KR101040293B1 - Composite having polyanilaniline nanofiber and nanoparticles - Google Patents

Composite having polyanilaniline nanofiber and nanoparticles Download PDF

Info

Publication number
KR101040293B1
KR101040293B1 KR1020090012794A KR20090012794A KR101040293B1 KR 101040293 B1 KR101040293 B1 KR 101040293B1 KR 1020090012794 A KR1020090012794 A KR 1020090012794A KR 20090012794 A KR20090012794 A KR 20090012794A KR 101040293 B1 KR101040293 B1 KR 101040293B1
Authority
KR
South Korea
Prior art keywords
nanoparticles
composite material
polythiophene
present
nanofibers
Prior art date
Application number
KR1020090012794A
Other languages
Korean (ko)
Other versions
KR20100093727A (en
Inventor
신구
안대식
홍원기
윤충섭
Original Assignee
한밭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한밭대학교 산학협력단 filed Critical 한밭대학교 산학협력단
Priority to KR1020090012794A priority Critical patent/KR101040293B1/en
Publication of KR20100093727A publication Critical patent/KR20100093727A/en
Application granted granted Critical
Publication of KR101040293B1 publication Critical patent/KR101040293B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 다이아몬드나노입자 또는 실리콘카바이드나노입자 ;폴리아닐린나노섬유 및 폴리티오펜을 포함하는 복합재료에 관한 것이다.The present invention relates to a composite material comprising diamond nanoparticles or silicon carbide nanoparticles; polyaniline nanofibers and polythiophene.

본 발명에 의한 복합재료는 나노입자를 사용하여 표면적을 넓힘으로써 가스불꽃에 대한 감도를 높일 뿐 아니라, 180 ~ 260nm의 자외선을 흡수하는 다이아몬드나노섬유와 219 ~ 380nm영역의 자외선을 흡수하는 실리콘카바이드나노섬유를 사용함으로써 가스불꽃에 대한 감도를 높일 수 있는 효과가 있다. 이에 본 발명에 의한 복합재료는 화재감지센서로서 사용할 수 있다.The composite material according to the present invention not only increases sensitivity to gas flames by increasing the surface area using nanoparticles, but also diamond nanofibers absorbing ultraviolet rays of 180 to 260 nm and silicon carbide nanos absorbing ultraviolet rays of 219 to 380 nm. By using the fiber has an effect that can increase the sensitivity to the gas flame. Therefore, the composite material according to the present invention can be used as a fire detection sensor.

폴리티오펜, 나노입자  Polythiophene, nanoparticles

Description

폴리아닐린나노섬유와 나노입자를 포함하는 복합재료{Composite having polyanilaniline nanofiber and nanoparticles}Composite having polyanilaniline nanofiber and nanoparticles}

본 발명은 다이아몬드나노입자 또는 실리콘카바이드나노입자; 폴리아닐린나노섬유 및 폴리티오펜을 포함하는 복합재료에 관한 것이다.The present invention is diamond nanoparticles or silicon carbide nanoparticles; A composite material comprising polyaniline nanofibers and polythiophene.

소방 방재청 통계 자료에 의하면 2005년 화재 발생건수는 총 3만 1644건, 2,281 명의 인명피해가 발생했다. 전기, 담배, 유류, 불장난 등 대부분의 원인별 화재 발생은 감소했으나 방화로 인한 화재는 3천 201건이 발생하여 지난 5년 평균에 비해 10% 증가하였다. 화재는 예방이 최우선이나 일단 화재가 발생하면 재산 피해뿐만 아니라 인명피해가 수반 됨으로 피해를 최소화 하기위해 조기 감지가 무엇보다도 중요하다. According to the National Emergency Management Agency statistics, in 2005, a total of 31,644 fires and 2,281 casualties were incurred. Most of the causes of fires such as electricity, cigarettes, oil and fire have decreased, but 3,201 fires caused by arson have increased by 10% from the last five years average. Prevention of fire is a priority, but early detection is of paramount importance in order to minimize the damage, as well as damage to property as well as loss of life once a fire occurs.

이에 가스불꽃(Gas flame)이 190-450 nm 영역의 빛을 발산하는 점을 이용하여 화재 감지를 위한 화염센서가 개발되고 있는데 현재 185-260 nm 의 빛을 흡수하는 HAMAMATSU UV 센서가 화재 감지를 위한 화염센서로 상용화 되어 시판되고 있다. 최근에는 보다 저렴한 화염 센서 개발을 목적으로 Ce3+ 이온이 도핑된 UV sensitive glass(Li2O-Na2O-K2O-SiO2-Al2O3)를 이용한 화염 센서 등을 사용하고 있다.Therefore, a flame sensor for fire detection is being developed by using a gas flame that emits light in the region of 190-450 nm. Currently, a HAMAMATSU UV sensor that absorbs light of 185-260 nm is used for fire detection. It is commercially available as a flame sensor and is commercially available. Recently, in order to develop a more inexpensive flame sensor, a flame sensor using Ce 3+ ion-doped UV sensitive glass (Li 2 O—Na 2 OK 2 O—SiO 2 -Al 2 O 3 ) is used.

본 발명은 저렴하면서도 감도가 좋은 화염센서를 개발하기 위하여, 화염센서에 포함되는 다이아몬드나노입자 또는 실리콘카바이드나노입자;폴리아닐린나노섬유 및 폴리티오펜을 포함하는 복합재료에 관한 것이다.The present invention relates to a composite material including diamond nanoparticles or silicon carbide nanoparticles; polyaniline nanofibers and polythiophene included in a flame sensor in order to develop a low-cost, high-sensitivity flame sensor.

본 발명은 다이아몬드나노입자 또는 실리콘카바이드나노입자;폴리아닐린나노섬유 및 폴리티오펜을 포함하는 복합재료에 관한 것이다. 본 발명은 폴리티오펜을 포함함으로써 열에 대한 안정성과 전기 전도도가 우수한 복합재료를 제조할 수 있다.The present invention relates to a composite material comprising diamond nanoparticles or silicon carbide nanoparticles; polyaniline nanofibers and polythiophene. The present invention can produce a composite material having excellent thermal stability and electrical conductivity by including polythiophene.

그리고, 본 발명에 의한 복합재료는 나노입자를 사용하여 표면적을 넓힘으로써 가스불꽃의 감도를 높일 뿐 아니라, 180 ~ 260nm의 자외선을 흡수하는 다이아몬드나노섬유와 219 ~ 380nm영역의 자외선을 흡수하는 실리콘카바이드나노섬유를 사용함으로써 가스불꽃의 감도를 높일 수 있는 효과가 있다. 이에 본 발명에 의한 복합재료를 사용하여 화재를 감지하는 화염센서를 제조하였을 때, 기존의 UV Tron flame sensor 보다 저렴하면서도 감도가 좋은 장점이 있다.In addition, the composite material according to the present invention not only increases the sensitivity of the gas flame by increasing the surface area using nanoparticles, but also diamond nanofibers absorbing ultraviolet rays of 180 to 260 nm and silicon carbide absorbing ultraviolet rays of 219 to 380 nm. By using nanofibers, there is an effect that can increase the sensitivity of the gas flame. Therefore, when manufacturing a flame sensor for detecting a fire using the composite material according to the present invention, there is an advantage that the sensitivity is cheaper than the conventional UV Tron flame sensor.

본 발명에서 폴리아닐린의 단량체로써 아닐린이외에도 o-메틸아닐린(o-methylaniline), O-에틸아닐린(o-ethylaniline), m-메틸아닐린(m-methylaniline), m-에틸아닐린(m-ethylaniline)등을 사용할 수 있다.In addition to aniline as the monomer of polyaniline in the present invention, o-methylaniline, o-ethylaniline, o-ethylaniline, m-methylaniline, m-ethylaniline, etc. Can be used.

폴리 아닐린의 전기 전도도는 도핑수준(doping level), 음이온의 수(counter anion), 형태(morphology) 등 주위 환경 변화에 따라 변화하며 이와 같은 변화를 이용하여 산, 염기, 유기 용매 등 일반적인 화학물질뿐만 아니라 H2, CO, CO2, NOx, H2N2, H2S 등의 가스를 감지하는 센서로 이용된다. 폴리 아닐린 나노 섬유는 기존의 폴리 아닐린에 비해 적은 직경과 넓은 표면적으로 말미암아 감도(sensitivity)가 좋을 뿐 아니라 반응시간(response time)이 빠른 장점을 가지고 있다.The electrical conductivity of polyaniline changes according to changes in the surrounding environment, such as the doping level, the number of anions, and the morphology.These changes can be used to modify common chemicals such as acids, bases, and organic solvents. It is also used as a sensor to detect gases such as H 2 , CO, CO 2 , NOx, H 2 N 2 and H 2 S. Polyaniline nanofibers have the advantage of high sensitivity and quick response time due to their small diameter and large surface area compared to conventional polyaniline.

가스 불꽃(Gas flame)은 190 ~ 450nm영역의 빛을 발산하며, 본 발명에 의한 다이아몬드나노섬유와 실리콘카바이드나노섬유는 각각 186-260 nm 와 219-380 nm 영역의 자외선을 흡수한다. 이에 본 발명은 가스불꽃의 감도를 높이기 위하여 다이아몬드와 실리콘 카바이드의 나노 입자와 폴리 아닐린의 나노 섬유가 혼합된 복합재료를 사용하였다.Gas flame emits light in the region of 190 ~ 450nm, diamond nanofibers and silicon carbide nanofibers according to the present invention absorb ultraviolet rays in the region of 186-260 nm and 219-380 nm, respectively. Accordingly, the present invention used a composite material in which nanoparticles of diamond and silicon carbide and nanofibers of polyaniline were mixed to increase the sensitivity of the gas flame.

상기 다이아몬드나노입자 또는 실리콘카바이드나노입자로부터 선택되는 어느 하나의 나노입자의 크기는 직경이1 ~ 20nm인 것이 분산성에 좋으며, 상기 나노입자는 폴리아닐린나노섬유 100중량부에 대하여1 ~ 40중량부를 포함하는 것이 본 발명에 의한 복합재료의 가스불꽃의 감도를 높이는 데 효과적이다.The size of any one of the nanoparticles selected from the diamond nanoparticles or silicon carbide nanoparticles is 1 to 20nm in diameter is good for dispersibility, the nanoparticles include 1 to 40 parts by weight based on 100 parts by weight of polyaniline nanofibers It is effective to raise the sensitivity of the gas flame of the composite material by this invention.

본 발명에서 상기 복합재료는 폴리아닐린나노섬유에 나노입자와 폴리티오펜 화합물을 혼합하여 교반함으로써 제조될 수 있다. 그리고 상기 폴리티오펜 화합물은 상기 복합재료에 폴리아닐린나노섬유 100중량부에 대하여 0.1 ~ 20중량부의 양으로 포함될 수 있다. 상기 폴리티오펜 화합물로는 예를들어 한국공개특허2006-0108173에 제시된 폴리티오펜 화합물이 사용될 수 있다. 본 발명에서 상기 폴리티오펜은 폴리아닐린나노섬유와 함께 포함됨으로써 가스불꽃의 감도를 높이는데 더욱 효과적이며, 가공성을 높여주고 또한 산화에 의한 안정성이 좋아진다. 그리고 폴리티오펜은 폴리아닐린에 비해 열에 대한 안정성과 전기 전도도가 더 우수하기 때문에 폴리티오펜 첨가한 복합재료를 포함한 화염센서를 제조하였을 때 열에 대한 센서의 안정성이 증가하고 전기 전도도의 증가로 말미암아 감지능력(sensitivity)이 폴리아닐린만 포함하는 복합재료에 비해 더욱 향상될 수 있다. 본 발명에 의한 복합재료로 수소가스센서를 제조하였을 때 종래기술에 비하여 수소가스농도에 따른 센서의 민감도가 1.5 ~ 3배 증가할 수 있다.In the present invention, the composite material may be prepared by mixing and stirring nanoparticles and polythiophene compounds in polyaniline nanofibers. And the polythiophene compound may be included in the composite material in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of polyaniline nanofibers. As the polythiophene compound, for example, the polythiophene compound disclosed in Korean Patent Laid-Open Publication No. 2006-0108173 may be used. In the present invention, the polythiophene is more effective in increasing the sensitivity of the gas flame by being included with the polyaniline nanofibers, improving the processability and also improve the stability by oxidation. In addition, polythiophene has better heat stability and electrical conductivity than polyaniline. Therefore, when a flame sensor including a polythiophene-containing composite is manufactured, the stability of the sensor against heat increases and the electrical conductivity increases. Sensitivity can be further improved compared to composite materials containing only polyaniline. When the hydrogen gas sensor is manufactured from the composite material according to the present invention, the sensitivity of the sensor according to the hydrogen gas concentration may be increased by 1.5 to 3 times as compared with the prior art.

본 발명에서 폴리아닐린나노섬유는 아닐린과 산화제를 산에 반응시킴으로써 얻을 수 있다. 본 발명에서 사용하는 산화제는 암모늄퍼설페이트((NH4)2S2O8, (ammonium persulfate)), 포타슘디클로메이트(K2Cr2O7, (Potassium dichromate)), 클로로아우릭엑시드(HAuCl4, (Chloroauric acid)) 및 아이론클로라이드(FeCl3, (Iron(Ⅲ) chloride)로부터 이루어진 군으로부터 하나이상 선택할 수 있으며, 보다 구체적인 예시로는 암모늄퍼설페이트((NH4)2S2O8(ammonium persulfate))을 사용할 수 있다. 상기 산화제는 아닐린 100중량부에 대하여 30 ~ 100중량부를 사용할 수 있다. 또한 상기 산은 염산(HCl), 질산(HNO3), 황산(H2SO4), 과염소산(HClO4), CSA(camphosuofonic acid) 및 p-톨루엔설포닉에시드(p-toluenesulfonic acid)로 이루어진 군으로부터 하나이상 선택할 수 있다. 보다 바람직한 예로써는 CSA(camphosuofonic acid)를 들 수 있다.In the present invention, polyaniline nanofibers can be obtained by reacting aniline and an oxidizing agent with an acid. The oxidizing agent used in the present invention is ammonium persulfate ((NH 4 ) 2 S 2 O 8, (ammonium persulfate)), potassium dichloromate (K 2 Cr 2 O 7, (Potassium dichromate)), chloroauric acid ( HAuCl 4, (Chloroauric acid)) and iron chloride (FeCl 3, (Iron (III) chloride) can be selected from the group consisting of one or more, and more specific examples of ammonium persulfate ((NH 4 ) 2 S 2 O 8 ammonium persulfate) The oxidizing agent may be used in an amount of 30 to 100 parts by weight based on 100 parts by weight of aniline, and the acid may be hydrochloric acid (HCl), nitric acid (HNO 3) , sulfuric acid (H 2 SO 4 ), One or more selected from the group consisting of perchloric acid (HClO 4 ), camphosuofonic acid (CSA) and p- toluenesulfonic acid ( p - toluenesulfonic acid), and more preferred examples include camphosuofonic acid (CSA).

본 발명에서 폴리아닐린 나노섬유와 다이아몬드나노입자를 포함하는 복합재료는 다음과 같은 방법으로 제조 될 수 있다. 상기 방법은 상기 아닐린과 산화제를 CSA(camphosulfonic acid)등을 포함하는 산 용액에 녹여 아닐린 용액을 제조한다. 이때 사용하는 아닐린과 산은 그 몰비가 1 : 1 ~ 10 가 되도록 사용하는 것이 아닐린이 산에 효과적으로 용해될 수 있다. 상기 아닐린 용액에 다이아몬드나노입자를 적가하면서 60~ 150분 격렬하게 교반하여 반응시킨 후 원심분리기 등을 사용하여 본 발명에 의한 생성물을 얻을 수 있다. 또한 폴리 아닐린 나노섬유와 실리콘 카바이드 나노입자의 복합재료는 다음과 같은 방법으로 얻을 수 있다. 아닐린과 산화제를 산에 반응시키되 2 ~ 5시간 반응이 완결될 때까지 방치하여 폴리아닐린 나노섬유를 얻을 수 있다. 반응이 끝난 뒤 분산된 실리콘 카바이드용액을 상기 폴리아닐린 나노섬유에 격렬하게 교반하면서 적가 함으로써 본 발명에 의한 복합재료를 제조할 수 있다.In the present invention, a composite material including polyaniline nanofibers and diamond nanoparticles may be prepared by the following method. The method dissolves the aniline and the oxidizing agent in an acid solution containing CSA (camphosulfonic acid) and the like to prepare aniline solution. At this time, the aniline and acid to be used is not to be used so that the molar ratio of 1: 1 to 10 can be effectively dissolved in the acid. After the diamond nanoparticles are added dropwise to the aniline solution and reacted vigorously for 60 to 150 minutes, the product according to the present invention can be obtained using a centrifuge or the like. In addition, the composite material of polyaniline nanofibers and silicon carbide nanoparticles can be obtained by the following method. The aniline and the oxidizing agent may be reacted with an acid, but may be left until the reaction is completed for 2 to 5 hours to obtain polyaniline nanofibers. After completion of the reaction, the dispersed silicon carbide solution is added dropwise to the polyaniline nanofibers with vigorous stirring to prepare a composite material according to the present invention.

본 발명에 의한 복합재료는 자외선 조사 시 면저항 값이 증가할 수 있으며, 구체적으로, 0.1 ~ 1.5kΩ 증가할 수 있다. 상기 자외선 조사시 면 저항값의 변화를 이용하여, 본 발명에 의한 복합재료는 자외선 발생 시 저항 변화, 즉 전류변화의 값으로부터 자외선을 측정할 수 있는 센서를 개발하는데 사용할 수 있으며, 화재발생시 많은 양의 자외선을 발생하기 때문에 화재감지센서에 사용할 수 있다. The composite material according to the present invention may increase the sheet resistance value during ultraviolet irradiation, and specifically, may increase 0.1 to 1.5 kΩ. By using the change in the surface resistance value when irradiating the ultraviolet rays, the composite material according to the present invention can be used to develop a sensor that can measure the ultraviolet rays from the value of the resistance change, that is, the current change when generating ultraviolet rays, a large amount during a fire Because it generates ultraviolet rays, it can be used for fire detection sensors.

본 발명에 의한 복합재료는 나노입자를 사용하여 표면적을 넓힘으로써 가스불꽃의 감도를 높일 뿐 아니라, 180 ~ 260nm의 자외선을 흡수하는 다이아몬드나노 섬유와 219~ 380nm영역의 자외선을 흡수하는 실리콘카바이드나노섬유를 혼합하여 사용함으로써 가스불꽃에 대한 감도를 높일 수 있는 효과가 있으며, 상기 복합재료를 사용하여 화재감지를 위한 화염센서에 제조할 경우에는 더욱 감도가 높은 화염센서로 사용할 수 있다. 이에 본 발명을 화염센서에 포함 시켰을 때 기존의 UV Tron flame sensor 보다 저렴하면서도 감도가 좋은 장점이 있다.The composite material according to the present invention not only increases the sensitivity of the gas flame by increasing the surface area using nanoparticles, but also diamond nanofibers absorbing ultraviolet rays of 180 to 260 nm and silicon carbide nanofibers absorbing ultraviolet rays in the region of 219 to 380 nm. By using the mixture to increase the sensitivity to the gas flame has an effect, and when using the composite material to manufacture a flame sensor for fire detection can be used as a more sensitive flame sensor. Therefore, when the present invention is included in the flame sensor, there is an advantage that the sensitivity is cheaper than the existing UV Tron flame sensor.

또한 상기 복합재료는 폴리티오펜을 포함함으로써 가스불꽃에 대한 감도를 더욱 높일 수 있으며, 산화에 대한 저항성 및 가공성이 우수해진다. 보다 구체적으로, 폴리티오펜은 폴리아닐린에 비해 열에 대한 안정성과 전기 전도도가 더 우수하기 때문에 폴리티오펜 첨가한 복합재료를 포함한 화염센서를 제조하였을 때 열에 대한 센서의 안정성이 증가하고 전기 전도도의 증가로 말미암아 화염 감지능력(sensitivity)이 향상될 수 있다. In addition, the composite material may further increase the sensitivity to the gas flame by including polythiophene, and excellent resistance to oxidation and processability. More specifically, since polythiophene has better heat stability and electrical conductivity than polyaniline, when the flame sensor including the polythiophene-containing composite is manufactured, the stability of the sensor to heat is increased and the electrical conductivity is increased. The flame sensitivity can be improved.

이하 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명한다. 다만 이러한 설명은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시하게 하기 위함이지, 이로써 본 발명의 권리범위가 한정되는 것은 아니다.Hereinafter, the configuration and operation of the preferred embodiment of the present invention will be described in detail. However, this description is intended to be easily carried out by those skilled in the art, the scope of the present invention is not limited thereto.

[제조예1] 폴리아닐린나노섬유제조 Preparation Example 1 Polyaniline Nano Fiber Production

아닐린0.28g(3mmol), 암모늄퍼설페이트(ammonium persulfate )0.17g(0.75mmol)을 각각10 ml의 1.0 M HCl 용액에 완전히 녹인 후 두 용액을 신속하게 섞고 1분간 잘 흔들어 주었다. 위 용액을 3-4시간 반응이 완결될 때까지 방치 한 후 원심 분리기를 이용하여 폴리아닐린 나노 섬유를 얻었다. 상기 제조된 폴리아닐린 나노섬유는 0.1M HCl 용액으로 3번 반복적으로 세척하여 불순물을 제거하였다.0.28 g (3 mmol) of aniline and 0.17 g (0.75 mmol) of ammonium persulfate were completely dissolved in 10 ml of 1.0 M HCl solution, and the two solutions were quickly mixed and shaken well for 1 minute. The solution was left to stand for 3-4 hours until the reaction was completed to obtain a polyaniline nanofibers by using a centrifuge. The polyaniline nanofibers prepared above were washed three times with 0.1M HCl solution to remove impurities.

[실시예1] 폴리아닐린 나노섬유, 폴리티오펜, 실리콘 카바이드나노입자를 포함하는 복합재료 Example 1 Composite Material Containing Polyaniline Nanofibers, Polythiophene, and Silicon Carbide Nanoparticles

먼저 실리콘카바이드나노입자(Aldrich)0.075g을 10ml의 증류수에서 30분간 sonication하여 균일하게 분산된 실리콘카바이드나노입자용액을 얻었다. 상기 제조에 1에서 제조된 폴리아닐린나노섬유 0.4g, 한국공개특허2006-0108173의 합성예 1에서 제조한 폴리티오펜0.02g , 상기 실리콘 카바이드나노입자 용액 2ml(10%)를 혼합하고 격렬하게 교반하였다. 생성물은 0.1 M HCl 용액으로 3번 반복적으로 세척하여 불순물을 제거하였다. First, 0.075 g of silicon carbide nanoparticles (Aldrich) was sonicated in 10 ml of distilled water for 30 minutes to obtain a uniformly dispersed silicon carbide nanoparticle solution. 0.4 g of polyaniline nanofiber prepared in 1, 0.02 g of polythiophene prepared in Synthesis Example 1 of Korean Patent Laid-Open Publication No. 2006-0108173, and 2 ml (10%) of the silicon carbide nanoparticle solution were mixed and stirred vigorously. . The product was washed three times with 0.1 M HCl solution to remove impurities.

[실시예2] 폴리아닐린 나노섬유, 폴리티오펜, 실리콘 카바이드나노입자를 포함하는 복합재료 Example 2 Composite Material Containing Polyaniline Nanofibers, Polythiophene, and Silicon Carbide Nanoparticles

상기 실시예 1과 동일하게 실시하되, 상기 실리콘 카바이드나노입자용액을 4ml(20%)를 넣어서 혼합한 것에 차이가 있으며 나머지 과정은 상기 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was performed except that 4 ml (20%) of the silicon carbide nanoparticle solution was mixed and the rest of the process was performed in the same manner as in Example 1.

[실시예3] 폴리아닐린 나노섬유, 폴리티오펜, 실리콘 카바이드나노입자를 포함하는 복합재료 Example 3 Composite Material Containing Polyaniline Nanofibers, Polythiophene, and Silicon Carbide Nanoparticles

상기 실시예 1과 동일하게 실시하되, 상기 실리콘 카바이드나노입자용액을 6ml(30%)를 넣어서 혼합한 것에 차이가 있으며 나머지 과정은 상기 실시예 1과 동 일하게 실시하였다.The same procedure as in Example 1 was carried out except that 6 ml (30%) of the silicon carbide nanoparticle solution was mixed and the rest of the process was performed in the same manner as in Example 1.

[실시예4] 폴리 아닐린 나노섬유, 폴리티오펜, 다이아몬드 나노입자를 포함하는 복합재료 Example 4 Composite Material Containing Polyaniline Nanofibers, Polythiophene, and Diamond Nanoparticles

제조예1에서 제조한 폴리아닐린나노섬유 0.4g에 한국공개특허2006-0108173의 합성예 1에서 제조한 폴리티오펜0.02g 및 직경 10 nm의 다이아몬드 나노 입자(Aldrich) 0.1g(8.3 mmol)를 혼합하고, 10분간 sonication 한 후 magnetic stirring plate 위에서 격렬하게 교반하였다. 격렬하게 교반 후 원심 분리기를 이용하여 생성물을 얻었다. 생성물은 0.1 M CSA(camphosuofonic acid) 용액으로 3번 반복적으로 세척하여 불순물을 제거하였다.0.4 g of polyaniline nanofiber prepared in Preparation Example 1 was mixed with 0.02 g of polythiophene prepared in Synthesis Example 1 of Korea Patent Publication No. 2006-0108173 and 0.1 g (8.3 mmol) of diamond nanoparticles (Aldrich) having a diameter of 10 nm. After 10 minutes of sonication, the mixture was stirred vigorously on a magnetic stirring plate. After vigorous stirring the product was obtained using a centrifuge. The product was washed three times with 0.1 M CSA (camphosuofonic acid) solution to remove impurities.

하기 도 1은 본 발명의 실시예1에서 폴리아닐린나노섬유의 SEM(scanning electron microscope, HITACHI S-4700) 이미지를 나타낸 것이다. 상기 폴리아닐린나노섬유는 100 nm 직경의 섬유 형태를 갖고 있음을 알 수 있다.1 shows an SEM (scanning electron microscope, HITACHI S-4700) image of polyaniline nanofibers in Example 1 of the present invention. It can be seen that the polyaniline nanofibers have a fiber shape having a diameter of 100 nm.

하기 도 2는 실시예 4의 SEM(scanning electron microscope, HITACHI S-4700) 이미지를 나타낸 것이다. 폴리 아닐린 나노 섬유에 10 nm 이하의 다이아몬드 입자들이 폴리 아닐린 섬유 위에 뭉쳐있는 것을 확인 할 수 있다.2 shows a scanning electron microscope (HITACHI S-4700) image of Example 4. FIG. It can be seen that diamond particles of 10 nm or less are agglomerated on the polyaniline fibers in the polyaniline nanofibers.

하기 도 3는 실시예4와 제조예1과 다이아몬드의 XRD 패턴을 나타낸 것이다. 실시예4의 XRD 패턴에서 2θ = 48˚에서 다이아몬드의 고유한 피크가 관찰되었다.Figure 3 shows the XRD pattern of Example 4 and Preparation Example 1 and diamond. An inherent peak of diamond was observed at 2θ = 48 ° in the XRD pattern of Example 4.

하기 도 4는 실시예1 내지 실시예 3에 자외선을 조사하였을 때 면저항 값의 변화를 5분 간격으로 측정하여 나타낸 것이다. 상기 면저항 측정은 하기와 같이 실시하였다. 실시예1 내지 실시예 3에 의해 제조된 복합재료를 각각 스핀코팅방법으 로 두께10mm의 박막(thin film)을 제작하였다. 상기 박막에 자외선을 조사하여, NAGY sheet resistivity meter SD-51을 이용하여, 면저항 값의 변화를 5분 간격으로 측정하였다. 하기 도 4의 X 축은 조사시간(분)이고, Y축은 면저항 값(kΩ)이다. 실시예 1내지 실시예 3에 자외선을 조사하였을 때 면저항 값이 증가하였음을 알 수 있다. 이는 화재감지센서에 상기 복합재료를 포함시켰을 때 면저항 값의 변화로 화재를 감지 할 수 있음을 알 수 있다.Figure 4 shows the measurement of the change in the sheet resistance value at 5 minutes intervals when irradiated with ultraviolet rays in Examples 1 to 3. The sheet resistance measurement was performed as follows. Each of the composite materials prepared in Examples 1 to 3 was manufactured by a thin film having a thickness of 10 mm by spin coating. The thin film was irradiated with ultraviolet rays, and a change in sheet resistance value was measured at 5 minute intervals using a NAGY sheet resistivity meter SD-51. 4, X axis is irradiation time (minute) and Y axis is sheet resistance value (kΩ). It can be seen that the sheet resistance values increased when the ultraviolet rays were irradiated to Examples 1 to 3. It can be seen that the fire can be detected by a change in sheet resistance when the composite material is included in the fire detection sensor.

도 1은 본 발명의 실시예1에서 폴리아닐린나노섬유의 SEM(scanning electron microscope, HITACHI S-4700) 이미지를 나타낸 것이다. Figure 1 shows a scanning electron microscope (SEM) image of polyaniline nanofibers in Example 1 of the present invention.

도 2는 실시예 4의 SEM(scanning electron microscope, HITACHI S-4700) 이미지를 나타낸 것이다. 2 shows a scanning electron microscope (HITACHI S-4700) image of Example 4. FIG.

도 3은 실시예4와 제조예1과 다이아몬드의 XRD 패턴을 나타낸 것이다. Figure 3 shows the XRD pattern of Example 4, Preparation Example 1 and diamond.

도 4는 실시예1 내지 실시예 3을 각각 자외선을 조사하였을 때 면저항 값의 변화를 5분 간격으로 측정하여 나타낸 것이다. X 축은 자외선 조사시간(분)이고, Y축은 면저항 값(kΩ)이다.Figure 4 shows the measurement of the change in the sheet resistance value at 5 minutes intervals when each of Examples 1 to 3 irradiated with ultraviolet light. The X axis is ultraviolet irradiation time (minutes), and the Y axis is sheet resistance value (kPa).

Claims (6)

다이아몬드나노입자 또는 실리콘카바이드나노입자; 폴리아닐린나노섬유 및 폴리티오펜을 포함하는 복합재료.Diamond nanoparticles or silicon carbide nanoparticles; A composite material comprising polyaniline nanofibers and polythiophene. 제 1항에 있어서,The method of claim 1, 상기 나노입자의 크기는 직경이 1 ~ 20nm인 복합재료.The nanoparticles have a size of 1 ~ 20nm in diameter composite material. 제 2항에 있어서,3. The method of claim 2, 상기 나노입자는 폴리아닐린나노섬유 100중량부에 대하여 1 ~ 40중량부를 포함하는 복합재료.The nanoparticles are 1 to 40 parts by weight based on 100 parts by weight of polyaniline nanofibers. 제 1항에 있어서,The method of claim 1, 상기 복합재료는 폴리아닐린나노섬유에 나노입자를 적가 하여 제조되는 복합재료.The composite material is prepared by dropping nanoparticles in polyaniline nanofibers. 제 1항에 또는 제 3항에서 선택되는 어느 한 항에 있어서,The method according to any one of claims 1 or 3, wherein 상기 폴리티오펜은 폴리아닐린나노섬유 100중량부에 대하여 0.1 ~ 20중량부를 포함하는 복합재료.The polythiophene is a composite material containing 0.1 to 20 parts by weight based on 100 parts by weight of polyaniline nanofibers. 제 5항에 있어서,The method of claim 5, 상기 복합재료는 자외선 조사시 면저항 값이 증가하는 복합재료.The composite material is a composite material that increases the sheet resistance value upon ultraviolet irradiation.
KR1020090012794A 2009-02-17 2009-02-17 Composite having polyanilaniline nanofiber and nanoparticles KR101040293B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090012794A KR101040293B1 (en) 2009-02-17 2009-02-17 Composite having polyanilaniline nanofiber and nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090012794A KR101040293B1 (en) 2009-02-17 2009-02-17 Composite having polyanilaniline nanofiber and nanoparticles

Publications (2)

Publication Number Publication Date
KR20100093727A KR20100093727A (en) 2010-08-26
KR101040293B1 true KR101040293B1 (en) 2011-06-10

Family

ID=42757997

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090012794A KR101040293B1 (en) 2009-02-17 2009-02-17 Composite having polyanilaniline nanofiber and nanoparticles

Country Status (1)

Country Link
KR (1) KR101040293B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101194387B1 (en) * 2011-04-07 2012-10-25 광주과학기술원 Nanodiamond-polymer nanoparticle composites and their thin films
KR101314303B1 (en) * 2011-09-05 2013-10-14 울산대학교 산학협력단 Hydrogen seonsor using polyaniline on porous 3C-SiC heterojunction and Method for fabricating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050126909A1 (en) 2003-12-11 2005-06-16 Weiller Bruce H. Conducting polymer nanofiber sensors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050126909A1 (en) 2003-12-11 2005-06-16 Weiller Bruce H. Conducting polymer nanofiber sensors
US20070187239A1 (en) 2003-12-11 2007-08-16 The Aerospace Corporation Regents Of The University Of California Conducting polymer nanofiber sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shabnam Virji et al., Nano Letters, 2004, 4 (3), pp 491–496

Also Published As

Publication number Publication date
KR20100093727A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
Kim et al. Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels
Park et al. One-pot synthesis of silver nanoparticles decorated poly (3, 4-ethylenedioxythiophene) nanotubes for chemical sensor application
US8426208B2 (en) Method and apparatus for determining radiation
Li et al. New lanthanide ternary complex system in electrospun nanofibers: Assembly, physico-chemical property and sensor application
Ji et al. Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide
Yang et al. Simple synthesis of ZnO nanoparticles on N-doped reduced graphene oxide for the electrocatalytic sensing of l-cysteine
Şenocak et al. Preparation of single walled carbon nanotube-pyrene 3D hybrid nanomaterial and its sensor response to ammonia
Shen et al. Tuning the fluorescence performance of carbon dots with a reduction pathway
Li et al. Stable fluorescent NH3 sensor based on MAPbBr3 encapsulated by tetrabutylammonium cations
Lv et al. Polyphenylene sulfide (PPS) fibrous felt coated with conductive polyaniline via in situ polymerization for smart high temperature bag-filter
KR101040293B1 (en) Composite having polyanilaniline nanofiber and nanoparticles
Jadoun et al. Microwave‐assisted synthesis of copolymers of luminol with anisidine: Effect on spectral, thermal and fluorescence characteristics
Barvin et al. Highly selective and sensitive sensing of toxic mercury ions utilizing carbon quantum dot-modified glassy carbon electrode
Ma et al. Optical, electrochemical, photoelectrochemical and electrochromic properties of polyamide/graphene oxide with various feed ratios of polyamide to graphite oxide
Mohammed et al. Poly (N-methyl pyrrole) decorated rGO nanocomposite: A novel ultrasensitive and selective carbon monoxide sensor
Yan et al. Exploitation of a photoelectrochemical sensing platform for catechol quantitative determination using BiPO4 nanocrystals/BiOI heterojunction
Amarnath et al. Size controlled V2O5-WO3 nano-islands coated polypyrrole matrix: A unique nanocomposite for effective room temperature ammonia detection
Liang et al. Practical room temperature formaldehyde sensing based on a combination of visible-light activation and dipole modification
Zhu et al. Probing the unexpected behavior of AuNPs migrating through nanofibers: a new strategy for the fabrication of carbon nanofiber–noble metal nanocrystal hybrid nanostructures
Kausar et al. Overview of nonflammability characteristics of graphene and graphene oxide-based polymeric composite and essential flame retardancy techniques
Li et al. A facile method to enhance UV stability of PBIA fibers with intense fluorescence emission by forming complex with hydrogen chloride on the fibers surface
Luo et al. Hyperbranched conjugated polymers containing 1, 3-butadiene units: Metal-free catalyzed synthesis and selective chemosensors for Fe 3+ ions
Wu et al. A bromine-catalysis-synthesized poly (3, 4-ethylenedioxythiophene)/graphitic carbon nitride electrochemical sensor for heavy metal ion determination
Adhikari et al. Polyaniline composite by in situ polymerization on a swollen PVA gel
Li et al. Graphdiyne: A highly sensitive material for ppb-level NO 2 gas sensing at room temperature

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140507

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150602

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160603

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170605

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180605

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190529

Year of fee payment: 9