KR101042370B1 - water dispersable conductive high molecule polymer-carbon nanotube and water-soluble stabilized emulsion comprising the same, and method for fabricating the same - Google Patents

water dispersable conductive high molecule polymer-carbon nanotube and water-soluble stabilized emulsion comprising the same, and method for fabricating the same Download PDF

Info

Publication number
KR101042370B1
KR101042370B1 KR1020080092665A KR20080092665A KR101042370B1 KR 101042370 B1 KR101042370 B1 KR 101042370B1 KR 1020080092665 A KR1020080092665 A KR 1020080092665A KR 20080092665 A KR20080092665 A KR 20080092665A KR 101042370 B1 KR101042370 B1 KR 101042370B1
Authority
KR
South Korea
Prior art keywords
conductive polymer
carbon nanotube
water
nanotube composite
soluble emulsion
Prior art date
Application number
KR1020080092665A
Other languages
Korean (ko)
Other versions
KR20100033679A (en
Inventor
김양수
박예지
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to KR1020080092665A priority Critical patent/KR101042370B1/en
Publication of KR20100033679A publication Critical patent/KR20100033679A/en
Application granted granted Critical
Publication of KR101042370B1 publication Critical patent/KR101042370B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 발명은 미니에멀젼 중합공정에 의한 전도성 고분자-탄소나노튜브 복합체, 이로 구성된 안정화된 수용성 에멀젼의 제조방법 등에 관한 것이다.The present invention relates to a conductive polymer-carbon nanotube composite by a miniemulsion polymerization process, a method for preparing a stabilized water-soluble emulsion composed thereof.

본 발명에서는 미니에멀젼 중합공정을 이용하여 전도성 고분자의 원료인 단량체를 중합시킴으로써, 탄소나노튜브와 전도성 고분자 물질이 같이 있는 전도성 고분자-탄소나노튜브 복합체 및 이로 구성된 안정화된 수용성 에멀젼이 제공된다.In the present invention, by polymerizing a monomer which is a raw material of a conductive polymer using a miniemulsion polymerization process, a conductive polymer-carbon nanotube composite having a carbon nanotube and a conductive polymer material together and a stabilized water-soluble emulsion composed thereof are provided.

본 발명에 의한 전도성 고분자-탄소나노튜브 복합체는 유연성, 투명도, 향상된 전기전도도를 갖는 물질로서, 유기발광다이오드(organic light-emitting diodes)와 같은 nano-electronic device등 다양한 분야에서 기존 물질이 갖는 한계를 극복할 수 있는 물질로서 다양한 응용을 기대할 수 있다.The conductive polymer-carbon nanotube composite according to the present invention is a material having flexibility, transparency and improved electrical conductivity, and has limitations of existing materials in various fields such as nano-electronic devices such as organic light-emitting diodes. As a material to overcome, various applications can be expected.

전도성, 고분자-탄소나노튜브, 복합체, 수용성, 에멀젼 Conductive, Polymer-Carbon Nanotubes, Composites, Water Soluble, Emulsion

Description

물에 분산될 수 있는 전도성 고분자-탄소나노튜브 복합체, 이로 구성된 안정화된 수용성 에멀젼, 그리고 이들 제조방법{water dispersable conductive high molecule polymer-carbon nanotube and water-soluble stabilized emulsion comprising the same, and method for fabricating the same}Water dispersable conductive high molecule polymer-carbon nanotube and water-soluble stabilized emulsion comprising the same, and method for fabricating the same}

본 발명은 전도성 고분자-탄소나노튜브 복합체, 이로 구성된 안정화된 수용성 에멀젼 및 그 제조 방법 등에 관한 것으로서, 더욱 상세하게는 기존 물질이 갖는 한계를 극복하여 다양한 산업분야에 응용할 수 있는 미니에멀젼 중합공정에 의한 전도성 고분자-탄소나노튜브 복합체 및 이로 구성된 안정화된 수용성 에멀젼 제조에 관한 것이다.The present invention relates to a conductive polymer-carbon nanotube composite, a stabilized water-soluble emulsion composed of the same, and a method for manufacturing the same. More specifically, the present invention relates to a mini emulsion polymerization process that can be applied to various industrial fields by overcoming the limitations of existing materials. The present invention relates to a conductive polymer-carbon nanotube composite and a stabilized water-soluble emulsion composed thereof.

탄소나노튜브는 구조의 비등방성이 크며, 단일벽(single wall), 다중벽(multi-wall), 다발(rope) 등의 다양한 구조가 있으며, 감긴 형태에 따라 전도체, 반도체의 성질을 나타내며, 직경에 따라 에너지갭이 달라지고, 준일차원적 구조를 가지고 있어 특이한 양자효과를 나타낸다.Carbon nanotubes are largely anisotropic in structure, and have various structures such as single wall, multi-wall, and rope, and exhibit the properties of conductors and semiconductors according to their wound shape. The energy gap varies, and it has a quasi one-dimensional structure, resulting in a unique quantum effect.

탄소나노튜브의 특이한 구조 및 물성이 보여주는 다기능성은 정보통신기기의 필수인 평면표시소자, 고집적 메모리소자, 2차 전지 및 초고용량 캐패시터, 수소저 장물질, 화학 센서, 고강도/초경량 복합재료, 정전기 제거 복합재료, 전자파 차폐물질 등에 응용성이 뛰어나며, 기존의 소자가 갖는 한계를 넘어설 가능성을 지니고 있어, 이에 관한 다양한 연구가 이루어지고 있다. The unique structure and physical properties of carbon nanotubes show the versatile characteristics of flat display devices, integrated memory devices, secondary batteries and ultracapacitors, hydrogen storage materials, chemical sensors, high strength / light weight composite materials, and static electricity, which are essential for information and communication equipment. It has excellent applicability to removal composite materials, electromagnetic shielding materials, etc., and has the possibility of exceeding the limitations of existing devices, and various studies have been made.

그러나 탄소나노튜브는 반데르발스(van der Waals) 힘에 의하여 상호 응집함으로써 입자의 분산성에 많은 문제점을 나타내고 있어 그에 대한 해결방안으로 용매를 이용한 분산, 계면활성제를 이용한 분산, 산 처리를 이용한 분산 및 전해질을 이용한 분산 등에 관한 많은 연구가 이루어지고 있다.However, carbon nanotubes show many problems in dispersibility of particles by coagulating by van der Waals forces. As a solution, dispersion using solvent, dispersion using surfactant, dispersion using acid treatment and Many studies have been made on dispersion using an electrolyte.

최근, β-1,3-glucan을 이용하여 탄소나노튜브를 분산시키는 연구가 Numata 등(Numata M.; Asai M; Kaneko K.; Bae A. H.; Hasegawa T.; Sakurai K.; Shinkai S., J. Am . Chem . Soc ., 127 , 5875 (2005).)에 의하여 보고된 바 있으며, 또한 β-1,3-glucan을 이용하여 전도성 고분자인 poly(3,4-ethylenedioxythiophene)(PEDOT) 나노입자 수용액을 제조하는 연구도 Li 등 (Li, C.; Numata M.; Hasegawa T.; Fujisawa T.; Haraguchi S.; Sakurai K.; Shinkai S., Chemistry Letters, 34(11) , 1532 (2005).)에 의하여 보고된 바 있다. Recently, studies on dispersing carbon nanotubes using β-1,3-glucan have been conducted by Numata et al. (Numata M .; Asai M; Kaneko K .; Bae AH; Hasegawa T .; Sakurai K .; Shinkai S., J. . Am. Chem. Soc., 127, 5875 (2005).) have been reported by, addition of poly (3,4-ethylenedioxythiophene) (PEDOT ) nanoparticles using a β-1,3-glucan conductive polymer Studies on the preparation of aqueous solutions have also been made by Li et al. (Li, C .; Numata M .; Hasegawa T .; Fujisawa T .; Haraguchi S .; Sakurai K .; Shinkai S., Chemistry Letters , 34 (11) , 1532 (2005).

그러나, β-1,3-glucan을 이용하면서 미니에멀젼 중합공정에 의하여 탄소나노튜브와 전도성고분자인 PEDOT 복합체를 제조하는 연구는 보고된 바가 없다.However, no studies have been made to prepare carbon nanotubes and PEDOT composites, which are conductive polymers, by miniemulsion polymerization using β-1,3-glucan.

본 발명은 유연성, 투명도, 향상된 전기전도도를 갖는 물질로서 기존 물질이 갖는 한계를 극복하여 센서, 전극 물질, 나노전자 분야 등의 다양한 산업분야에 응용할 수 있는 전도성 고분자-탄소나노튜브 복합체 및 이로 구성된 안정화된 수용성 에멀젼을 제공하는 것을 그 목적으로 한다.The present invention overcomes the limitations of existing materials as a material having flexibility, transparency, and improved electrical conductivity, and is applicable to various industrial fields such as sensors, electrode materials, nanoelectronics, and the like. It is an object to provide a water-soluble emulsion.

상기와 같은 기술적 과제를 달성하기 위하여, 본 발명은 미니에멀젼 중합공정에 의해 제조되는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼을 제공한다.In order to achieve the above technical problem, the present invention provides a stabilized water-soluble emulsion composed of a conductive polymer-carbon nanotube composite, characterized in that produced by a mini emulsion polymerization process.

상기 전도성 고분자는 Poly(3,4-ethylenedioxythiophene)(PEDOT)을 포함하는 것을 특징으로 한다.The conductive polymer is characterized in that it comprises Poly (3,4-ethylenedioxythiophene) (PEDOT).

상기 탄소나노튜브는 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWCNT)를 포함하는 것을 특징으로 한다.The carbon nanotubes may include multi-walled carbon nanotubes (MWCNTs).

상기 탄소나노튜브와 전도성 고분자를 분산시키기 위해 β-1,3-glucan을 사용하는 것을 특징으로 한다.It is characterized by using β-1,3-glucan to disperse the carbon nanotubes and the conductive polymer.

상기 β-1,3-glucan은 Sparassis crispa로부터 추출된 것을 사용함을 특징으로 한다.The β-1,3-glucan is characterized in that it is used to extract from Sparassis crispa.

상기 미니에멀젼 중합 공정에서 사용되는 계면활성제로는, 음이온 계면활성제 (dodecylbenzene sulfonic acid), 양이온 계면활성제(decyltrimethylammonium bromide), 비이온 계면활성제 (polyoxyethylene-11-decylether)(Lutensol, BASF AG) 중 어느 하나가 사용되는 것을 특징으로 한다.As the surfactant used in the miniemulsion polymerization process, any one of anionic surfactant (dodecylbenzene sulfonic acid), cationic surfactant (decyltrimethylammonium bromide), nonionic surfactant (polyoxyethylene-11-decylether) (Lutensol, BASF AG) It is characterized in that it is used.

상기 미니에멀젼 중합 공정에서 에멀젼의 산화중합을 위한 산화제로는, 산화제의 종류는 ammonium persulfate , iron(III) p-toluenesulfonate , cerium(IV) sulfate 중 어느 하나가 사용됨을 특징으로 한다.As the oxidizing agent for oxidative polymerization of the emulsion in the miniemulsion polymerization process, the oxidizing agent is characterized in that any one of ammonium persulfate, iron (III) p-toluenesulfonate, cerium (IV) sulfate is used.

한편, 상기한 목적을 달성하기 위한 본 발명의 다른 형태에 따르면, β-1,3-glucan을 이용하여, 탄소나노튜브를 수용액에 잘 분산된 용액으로 제조하는 단계; 상기 제조된 탄소나노튜브가 있는 상태에서 미니에멀젼 중합공정을 이용하여 전도성 고분자의 원료인 단량체를 중합시키는 단계;를 포함하는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼 제조방법이 제공된다.On the other hand, according to another aspect of the present invention for achieving the above object, using a β-1,3-glucan, preparing a carbon nanotube in a well dispersed solution in an aqueous solution; A method of preparing a stabilized water-soluble emulsion composed of a conductive polymer-carbon nanotube composite, comprising: polymerizing a monomer which is a raw material of a conductive polymer using a miniemulsion polymerization process in a state where the prepared carbon nanotube is present. This is provided.

그리고, 상기한 목적을 달성하기 위한 본 발명의 다른 형태에 따르면, 탄소나노튜브와 이와 복합체를 이루고자 하는 전도성 고분자 물질의 원료인 단량체가 들어있는 oil-phase의 용액과 계면활성제와 물이 들어있는 water-phase의 용액을 반응기에 넣고, 질소 대기 조건하에서 미니에멀젼 중합을 수행하는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼 제조방법이 제공된다.In addition, according to another aspect of the present invention for achieving the above object, an oil-phase solution containing a monomer which is a raw material of carbon nanotubes and a conductive polymer material to form a complex therewith, water containing a surfactant and water Provided is a method for preparing a stabilized water-soluble emulsion composed of a conductive polymer-carbon nanotube composite, wherein a solution of -phase is put into a reactor and a miniemulsion polymerization is carried out under nitrogen atmosphere.

한편, 본 발명에 따르면, 상기한 전도성 고분자-탄소나노튜브 복합체를 포함하여 형성되는 것을 특징으로 하는 수용성 에멀젼이 제공된다.On the other hand, according to the present invention, there is provided a water-soluble emulsion, characterized in that formed by containing the conductive polymer-carbon nanotube composite.

그리고, 본 발명에 따르면, 상기한 방법에 의해 제조되는 것을 특징으로 하 는 물에 분산되어 있는 전도성 고분자-탄소나노튜브 복합체가 제공된다.In addition, according to the present invention, there is provided a conductive polymer-carbon nanotube composite dispersed in water, which is produced by the above method.

그리고, 본 발명에 따르면, 상기한 방법에 의해 미니에멀젼 중합이 종료된 상태에서, 진공 건조하여 만들어지는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체가 제공된다.In addition, according to the present invention, there is provided a conductive polymer-carbon nanotube composite, which is made by vacuum drying in a state where the miniemulsion polymerization is completed by the above method.

본 발명에 의하면, 미니에멀젼 중합공정에 의한 전도성 고분자-탄소나노튜브 복합체를 제조하는 방법을 제공할 수 있다.According to the present invention, a method for producing a conductive polymer-carbon nanotube composite by a miniemulsion polymerization process can be provided.

즉, 본 발명에 의하면, β-1,3-glucan을 이용하여 탄소나노튜브를 수용액에 잘 분산된 용액으로 제조하여 미니에멀젼 중합공정으로 전도성 고분자의 원료인 단량체를 중합시켜 전도성 고분자-탄소나노튜브 복합체 제조방법을 제공할 수 있다.That is, according to the present invention, by using a β-1,3-glucan to prepare a carbon nanotube in a solution well dispersed in an aqueous solution and polymerize the monomer as a raw material of the conductive polymer in a miniemulsion polymerization process conductive polymer-carbon nanotube It can provide a method for producing a composite.

또한, 본 발명에 의하면 계면활성제를 사용하는 미니에멀젼 공정에 의하여 제조된 탄소나노튜브/PEDOT 복합체로 구성된 에멀젼은 장기간에 걸쳐 우수한 안정성을 나타낸다.In addition, according to the present invention, an emulsion composed of a carbon nanotube / PEDOT composite prepared by a miniemulsion process using a surfactant shows excellent stability over a long period of time.

본 발명에 의한 전도성 고분자-탄소나노튜브 복합체는 안정화된 수용성 에멀젼 상태이므로 다양한 코팅기술 적용함으로써 응용 분야를 광범위하게 확대할 수 있으며 구체적으로는 센서, 전극 물질, 나노전자 분야 등의 다양한 분야에서 기존 물질이 갖는 한계를 극복할 수 있는 신규 재료로서 다양한 산업적 응용을 기대할 수 있다.Since the conductive polymer-carbon nanotube composite according to the present invention is in a stabilized water-soluble emulsion state, the application field can be broadly expanded by applying various coating technologies, and specifically, existing materials in various fields such as sensors, electrode materials, and nanoelectronics fields. Various industrial applications can be expected as new materials that can overcome these limitations.

이하, 본 발명에 의한 전도성 고분자-탄소나노튜브 복합체(이하, "복합체"라 고도 함) 및 그 제조방법을 상세히 설명한다.Hereinafter, a conductive polymer-carbon nanotube composite (hereinafter, also referred to as a "composite") and a method of manufacturing the same according to the present invention will be described in detail.

본 발명에 의한 전도성 고분자-탄소나노튜브 복합체는 미니에멀젼 중합공정을 이용하여 제조한다. 미니에멀젼 중합공정은 화학 분야에서 널리 이용되고 있으며, 물 안에 oil 상을 이루는 droplet이 들어있는 Oil-in-Water(O/W)의 에멀젼이다. The conductive polymer-carbon nanotube composite according to the present invention is prepared using a miniemulsion polymerization process. The mini emulsion polymerization process is widely used in the chemical field and is an emulsion of oil-in-water (O / W) containing droplets forming oil phase in water.

본 발명에 이용되는 미니에멀젼 중합공정은 입자들이 서로 응집되지 않고 떨어져 있게 도와주어 입자를 안정한 상태로 유지할 수 있게 도와주고 입자의 크기를 작고 둥글게 만들어 주며 용액 안에서 중합반응이 이루어지므로 전도성 고분자-탄소나노튜브 복합체 제조에 적합하다.The miniemulsion polymerization process used in the present invention helps to keep the particles in a stable state by helping the particles not to coagulate with each other, to make the particles small and round, and to make the polymerization reaction in a solution. Suitable for the production of tube composites.

탄소나노튜브는 벽의 수에 따라 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWCNT), 이중벽 탄소나노튜브, 단일벽 탄소나노튜브 등으로 구분되는데, 본 발명에 있어서는 탄소나노튜브의 종류는 특별히 제한되는 것은 아니다.Carbon nanotubes are classified into multi-walled carbon nanotubes (MWCNTs), double-walled carbon nanotubes, single-walled carbon nanotubes, and the like according to the number of walls. It is not limited.

본 발명에 의하면, β-1,3-glucan을 이용하여 수용액에 탄소나노튜브를 분산하고 이 탄소나노튜브가 있는 상태에서 전도성 고분자의 원료인 단량체를 중합함으로써 탄소나노튜브와 전도성 고분자 복합체를 제조할 수 있는 것이다.According to the present invention, carbon nanotubes and conductive polymer composites may be prepared by dispersing carbon nanotubes in an aqueous solution using β-1,3-glucan and polymerizing monomers, which are raw materials of conductive polymers, in the presence of the carbon nanotubes. It can be.

탄소나노튜브와 복합체가 될 수 있는 물질은 polypyrole, polyaniline, Poly(3,4-ethylenedioxythiophene) 등의 전도성 고분자 물질 등을 포함하지만, 특히 Poly(3,4-ethylenedioxythiophene)(일명, "PEDOT"라 한다)을 본 발명의 방법에 의하여 탄소나노튜브와의 복합체로 제조함이 바람직하다.Materials that can be complexed with carbon nanotubes include conductive polymers such as polypyrole, polyaniline, and poly (3,4-ethylenedioxythiophene), but in particular Poly (3,4-ethylenedioxythiophene) (aka "PEDOT"). ) Is preferably prepared as a composite with carbon nanotubes by the method of the present invention.

본 발명에서는, 탄소나노튜브와 이와 복합체를 이루고자 하는 전도성 고분자 물질의 원료인 단량체가 들어있는 oil-phase의 용액과 계면활성제와 물이 들어있는 water-phase의 용액을 반응기에 넣고, 질소 대기 조건하에서 중합을 수행한다. 미니에멀젼 중합을 수행하는 경우에는, 약 35 ℃ 온도의 조건에서 48시간 교반함으로써 중합을 수행하는 것이 바람직하다.In the present invention, an oil-phase solution containing a carbon nanotube and a monomer, which is a raw material of a conductive polymer material to be complexed thereto, and a water-phase solution containing a surfactant and water are placed in a reactor under nitrogen atmosphere. The polymerization is carried out. In the case of performing the miniemulsion polymerization, it is preferable to carry out the polymerization by stirring for 48 hours at a condition of about 35 ° C temperature.

중합반응에 산화제가 요구되는데, 탄소나노튜브, 단량체를 반응기에 넣고 온도와 대기 조건을 맞춘 후 산화제 수용액을 반응기에 투여하여 중합을 수행한다.An oxidizing agent is required for the polymerization reaction. Carbon nanotubes and monomers are put in a reactor, temperature and atmospheric conditions are adjusted, and an aqueous oxidizing agent is administered to the reactor to perform polymerization.

또한, 산화제와 계면활성제의 종류를 달리하여 중합을 수행한다. 여기서 사용되는 계면활성제의 종류는 음이온 계면활성제(예; dodecylbenzene sulfonic acid), 양이온 계면활성제(예; decyltrimethylammonium bromide), 비이온 계면활성제 (예; polyoxyethylene-11-decylether)(Lutensol:품명, BASF AG: 제조사)가 사용될 수 있으며, 산화제의 종류는 ammonium persulfate , iron(III) p-toluenesulfonate , cerium(IV) sulfate가 있다.In addition, polymerization is carried out by different kinds of oxidizing agents and surfactants. The types of surfactants used here are anionic surfactants (eg dodecylbenzene sulfonic acid), cationic surfactants (eg decyltrimethylammonium bromide), nonionic surfactants (eg polyoxyethylene-11-decylether) (Lutensol: product name, BASF AG: Oxidants include ammonium persulfate, iron (III) p-toluenesulfonate and cerium (IV) sulfate.

중합반응이 완료된 후, 얻어진 복합체를 진공오븐건조기로 60℃로 진공을 걸어 건조하여, 목적하는 전도성 고분자-탄소나노튜브 복합체를 제조한다.After the polymerization reaction is completed, the obtained composite is vacuum dried at 60 ° C. with a vacuum oven dryer to prepare a desired conductive polymer-carbon nanotube composite.

이하, 실시예를 통하여 본 발명을 구체적으로 설명하고자 한다. 그러나, 본 발명의 범위가 하기 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the scope of the present invention is not limited by the following examples.

하기 실시예에서 제조한 전도성 고분자-탄소나노튜브 복합체는 적외선분광광도계(FTIR spectrometer), 전계방출주사전자현미경(FE-SEM), 투과전자현미경(TEM), 입도분석기(PSA), X선 회절(XRD) pattern 등에 의하여 확인하였다.The conductive polymer-carbon nanotube composite prepared in the following examples is an infrared spectrophotometer (FTIR spectrometer), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), particle size analyzer (PSA), X-ray diffraction ( XRD) pattern and the like.

참고로, 도 1의 (a)에 MWCNT의 SEM 및 TEM사진이 개시되어 있고, (b)에는 이 를 이용하여 제조한 MWCNT-Poly(3,4-ethylenedioxythiophene) 복합체의 SEM(Scanning Electron Microscope) 및 TEM(Transmission Electron Microscope) 사진이 개시있다.For reference, SEM and TEM photographs of MWCNTs are disclosed in (a) of FIG. 1, and (b) SEM (Scanning Electron Microscope) of MWCNT-Poly (3,4-ethylenedioxythiophene) composites prepared using the same. Transmission Electron Microscope (TEM) photography is disclosed.

실시예Example 1: One:

음이온 계면활성제와 ammonium Anionic surfactant and ammonium persulfatepersulfate 산화제를 사용하여  Using oxidants 미니에멀젼Mini Emulsion 중합을 수행한  Polymerized MWCNTMWCNT -- PolyPoly (3,4-(3,4- ethylenedioxythiopheneethylenedioxythiophene ) 복합체의 제조.) Preparation of the complex.

Dimthylsulfoxide(DMSO) 3.6g 과 β-1,3-glucan (MW=) (Sparan, Hanabiotech Co.) 1.5 g 을 섞은 후 교반하였다. 다시금 DMSO 3 g 과 MWCNT(CM-95, Iljin Nanotech) 0.3g을 섞은 후 교반하였다. β-1,3-glucan을 섞은 DMSO와 CNT를 섞은 DMSO를 섞은 후 교반하였다. 이 용액에 3,4-ethylenedioxythiophene(EDOT) 3.553g을 추가한 후 교반함으로써 Oil-phase를 구성하였다.3.6 g of dimthylsulfoxide (DMSO) and 1.5 g of β-1,3-glucan (MW =) ( Sparan , Hanabiotech Co.) were mixed and stirred. Again, 3 g of DMSO and 0.3 g of MWCNT (CM-95, Iljin Nanotech) were mixed and stirred. DMSO mixed with β-1,3-glucan and DMSO mixed with CNTs were mixed and stirred. To this solution, 3.553 g of 3,4-ethylenedioxythiophene (EDOT) was added, followed by stirring to form an oil-phase.

Dodecylbenzene sulfonic acid(DBSA) 0.3264 g과 deionized(DI)-water 84 mL를 섞은 후 교반하여 Water-phase를 구성하였다.0.3264 g of dodecylbenzene sulfonic acid (DBSA) and 84 mL of deionized (DI) -water were mixed and stirred to form a water-phase.

산화제인 ammonium persulfate(APS) 2.1286g을 deionized (DI)-water 10 mL에 용해하여 산화제 수용액을 준비하였다. Water-phase의 용액에 oil-phase 의 용액을 조금씩 첨가하면서 교반하였다. 이렇게 만들어진 혼합용액이 담긴 비이커를 얼음물에 담가 충분히 차갑게 한 후 10분 동안 ultrasonifier (Model 450, Branson) 처리하였다. (25% duty cycle, power 3) 2.1286 g of ammonium persulfate (APS), an oxidant, was dissolved in 10 mL of deionized (DI) -water to prepare an oxidizer aqueous solution. The oil-phase solution was gradually added to the water-phase solution while stirring. The beaker containing the mixed solution was soaked in ice water and cooled sufficiently and treated with ultrasonifier (Model 450, Branson) for 10 minutes. (25% duty cycle, power 3)

위의 용액을 반응기에 넣은 후 35℃로 승온한 후 DI-water에 미리 용해시켜 준비한 산화제 수용액을 넣고 질소 대기 하에서 48시간 중합하였다. 중합이 종료된 후 8시간 진공 건조하여 MWCNT-Poly(3,4-ethylenedioxythiophene) 복합체를 제조하였다.After putting the above solution into the reactor, the temperature was raised to 35 ° C., an oxidizer aqueous solution prepared by dissolving in DI-water in advance, and then polymerized under nitrogen atmosphere for 48 hours. After the polymerization was completed, vacuum drying was performed for 8 hours to prepare a MWCNT-Poly (3,4-ethylenedioxythiophene) complex.

실시예Example 2: 2:

양이온 계면활성제와 ammonium Cationic Surfactants and Ammonium persulfatepersulfate 산화제를 사용하여  Using oxidants 미니에멀젼Mini Emulsion 중합을 수행한  Polymerized MWCNTMWCNT -- PolyPoly (3,4-(3,4- ethylenedioxythiopheneethylenedioxythiophene ) 복합체의 제조.) Preparation of the complex.

계면활성제를 DBSA 대신에 decyltrimethylammonium bromide(DETAB) 0.2803g 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 MWCNT-Poly(3,4-ethylenedioxythiophene) 복합체를 제조하였다.MWCNT-Poly (3,4-ethylenedioxythiophene) complex was prepared in the same manner as in Example 1, except that 0.2803 g of decyltrimethylammonium bromide (DETAB) was used instead of DBSA.

실시예Example 3: 3:

비이온Non-ion 계면활성제와 ammonium  Surfactant and ammonium persulfatepersulfate 의 산화제를 사용하여 Using oxidants 미니에멀젼Mini Emulsion 중합을 수행한  Polymerized MWCNTMWCNT -- PolyPoly (3,4-(3,4- ethylenedioxythiopheneethylenedioxythiophene ) 복합체의 제조.) Preparation of the complex.

계면활성제를 DBSA 대신에 polyoxyethylene-11-decylether(Lutensol, BASF AG) 0.684g 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 MWCNT-Poly(3,4-ethylenedioxythiophene) 복합체를 제조하였다.MWCNT-Poly (3,4-ethylenedioxythiophene) complex was prepared in the same manner as in Example 1 except that 0.684 g of a polyoxyethylene-11-decylether ( Lutensol , BASF AG) was used instead of the DBSA.

실시예Example 4: 4:

음이온 계면활성제와 iron(III) Anionic surfactant and iron (III) pp -- toluenesulfonatetoluenesulfonate 의 산화제를 사용하여 Using oxidants beauty 니에멀젼 중합을 수행한  Performing the emulsion emulsion MWCNTMWCNT -- PolyPoly (3,4-(3,4- ethylenedioxythiopheneethylenedioxythiophene ) 복합체의 제조.) Preparation of the complex.

산화제를 ammonium persulfate(APS) 대신에 iron(III) p-toluenesulfonate 6.3687g 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 MWCNT-Poly(3,4-ethylenedioxythiophene) 복합체를 제조하였다.MWCNT-Poly (3,4-ethylenedioxythiophene) complex was prepared in the same manner as in Example 1, except that 6.3687 g of iron (III) p- toluenesulfonate was used instead of ammonium persulfate (APS).

실시예Example 5: 5:

음이온 계면활성제와 With anionic surfactants ceriumcerium (( IVIV ) ) sulfatesulfate 의 산화제를 사용하여 Using oxidants 미니에멀젼Mini Emulsion 중합을 수행한  Polymerized MWCNTMWCNT -- PolyPoly (3,4-(3,4- ethylenedioxythiopheneethylenedioxythiophene ) 복합체의 제조.) Preparation of the complex.

산화제를 ammonium persulfate(APS) 대신에 cerium(IV) sulfate 3.123g 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 MWCNT-Poly(3,4-ethylenedioxythiophene) 복합체를 제조하였다.MWCNT-Poly (3,4-ethylenedioxythiophene) complex was prepared in the same manner as in Example 1, except that 3.123 g of cerium (IV) sulfate was used instead of ammonium persulfate (APS).

이상에서와 같이, 본 발명에서는 β-1,3-glucan을 이용하여 탄소나노튜브와 전도성 고분자를 분산시키고, 탄소나노튜브가 있는 상태에서 전도성 고분자를 미니에멀젼 중합공정으로 중합시킴으로써 수용성 용액에 잘 분산되어있는 전도성 고분자-탄소나노튜브 복합체를 제조할 수 있음을 확인하였다.As described above, in the present invention, the carbon nanotubes and the conductive polymers are dispersed using β-1,3-glucan, and the polymers are well dispersed in the aqueous solution by polymerizing the conductive polymers in a miniemulsion polymerization process in the presence of carbon nanotubes. It was confirmed that the conductive polymer-carbon nanotube composite can be prepared.

도 1은 MWCNT-Poly(3,4-ethylenedioxythiophene) 복합체의 SEM(Scanning Electron Microscope) 및 TEM(Transmission Electron Microscope) 사진으로서, (a)는 MWCNT의 SEM 및 TEM사진이고, (b)는 본 발명의 실시예에 따른 MWCNT-PEDOT 복합체의 사진 1 is a SEM (Scanning Electron Microscope) and TEM (Transmission Electron Microscope) photograph of the MWCNT-Poly (3,4-ethylenedioxythiophene) complex, (a) is a SEM and TEM photograph of MWCNT, (b) of the present invention Picture of MWCNT-PEDOT Composite According to Example

Claims (11)

미니에멀젼 중합공정에 의해 제조되는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼.Stabilized water-soluble emulsion composed of a conductive polymer-carbon nanotube composite, which is prepared by a miniemulsion polymerization process. 제 1 항에 있어서,The method of claim 1, 상기 전도성 고분자는 Poly(3,4-ethylenedioxythiophene)(즉, PEDOT)을 포함하는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼.The conductive polymer is a stabilized water-soluble emulsion composed of a conductive polymer-carbon nanotube composite, characterized in that it comprises Poly (3,4-ethylenedioxythiophene) (ie, PEDOT). 제 1 항에 있어서,The method of claim 1, 상기 탄소나노튜브는 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWCNT)를 포함하는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼.The carbon nanotube is a stabilized water-soluble emulsion consisting of a conductive polymer-carbon nanotube composite, characterized in that it comprises a multi-walled carbon nanotube (MWCNT). 제 1 항에 있어서,The method of claim 1, 상기 탄소나노튜브와 전도성 고분자를 분산시키기 위해 β-1,3-glucan을 사용하는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼.Stabilized water-soluble emulsion consisting of a conductive polymer-carbon nanotube composite, characterized in that for using β-1,3-glucan to disperse the carbon nanotubes and the conductive polymer. 제 4 항에 있어서,The method of claim 4, wherein 상기 β-1,3-glucan은 Sparassis crispa로부터 추출된 것을 사용함을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼.The β-1,3-glucan is a stabilized water-soluble emulsion composed of a conductive polymer-carbon nanotube complex, characterized in that extracted from Sparassis crispa. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 미니에멀젼 중합 공정에서 사용되는 계면활성제로는, As the surfactant used in the miniemulsion polymerization step, 음이온 계면활성제, 양이온 계면활성제, 비이온 계면활성제 중 어느 하나가 사용되는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼.A stabilized water-soluble emulsion composed of a conductive polymer-carbon nanotube composite, wherein any one of anionic surfactant, cationic surfactant, and nonionic surfactant is used. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 미니에멀젼 중합 공정에서 에멀젼의 산화중합을 위한 산화제로는,As the oxidizing agent for the oxidative polymerization of the emulsion in the miniemulsion polymerization process, 산화제의 종류는 ammonium persulfate , iron(III) p-toluenesulfonate , cerium(IV) sulfate 중 적어도 어느 하나가 사용됨을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼.The oxidizing agent is a stabilized water-soluble emulsion composed of a conductive polymer-carbon nanotube composite, characterized in that at least one of ammonium persulfate, iron (III) p-toluenesulfonate, and cerium (IV) sulfate is used. β-1,3-glucan을 이용하여, 탄소나노튜브를 수용액에 잘 분산된 용액으로 제조하는 단계;using β-1,3-glucan, preparing carbon nanotubes into a well dispersed solution in an aqueous solution; 상기 제조된 탄소나노튜브가 있는 상태에서 미니에멀젼 중합공정을 이용하여 전도성 고분자의 원료인 단량체를 중합시키는 단계;를 포함하는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼 제조방법.A method of preparing a stabilized water-soluble emulsion composed of a conductive polymer-carbon nanotube composite, comprising: polymerizing a monomer which is a raw material of a conductive polymer using a miniemulsion polymerization process in a state where the prepared carbon nanotube is present. . 탄소나노튜브 및 상기 탄소나노튜브와 복합체를 이루고자 하는 전도성 고분자 물질의 원료인 단량체가 들어있는 oil-phase의 용액과 계면활성제와 물이 들어있는 water-phase의 용액을 반응기에 넣고, 질소 대기 조건하에서 미니에멀젼 중합을 수행하여서 되는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체로 구성된 안정화된 수용성 에멀젼 제조방법.Into the reactor, an oil-phase solution containing carbon nanotubes and a monomer, which is a raw material of a conductive polymer material to be complexed with the carbon nanotubes, and a water-phase solution containing a surfactant and water are placed in a reactor under nitrogen atmosphere. Method for producing a stabilized water-soluble emulsion consisting of a conductive polymer-carbon nanotube composite, characterized in that by performing a mini emulsion polymerization. 제 8 항 또는 제 9 항의 방법에 의해 제조되는 것을 특징으로 하는 물에 분산되어 있는 전도성 고분자-탄소나노튜브 복합체.A conductive polymer-carbon nanotube composite dispersed in water, which is prepared by the method of claim 8 or 9. 제 8 항 또는 제 9 항에 따른 방법에 의해 미니에멀젼 중합이 종료된 상태에서, 진공 건조하여 만들어지는 것을 특징으로 하는 전도성 고분자-탄소나노튜브 복합체.A conductive polymer-carbon nanotube composite, which is made by vacuum drying in a state where the miniemulsion polymerization is completed by the method according to claim 8 or 9.
KR1020080092665A 2008-09-22 2008-09-22 water dispersable conductive high molecule polymer-carbon nanotube and water-soluble stabilized emulsion comprising the same, and method for fabricating the same KR101042370B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080092665A KR101042370B1 (en) 2008-09-22 2008-09-22 water dispersable conductive high molecule polymer-carbon nanotube and water-soluble stabilized emulsion comprising the same, and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080092665A KR101042370B1 (en) 2008-09-22 2008-09-22 water dispersable conductive high molecule polymer-carbon nanotube and water-soluble stabilized emulsion comprising the same, and method for fabricating the same

Publications (2)

Publication Number Publication Date
KR20100033679A KR20100033679A (en) 2010-03-31
KR101042370B1 true KR101042370B1 (en) 2011-06-17

Family

ID=42182478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080092665A KR101042370B1 (en) 2008-09-22 2008-09-22 water dispersable conductive high molecule polymer-carbon nanotube and water-soluble stabilized emulsion comprising the same, and method for fabricating the same

Country Status (1)

Country Link
KR (1) KR101042370B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462037B1 (en) 2012-08-27 2014-11-18 (주)수양켐텍 Hybrid solutions of poly(3, 4-ethylenedioxythiophene) and process for producing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406427B1 (en) * 2013-05-02 2014-06-17 학교법인 포항공과대학교 Conductive polymer-carbon composite electrode for dye sensitized solar cell having catalytic activity and electrical conductivity and dye sensitized solar cell using the same and method for manufacturing thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064836A (en) * 2006-09-22 2008-07-09 재단법인서울대학교산학협력재단 Conductive polymer-carbon nanotube composite and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064836A (en) * 2006-09-22 2008-07-09 재단법인서울대학교산학협력재단 Conductive polymer-carbon nanotube composite and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462037B1 (en) 2012-08-27 2014-11-18 (주)수양켐텍 Hybrid solutions of poly(3, 4-ethylenedioxythiophene) and process for producing

Also Published As

Publication number Publication date
KR20100033679A (en) 2010-03-31

Similar Documents

Publication Publication Date Title
Reddy et al. Coating of multiwalled carbon nanotubes with polymer nanospheres through microemulsion polymerization
Wei et al. Polyaniline nanotubes doped with sulfonated carbon nanotubes made via a self‐assembly process
Saadattalab et al. Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices
Yao et al. Synthesis and property of novel MnO2@ polypyrrole coaxial nanotubes as electrode material for supercapacitors
KR100951134B1 (en) Conductive polymer-carbon nanotube composite and manufacturing method thereof
Huang et al. Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance
Zhang et al. Tubular composite of doped polyaniline with multi-walled carbon nanotubes
Zhang et al. Wormlike acid-doped polyaniline: controllable electrical properties and theoretical investigation
Jeon et al. Grafting of polyaniline onto the surface of 4‐aminobenzoyl‐functionalized multiwalled carbon nanotube and its electrochemical properties
Ma et al. Non-covalent stabilization and functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of complex BNNSs-containing structures
Karim et al. Preparation of conducting polyaniline/TiO2 composite submicron-rods by the γ-radiolysis oxidative polymerization method
Reddy et al. Organic conjugated polymer-based functional nanohybrids: synthesis methods, mechanisms and its applications in electrochemical energy storage supercapacitors and solar cells
Karim et al. Conducting polyaniline‐titanium dioxide nanocomposites prepared by inverted emulsion polymerization
Gao et al. Surface modification methods and mechanisms in carbon nanotubes dispersion
Xie et al. Dispersing and doping carbon nanotubes by poly (p-styrene-sulfonic acid) for high-performance and stable transparent conductive films
Swathy et al. AOT assisted preparation of ordered, conducting and dispersible core-shell nanostructured polythiophene–MWCNT nanocomposites
Georgakilas et al. Polypyrrole/MWNT nanocomposites synthesized through interfacial polymerization
Choi et al. Electrochemical activity of a polyaniline/polyaniline-grafted multiwalled carbon nanotube mixture produced by a simple suspension polymerization
Kausar Conducting polymer-based nanocomposites: fundamentals and applications
Massoumi et al. In situ chemical oxidative graft polymerization of aniline from phenylamine end-caped poly (ethylene glycol)-functionalized multi-walled carbon nanotubes
Kondawar et al. Carbon nanotubes reinforced conducting polyaniline and its derivative poly (o-anisidine) composites
Karim et al. Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the γ-radiolysis polymerization method
Zhou et al. Influence of acidic type on nanostructures and electrochemical performance of polyaniline for flexible supercapacitors and improved performance based on 3D honeycomb-like nanosheet by doping HPF6 acid
Guo et al. Synthesis of polyaniline/multi-walled carbon nanotube nanocomposites in water/oil microemulsion
Nagaraja et al. Effect of multiwall carbon nanotubes on electrical and structural properties of polyaniline

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140827

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160411

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee