction of synthesizing 15-keto-PGE2 and NADH using PGE2 and NAD + synthesized by mPGES-1 as a substrate by increasing the stability of the peroxy group of PGH2 using PMA as described above. Phosphorus 15-PGDH is used simultaneously with mPGES-1 to provide a method for measuring the fluorescence of the reaction product NADH.

본 발명자들은 PMA가 PGH2의 퍼옥시기를 안정화시키는 특성을 확인하고 이를 이용하여 mPGES-1의 활성 측정 시간동안 PGH2가 30분 이상의 반응 시간 동안에도 분해되지 않도록 안정성을 유지함으로서 mPGES-1의 활성을 대량으로 검색하는데 충분한 조건을 확립하였다. 구체적으로, 6 μM의 mPGES-1의 기질인 PGH2의 퍼옥시기는 0.1 mM의 PMA에 의하여 안정성이 증가하여 상온에서 30분 이상의 시간동안 수산기으로 분해되지 않는다. 따라서, 30분 이상의 반응 시간을 확보하여 대량의 화합물을 검색하는데 필요한 충분한 시간을 확보할 수 있다.The present inventors confirmed the property of PMA stabilizing the peroxy group of PGH2 and using this to maintain stability so that PGH2 does not decompose during the reaction time of mPGES-1 for 30 minutes or more. Sufficient conditions were established for searching. Specifically, the peroxy group of PGH2, which is a substrate of 6 μM mPGES-1, is increased in stability by 0.1 mM PMA and does not decompose into hydroxyl groups for at least 30 minutes at room temperature. Therefore, the reaction time of 30 minutes or more can be secured, and sufficient time required to search a large amount of compounds can be ensured.

또한, 대장균에서 인간 15-PDGH 유전자로부터 15-PGDH를 대량 발현 및 정제한 후 이를 mPGES-1과 함께 이용하여 결합 효소 활성(coupled-enzyme assay) 시스템을 확립하였다. 이를 통하여 mPGES-1의 반응 생성물인 PGE2가 15-PGDH에 의하여 15-케토-PGE2로 변환되며 이 반응에서 NAD+가 NADH로 변환되도록 하였다. 이러한 반응의 생성물인 NADH의 형광을 측정함으로써 간접적으로 PGE2의 생성 정도를 확인할 수 있다.In addition, after mass-expressing and purifying 15-PGDH from human 15-PDGH gene in Escherichia coli, it was used with mPGES-1 to establish a coupled-enzyme assay system. Through this, PGE2, a reaction product of mPGES-1, was converted into 15-keto-PGE2 by 15-PGDH, and NAD + was converted into NADH in this reaction. By measuring the fluorescence of NADH, the product of this reaction, the degree of generation of PGE2 can be confirmed indirectly.

그 결과, 기질로 사용되는 PGH2의 안정성이 증가되어 30분 이상의 반응시간 동안에도 반응을 효과적으로 수행할 수 있는 것을 확인하였고, 두 종류의 효소를 이용함으로서 얻어지는 NADH의 형광을 통해 간접적으로 PGE2의 생성 정도를 확인하는 방법을 확립함으로서 본 발명에서 개발된 방법이 mPGES-1의 억제 물질을 검색하는데 사용할 수 있다는 것을 확인하였다.As a result, the stability of PGH2 used as a substrate was increased, and it was confirmed that the reaction could be effectively performed even for a reaction time of 30 minutes or more. The degree of PGE2 production was indirectly generated through the fluorescence of NADH obtained by using two kinds of enzymes. By establishing a method of confirming that it was confirmed that the method developed in the present invention can be used to search for inhibitors of mPGES-1.

본 발명의 mPGES-1의 활성 측정방법에 있어서, 상기 활성 측정방법은 PGH2 기질 이외에 NAD+ 또는 NADP를 기질로 첨가하여 NADH(1,4-dihydronicotinamide adenine dinucleotide) 또는 NADPH의 형광을 측정하는 것이 바람직하고, ⅰ) PGH2 기질에 PMA를 반응시켜 상기 PGH2 기질을 안정화시키는 단계; ⅱ) 상기 안정화된 PGH2 기질에 mPGES-1 효소를 반응시켜 PGE2를 생성시키는 단계; ⅲ) 상기 생성된 PGE에 15-PGDH 효소 및 NAD+ 기질을 반응시켜 15-케토-PGE2와 NADH를 생성시키는 단계; 및 ⅳ) 상기 생성된 NADH의 형광을 측정하는 단계;를 포함하는 것이 보다 바람직하다(도 2 참조). 이때, 상기 NADH의 형광의 측정은 340 ㎚의 여기(excitation) 파장과 468 ㎚의 방출(emission)파장을 이용하여 측정하는 것이 가장 바람직하다.In the activity measurement method of mPGES-1 of the present invention, the activity measurement method is preferably to measure the fluorescence of NADH (1,4-dihydronicotinamide adenine dinucleotide) or NADPH by adding NAD + or NADP as a substrate in addition to the PGH2 substrate Iii) stabilizing the PGH2 substrate by reacting PMA with a PGH2 substrate; Ii) reacting the stabilized PGH2 substrate with an mPGES-1 enzyme to produce PGE2; Iii) reacting the produced PGE with 15-PGDH enzyme and NAD + substrate to produce 15-keto-PGE2 and NADH; And iii) measuring the fluorescence of the generated NADH (see FIG. 2 ). In this case, the fluorescence of the NADH is most preferably measured using an excitation wavelength of 340 nm and an emission wavelength of 468 nm.

이하, 본 발명을 상기의 순서에 따라 상세히 설명하면 다음과 같다. 구체적으로, 본 발명의 mPGES-1의 활성 측정방법은 다음과 같은 순서에 의해 착안되었다.Hereinafter, the present invention will be described in detail in the above order. Specifically, the method for measuring activity of mPGES-1 of the present invention was conceived in the following order.

대장균(E. coli)을 이용하여 인간 mPGES-1과 15-PGDH 유전자로부터 단백질을 대량 발현시키고 정제한다. 정제된 mPGES-1과 15-PGDH 단백질과 이들 단백질의 기질인 PGH2와 NAD+를 이용한 반응 조건을 확립하고 반응 생성물인 NADH를 측정하는 방법을 확립한다. E. coli is used to mass express and purify proteins from human mPGES-1 and 15-PGDH genes. The reaction conditions using the purified mPGES-1 and 15-PGDH proteins, the substrates of these proteins, PGH2 and NAD + , and a method of measuring the reaction product NADH are established.

이하에서, 본 발명의 mPGES-1의 활성 측정방법은 다음과 같은 단계로 구성된다.Hereinafter, the activity measurement method of mPGES-1 of the present invention is composed of the following steps.

단계 1)Step 1) 대장균을 이용한 인간 mPGES-1과 15-PGDH의 단백질 대량 발현과 정제 단계;Mass expression and purification of human mPGES-1 and 15-PGDH using E. coli;

mPGES-1과 15-PGDH가 대장균(E. coli)에서 발현되는 것이 바람직하나, 반드시 이에 한정되는 것은 아니다. 또한, mPGES-1과 15-PGDH의 각각의 히스티딘 태그(Histidine tag)와 글루타티온 태그(glutathione tag)는 발현된 단백질의 양을 측정하는데 이용될 수 있으며, 각각 Ni-NTA(nickel-nitrilotriacetic acid) 컬럼과 글루타티온-S-트랜스퍼라제(glutathione-S-transferase) 컬럼을 이용하여 발현된 단백질을 정제하는데 사용하는 것이 바람직하나, 반드시 이에 한정되는 것은 아니다.mPGES-1 and 15-PGDH are preferably expressed in E. coli , but are not necessarily limited thereto. In addition, each histidine tag and glutathione tag of mPGES-1 and 15-PGDH can be used to measure the amount of protein expressed, respectively, a nickel-nitrilotriacetic acid (Ni-NTA) column. And glutathione-S-transferase (glutathione-S-transferase) column is preferably used to purify the expressed protein, but is not necessarily limited thereto.

본 발명자들은 김우일 등에 의한 방법으로 pPGES-1인 mPGES-1의 발현벡터로 대장균 Rosetta(DE3)을 형질전환시키고, 이것으로부터 인간 mPGES-1를 대량으로 발현하고 정제하였다. 그리고, 상기 발현과 정제 단계에 따른 결과를 SDS-PAGE를 이용하여 분석하였다(도 3 참조). 또한, Percival 방법으로 pGEX-2T인 15-PGDH의 발현벡터로 대장균 BL21(DE3)pLysS를 형질전환시키고, 이것으로부터 인간 15-PGDH를 대량으로 발현하고 정제하였다. 그리고, 상기 발현과 정제 단계에 따른 결과를 SDS-PAGE를 이용하여 분석하였다(도 4 참조).The present inventors transformed E. coli Rosetta (DE3) with the expression vector of pPGES-1, mPGES-1, by Kim Woo-il et al., And expressed and purified human mPGES-1 in large quantities. The results of the expression and purification steps were analyzed using SDS-PAGE (see FIG. 3 ). In addition, Escherichia coli BL21 (DE3) pLysS was transformed with the expression vector of 15-PGDH which is pGEX-2T by the Percival method, and the human 15-PGDH was expressed in large quantities and purified therefrom. The results of the expression and purification steps were analyzed using SDS-PAGE (see FIG. 4 ).

단계 2) PMA를 이용한 PGH2의 안정화 단계;Step 2) stabilizing PGH2 using PMA;

PGH2가 자연 분해되는 것을 억제하기 위하여, 100 μM의 PMA를 이용함으로써 효소 활성 측정 시간동안 PGH2가 안정적으로 존재하도록 하였다. 구체적으로는 PGH2의 안정화는 6μM PGH2와 100μM PMA을 미리 섞어 반응시키는 것이 바람직하나, 반드시 이 농도에 한정된 것은 아니다.In order to suppress the natural degradation of PGH2, 100 μM of PMA was used to stably present PGH2 during the enzyme activity measurement time. Specifically, the stabilization of PGH2 is preferably a mixture of 6μM PGH2 and 100μM PMA in advance, but is not necessarily limited to this concentration.

본 발명자들은 상기 단계 1에서 정제된 mPGES-1과 15-PGDH를 이용한 효소 활성 반응시 불안정한 기질인 PGH2를 PMA를 처리하여 반응시간 동안 안정화시켰다(도 5 참조). The inventors stabilized the PGH2, which is an unstable substrate during the enzyme activity reaction using mPGES-1 and 15-PGDH purified in step 1, by treating PMA (see FIG. 5 ).

단계 3) mPGES-1과 15-PGDH를 이용한 활성 측정 최적화 단계;Step 3) optimizing activity measurement using mPGES-1 and 15-PGDH;

PGH2를 기질로 사용하는 mPGES-1과 PGE2를 기질로 이용하는 15-PGDH를 동시에 이용하여 반응 산물인 NADH의 형광을 여기(excitation) 파장 340 ㎚와 방출(emission) 파장 468 ㎚에서 측정함으로서 간접적으로 PGE2의 생성정도를 확인한다. 구체적으로, mPGES-1과 15-PGDH를 이용한 활성 측정방법은 mPGES-1 4 ㎍ 15-PGDH 3 ㎍ 2 mM NAD+가 포함되어 있는 반응액에서 반응시키는 것이 바람직하나, 반드시 이 농도에 한정되는 것은 아니다. 생성된 NADH의 양은 NADH의 형광을 여기(excitation) 파장 340 ㎚와 방출(emission) 파장 468 ㎚에서 측정하는 것이 바람직하나, 반드시 이에 한정되는 것은 아니다. 즉, 형광 대신 NADH의 흡광도를 측정하는 것도 가능하며 또한 NAD+ 대신 NADP 등도 본 발명에서 모두 이용 가능하다. 이와 같이, 두 종류의 효소를 이용함으로서 얻어지는 NADH의 형광을 통해 간접적으로 PGE2의 생성정도를 확인할 수 있으며, 또한 상기 방법을 이용하여 mPGES-1의 활성억제물질의 대량 검색을 용이하게 수행할 수 있다.PG2 was indirectly measured by measuring the fluorescence of the reaction product NADH at excitation wavelength 340 nm and emission wavelength 468 nm using mPGES-1 using PGH2 as a substrate and 15-PGDH using PGE2 as a substrate. Check the generation of. Specifically, the activity measurement method using mPGES-1 and 15-PGDH is preferably reacted in the reaction solution containing mPGES-1 4 ㎍ 15-PGDH 3 2 mM NAD + , but is not necessarily limited to this concentration no. The amount of NADH generated is preferably, but not necessarily limited to, measuring the fluorescence of NADH at an excitation wavelength of 340 nm and an emission wavelength of 468 nm. That is, it is possible to measure the absorbance of NADH instead of fluorescence and also NADP instead of NAD + Etc. are all available in the present invention. As such, the degree of generation of PGE2 may be indirectly confirmed through fluorescence of NADH obtained by using two kinds of enzymes, and the mass retrieval of active inhibitors of mPGES-1 may be easily performed using the above method. .

아울러, 본 발명자들은 mPGES-1에 대한 억제활성을 갖는 것으로 알려진 MK-886을 이용하여, 본 발명의 mPGES-1의 활성 측정방법을 검증하였다(도 6 참조).In addition, the present inventors verified the activity measurement method of mPGES-1 of the present invention using MK-886 known to have inhibitory activity against mPGES-1 (see FIG. 6 ).

상기와 같이, 본 발명의 mPGES-1의 활성 측정방법은 종래의 염화주석(Tin chloride; SnCl2)을 사용해야 하는 불편이 없을 뿐만 아니라 반응 생성물인 PGE2를 정량하기 위하여 고가의 항체를 이용하지 않고도 UV-vis 영역에서 흡광도로 mPGES-1의 활성을 용이하게 측정할 수 있다. 따라서, 본 발명은 항염증 치료제 개발의 표적 단백질인 mPGES-1의 활성 억제물질을 대량으로 검색하는데 필요한 효과적이고 저비용의 mPGES-1의 활성 측정방법을 제공한다. 또한, 본 발명은 항염증 치료제 개발의 표적 단백질인 mPGES-1의 활성 억제물질을 대량으로 검색하는데 필요한 효과적이고 저비용의 mPGES-1의 활성 측정방법을 제공한다. As described above, the method of measuring activity of mPGES-1 of the present invention is not only inconvenient to use conventional tin chloride (Tin chloride; SnCl 2 ) but also UV without using an expensive antibody to quantify the reaction product PGE2. The activity of mPGES-1 can be easily measured by absorbance in the -vis region. Accordingly, the present invention provides an effective and low-cost method for measuring the activity of mPGES-1, which is required for the mass screening of the inhibitory activity of mPGES-1, a target protein for the development of anti-inflammatory drugs. In addition, the present invention provides an effective and low-cost method for measuring the activity of mPGES-1 required for the mass screening of the inhibitory activity of mPGES-1, a target protein for the development of anti-inflammatory drugs.

이하, 본 발명을 하기 실시예에 의거하여 보다 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명은 하기 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the present invention is not limited to the following examples and may be changed to other embodiments equivalent to substitutions and equivalents without departing from the technical spirit of the present invention. Will be apparent to those of ordinary skill in the art.

<실시예 1> 인간 mPGES-1의 발현과 정제Example 1 Expression and Purification of Human mPGES-1

인간 mPGES-1의 발현과 정제는 김우일 등에 의한 방법(Woo-Il Kim, et al., Expression and purification of human mPGES-1 in E. coli and identification of inhibitory compounds from a drug-library, BMB reports 2008; 41(11): 808-813)을 참고로 하였다. 구체적으로, 본 발명자들이 개발한 대장균에서 과량 발현할 수 있도록 돌연변이된 mPGES-1의 발현벡터인 pPGES-1(BMB reports 2008; 41(11): 808- 813)을 대장균 Rosetta(DE3)(Novagen, USA)에 형질전환시킨 후, 형질전환된 대장균을 카나마이신(kanamycine) 30 ㎍/㎖과 클로람페니콜(chloramphenicol) 34 ㎍/㎖이 첨가된 LB-한천 평판에서 배양하여 mPGES-1을 발현시킨 후 대장균을 원심분리(5000x g, 20 min)를 이용하여 분리하고 초음파 파쇄기(sonicator)를 이용하여 대장균을 파쇄한 후 세포막을 초고속원심분리(100,000x g, 1 hr)를 이용하여 분리하였다. 이후 세포막을 4% 트리톤(Triton) X-100 용액(15 mM Tris-HCl, pH 7.4, 0.5 mM EDTA(ethylenediaminetetraacetic acid), 1 mM PMSF(phenylmethylsulfonyl fluoride), 1 mM 글루타티온(glutathione), 4% 트리톤-X 100, 150 mM NaCl, 10% 글리세롤)으로 용해시킨 후 Ni-NTA(nickel-nitrilotriacetic acid)(QIAGEN, Germany) 컬럼(5 ㎖)을 통과시켰다. Ni-NTA 컬럼에 결합한 mPGES-1을 용출(elution) 용액(15 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10% 글리세롤, 0.2% 트리톤-X 100, 200 mM 이미다졸(Imidazole))으로 분리하였다. 상기 mPGES-1를 고순도로 정제하기 위하여, 상기 Ni-NTA 컬럼을 이용하여 분리된 mPGES-1 분획을 Q-세파로스(sepharose) 컬럼(GE healthcare, USA)에 통과시킨 후, 상기 Q-세파로스 컬럼에 결합한 mPGES-1을 0.1 내지 0.7 M NaCl 직선적 농도구배(linear gradient)로 구성된 용출(elution) 용액(15 mM Tris-HCl, pH 7.4, 10% 글리세롤, 0.2% 트리톤-X 100)으로 분리하였다. Expression and purification of human mPGES-1 is described by Woo-Il Kim, et al., Expression and purification of human mPGES-1 in E. coli and identification of inhibitory compounds from a drug-library, BMB reports 2008; 41 (11): 808-813). Specifically, pPGES-1 (BMB reports 2008; 41 (11): 808-813), which is an expression vector of mutated mPGES-1, can be overexpressed in Escherichia coli developed by the present inventors.E. Coli Rosetta (DE3) (Novagen, USA), transformed E. coli was cultured in LB-agar plate containing 30 ㎍ / ml of kanamycine and 34 ㎍ / ml of chloramphenicol to express mPGES-1. Separation (5000x g, 20 min) was isolated and E. coli was disrupted using an ultrasonic sonicator (sonicator) and the cell membrane was separated by ultrafast centrifugation (100,000xg, 1 hr). The cell membrane was then washed with 4% Triton X-100 solution (15 mM Tris-HCl, pH 7.4, 0.5 mM EDTA (ethylenediaminetetraacetic acid), 1 mM PMSF (phenylmethylsulfonyl fluoride), 1 mM glutathione, 4% Triton-). X 100, 150 mM NaCl, 10% glycerol) and passed through a nickel-nitrilotriacetic acid (Ni-NTA) (QIAGEN, Germany) column (5 mL). MPGES-1 bound to Ni-NTA column was separated by elution solution (15 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10% glycerol, 0.2% Triton-X 100, 200 mM imidazole) It was. In order to purify the mPGES-1 with high purity, the mPGES-1 fraction separated using the Ni-NTA column was passed through a Q-sepharose column (GE healthcare, USA), and then the Q-Sepharose MPGES-1 bound to the column was separated into an elution solution (15 mM Tris-HCl, pH 7.4, 10% glycerol, 0.2% Triton-X 100) consisting of 0.1-0.7 M NaCl linear gradient. .

상기 mPGES-1의 대장균에서의 발현과 정제 단계에 따른 결과를 SDS-PAGE를 이용하여 분석하였다(도 3). 상기 도 3에서 레인(Lane) M은 분자량 마커(molecular weight markers); 레인 1은 mPGES-1 발현 전 파쇄액; 레인 2는 mPGES-1을 발현 후 파쇄액; 레인 3은 mPGES-1을 발현한 대장균의 세포막 분획; 레인 4는 용해된(Solubilized) mPGES-1; 레인5는 Ni-NTA 컬럼을 이용하여 정제된 mPGES-1; 레인 6은 Q-세파로스(sepharose) 컬럼을 이용하여 정제된 mPGES-1을 나타낸다. 그 결과, mPGES-1는 90% 이상의 순도로 분리되었음을 확인하였다(도 3, 레인 6).Results of the expression and purification steps of the mPGES-1 in E. coli were analyzed using SDS-PAGE ( FIG. 3 ). Lane M in Figure 3 is the molecular weight markers (molecular weight markers); Lane 1 is a lysate prior to mPGES-1 expression; Lane 2 is a lysate after expressing mPGES-1; Lane 3 is a cell membrane fraction of E. coli expressing mPGES-1; Lane 4 is Solubilized mPGES-1; Lane 5 is mPGES-1 purified using a Ni-NTA column; Lane 6 shows mPGES-1 purified using Q-sepharose column. As a result, it was confirmed that mPGES-1 was separated by more than 90% purity ( Fig. 3 , lane 6 ).

<실시예 2> 인간 15-PGDH의 발현과 정제Example 2 Expression and Purification of Human 15-PGDH

인간 15-PGDH의 발현과 정제는 Percival 방법(M. David Percival, Continuous spectrophotometric assay amenable to 96-well plate format for prostaglandin E synthase activity, Analytical Biochemistry 313 (2003) 307-310)을 참고로 하였다. 구체적으로, 대장균에서 발현할 수 있도록 15-PGDH의 발현벡터인 pGEX-2T(GE Healthcase, USA)를 대장균 BL21(DE3)pLysS(Novagen, USA)에 형질전환시킨 후, 형질전환 된 대장균을 앰피실린(ampicillin) 50 ㎍/㎖이 첨가된 2X YT 배지에서 배양하여 15-PGDH를 발현시킨 후 대장균을 원심분리(5000x g, 15 min)를 이용하여 분리하고 초음파 분쇄기를 이용하여 대장균을 파쇄한 후 파쇄액을 원심분리(10,000x g, 20 min)를 이용하여 분리하였다. 추출액을 GST-아가로스(agarose)(Peptron, Korea) 컬럼(5 ㎖)을 통과시켰다. GST-아가로스 컬럼에 결합한 15-PGDH를 용출 용액(50 mM Tris-HCl, pH 8.0, 10 mM 환원된 글루타티온(GSH), 1 mM EDTA, 및 0.1 mM DTT(dithiothreitol))으로 분리하였다. Expression and purification of human 15-PGDH was based on the Percival method (M. David Percival, Continuous spectrophotometric assay amenable to 96-well plate format for prostaglandin E synthase activity, Analytical Biochemistry 313 (2003) 307-310). Specifically, pGEX-2T (GE Healthcase, USA), an expression vector of 15-PGDH, was transformed into Escherichia coli BL21 (DE3) pLysS (Novagen, USA) to be expressed in Escherichia coli, and then transformed Escherichia coli into ampicillin. (ampicillin) was cultured in 2X YT medium to which 50 ㎍ / mL was added to express 15-PGDH, and then E. coli was separated by centrifugation (5000x g, 15 min) and crushed by E. coli using an ultrasonic grinder. The solution was separated using centrifugation (10,000 × g, 20 min). The extract was passed through a GST-agarose (Peptron, Korea) column (5 mL). 15-PGDH bound to GST-agarose column was separated by elution solution (50 mM Tris-HCl, pH 8.0, 10 mM reduced glutathione (GSH), 1 mM EDTA, and 0.1 mM dithiothreitol).

상기 15-PGDH의 대장균에서의 발현과 정제 단계에 따른 결과를 SDS-PAGE를 이용하여 분석하였다(도 4). 상기 도 4에서, 레인 M은 분자량 마커; 레인 1은 15-PGDH를 발현한 대장균의 파쇄액; 레인 2는 원심분리 후 상층액; 레인 3은 원심분리 후 펠렛; lane 4는 글루타티온(glutathione) 컬럼 레진에 붙지 않은 단백질들; 레인 5는 글루타티온 컬럼 레진에서 씻겨 나온 단백질들; 레인 6은 글루타티온 컬럼을 이용하여 정제된 15-PGDH이다. 그 결과, 15-PGDH는 85%의 순도로 분리되었음을 확인하였다(도 4, 레인 6).The results of the expression and purification steps of E. coli of 15-PGDH were analyzed using SDS-PAGE ( FIG. 4 ). In FIG. 4 , lane M is a molecular weight marker; Lane 1 is a lysate of E. coli expressing 15-PGDH; Lane 2 is supernatant after centrifugation; Lane 3 pellets after centrifugation; lane 4 is proteins that do not adhere to glutathione column resin; Lanes 5 are proteins washed out of glutathione column resin; Lane 6 is 15-PGDH purified using a glutathione column. As a result, it was confirmed that 15-PGDH was separated with a purity of 85% ( FIG. 4 , lane 6 ).

<실시예 3> mPGES-1과 15-PGDH의 반응Example 3 Reaction of mPGES-1 with 15-PGDH

상기 실시예 1과 2와 같이 정제된 mPGES-1과 15-PGDH를 이용한 효소 활성 반응을 다음과 같이 수행하였다. 구체적으로, 상온에서 정제된 mPGES-1 4 ㎍과 15-PGDH 3 ㎍을 185 ㎕의 반응 용액[50 mM Tris-HCl(pH 7.5), 2 mM NAD+, 2 mM GSH와 0.1 mM DTT]에 준비한 후 96-well black nonbinding plate(Cayman chemical company, USA)에 첨가하였다. 효소 용액에 15 ㎕의 기질 용액(6 μM PGH2, 100 μM PMA)을 첨가하면서 반응을 시작하며 30분 후 생성된 NADH의 양을 여기(excitation) 파장 340 ㎚와 방출(emission) 파장 468 ㎚의 형광을 형광 플레이트 리더기를 이용하여 측정하였다.The enzyme activity reaction using mPGES-1 and 15-PGDH purified as in Examples 1 and 2 was carried out as follows. Specifically, 4 μg of mPGES-1 and 3 μg of 15-PGDH purified at room temperature were prepared in 185 μl of reaction solution [50 mM Tris-HCl (pH 7.5), 2 mM NAD + , 2 mM GSH and 0.1 mM DTT]. It was then added to a 96-well black nonbinding plate (Cayman chemical company, USA). The reaction starts with the addition of 15 μl of substrate solution (6 μM PGH2, 100 μM PMA) to the enzyme solution and after 30 minutes the amount of NADH generated is fluorescence with excitation wavelength 340 nm and emission wavelength 468 nm. Was measured using a fluorescent plate reader.

<실시예 4> 포스포몰리브딕 산(PMA)에 의한 PGH2의 안정화 Example 4 Stabilization of PGH2 by Phosphomolybdic Acid (PMA)

상기 실시예 1과 2와 같이 정제된 mPGES-1과 15-PGDH를 이용한 효소 활성 반 응시 불안정한 기질인 PGH2를 PMA를 처리하여 반응시간 동안 안정화시켰다. PMA에 의한 PGH2의 안정화 효과를 측정하기 위하여, 상온에서 정제된 15-PGDH 3 ㎍을 185 ㎕의 반응 용액[50 mM Tris-HCl(pH 7.5), 2 mM NAD+, 2 mM GSH와 0.1 mM DTT]에 준비한 후 96-well black nonbinding plate(Cayman chemical company, USA)에 첨가하였다. 효소 용액에 15 ㎕의 기질 용액(6 μM PGH2, 100 μM PMA)을 첨가하면서 반응을 시작하며 생성되는 NADH의 양을 여기(excitation) 파장 340 ㎚와 방출(emission) 파장 468 ㎚의 형광을 형광 플레이트 리더기를 이용하여 측정하였다(도 5). 그 결과, 도 5에서 mPGES-1가 없는 조건에서 NADH의 생성은 40분까지는 측정되지 않았으며(도 5, open circle), 이는 포스포몰리브딕 산이 PGH2을 안정화하여 40분까지는 PGF2로 변환되는 것을 억제하여 PGF2가 15-PGDH에 의한 산화 반응으로 NADH가 생성되는 것을 억제함을 보여준다. 반면 상온에서 정제된 mPGES-1 4 ㎍과 15-PGDH 3 ㎍을 상기 기술된 방법으로 기질인 PGH2와 100 μM의 PMA 존재하에서 반응할 경우 mPGES-1에 의하여 생성된 PGE2가 15-PDGH에 의하여 산화되면서 NADH를 생성하여 형광이 발생하는 것을 알 수 있었다(도 5, filled circle). 이러한 형광변화는 5분 이내의 비교적 빠른 시간에 PGE2의 생성과 산화반응이 완료되며 이후 안정적으로 형광을 발생하는 것을 알 수 있다. 이는 PMA에 의하여 PGH2를 40분 정도의 시간동안 안정화 시킬 수 있으며, 따라서 multi-well plate를 이용한 화합물의 대량검색에 적합한 mPGES-1의 활성측정 방법임을 확인하였다. PGH2, which is an unstable substrate when reacting with enzyme activity using mPGES-1 and 15-PGDH purified as in Examples 1 and 2, was stabilized during the reaction time by treatment with PMA. To determine the stabilizing effect of PGH2 by PMA, 3 μg of purified 15-PGDH at room temperature was added to 185 μl of reaction solution [50 mM Tris-HCl (pH 7.5), 2 mM NAD + , 2 mM GSH and 0.1 mM DTT. ] And added to a 96-well black nonbinding plate (Cayman chemical company, USA). Initiate the reaction by adding 15 μl of substrate solution (6 μM PGH2, 100 μM PMA) to the enzyme solution and measure the amount of NADH generated by fluorescence at 340 nm of emission wavelength and 468 nm of emission wavelength. Measurement was made using a reader ( FIG. 5 ). As a result, in the absence of mPGES-1 in Figure 5, the production of NADH was not measured until 40 minutes ( Fig. 5, open circle ), which indicates that phosphomolybdic acid stabilizes PGH2 and is converted to PGF2 until 40 minutes. Inhibition shows that PGF2 inhibits NADH production from oxidation by 15-PGDH. On the other hand, when 4 μg of mPGES-1 purified at room temperature and 3 μg of 15-PGDH were reacted with PGH2, which is a substrate, in the presence of 100 μM of PMA, the PGE2 produced by mPGES-1 was oxidized by 15-PDGH. It was found that fluorescence was generated by generating NADH ( FIG. 5, filled circle ). This fluorescence change can be seen that the generation and oxidation of PGE2 is completed within a relatively fast time within 5 minutes, and then fluorescence is generated stably. It is possible to stabilize PGH2 for about 40 minutes by PMA, thus confirming that mPGES-1 activity is suitable for mass screening of compounds using multi-well plates.

<실시예 5> MK-886을 이용한 신규 mPGES-1 활성 측정법의 검증Example 5 Validation of a Novel mPGES-1 Activity Assay Using MK-886

본 발명에서 개발된 mPGES-1의 활성 측정 방법을 검증하기 위하여, mPGES-1에 대한 억제활성을 갖는 것으로 알려진 MK-886(Mancini, J. A., Blood, K., Guay, J., Gordon, R., Claveau, D., Chan, C. C., and Riendeau, D. (2001) J. Biol. Chem. 276, 4469-4475)을 이용하였다.In order to verify the activity measurement method of mPGES-1 developed in the present invention, MK-886 (Mancini, JA, Blood, K., Guay, J., Gordon, R., known to have inhibitory activity against mPGES-1). , Claveau, D., Chan, CC, and Riendeau, D. (2001) J. Biol. Chem. 276, 4469-4475).

구체적으로, 상온에서 정제된 mPGES-1 4 ㎍과 15-PGDH 3 ㎍을 185 ㎕의 반응 용액 [50 mM Tris-HCl(pH 7.5), 2 mM NAD+, 2 mM GSH와 0.1 mM DTT]에 준비한 후 MK886을 0.1 μM ~ 100 μM의 농도로 첨가한 후 30분간 반응시켰다. MK-886이 반응한 반응액에 15 ㎕의 기질 용액(6 μM PGH2, 100 μM PMA)을 첨가하면서 반응을 시작하며 30분 후 생성된 NADH의 양을 여기 파장 340 ㎚와 방출 파장 468 ㎚의 형광을 형광 플레이트 리더기를 이용하여 측정하였다. 그 결과 mPGES-1의 활성이 50% 억제되는 MK886의 농도(IC50)는 2.8 μM으로 측정되었으며, 이는 기존의 PGE2 항체를 이용한 mPGES-1의 활성 측정방법(Journal of Biomolecule Screening, 2005, vol 10, page 599-605)으로 측정된 MK886의 IC50 값인 3.2 μM [J.A. Mancini, K. Blood, J. Guay, R. Gordon, D. Claveau, C.C. Chan, D. Riendeau, Cloning, expression, and up-regulation of inducible rat prostaglandin E synthase during lipopolysaccharideinduced pyresis and adjuvant-induced arthritis, J. Biol. Chem. 2001, vol. 276, pp4469-4475)과 유사하였다. 이러한 결과는 본 발명에서 확립된 mPGES-1의 방법이 기존의 mPGES-1의 활성 측정방법의 의한 결과와 일 치함을 보여주고, 따라서 본 발명의 mPGES-1 활성 측정방법이 mPGES-1 억제물질을 검색하는데 효과적으로 이용될 수 있음을 확인하였다(도 6).Specifically, 4 μg of mPGES-1 and 3 μg of 15-PGDH purified at room temperature were prepared in 185 μl of reaction solution [50 mM Tris-HCl (pH 7.5), 2 mM NAD + , 2 mM GSH and 0.1 mM DTT]. After MK886 was added at a concentration of 0.1 μM ~ 100 μM and reacted for 30 minutes. The reaction was started by adding 15 μl of substrate solution (6 μM PGH2, 100 μM PMA) to the reaction solution to which MK-886 reacted. After 30 minutes, the amount of generated NADH was fluorescence with excitation wavelength of 340 nm and emission wavelength of 468 nm. Was measured using a fluorescent plate reader. As a result, the concentration of MK886 (IC 50 ) at which 50% inhibition of mPGES-1 activity was measured was 2.8 μM, which is a method of measuring mPGES-1 activity using conventional PGE2 antibody (Journal of Biomolecule Screening, 2005, vol 10 3.2 μM, IC 50 value of MK886 measured by JA Mancini, K. Blood, J. Guay, R. Gordon, D. Claveau, CC Chan, D. Riendeau, Cloning, expression, and up- regulation of inducible rat prostaglandin E synthase during lipopolysaccharideinduced pyresis and adjuvant-induced arthritis, J. Biol. Chem. 2001, vol. 276, pp4469-4475). These results show that the method of mPGES-1 established in the present invention is consistent with the results of the conventional methods of measuring activity of mPGES-1, and thus, the method of measuring mPGES-1 activity of the present invention is effective in identifying mPGES-1 inhibitors. It was confirmed that it can be effectively used to search ( Fig. 6 ).

도 1은 아라키도닉 산(arachidonic acid)으로부터 프로스타노이드(prostanoid)의 한 종류인 프로스타글란딘(prostagladin)이 합성되는 생합성 경로 모식도이고, 1 is a schematic diagram of a biosynthetic pathway in which prostagladin, a type of prostanoid, is synthesized from arachidonic acid.

도 2는 본 발명의 mPGES-1과 15-PGDH를 이용하는 mPGES-1 활성 측정방법의 모식도이고, 2 is a schematic diagram of a method for measuring mPGES-1 activity using mPGES-1 and 15-PGDH according to the present invention;

도 3은 mPGES-1의 대장균에서의 발현과 정제 단계 과정에 따른 SDS-PAGE를 이용하여 분석한 사진이고, 3 is a photograph analyzed using SDS-PAGE according to the expression and purification step of Escherichia coli mPGES-1,

도 4은 15-PGDH의 대장균에서의 발현과 정제 단계 과정에 따른 SDS-PAGE를 이용하여 분석한 사진이고, 4 is a photograph analyzed using SDS-PAGE according to the expression and purification steps of E. coli of 15-PGDH,

도 5는 포스포몰리브딕 산(PMA)에 의한 PGH2의 안정화 효과를 NADH의 형광으로 측정한 그래프이고(이때, (●)(filled circle)은 포스포몰리브딕 산이 있는 조건에서 기질인 PGH2, NAD+가 mPGES-1 및 15-PGDH와 반응할 경우 생성된 PGE2가 15-PGDH에 의하여 산화되며 NADH가 생성되는 것을 보여주고, (○)(open circle)는 mPGES-1이 결여된 상태에서 기질인 PGH2, NAD+와 15-PGDH과 반응할 경우 포스포몰리브딕 산이 PGH2을 안정화하여 40분까지는 PGF2로 변환되는 것을 억제하여 PGF2가 15-PGDH에 의한 산화 반응으로 NADH가 생성되는 것을 억제함을 나타낸다), 5 is a graph measuring the stabilizing effect of PGH2 by phosphomolybdic acid (PMA) by fluorescence of NADH (wherein (●) (filled circle) is a substrate PGH2, NAD as a substrate in the presence of phosphomolybdic acid) When + reacts with mPGES-1 and 15-PGDH, PGE2 produced is oxidized by 15-PGDH and NADH is produced, and (○) (open circle) is a substrate in the absence of mPGES-1. When reacted with PGH2, NAD + and 15-PGDH, phosphomolybdic acid stabilizes PGH2 and inhibits conversion to PGF2 for up to 40 minutes, indicating that PGF2 inhibits the formation of NADH by oxidation reaction by 15-PGDH. ),

도 6은 mPGES-1의 억제 활성을 갖는 화합물인 MK-886이 다양한 농도에서 mPGES-1의 활성을 억제하는 것을 본 발명의 mPGES-1 활성 측정방법을 이용하여 NADH 형광을 측정한 그래프이다. 6 is a graph of NADH fluorescence measured using the mPGES-1 activity measuring method of the present invention that MK-886, a compound having inhibitory activity of mPGES-1, inhibits mPGES-1 activity at various concentrations.

Claims (6)

프로스타글란딘 H2(prostaglandin H2; PGH2) 기질에 포스포몰리브딕산(phosphomolybdic acid; PMA)을 첨가하는 프로스타글란딘 H2(PGH2)의 안정화 방법.A method for stabilizing prostaglandin H2 (PGH2) by adding phosphomolybdic acid (PMA) to a prostaglandin H2 (PGH2) substrate. 제 1항에 있어서, 상기 프로스타글란딘 H2(PGH2)와 포스포몰리브딕산(PMA)의 농도비는 1 : 1~100인 것을 특징으로 하는 프로스타글란딘 H2(PGH2)의 안정화 방법.The method of claim 1, wherein the concentration ratio of prostaglandin H2 (PGH2) and phosphomolybdic acid (PMA) is 1: 1 to 100, characterized in that stabilization method of prostaglandin H2 (PGH2). 삭제delete 삭제delete ⅰ) 프로스타글란딘 H2(PGH2) 기질에 포스포몰리브딕산(PMA)을 반응시켜 상기 프로스타글란딘 H2(PGH2) 기질을 안정화시키는 단계;Iii) stabilizing the prostaglandin H2 (PGH2) substrate by reacting phosphomolybdic acid (PMA) with the prostaglandin H2 (PGH2) substrate; ⅱ) 상기 안정화된 프로스타글란딘 H2(PGH2) 기질에 프로스타글란딘 합성효소(mPGES-1)를 반응시켜 프로스타글란딘 E2(PGE2)를 생성시키는 단계;Ii) reacting the stabilized prostaglandin H2 (PGH2) substrate with prostaglandin synthase (mPGES-1) to produce prostaglandin E2 (PGE2); ⅲ) 상기 생성된 프로스타글란딘 E2(PGE2)에 프로스타글란딘 디하이드로게나제(15-PGDH) 효소 및 니코틴아미드아데닌 디뉴클레오티드(NAD+) 기질을 반응시켜 15-케토-프로스타글란딘 E2(15-케토-PGE2)와 1,4-디히드로니코틴아미드아데닌 디뉴클레오티드(NADH)를 생성시키는 단계; 및Iii) reacting the produced prostaglandin E2 (PGE2) with prostaglandin dehydrogenase (15-PGDH) enzyme and nicotinamide adenine dinucleotide (NAD + ) substrate to react with 15-keto-prostaglandin E2 (15-keto-PGE2) Producing 1,4-dihydronicotinamideadenine dinucleotide (NADH); And ⅳ) 상기 생성된 1,4-디히드로니코틴아미드아데닌 디뉴클레오티드(NADH)의 형광을 측정하는 단계;를 포함하는 것을 특징으로 하는 프로스타글란딘 합성효소(mPGES-1)의 활성 측정방법.Iii) measuring the fluorescence of the produced 1,4-dihydronicotinamide adenine dinucleotide (NADH); measuring the activity of prostaglandin synthase (mPGES-1) comprising a. 제 5항에 있어서, 상기 1,4-디히드로니코틴아미드아데닌 디뉴클레오티드(NADH)의 형광의 측정은 340㎚의 여기(excitation) 파장과 468㎚의 방출(emission) 파장을 이용하여 측정하는 것을 특징으로 하는 프로스타글란딘 합성효소(mPGES-1)의 활성 측정방법.The method of claim 5, wherein the fluorescence of the 1,4-dihydronicotinamide adenine dinucleotide (NADH) is measured using an excitation wavelength of 340 nm and an emission wavelength of 468 nm. Method for measuring activity of prostaglandin synthase (mPGES-1).
KR1020090009458A 2009-02-05 2009-02-05 Stabilization Method of PGH2 and Activity Assay Method of mPGES-1 KR101044634B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090009458A KR101044634B1 (en) 2009-02-05 2009-02-05 Stabilization Method of PGH2 and Activity Assay Method of mPGES-1

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090009458A KR101044634B1 (en) 2009-02-05 2009-02-05 Stabilization Method of PGH2 and Activity Assay Method of mPGES-1

Publications (2)

Publication Number Publication Date
KR20100090145A KR20100090145A (en) 2010-08-13
KR101044634B1 true KR101044634B1 (en) 2011-06-29

Family

ID=42755837

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090009458A KR101044634B1 (en) 2009-02-05 2009-02-05 Stabilization Method of PGH2 and Activity Assay Method of mPGES-1

Country Status (1)

Country Link
KR (1) KR101044634B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211793A (en) 1979-03-19 1980-07-08 American Cyanamid Company Triethyl citrate solutions of PGE-type compounds
JPS6192599A (en) 1984-10-09 1986-05-10 Ono Pharmaceut Co Ltd Method of analyzing prostaglandin and device
US20040082021A1 (en) 2002-08-16 2004-04-29 Aventis Pharmaceuticals Inc. Method for assaying compounds or agents for ability to decrease the activity of microsomal prostaglandin E synthase or hematopoietic prostaglandin D synthase
US20040152148A1 (en) 2003-01-27 2004-08-05 Pfizer Inc Novel methods involving the determination of activity of enzymes that use or produce prostaglandin endoperoxide H2

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211793A (en) 1979-03-19 1980-07-08 American Cyanamid Company Triethyl citrate solutions of PGE-type compounds
JPS6192599A (en) 1984-10-09 1986-05-10 Ono Pharmaceut Co Ltd Method of analyzing prostaglandin and device
US20040082021A1 (en) 2002-08-16 2004-04-29 Aventis Pharmaceuticals Inc. Method for assaying compounds or agents for ability to decrease the activity of microsomal prostaglandin E synthase or hematopoietic prostaglandin D synthase
US20040152148A1 (en) 2003-01-27 2004-08-05 Pfizer Inc Novel methods involving the determination of activity of enzymes that use or produce prostaglandin endoperoxide H2

Also Published As

Publication number Publication date
KR20100090145A (en) 2010-08-13

Similar Documents

Publication Publication Date Title
Libiad et al. Organization of the human mitochondrial hydrogen sulfide oxidation pathway*♦
Abu-Omar et al. Reaction mechanisms of mononuclear non-heme iron oxygenases
Leferink et al. l‐Galactono‐γ‐lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis
Farrar et al. Biotin synthase exhibits burst kinetics and multiple turnovers in the absence of inhibition by products and product-related biomolecules
Ost et al. Phenylalanine 393 exerts thermodynamic control over the heme of flavocytochrome P450 BM3
Han et al. Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation
Liu et al. The intrinsically disordered membrane protein selenoprotein S is a reductase in vitro
Parthasarathy et al. Substrate specificity of 2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum: toward a bio-based production of adipic acid
Amaya et al. Mixed regiospecificity compromises alkene synthesis by a cytochrome P450 peroxygenase from Methylobacterium populi
Koeduka et al. Catalytic properties of rice α-oxygenase: a comparison with mammalian prostaglandin H synthases
Murphy et al. Glutathione adducts of oxyeicosanoids
JP2004536577A5 (en)
Leferink et al. Galactonolactone dehydrogenase requires a redox-sensitive thiol for optimal production of vitamin C
Lam et al. Reduction of benzoquinones to hydroquinones via spontaneous reaction with glutathione and enzymatic reaction by S-glutathionyl-hydroquinone reductases
Jiang et al. A Promiscuous Cytochrome P450 Hydroxylates Aliphatic and Aromatic C− H Bonds of Aromatic 2, 5‐Diketopiperazines
Strauss et al. Mechanistic studies on phosphopantothenoylcysteine decarboxylase: trapping of an enethiolate intermediate with a mechanism-based inactivating agent
Hallen et al. Ketimine reductase/CRYM catalyzes reductive alkylamination of α-keto acids, confirming its function as an imine reductase
Kudryashova et al. Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C
Nemeria et al. Acetylphosphinate is the most potent mechanism-based substrate-like inhibitor of both the human and Escherichia coli pyruvate dehydrogenase components of the pyruvate dehydrogenase complex
Pei et al. Highly efficient asymmetric reduction of ketopantolactone to d-(−)-pantolactone by Escherichia coli cells expressing recombinant conjugated polyketone reductase and glucose dehydrogenase in a fed-batch biphasic reaction system
KR101044634B1 (en) Stabilization Method of PGH2 and Activity Assay Method of mPGES-1
Achouri et al. 2-Keto-4-methylthiobutyrate, an intermediate in the methionine salvage pathway, is a good substrate for CtBP1
Dozier et al. An enzyme-coupled continuous fluorescence assay for farnesyl diphosphate synthases
Cartini et al. Mobilization of sulfane sulfur from cysteine desulfurases to the Azotobacter vinelandii sulfurtransferase RhdA
Castillo-Villanueva et al. Cloning, expression and characterization of recombinant, NADH oxidase from Giardia lamblia

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140613

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee