KR101042399B1 - Multifunctional iron oxide nanoparticles and a diagnostic agent using the same - Google Patents

Multifunctional iron oxide nanoparticles and a diagnostic agent using the same Download PDF

Info

Publication number
KR101042399B1
KR101042399B1 KR1020080090741A KR20080090741A KR101042399B1 KR 101042399 B1 KR101042399 B1 KR 101042399B1 KR 1020080090741 A KR1020080090741 A KR 1020080090741A KR 20080090741 A KR20080090741 A KR 20080090741A KR 101042399 B1 KR101042399 B1 KR 101042399B1
Authority
KR
South Korea
Prior art keywords
iron oxide
nanoparticles
water
soluble
oxide nanoparticles
Prior art date
Application number
KR1020080090741A
Other languages
Korean (ko)
Other versions
KR20100031885A (en
Inventor
정환정
이창문
Original Assignee
전북대학교병원
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교병원, 전북대학교산학협력단 filed Critical 전북대학교병원
Priority to KR1020080090741A priority Critical patent/KR101042399B1/en
Publication of KR20100031885A publication Critical patent/KR20100031885A/en
Application granted granted Critical
Publication of KR101042399B1 publication Critical patent/KR101042399B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • A61K49/1842Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule the small organic molecule being a phosphate or a phosphonate, not being a phospholipid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0052Small organic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • A61K49/1845Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule the small organic molecule being a carbohydrate (monosaccharides, discacharides)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S607/00Surgery: light, thermal, and electrical application
    • Y10S607/901Cancer detection

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 다기능성 수용성 산화철계 나노입자와 이의 제조방법, 및 이의 암진단에의 용도에 관한 것이다. 보다 구체적으로, 본 발명은 산화철계 중심입자, 타겟리간드와 결합가능한 포스페이트 그룹 및 아민그룹을 갖는 수용성 물질에 의해 코팅된 껍질, 및 상기 껍질 표면에 결합된 수용성 단당류를 포함하는 산화철계 나노입자그 제조방법 및 상기 나노입자의 암 진단 용도에 관한 것이다. The present invention relates to multifunctional water-soluble iron oxide nanoparticles, a method for producing the same, and a use thereof for cancer diagnosis. More specifically, the present invention provides iron oxide nanoparticles comprising iron oxide-based core particles, a shell coated with a water-soluble substance having a phosphate group and an amine group bondable to the target ligand, and a water-soluble monosaccharide bonded to the shell surface. A method and diagnostic use of the nanoparticles for cancer.

따라서 본 발명에 따른 산화철계 나노입자는 수용성 물질의 코팅으로 물 분산성이 증가되고, 타겟 리간드를 결합시킬 수 있는 기능적 사이트를 제공할 수 있어서 특정 조직이나 질환을 진단하는데 유용한 조영제로 사용될 수 있으며, 수용성 단당류로 표면을 개질하여 혈액순환시간을 증가시킬 수 있다. 뿐만 아니라, 형광프로브를 결합하여 광학영상용으로도 사용가능한 듀얼 조영제를 제공할 수 있다. Therefore, the iron oxide-based nanoparticles according to the present invention can be used as a contrast agent useful in diagnosing specific tissues or diseases since the water dispersibility is increased by coating a water-soluble material and can provide a functional site capable of binding a target ligand. Surface modification with water-soluble monosaccharides can increase blood circulation time. In addition, by combining the fluorescent probe can provide a dual contrast medium that can also be used for optical imaging.

산화철계 나노입자, ATP, NAD, 자기공명영상, 조영제 Iron Oxide Nanoparticles, ATP, NAD, Magnetic Resonance Imaging, Contrast Agent

Description

다기능성 산화철 나노입자 및 이를 이용한 진단 조영제{Multifunctional iron oxide nanoparticles and a diagnostic agent using the same}Multifunctional iron oxide nanoparticles and a diagnostic agent using the same

본 발명은 다기능성 수용성 산화철계 나노입자와 이의 제조방법, 및 이의 암진단에의 용도에 관한 것이다. 보다 구체적으로는 산화철계 중심입자, 타겟리간드와 결합가능한 포스페이트 그룹 및 아민그룹을 갖는 수용성 물질에 의해 코팅된 껍질, 및 상기 껍질 표면에 결합된 수용성 단당류를 포함하는 산화철계 나노입자와 그 제조방법 및 상기 나노입자의 암 진단 용도에 관한 것이다.The present invention relates to multifunctional water-soluble iron oxide nanoparticles, a method for producing the same, and a use thereof for cancer diagnosis. More specifically, iron oxide-based nanoparticles comprising a shell coated with a water-soluble substance having iron oxide-based core particles, a phosphate group and an amine group bondable to the target ligand, and a water-soluble monosaccharide bonded to the shell surface, and a method for manufacturing the same; It relates to the cancer diagnostic use of the nanoparticles.

산화철 나노입자는 자화되는 특성을 가지고 있어서 생의학적으로 매우 큰 활용가치를 가지고 있다. 특히, 초상자성 산화철 나노입자(superparamagnetic iron oxide nanoparticles: SPION)은, 자기공명영상(MRI) 진단, 약물 운반 및 치료와 같은 생물의학 분야에서 최근에 각광을 받고 있다. SPION은 그의 초상자성 특성 때문에, 종래의 상자성 Gd-계열의 조영제 보다 MRI에서 높은 조영능력을 발휘할 수 있다.Iron oxide nanoparticles have a magnetizing property and thus have a very high biomedical value. In particular, superparamagnetic iron oxide nanoparticles (SPION) have recently been in the spotlight in the biomedical field such as magnetic resonance imaging (MRI) diagnosis, drug delivery and treatment. Because of its superparamagnetic properties, SPION can exhibit higher contrast in MRI than conventional paramagnetic Gd-based contrast agents.

이처럼 산화철 나노입자를 생체 내 조영제로 사용하기 위해서는 물에 잘 분산되고 균일하면서도 작은 입자크기를 가지고 있어야 한다. 그러나 이러한 전제 조건을 충족한다하더라도 생체 내 주입된 산화철 나노입자는 대부분 망상내피세포에 의해 빠르게 탐식되어 혈액으로부터 제거되며 주로 쿠퍼세포에 의해 탐식되어 간에 분포하게 되어 조영제로써 기능을 하지 못하게 된다. In order to use the iron oxide nanoparticles as a contrast agent in vivo, it must be well dispersed in water and have a uniform and small particle size. However, even if these prerequisites are met, most of the iron oxide nanoparticles injected in vivo are rapidly eroded by reticular endothelial cells and removed from the blood, and mainly by cooper cells, which are distributed by the liver and thus do not function as a contrast agent.

따라서 산화철 나노입자가 대식 세포에 의해 탐식되어 제거되는 정도를 감소시키기 위해서는 나노입자의 크기 조절 뿐 아니라 입자표면의 개질 또한 중요한 인자라 할 수 있다. 현재 산화철 나노입자를 수용성 고분자로 코팅함으로써 체내 혈액순환시간을 증가시키기 위한 연구들이 많이 보고되고 있다. 폴리비닐피롤리돈으로 코팅된 수용성 산화철 나노입자 (대한민국특허 등록번호 10-0746312), 폴리숙신이미드계 고분자를 이용한 조영제 (대한민국특허 등록번호 10-0635026), 폴리에틸렌글리콜이 코팅된 산화철 나노입자, 실리콘이 코팅된 산화철 나노입자, 덱스트란이 코팅된 산화철 나노입자 등 이외에도 많은 연구들이 보고되었다. Therefore, in order to reduce the extent to which iron oxide nanoparticles are phagocytized and removed by macrophages, not only the control of the nanoparticles but also the modification of the particle surface may be an important factor. Currently, many studies have been reported to increase blood circulation time by coating iron oxide nanoparticles with water-soluble polymers. Water-soluble iron oxide nanoparticles coated with polyvinylpyrrolidone (Korea Patent Registration No. 10-0746312), contrast agent using polysuccinimide-based polymer (Korea Patent Registration No. 10-0635026), iron oxide nanoparticles coated with polyethylene glycol, In addition to silicon-coated iron oxide nanoparticles, dextran-coated iron oxide nanoparticles, and many other studies have been reported.

그러나 이러한 대부분 수용성 산화철 나노입자는 생체 내 특정 장기나 질환을 진단하기 위해서 화학적으로 고분자를 수정하여 리간드 도입 사이트를 제시해야 단계를 거쳐야 한다는 단점이 있다. However, most of these water-soluble iron oxide nanoparticles have a disadvantage in that they have to go through a step of chemically modifying a polymer to present a ligand introduction site in order to diagnose a specific organ or disease in vivo.

이에 본 발명자들은 산화철 나노입자를 ATP 또는 NAD로 코팅하여 물 분산성을 증가시키고 타겟 리간드를 도입하여 특정 질환을 진단하는 조영제로 개발하여 그 효과를 증명함으로써 본 발명을 완성하였다. Accordingly, the present inventors have completed the present invention by coating iron oxide nanoparticles with ATP or NAD to increase water dispersibility and introducing a target ligand as a contrast agent for diagnosing a specific disease.

본 발명의 목적은 산화철계 중심입자, 타겟리간드와 결합가능한 포스페이트 그룹 및 아민그룹을 갖는 수용성 물질에 의해 코팅된 껍질, 및 상기 껍질 표면에 결합된 수용성 단당류를 포함하는 것을 특징으로 하는 산화철계 나노입자를 제공하는 데 있다. An object of the present invention is an iron oxide nanoparticle comprising a shell coated with a water-soluble substance having iron oxide-based core particles, a phosphate group and an amine group bondable with a target ligand, and a water-soluble monosaccharide bonded to the shell surface. To provide.

또한 본 발명의 다른 목적은 상기 나노입자의 껍질 표면에 암세포 표적용 항체 또는 펩타이드가 더 결합된 것을 특징으로 하는 암 진단용 나노입자 또는 이를 포함하는 조영제를 제공하는 데 있다.Another object of the present invention is to provide a cancer diagnostic nanoparticle or a contrast agent comprising the same, characterized in that the antibody or peptide for cancer cell target is further bound to the shell surface of the nanoparticle.

또한, 본 발명의 다른 목적은 상기 나노입자를 제조하는 방법을 제공하는 데 있다. In addition, another object of the present invention to provide a method for producing the nanoparticles.

상기 목적을 달성하기 위해, 본 발명은 산화철계 중심입자, 타겟리간드와 결합가능한 포스페이트 그룹 및 아민그룹을 갖는 수용성 물질에 의해 코팅된 껍질, 및 상기 껍질 표면에 결합된 수용성 단당류를 포함하는 것을 특징으로 하는 산화철계 나노입자를 제공한다. In order to achieve the above object, the present invention comprises a shell coated with a water-soluble material having iron oxide-based core particles, a phosphate group and an amine group bondable to the target ligand, and a water-soluble monosaccharide bonded to the shell surface It provides an iron oxide-based nanoparticles.

또한, 본 발명은 상기 나노입자의 껍질 표면에 암세포 표적용 항체 또는 펩타이드가 더 결합된 것을 특징으로 하는 암 진단용 나노입자를 제공한다.The present invention also provides a nanoparticle for cancer diagnosis, characterized in that the antibody or peptide for cancer cell target is further bound to the shell surface of the nanoparticle.

또한, 본 발명은 상기 나노입자를 포함하는 암 진단용 조영제를 제공한다.The present invention also provides a contrast agent for cancer diagnosis comprising the nanoparticles.

또한, 본 발명은 산화철계 중심입자의 표면을 포스페이트 그룹 및 아민그룹을 갖는 수용성 물질로 코팅하여 껍질을 형성시키는 (a) 단계; 및 상기 껍질 표면에 수용성 단당류를 결합시켜 표면을 개질시키는 (b) 단계;를 포함하여 이루어지는 산화철계 나노입자의 제조방법을 제공한다. In addition, the present invention comprises the step of forming a shell by coating the surface of the iron oxide core particles with a water-soluble material having a phosphate group and an amine group (a); And (b) modifying the surface by bonding a water-soluble monosaccharide to the surface of the shell.

이하, 본 발명을 자세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명의 제 1견지에 의하면, 본 발명은 산화철계 중심입자, 타겟리간드와 결합가능한 포스페이트 그룹 및 아민그룹을 갖는 수용성 물질에 의해 코팅된 껍질, 및 상기 껍질 표면에 결합된 수용성 단당류를 포함하는 것을 특징으로 하는 산화철계 나노입자를 제공한다. According to the first aspect of the present invention, the present invention includes a shell coated with a water-soluble substance having an iron oxide-based core particle, a phosphate group and an amine group bondable with a target ligand, and a water-soluble monosaccharide bonded to the shell surface. Provided are iron oxide nanoparticles.

상기 산화철계 중심입자를 코팅하는 수용성물질은 포스페이트 그룹을 가짐으로써 상기 산화철계 중심입자와 결합할 수 있고, 아민 그룹을 가짐으로써 항체 등과 결합할 수 있다. The water-soluble material for coating the iron oxide-based core particles can bind to the iron oxide-based core particles by having a phosphate group, and can bind to antibodies and the like by having an amine group.

또한 본 발명에 있어서, 상기 수용성 물질은 ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택될 수 있다. 본 발명의 일 실시예에서는, 하기 화학식을 갖는 ATP 또는 NAD를 선택하여, ATP 또는 NAD-산화철나노입자를 제조하였다. In the present invention, the water-soluble material may be selected from the group consisting of ATP, NAD, ADP, AMP and NADP. In one embodiment of the present invention, by selecting ATP or NAD having the formula, ATP or NAD-iron oxide nanoparticles were prepared.

ATP의 화학식Chemical Formula of ATP

Figure 112008065159840-pat00001
Figure 112008065159840-pat00001

NAD의 화학식Chemical Formula of NAD

Figure 112008065159840-pat00002
Figure 112008065159840-pat00002

또한 본 발명에 있어서, 상기 수용성 단당류는 글루콘산, 시트르산, 프로피온산, 부티르산 및 올레산으로 이루어진 그룹 중에서 선택될 수 있으며, 이러한 수용성 단당류에 의한 나노입자의 표면코팅에 의하여 산화철계 나노입자의 크기가 증가함으로써 대식세포에 의한 혈액순환 감소시간을 개선시킬 수 있다. 본 발명의 일 실시예에서는 하기 화학식을 갖는 글루콘산을 선택하였다. In the present invention, the water-soluble monosaccharide can be selected from the group consisting of gluconic acid, citric acid, propionic acid, butyric acid and oleic acid, by increasing the size of the iron oxide nanoparticles by the surface coating of the nanoparticles by such a water-soluble monosaccharide Improve blood circulation reduction time by macrophages. In one embodiment of the present invention, gluconic acid having the following formula was selected.

Figure 112008065159840-pat00003
Figure 112008065159840-pat00003

이러한 글루콘산은 대식세포에 의한 혈액순환시간 감소를 개선하여 쿠퍼세포에 의한 섭취를 감소시켜 혈액순환시간을 증가시키며, 너무 과량으로 처리하면 형광프로브 또는 항체 등을 결합시킬 수 없거나 극히 소량 결합되는 문제점이 있을 수 있으므로, 바람직하게는 상기 글루콘산과 상기 표면코팅된 나노입자는 1: 1 ~ 15 의 무게비로 결합시키며, 가장 바람직하게는 10배가 효과적이다. Gluconic acid improves the blood circulation time decrease by macrophages to reduce the intake by Cooper cells to increase the blood circulation time, if too much treatment can not be combined or very small amounts of fluorescent probes or antibodies Since there may be, preferably the gluconic acid and the surface-coated nanoparticles are combined in a weight ratio of 1: 1 to 15, most preferably 10 times more effective.

또한 본 발명에 있어서, 상기 산화철계 나노입자의 껍질 표면에 형광 프로브를 더 결합시킬 수 있다. 상기 형광프로브로로 사용되는 형광염료는 IRDye, Cy2(상표명), Cy3(상표명), Cy3.5(상표명), Cy5(상표명), Cy5.5(상표명), Cy-크롬, 피코에리트린, PerCP(페리디닌 클로로필-a 단백질), PerCP-Cy5.5, 알렉사 플로어(Alexa Fluor, 상표명) 350, 알렉사 플로어(상표명) 430, 알렉사 플로어(상표명) 488, 알렉사 플로어(상표명) 532, 알렉사 플로어(상표명) 546, 알렉사 플로어(상표명) 568, 알렉사 플로어(상표명) 594, 알렉사 플로어(상표명) 633, 알렉사 플로어(상표명) 647, 알렉사 플로어(상표명) 660, 알렉사 플로어(상표명) 680 을 들 수 있다. 본 발명의 일 실시예에서는 형광프로브로서 클로로톡신인 Cy5.5TM를 사용하였다.In addition, in the present invention, the fluorescent probe can be further bonded to the shell surface of the iron oxide nanoparticles. The fluorescent dye used as the fluorescent probe is IRDye, Cy2 (trade name), Cy3 (trade name), Cy3.5 (trade name), Cy5 (trade name), Cy5.5 (trade name), Cy-chrome, phycoerythrin, PerCP (Perridinine Chlorophyll-a Protein), PerCP-Cy5.5, Alexa Fluor (trade name) 350, Alexa Floor (trade name) 430, Alexa floor (trade name) 488, Alexa floor (trade name) 532, Alexa floor (trade name) ) 546, Alexa floor (trade name) 568, Alexa floor (trade name) 594, Alexa floor (trade name) 633, Alexa floor (trade name) 647, Alexa floor (trade name) 660, Alexa floor (trade name) 680. In one embodiment of the present invention, chlorotoxin Cy5.5 was used as the fluorescent probe.

또한 본 발명에 있어서, 상기 나노입자의 평균 직경은 5 - 500 nm 인 것이 바람직하다.In addition, in the present invention, the average diameter of the nanoparticles is preferably 5 to 500 nm.

본 발명의 제 2견지에 의하면, According to the second aspect of the present invention,

본 발명은 상기의 나노입자의 상기 껍질 표면에 암세포 표적용 항체 또는 펩타이드가 더 결합된 것을 특징으로 하는 암 진단용 나노입자를 제공한다. 바람직하게는 항체를 결합할 수 있는 링커를 상기 껍질 표면에 더 결합시킬 수 있다.The present invention provides a cancer diagnostic nanoparticles, wherein the antibody or peptide for cancer cell targeting is further bound to the shell surface of the nanoparticles. Preferably, a linker capable of binding an antibody may be further bound to the shell surface.

본 발명의 제 3견지에 의하면, According to the third aspect of the present invention,

본 발명은 상기 암 진단용 나노입자를 포함하는 것을 특징으로 하는 조영제를 제공한다. 본 발명의 조영제는 형광프로브를 포함하므로, 광학영상 또는 자기공명영상에 모두 사용될 수 있는 듀얼 기능을 가짐을 특징으로 한다. The present invention provides a contrast agent comprising the nanoparticles for diagnosing cancer. Since the contrast agent of the present invention includes a fluorescent probe, it has a dual function that can be used for both optical and magnetic resonance images.

본 발명의 제 4견지에 의하면, According to the fourth aspect of the present invention,

본 발명은 산화철계 중심입자의 표면을 포스페이트 그룹 및 아민그룹을 갖는 수용성 물질로 코팅하여 껍질을 형성시키는 (a) 단계 및 상기 껍질 표면에 수용성 단당류를 결합시켜 표면을 개질시키는 (b) 단계를 포함하여 이루어지는 산화철계 나노입자의 제조방법을 제공한다. The present invention includes a step of forming a shell by coating the surface of the iron oxide-based core particles with a water-soluble material having a phosphate group and an amine group and (b) modifying the surface by bonding a water-soluble monosaccharide to the shell surface It provides a method for producing iron oxide-based nanoparticles.

바람직하게는, 상기 (a)단계의 수용성 물질은 ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택될 수 있다. Preferably, the water-soluble material of step (a) may be selected from the group consisting of ATP, NAD, ADP, AMP and NADP.

또한, 산화철계 나노입자는 일반적으로 알려져 있는 공침법, 졸-겔법, 열분해법 또는 에멀젼법 등을 제한 없이 사용하여 제조할 수 있으나, ATP 또는 NAD를 포함하여 제조해야 하므로, 열에 비교적 불안정한 ATP 또는 NAD를 고려하여 공침법을 선택하여 제조하는 것이 바람직하다. 본 발명의 일 실시예에서는, 질소 환경에 서 질소로 퍼지된 증류수에 FeCl3와 FeCl2를 용해한 후 ATP 또는 NAD를 첨가하여 균일하게 용해하고 암모늄 용액을 첨가한 후, 자석으로 분리하여 증류수로 세척하였으며 건조를 통해 ATP 또는 NAD-산화철 나노입자를 얻었다.In addition, iron oxide-based nanoparticles can be prepared using a commonly known co-precipitation method, sol-gel method, pyrolysis method or emulsion method without limitation, but must be prepared including ATP or NAD, ATP or NAD relatively unstable to heat In consideration of the coprecipitation method it is preferable to select and manufacture. In one embodiment of the present invention, after dissolving FeCl 3 and FeCl 2 in distilled water purged with nitrogen in a nitrogen environment, ATP or NAD is added to dissolve uniformly, and after adding ammonium solution, separated by a magnet and washed with distilled water Drying yielded ATP or NAD-iron oxide nanoparticles.

또한 본 발명에 있어서, 상기 (b)단계의 수용성 단당류는 글루콘산, 시트르산, 프로피온산, 부티르산 및 올레산으로 이루어진 그룹 중에서 선택되는 것이 바람직하다. In the present invention, the water-soluble monosaccharide of step (b) is preferably selected from the group consisting of gluconic acid, citric acid, propionic acid, butyric acid and oleic acid.

또한 본 발명에 있어서, 형광프로브 또는 항체 등의 결합을 가능하게 하기 위하여 상기 글루콘산과 상기 표면코팅된 나노입자를 1: 1 ~ 15 의 무게비로 결합시키는 것이 바람직하며, 1:10 의 무게비로 결합시키는 것이 가장 바람직하다. In addition, in the present invention, in order to enable binding of the fluorescent probe or antibody, it is preferable to bind the gluconic acid and the surface-coated nanoparticles in a weight ratio of 1: 1 to 15, and bind in a weight ratio of 1:10. Most preferably.

또한, 본 발명에 있어서 상기 (b) 단계의 표면개질된 껍질 표면에 형광 프로브를 도입시키는 (c)단계를 더 결합시킬 수 있다. 이 때 상기 형광 프로브는 수용성 단당류로 개질된 나노입자에 1:1~2의 몰비로 첨가하여 반응시킴으로써 나노입자에 도입하는 것이 바람직하다. In addition, in the present invention, the step (c) of introducing a fluorescent probe on the surface-modified shell surface of step (b) may be further combined. At this time, the fluorescent probe is preferably introduced into the nanoparticles by reacting by adding a molar ratio of 1: 1 to 2 to the nanoparticles modified with a water-soluble monosaccharide.

상기 형광프로브로로 사용되는 형광염료는 IRDye, Cy2(상표명), Cy3(상표명), Cy3.5(상표명), Cy5(상표명), Cy5.5(상표명), Cy-크롬, 피코에리트린, PerCP(페리디닌 클로로필-a 단백질), PerCP-Cy5.5, 알렉사 플로어(Alexa Fluor, 상표명) 350, 알렉사 플로어(상표명) 430, 알렉사 플로어(상표명) 488, 알렉사 플로어(상표명) 532, 알렉사 플로어(상표명) 546, 알렉사 플로어(상표명) 568, 알렉사 플로어(상표명) 594, 알렉사 플로어(상표명) 633, 알렉사 플로어(상표명) 647, 알렉사 플 로어(상표명) 660, 알렉사 플로어(상표명) 680 을 들 수 있다. The fluorescent dye used as the fluorescent probe is IRDye, Cy2 (trade name), Cy3 (trade name), Cy3.5 (trade name), Cy5 (trade name), Cy5.5 (trade name), Cy-chrome, phycoerythrin, PerCP (Perridinine Chlorophyll-a Protein), PerCP-Cy5.5, Alexa Fluor (trade name) 350, Alexa Floor (trade name) 430, Alexa floor (trade name) 488, Alexa floor (trade name) 532, Alexa floor (trade name) 546, Alexa floor (trade name) 568, Alexa floor (trade name) 594, Alexa floor (trade name) 633, Alexa floor (trade name) 647, Alexa floor (trade name) 660, Alexa floor (trade name) 680.

본 발명의 일 실시예에서는 글루콘산으로 개질된 ATP-산화철 나노입자를 borate 완충용액에 첨가한 후, Cy5.5 NHS ester를 첨가하여 12시간 동안 반응함으로써 형광프로브인 Cy5.5 를 도입하였다. In one embodiment of the present invention, after adding ATP-iron oxide nanoparticles modified with gluconic acid to a borate buffer solution, Cy5.5 NHS ester was added to react for 12 hours to introduce Cy5.5, a fluorescent probe.

또한 본 발명은, 상기 표면개질된 껍질 표면에 암세포 표적용 항체 또는 펩타이드를 결합시키는 (d) 단계를 더 포함함을 특징으로 하는 암진단용 산화철계 나노입자의 제조방법에 관한 것이다. The present invention also relates to a method for producing iron oxide-based nanoparticles for cancer diagnosis, further comprising the step of (d) binding the antibody or peptide for cancer cell target to the surface-modified shell surface.

본 발명의 일 실시예에서는 두가지 기능적 그룹을 가진 sulfosuccinimidyl 6-[3'(2-pyridyldithio)-propionamido] (SPDP)를 이용하여, 글루콘산으로 개질되고 Cy5.5가 결합된 ATP 또는 NAD-산화철 나노입자를 SPDP용 완충용액에 첨가한 후, SPDP를 첨가한 후 6시간 동안 반응한 다음 완충용액으로 세척하고 항체를 첨가하여 12시간 동안 반응시킴으로써 항체를 결합시켰다. In one embodiment of the present invention, ATP or NAD-iron oxide nano modified with gluconic acid and bonded to Cy5.5 using sulfosuccinimidyl 6- [3 '(2-pyridyldithio) -propionamido] (SPDP) having two functional groups. The particles were added to the buffer for SPDP, followed by reaction for 6 hours after the addition of SPDP, followed by washing with buffer and reaction for 12 hours with the addition of the antibody to bind the antibodies.

본 발명에 의한 산화철계 나노입자는 수용성 물질의 코팅으로 물 분산성이 증가되고, 타겟 리간드를 결합시킬 수 있는 기능적 사이트를 제공할 수 있으며, 수용성 단당류인 글루콘산으로 코팅되어 물에 잘 분산될 뿐만 아니라 혈액 내 순환시간을 증가시킬 수 있다. 또한 상기 나노입자의 표면에 결합된 수용성 물질에 의하여 형광프로브, 암 진단용 항체 또는 펩타이드를 상기 나노입자의 표면에 결합시킬 수 있으므로, 암을 효과적으로 진단하는 데 유용하게 사용될 수 있으며, 광학영상용 조영제로도 사용이 가능하다. Iron oxide-based nanoparticles according to the present invention increases the water dispersibility by coating a water-soluble material, can provide a functional site that can bind the target ligand, is coated with water-soluble monosaccharides of gluconic acid is well dispersed in water It can also increase circulation time in the blood. In addition, since the fluorescent probe, the antibody for diagnosing cancer or a peptide can be bound to the surface of the nanoparticles by a water-soluble substance bound to the surface of the nanoparticles, it can be usefully used for diagnosing cancer effectively. Can also be used.

이하, 본 발명을 상세히 설명하지만, 본 발명이 이에 한정하는 것은 아니다. Hereinafter, although this invention is demonstrated in detail, this invention is not limited to this.

<< 실시예Example 1> 조영제의 제조 1> Preparation of Contrast Agents

1-1 1-1 ATPATP 또는  or NADNAD 가 코팅된 산화철 마그네타이트 나노입자 합성Synthesis of Coated Iron Oxide Magnetite Nanoparticles

먼저, 산화철 마그네타이트 나노입자는 일반적으로 알려져 있는 공침법, 졸-겔법, 열분해법 또는 에멀젼법 등을 제한 없이 사용하여 제조할 수 있으나, 바람직하게는 공침법을 사용할 수 있다. ATP 또는 NAD를 포함하여 제조해야 하므로, 열에 비교적 불안정한 ATP 또는 NAD를 고려하여 공침법이 선택된다. First, the iron oxide magnetite nanoparticles can be prepared using a common coprecipitation method, sol-gel method, pyrolysis method or emulsion method without limitation, but preferably coprecipitation method can be used. Since it must be prepared including ATP or NAD, the coprecipitation method is selected in consideration of ATP or NAD which is relatively unstable to heat.

공침법에 의하여, ATP 또는 NAD가 코팅된 산화철 나노입자는 하기 제조방법에 나타난 바와 같이 제조할 수 있다. 질소 환경에서 질소로 퍼지된 증류수에 FeCl3와 FeCl2를 용해한 후 ATP 또는 NAD를 첨가하여 균일하게 용해하고 암모늄 용액을 첨가하여 제조한다. 제조된 ATP 또는 NAD-산화철 나노입자는 자석으로 분리하여 증류수로 세척한다.By coprecipitation, iron oxide nanoparticles coated with ATP or NAD can be prepared as shown in the following preparation method. It is prepared by dissolving FeCl 3 and FeCl 2 in distilled water purged with nitrogen in a nitrogen environment and then uniformly dissolving by adding ATP or NAD and adding ammonium solution. The prepared ATP or NAD-iron oxide nanoparticles are separated by a magnet and washed with distilled water.

[합성방법 1]Synthesis Method 1

Figure 112008065159840-pat00004
Figure 112008065159840-pat00004

1-2 1-2 글루콘산의Gluconic 결합에 의한 산화철 나노입자의 개질 Modification of Iron Oxide Nanoparticles by Bonding

본 실시예는 하기 반응식 1에 나타난 바와 같이, 상기 실시예 1-1에서 합성된 산화철 나노입자를 글루콘산으로 개질시키는 단계이다. This example is a step of modifying the iron oxide nanoparticles synthesized in Example 1-1 with gluconic acid, as shown in Scheme 1 below.

본 단계의 개질은 글루콘산과 상기 합성된 ATP 또는 NAD-산화철 나노입자를 1-에틸-3-(3-디메틸아미노)-프로필)(1-ethyl-3-(3-(dimethylamino)- propyl, EDC), N-하드록시숙신이미드(N-Hydroxysuccinimide, NHS)를 첨가하여 24시간 이상 반응시킨 후, 세척한다. The modification of this step is performed by converting gluconic acid and the synthesized ATP or NAD-iron oxide nanoparticles into 1-ethyl-3- (3-dimethylamino) -propyl) (1-ethyl-3- (3- (dimethylamino) -propyl, EDC) and N-hydroxysuccinimide (N-Hydroxysuccinimide, NHS) were added and reacted for at least 24 hours, followed by washing.

이 경우 글루콘산을 ATP 또는 NAD-산화철 나노입자에 대해 과량으로 첨가하는 것이 바람직하며, 1∼15배 (무게비)로 첨가하는 것이 더욱 바람직하다. 너무 과량으로 처리하면 다음 단계의 형광프로브나 항체를 결합시킬 수 없거나 극히 소량 결합되는 문제점이 있을 수 있다.In this case, it is preferable to add gluconic acid in excess with respect to ATP or NAD-iron oxide nanoparticles, and it is more preferable to add it by 1 to 15 times (weight ratio). Too much treatment can lead to the inability to bind the next level of fluorescence probes or antibodies, or even very small amounts of binding.

ATP (위) 또는 NAD (아래)가 코팅된 산화철나노입자에 글루콘산 결합 과정Gluconic acid binding process to iron oxide nanoparticles coated with ATP (top) or NAD (bottom)

Figure 112008065159840-pat00005
Figure 112008065159840-pat00005

1-3 형광 프로브의 결합1-3 Binding of Fluorescent Probes

본 실시예는 하기 반응식 2 및 3에 나타낸 바와 같이, 상기 실시예 1-2에서 글루콘산으로 개질된 산화철 나노입자에 형광 프로브 Cy5.5를 결합시키는 단계이다. This example is to bind the fluorescent probe Cy5.5 to the iron oxide nanoparticles modified with gluconic acid in Example 1-2, as shown in Schemes 2 and 3.

본 실시예에서는 상기 글루콘산으로 개질된 ATP-산화철 나노입자를 borate 완충용액에 첨가한 후, Cy5.5 NHS ester를 첨가하여 12시간 동안 반응함으로써 제조하였다. 형광프로브는 산화철 나노입자에 1∼2몰비로 첨가하는 것이 바람직하다.In this embodiment, the ATP-iron oxide nanoparticles modified with gluconic acid were added to a borate buffer, followed by reaction for 12 hours by adding Cy5.5 NHS ester. The fluorescent probe is preferably added in a 1 to 2 molar ratio to the iron oxide nanoparticles.

ATP-글루콘산 산화철 나노입자에 Cy5.5 결합과정 Cy5.5 Binding Process to ATP-Gluconate Iron Oxide Nanoparticles

Figure 112008065159840-pat00006
Figure 112008065159840-pat00006

NAD-글루콘산 산화철 나노입자에 Cy5.5 결합과정 Cy5.5 Bonding Process to NAD-Gluconate Oxide Nanoparticles

Figure 112008065159840-pat00007
Figure 112008065159840-pat00007

1-4 암표적용 항체의 결합1-4 Binding of Cancer Target Antibodies

본 실시예는 하기 화학식을 가지는 두 가지 기능적 그룹을 가진 sulfosuccinimidyl 6-[3'(2-pyridyldithio)-propionamido] (SPDP)를 이용하여 암 표적용 항체를 결합시키는 단계이다. This embodiment is a step of binding an antibody for cancer targeting using sulfosuccinimidyl 6- [3 '(2-pyridyldithio) -propionamido] (SPDP) having two functional groups having the following formula.

본 실시예는 상기 글루콘산으로 개질되고 Cy5.5가 결합된 ATP 또는 NAD-산화 철 나노입자를 SPDP용 완충용액에 첨가한 후, SPDP를 첨가한 후 6시간 동안 반응한 다음 완충용액으로 세척하고 항체를 첨가하여 12시간 동안 반응하였다. In this embodiment, the ATP or NAD-iron oxide nanoparticles modified with gluconic acid and Cy5.5 are added to the buffer solution for SPDP, followed by reaction for 6 hours after the addition of SPDP, followed by washing with buffer solution. The antibody was added and reacted for 12 hours.

Figure 112008065159840-pat00008
Figure 112008065159840-pat00008

<< 실험예Experimental Example 1> 암 진단용  1> Cancer diagnosis 듀얼Dual 조영제의 제조 Preparation of Contrast Agents

1-1. 1-1. ATPATP 가 코팅된 산화철 나노입자의 합성Of Oxide Coated Iron Oxide Nanoparticles

FeCl3·6H2O와 FeCl2·4H2O를 각각 760 mg과 180 mg을 라운드 플라스크에 넣고 질소로 퍼지된 증류수를 넣은 후 ATP 또는 NAD 500 mg을 첨가한 다음 질소로 퍼지(purge)하여 상기 플라스크 내 공기를 제거한다. 완전히 용해한 다음으로, 암모늄 용액 7. ml을 첨가한 다음 30분 동안 반응시켰다. 이때, 반응이 진행되면 용액의 색이 검정색으로 바뀌고, 반응종료 후 자석을 이용하여 입자를 수집하였다. 이후, 수집된 산화철 나노입자를 증류수로 세척하였으며 건조를 통해 나노입자를 얻었다.760 mg and 180 mg of FeCl 3 · 6H 2 O and FeCl 2 · 4H 2 O, respectively, were put in a round flask, and distilled water purged with nitrogen was added, followed by adding 500 mg of ATP or NAD, followed by purging with nitrogen. Remove the air in the flask. After complete dissolution, 7. ml of ammonium solution was added and allowed to react for 30 minutes. At this time, when the reaction proceeds, the color of the solution changes to black, and after completion of the reaction, particles were collected using a magnet. Thereafter, the collected iron oxide nanoparticles were washed with distilled water and nanoparticles were obtained by drying.

1-2. 1-2. 글루콘산의Gluconic 도입 Introduction

상기 단계 1에서 제조된 ATP 또는 NAD-산화철 나노입자에 글루콘산을 도입하기 위해 산화철 나노입자 50 mg을 20 ml 바이알에 넣고, 10배의 글루콘산을 첨가하여 0.1 M MES (2-[N-morpholino] ethane sulfonic acid)에 녹인 다음 하이드록시숙신이미드(N-hydroxylsuccinimide, NHS)와 1-에틸-3(3-다이메틸아미노프로필-카보디미드(1-ethyl-3(3-dimethylaminopropyl)-carbodimide, EDC)를 글루콘산의 3배 몰수로 첨가하여 24시간 동안 반응시켜 글루콘산이 도입된 산화철 나노입자를 제조하였다. To introduce gluconic acid into the ATP or NAD-iron oxide nanoparticles prepared in step 1, 50 mg of iron oxide nanoparticles were placed in a 20 ml vial, and 10 times of gluconic acid was added to 0.1 M MES (2- [N-morpholino). dissolved in ethane sulfonic acid, and then hydroxysuccinimide (NHS) and 1-ethyl-3 (3-dimethylaminopropyl-carbodimide). , EDC) was added at a 3-fold molar number of gluconic acid and reacted for 24 hours to prepare iron oxide nanoparticles containing gluconic acid.

1-3. 형광 1-3. Neon 프로브의Of probe 결합 Combination

상기 단계 2에서 글루콘산이 도입된 ATP 또는 NAD-산화철 나노입자 50 mg을 borate buffer (pH 8.3) 5 ㎖에 첨가시키고, 분산시킨 후 Cy5.5 NHS ester 10 μg을 DMSO에 용해하여 첨가한 다음 12시간 동안 반응시켰다.In step 2, 50 mg of ATP or NAD-iron oxide nanoparticles to which gluconic acid was introduced were added to 5 ml of borate buffer (pH 8.3), dispersed, and then dissolved by adding 10 μg of Cy5.5 NHS ester in DMSO. The reaction was carried out for a time.

1-4. 암 표적을 위한 항체 도입1-4. Antibody Introduction for Cancer Targets

상기 단계 3에서 합성된 산화철 나노입자에 항체를 도입하기 위해 먼저 SPDP 를 결합한 후 항체를 결합시켰다. 산화철 나노입자가 분산된 SPDP용 PBS 완충용액에 SPDP를 DMSO에 용해하여 첨가한 후 6시간 동안 반응시키고, 세척한 다음 항체 500 μg을 첨가하여 12시간 동안 반응시켰다. 세척한 다음 냉장고에 본관하여 다음 실험에 사용하였다. In order to introduce the antibody into the iron oxide nanoparticles synthesized in Step 3, SPDP was first bound and then antibody was bound. After SPDP was dissolved in DMSO and added to the PBS buffer solution for SPDP in which iron oxide nanoparticles were dispersed, it was reacted for 6 hours, washed, and then reacted for 12 hours by adding 500 μg of antibody. After washing, the main body of the refrigerator was used for the next experiment.

<< 실험예Experimental Example 2> 암 진단용  2> for cancer diagnosis 듀얼Dual 조영제를 이용한 진단 및 분석 Diagnosis and Analysis Using Contrast Agents

2-1 투과전자현미경2-1 Transmission Electron Microscope

상기 실험 1-1에서 제조된 ATP 또는 NAD가 코팅된 산화철 나노입자를 투과전자현미경(TEM, Transmittane electron microscopy, H-7650, Hitachi-Ltd, JAPAN)으로 분석하였다.ATP or NAD-coated iron oxide nanoparticles prepared in Experiment 1-1 were analyzed by transmission electron microscopy (TEM, Transmittane electron microscopy, H-7650, Hitachi-Ltd, JAPAN).

도 2에 나타낸 바와 같이, 제조된 ATP 또는 NAD-산화철 나노입자는 평균 3-5 nm의 직경을 갖고 있을 뿐만 아니라 그 분포가 균일한 것을 확인하였다.As shown in FIG. 2, it was confirmed that the prepared ATP or NAD-iron oxide nanoparticles had a diameter of 3-5 nm on average and their distribution was uniform.

2-2 2-2 광학영상Optical 획득 Obtain

실험예 1에서 합성한 산화철 나노입자를 동물 마우스 모델 (U87MG 종양 모델)에 주사하여 광학영상을 획득하였다. 합성한 산화철 나노입자를 마우스 꼬리 정맥에 주사한 후 10분, 3시간, 16시간, 24시간, 48시간 영상을 획득하고 장기를 적 출하여 광학영상을 획득하였다. The iron oxide nanoparticles synthesized in Experimental Example 1 were injected into an animal mouse model (U87MG tumor model) to obtain an optical image. After injecting the synthesized iron oxide nanoparticles into the mouse tail vein, images were obtained for 10 minutes, 3 hours, 16 hours, 24 hours, and 48 hours, and the organs were extracted to obtain optical images.

도 3에 나타낸 바와 같이, 주사한 후 3시간 째 나노입자가 암 부위에 분포되어 있는 것을 확인할 수 있었다. 시간에 따라 암으로 섭취되는 산화철 나노입자가 증가하는 것을 확인할 수 있었다. As shown in FIG. 3, it was confirmed that the nanoparticles were distributed in the cancer site three hours after the injection. It was confirmed that iron oxide nanoparticles ingested into cancer increase with time.

2-3 자기공명영상 획득2-3 magnetic resonance imaging

암 표적 MR 영상을 촬영하기 위하여, 실험예 1에서 합성한 산화철 나노입자 주사 전(a), 후(b) 마우스의 암 중반부 영상을 촬영하였다. In order to take a cancer target MR image, the middle cancer image of the mouse before (a) and after (b) injection of the iron oxide nanoparticles synthesized in Experimental Example 1 was taken.

또한 T2 감쇄효과를 정량적으로 평가하기 위해 간 조직 내의 신호세기(signal intensity, SI)를 나노입자 주입 전과 후 동일한 부위를 선택하여 ROI(regions of interest)와 등근육의 신호세기를 측정하여 하기 수학식 1에 의해 암 조직 T2 감쇄효과를 계산하였다. In addition, in order to quantitatively evaluate the effect of T 2 attenuation, signal intensity (SI) in liver tissue was selected before and after nanoparticle injection, and then ROI (regions of interest) and signal strength of the back muscle were measured. The cancer tissue T 2 attenuation effect was calculated by Equation 1.

도 4에 나타낸 바와 같이, 실험예 1의 주사 전에는 암 조직이 다소 밝게 보이지만, 나노입자 주사 후 암 조직의 영상이 주입 전과는 달리 현저하게 어둡게 변하는 것을 확인할 수 있다. As shown in Figure 4, before the injection of Experimental Example 1, the cancer tissue looks somewhat bright, but after the nanoparticle injection, the image of the cancer tissue can be seen to turn significantly darker than before injection.

또한, 표 1,2 및 수학식 1에 의하여, 간 질환 부위가 실험예 1의 주사 전 신호세기에 비해 약 21.4%가 감소한 것을 확인하여 간 질환 부위를 확인하였다.In addition, according to Table 1,2 and Equation 1, it was confirmed that the liver disease site was reduced by about 21.4% compared to the signal strength before injection of Experimental Example 1 to confirm the liver disease site.

Figure 112008065159840-pat00009
Figure 112008065159840-pat00009

항체-글루콘산-ATP가 코팅된 산화철 나노입자Antibody-Gluconic Acid-ATP-Coated Iron Oxide Nanoparticles 실험예 1Experimental Example 1 주입전 SISI before injection 주입후 SISI after injection 암 조직Cancer tissue 11777 11777 9480 9480 등근육back muscles 2211 2211 2265 2265

항체-글루콘산-NAD가 코팅된 산화철 나노입자Iron Oxide Nanoparticles Coated with Antibody-Gluconic Acid-NAD 실험예 1Experimental Example 1 주입전 SISI before injection 주입후 SISI after injection 암 조직Cancer tissue 11260 11260 7690 7690 등근육back muscles 24062406 2493 2493

2-4 암 2-4 cancer 조직내Within the organization 조영제 검출 Contrast Agent Detection

체내 주입된 산화철 나노입자의 존재를 확인하기 위하여, 실험예 1을 통해 제조한 조영제를 주입한 후, 암 조직을 적출하여 고정액으로 처리한 다음 블록을 제조하여 조직 섹션을 프루시안 블루 염색하여 현미경으로 관찰하였다.In order to confirm the presence of iron oxide nanoparticles injected into the body, the contrast agent prepared in Experimental Example 1 was injected, cancer tissues were extracted, treated with a fixative solution, a block was prepared, and tissue sections were prussian blue stained under a microscope. Observed.

도 5에 나타낸 바와 같이, 암 조직 안에 파란색으로 염색된 상기 실험예 1의 조영제가 관찰되었으며, 이를 통해 암 조직 내에 조영제가 존재하는 것을 확인하였다. As shown in FIG. 5, the contrast agent of Experimental Example 1 stained blue in the cancer tissue was observed, and it was confirmed that the contrast agent was present in the cancer tissue.

상술한 바와 같이 본 발명의 산화철계 나노입자는 암을 효과적으로 진단하는 데 유용하게 사용될 수 있으며, 광학영상용 조영제로도 사용이 가능하다. As described above, the iron oxide-based nanoparticles of the present invention may be usefully used to effectively diagnose cancer, and may also be used as an optical imaging contrast agent.

도 1a는 본 발명의 일 실시형태의 제조방법 과정을 나타낸 개략도이다. 1A is a schematic diagram showing a manufacturing process of an embodiment of the present invention.

도 1b는 ATP의 화학식(좌) 및 ATP가 코팅된 산화철 나노입자(우)이고, 도 1c는 NAD의 화학식(좌) 및 NAD가 코팅된 산화철 나노입자(우)이며, 도 1d는 글루콘산의 화학식을 나타낸 것이다. Figure 1b is the formula (left) of ATP and iron oxide nanoparticles (right) coated with ATP, Figure 1c is the formula (left) of NAD and iron oxide nanoparticles (right) coated with NAD, Figure 1d is a The chemical formula is shown.

도 2는 본 발명의 ATP (a) 또는 NAD (b)가 코팅된 산화철 나노입자의 투과전자현미경(TEM)사진이다. 2 is a transmission electron microscope (TEM) photograph of iron oxide nanoparticles coated with ATP (a) or NAD (b) of the present invention.

도 3은 본 발명의 일실시형태의 항체-글루콘산-ATP-산화철 나노입자 (a)와 항체-글루콘산-NAD-산화철 나노입자 (b)를 U87MG 마우스 동물 모델에 정맥 주사하여 얻은 광학 영상이다.3 is an optical image obtained by intravenous injection of an antibody-gluconic acid-ATP-iron oxide nanoparticle (a) and an antibody-gluconic acid-NAD-iron oxide nanoparticle (b) of an embodiment of the present invention into a U87MG mouse animal model .

도 4는 본 발명의 일실시형태의 항체-글루콘산-ATP-산화철 나노입자 (a)와 항체-글루콘산-NAD-산화철 나노입자 (b)를 U87MG 마우스 동물 모델에 정맥 주사하여 얻은 자기공명영상이다. 4 is a magnetic resonance image obtained by intravenous injection of an antibody-gluconic acid-ATP-iron oxide nanoparticle (a) and an antibody-gluconic acid-NAD-iron oxide nanoparticle (b) of an embodiment of the present invention into a U87MG mouse animal model to be.

도 5는 본 발명의 일실시형태의 항체-글루콘산-ATP-산화철 나노입자 (a)와 항체-글루콘산-NAD-산화철 나노입자 (b)를 U87MG 마우스 동물 모델에 정맥 주사한 후 암 조직을 적출하여 프러시안 블루(Prussian blue) 염색을 하여 얻은 현미경 사진이다.Figure 5 shows cancer tissue after intravenous injection of antibody-gluconic acid-ATP-iron oxide nanoparticles (a) and antibody-gluconic acid-NAD-iron oxide nanoparticles (b) of an embodiment of the present invention into a U87MG mouse animal model. It is a micrograph taken by extraction and stained with Prussian blue.

Claims (16)

산화철계 중심입자, 타겟리간드와 결합가능한 포스페이트 그룹 및 아민그룹을 갖는 수용성 물질에 의해 코팅된 껍질, 및 상기 껍질 표면에 결합된 수용성 단당류, 및 상기 껍질 표면에 형광 프로브가 더 결합된 것을 특징으로 하는 산화철계 나노입자.A shell coated with a water-soluble material having an iron oxide core particle, a phosphate group and an amine group bondable to a target ligand, and a water-soluble monosaccharide bonded to the shell surface, and a fluorescent probe further bound to the shell surface. Iron oxide nanoparticles. 제 1 항에 있어서, 상기 수용성 물질은 ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택되는 것을 특징으로 하는 산화철계 나노입자. The iron oxide nanoparticles of claim 1, wherein the water-soluble material is selected from the group consisting of ATP, NAD, ADP, AMP, and NADP. 제 1 항에 있어서, 상기 수용성 단당류는 글루콘산, 시트르산, 프로피온산, 부티르산 및 올레산으로 이루어진 그룹 중에서 선택되는 것을 특징으로 하는 산화철계 나노입자.The iron oxide nanoparticles of claim 1, wherein the water-soluble monosaccharide is selected from the group consisting of gluconic acid, citric acid, propionic acid, butyric acid and oleic acid. 삭제delete 제 1 항에 있어서, 상기 형광프로브는 클로로톡신인 것을 특징으로 하는 산화철계 나노입자.The iron oxide nanoparticles of claim 1, wherein the fluorescent probe is chlorotoxin. 제 1 항에 있어서, 상기 나노입자의 직경은 5 - 500 nm 인 것을 특징으로 하 는 산화철계 나노입자. The iron oxide nanoparticles of claim 1, wherein the nanoparticles have a diameter of 5-500 nm. 제 1 항 내지 제 3 항, 제 5항 내지 제 6항 중 어느 한 항에 따른 나노입자의 상기 껍질 표면에 암세포 표적용 항체 또는 펩타이드가 더 결합된 것을 특징으로 하는 암 진단용 나노입자.The nanoparticle for cancer diagnosis, characterized in that the antibody or peptide for cancer cell targeting is further bound to the shell surface of the nanoparticle according to any one of claims 1 to 3 and 5 to 6. 제 7 항에 따른 나노입자를 포함하는 것을 특징으로 하는 암 진단용 조영제.Cancer diagnostic contrast agent comprising the nanoparticles according to claim 7. 산화철계 중심입자의 표면을 포스페이트 그룹 및 아민그룹을 갖는 수용성 물질로 코팅하여 껍질을 형성시키는 (a) 단계; (A) coating the surface of the iron oxide core particle with a water-soluble material having a phosphate group and an amine group to form a shell; 상기 껍질 표면에 수용성 단당류를 결합시켜 표면을 개질시키는 (b) 단계; 및 상기 (b) 단계의 표면개질된 껍질 표면에 형광 프로브를 도입시키는 (c)단계를 포함하여 이루어지는 산화철계 나노입자의 제조방법.(B) modifying the surface by binding a water-soluble monosaccharide to the shell surface; And (c) introducing a fluorescent probe to the surface-modified shell surface of step (b). 제 9 항에 있어서, 상기 (a)단계의 수용성 물질은 ATP, NAD, ADP, AMP 및 NADP로 이루어진 그룹 중에서 선택되는 것을 특징으로 하는 방법. The method of claim 9, wherein the water-soluble substance of step (a) is selected from the group consisting of ATP, NAD, ADP, AMP and NADP. 제 9 항에 있어서, 상기 (b)단계의 수용성 단당류는 글루콘산, 시트르산, 프로피온산, 부티르산 및 올레산으로 이루어진 그룹 중에서 선택되는 것을 특징으로 하는 방법. The method of claim 9, wherein the water-soluble monosaccharide of step (b) is selected from the group consisting of gluconic acid, citric acid, propionic acid, butyric acid and oleic acid. 제 11 항에 있어서, 상기 (b)단계의 글루콘산과 상기 (a)단계의 표면코팅된 나노입자는 1: 1 ~ 15 의 무게비로 결합시키는 것을 특징으로 하는 방법.The method of claim 11, wherein the gluconic acid of step (b) and the surface-coated nanoparticles of step (a) are combined in a weight ratio of 1: 1 to 15. 삭제delete 제 9 항에 있어서, 상기 (c)단계의 형광 프로브는 클로로톡신인 것을 특징으로 하는 방법.10. The method of claim 9, wherein the fluorescent probe of step (c) is chlorotoxin. 제 14 항에 있어서, 상기 (c)단계의 형광 프로브는 상기 (b) 단계의 표면개질된 나노입자에 1:1~2의 몰비로 첨가하여 반응시킴으로써 나노입자에 도입함을 특징으로 하는 방법. The method of claim 14, wherein the fluorescent probe of step (c) is introduced into the nanoparticles by adding and reacting the surface-modified nanoparticles of step (b) in a molar ratio of 1: 1 to 2. 제 9 항 내지 제 12 항, 제 14항 내지 제 15항 중 어느 한 항의 방법에 있어서, 상기 표면개질된 껍질 표면에 암세포 표적용 항체 또는 펩타이드를 결합시키는 (d) 단계를 더 포함함을 특징으로 하는 암진단용 산화철계 나노입자의 제조방법.The method of any one of claims 9 to 12 and 14 to 15, further comprising the step of (d) binding an antibody or peptide for cancer cell targeting to the surface-modified shell surface. Method for producing iron oxide-based nanoparticles for cancer diagnosis.
KR1020080090741A 2008-09-16 2008-09-16 Multifunctional iron oxide nanoparticles and a diagnostic agent using the same KR101042399B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080090741A KR101042399B1 (en) 2008-09-16 2008-09-16 Multifunctional iron oxide nanoparticles and a diagnostic agent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080090741A KR101042399B1 (en) 2008-09-16 2008-09-16 Multifunctional iron oxide nanoparticles and a diagnostic agent using the same

Publications (2)

Publication Number Publication Date
KR20100031885A KR20100031885A (en) 2010-03-25
KR101042399B1 true KR101042399B1 (en) 2011-06-24

Family

ID=42181253

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080090741A KR101042399B1 (en) 2008-09-16 2008-09-16 Multifunctional iron oxide nanoparticles and a diagnostic agent using the same

Country Status (1)

Country Link
KR (1) KR101042399B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212014B1 (en) 2010-11-17 2012-12-13 중앙대학교 산학협력단 Composition for detecting anions and method for detecting anions using the same
KR101305393B1 (en) 2011-11-08 2013-09-06 한국과학기술연구원 Amine functionalized mesoporous iron oxyhydroxide and method for fabricating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101386715B1 (en) * 2010-10-31 2014-04-21 전북대학교산학협력단 Advanced biocompatible, non-polymeric surface modified, iron oxide nanoparticles with application of optimal amount of gluconic acid and a composition for diagnosing and treating cancer comprising the same
KR101413158B1 (en) * 2012-08-17 2014-07-01 전북대학교산학협력단 Surface modification method of quantum dots and in vivo optical imaging thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274121B1 (en) * 1994-07-27 2001-08-14 Herbert Pilgrimm Superparamagnetic particles, process for their manufacture and use
US20060140871A1 (en) * 2004-11-30 2006-06-29 Sillerud Laurel O Magnetic resonance imaging of prostate cancer
US20070009441A1 (en) 2004-07-08 2007-01-11 Molecular Therapeutics, Inc. Biodegradable nanoparticles
KR100713745B1 (en) * 2006-02-27 2007-05-07 연세대학교 산학협력단 Water-soluble magnetic or metal oxide nanoparticles coated with ligands and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6274121B1 (en) * 1994-07-27 2001-08-14 Herbert Pilgrimm Superparamagnetic particles, process for their manufacture and use
US20070009441A1 (en) 2004-07-08 2007-01-11 Molecular Therapeutics, Inc. Biodegradable nanoparticles
US20060140871A1 (en) * 2004-11-30 2006-06-29 Sillerud Laurel O Magnetic resonance imaging of prostate cancer
KR100713745B1 (en) * 2006-02-27 2007-05-07 연세대학교 산학협력단 Water-soluble magnetic or metal oxide nanoparticles coated with ligands and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212014B1 (en) 2010-11-17 2012-12-13 중앙대학교 산학협력단 Composition for detecting anions and method for detecting anions using the same
KR101305393B1 (en) 2011-11-08 2013-09-06 한국과학기술연구원 Amine functionalized mesoporous iron oxyhydroxide and method for fabricating the same

Also Published As

Publication number Publication date
KR20100031885A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
Mao et al. Functional nanoparticles for magnetic resonance imaging
Hu et al. Hybrid gold–gadolinium nanoclusters for tumor-targeted NIRF/CT/MRI triple-modal imaging in vivo
US9987378B2 (en) Prussian blue-inspired constructs for multimodal imaging and therapy
Li et al. Synthesis of β-cyclodextrin conjugated superparamagnetic iron oxide nanoparticles for selective binding and detection of cholesterol crystals
CN101868180A (en) Particles for imaging
Xiao et al. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging
CN104258425A (en) Preparation method and application of RGD-modified ultra-small magnetic iron oxide nanoparticles
Wang et al. Gadolinium-labelled iron/iron oxide core/shell nanoparticles as T 1–T 2 contrast agent for magnetic resonance imaging
Ha et al. Development of target-specific multimodality imaging agent by using hollow manganese oxide nanoparticles as a platform
CN112494666B (en) T1-T2 dual-activation magnetic resonance imaging contrast agent and preparation method and application thereof
US9775824B2 (en) Magnetic nanoparticle composition and manufacturing method and use thereof
KR101042399B1 (en) Multifunctional iron oxide nanoparticles and a diagnostic agent using the same
Song et al. A multifunctional nanoprobe based on europium (iii) complex–Fe 3 O 4 nanoparticles for bimodal time-gated luminescence/magnetic resonance imaging of cancer cells in vitro and in vivo
Song et al. Tumor-targetable magnetoluminescent silica nanoparticles for bimodal time-gated luminescence/magnetic resonance imaging of cancer cells in vitro and in vivo
Monaco et al. Smart assembly of mn-ferrites/silica core–shell with fluorescein and gold nanorods: Robust and stable nanomicelles for in vivo triple modality imaging
Gong et al. A dual ligand targeted nanoprobe with high MRI sensitivity for diagnosis of breast cancer
US11389550B2 (en) Nanoparticle, contrast agent for magnetic resonance imaging containing same, and ligand compound
Liu et al. A high-performance imaging probe with NIR luminescence and synergistically enhanced T 1–T 2 relaxivity for in vivo hepatic tumor targeting and multimodal imaging
CN112870387B (en) Magnetic nano-drug carrier and preparation method and application thereof
Pournoori et al. Magnetic resonance imaging of tumor‐infiltrating lymphocytes by anti‐CD3‐conjugated iron oxide nanoparticles
KR101386715B1 (en) Advanced biocompatible, non-polymeric surface modified, iron oxide nanoparticles with application of optimal amount of gluconic acid and a composition for diagnosing and treating cancer comprising the same
Ma et al. Hyaluronic acid-modified mesoporous silica nanoprobes for target identification of atherosclerosis
CN114949261B (en) Iron gadolinium nano-composite and preparation method and application thereof
US11969483B2 (en) Porous nanocarriers for the monitoring and treatment of bladder cancer
CN102091336A (en) Specific magnetic resonance contrast agent for brain tumor and neurodegenerative diseases and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150616

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160510

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170511

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180612

Year of fee payment: 8