KR101039095B1 - Biocompatible nanocomposite having pH sensitivity for drug delivery and process for preparing the same - Google Patents

Biocompatible nanocomposite having pH sensitivity for drug delivery and process for preparing the same Download PDF

Info

Publication number
KR101039095B1
KR101039095B1 KR1020090025826A KR20090025826A KR101039095B1 KR 101039095 B1 KR101039095 B1 KR 101039095B1 KR 1020090025826 A KR1020090025826 A KR 1020090025826A KR 20090025826 A KR20090025826 A KR 20090025826A KR 101039095 B1 KR101039095 B1 KR 101039095B1
Authority
KR
South Korea
Prior art keywords
nanocomposite
drug delivery
polyoxyethylene sorbitan
tween
sensitivity
Prior art date
Application number
KR1020090025826A
Other languages
Korean (ko)
Other versions
KR20100107646A (en
Inventor
육순홍
오근상
송지영
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020090025826A priority Critical patent/KR101039095B1/en
Publication of KR20100107646A publication Critical patent/KR20100107646A/en
Application granted granted Critical
Publication of KR101039095B1 publication Critical patent/KR101039095B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Abstract

본 발명은 pH 민감성을 갖는 약물전달용 생체적합성 나노복합체 및 이의 제조방법에 관한 것이다. 본 발명에 따른 나노복합체는 기존의 약물전달체와 비교하여 지속적인 약물 방출 형태를 나타내며, 민감한 pH 변화에 대응하는 지능형 약물 방출 형태를 나타낸다. 따라서, 본 발명에 따른 나노복합체는 항암제 전달체로서 매우 유용하게 사용될 수 있다.The present invention relates to a biocompatible nanocomposite for drug delivery having a pH sensitivity and a method for preparing the same. The nanocomposite according to the present invention exhibits a sustained drug release form as compared to conventional drug delivery agents, and an intelligent drug release form corresponding to sensitive pH changes. Therefore, the nanocomposite according to the present invention can be very usefully used as an anticancer drug carrier.

Description

pH 민감성을 갖는 약물전달용 생체적합성 나노복합체 및 이의 제조방법 {Biocompatible nanocomposite having pH sensitivity for drug delivery and process for preparing the same}Biocompatible nanocomposite for drug delivery with pH sensitivity and preparation method thereof {Biocompatible nanocomposite having pH sensitivity for drug delivery and process for preparing the same}

본 발명은 pH 민감성을 갖는 약물전달용 생체적합성 나노복합체 및 이의 제조방법에 관한 것이다.The present invention relates to a biocompatible nanocomposite for drug delivery having a pH sensitivity and a method for preparing the same.

약학의 눈부신 발달로 여러 가지 고성능의 신약들이 개발되고 있다. 그러나 치료하려는 질환의 생리적 조건에 최적화된 전달이 어렵기 때문에 임상에서의 사용에 있어 극히 제한을 받고 있다. 특히 항암제 전달의 경우 선택성 및 지속성의 결여로 인하여 고농도의 약물 투여가 요구되며, 이로 인하여 심각한 부작용이 보고되고 있다.Due to the remarkable development of pharmacy, various high performance new drugs are being developed. However, their use in clinical practice is extremely limited because of the difficulty of optimized delivery of physiological conditions of the disease to be treated. In particular, anticancer drug delivery requires a high concentration of drug due to lack of selectivity and persistence, and serious side effects have been reported.

1980년대 초에 개발된 항암제들은 전임상 단계에서 매우 높은 암세포 사멸율을 나타내었지만, 실제 임상 단계에서는 낮은 암 표적화율, 비특이적 독성 및 약제내성세포의 발생과 같은 부작용으로 획기적인 성과를 보여주지 못하였다.The anticancer drugs developed in the early 1980s showed very high cancer cell death rate in the preclinical stage, but in the actual clinical stage, they did not show significant results due to side effects such as low cancer targeting rate, nonspecific toxicity and drug-resistant cell development.

따라서, 이러한 항암제의 부작용을 최소화하기 위하여 새로운 항암제 제형에 대하여 많은 연구가 진행되어왔다. 1980년대 중반, 대부분의 고형암 주위에 있는 혈관은 다른 정상조직에 비해 헐거워 적절한 크기를 갖는 나노입자가 그 헐거워진 틈을 이용해 고형암 주위에 쉽게 축적될 수 있다는 EPR(enhanced permeation and retention) 효과가 발표된 이후, 다양한 형태의 나노입자가 항암제 전달에 사용되고 있다.Therefore, many studies have been conducted on new anticancer formulations to minimize the side effects of such anticancer agents. In the mid-1980s, the enhanced permeation and retention (EPR) effect revealed that blood vessels around most solid cancers were looser than other normal tissues, so that nanoparticles of the appropriate size could easily accumulate around solid cancers using the loose gaps. Since then, various types of nanoparticles have been used for anticancer drug delivery.

약물전달에 이용되는 나노입자는 표면이 친수성 물질로 둘러쌓여 인체 내의 여러 면역기작들로부터 보호받을 수 있으며, 내부 중심에는 소수성 코어가 형성되어 소수성인 항암제를 봉입할 수 있도록 설계되어 있다. 이러한 나노입자의 종류로는 고분자 약물전달체, 지방 약물전달체, 나노튜브 등이 있으며, 고분자 약물전달체로는 고분자-약물 접합체, 고분자 미셀, 덴드리머 등이 있다. 이들 중 고분자 공중합체를 이용한 생체적합성 고분자 미셀을 항암제 전달체로 응용하는 연구가 가장 활발히 진행되고 있다(Colloids and Surfaces B: Biointerfaces, 1999, volume 16, pages 113-134, by Kabanov et al., British Journal of Cancer, 2004, volume 90, pages 2085-2091, by Ranson et al.). 구체적으로, 대한민국특허등록 제 10-421,451호, 미국특허등록 제 5,4149,513호, 일본특허공개 제 1990-335267호에는 약물 담체에 대한 친수성 절편 및 소수성 절편을 갖는 블록 공중합체에 형성된 안정한 고분자 미셀 조성물을 이용하여 난용성 항암제인 파클리탁셀의 가용화에 관하여 기재되어 있다. 그러나 상기 특허문헌에서 사용하는 대부분의 블록 공중합체들은 인체 내에서의 불안정성 때문에 실제 임상적용에 있어 많은 문제점을 가지고 있다. 특히, 문헌(Colloids and Surfaces B: Biointerfaces, 1999, volume 16, pages 113-134, 및 British Journal of Cancer, 2004, volume 90, pages 2085-2091)에 보 고되어 현재 임상 실험중인 SP1049C(pluronic/doxorubicin 복합체: Supratek Pharma Inc 제조)의 경우 초기 방출이 심하고 암세포에 대한 표적성이 떨어지는 문제점이 있다.Nanoparticles used for drug delivery are surrounded by hydrophilic materials and protected from various immune mechanisms in the human body. A hydrophobic core is formed at the inner center to enclose a hydrophobic anticancer agent. Examples of such nanoparticles include polymer drug carriers, fatty drug carriers, nanotubes, and the like, and polymer drug carriers include polymer-drug conjugates, polymer micelles, and dendrimers. Among these, researches on applying biocompatible polymer micelles using polymer copolymers as anticancer drug carriers are most actively conducted (Colloids and Surfaces B: Biointerfaces, 1999, volume 16, pages 113-134, by Kabanov et al., British Journal of Cancer, 2004, volume 90, pages 2085-2091, by Ranson et al.). Specifically, Korean Patent Registration No. 10-421,451, US Patent Registration No. 5,4149,513, and Japanese Patent Publication No. 1990-335267 disclose stable polymers formed on block copolymers having hydrophilic fragments and hydrophobic fragments for drug carriers. A micelle composition is used for the solubilization of paclitaxel, a poorly soluble anticancer agent. However, most of the block copolymers used in the patent document have many problems in actual clinical application because of instability in the human body. In particular, SP1049C (pluronic / doxorubicin, currently in clinical trials, reported in Colloids and Surfaces B: Biointerfaces, 1999, volume 16, pages 113-134, and British Journal of Cancer, 2004, volume 90, pages 2085-2091). Complex (manufactured by Supratek Pharma Inc) has severe initial release and poor target for cancer cells.

상기한 바와 같이, 대부분의 나노입자는 항암제의 체내 체류시간 연장과 표적화율의 증가를 유도하여 항암제 부작용을 감소시키고 생물학적 유용성을 증가시키지만, 봉입한 항암제의 방출속도를 조절할 수 없기 때문에 보다 큰 항암효과를 기대하기가 어렵다.As mentioned above, most of the nanoparticles induce prolonged residence time and increase the targeting rate of the anticancer agent, thereby reducing the side effects of the anticancer agent and increasing the bioavailability, but the anticancer effect is greater because the release rate of the enclosed anticancer agent cannot be controlled. It's hard to expect.

한편, 암세포 주위의 pH는 암세포의 왕성한 대사에 의해 발생되는 유기산 때문에 정상조직보다 낮은 pH 분포를 나타낸다. 즉, 암세포의 pH는 약 6.5 이하로, 정상세포의 pH 7.4 보다 약간 산성이다(Nano Letters, 2005, 5, pages 325-329 by Bae et al.). 따라서, 암세포와 정상세포 사이의 pH 차이를 인식할 수 있는 pH 민감성 고분자 나노입자를 제조하는 방법에 대해 많은 연구가 진행되어 왔다. 이러한 연구의 일 예로, 다당류에 설폰아미드를 접합한 pH 민감성 고분자 나노입자를 제조하거나, 암세포의 pH에 민감한 히스티딘 유래 고분자에 작은 분자량의 내인성 리간드 또는 세포투과 펩티드를 접합하여 나노입자를 제조하였다. 상기 제조된 나노입자들은 pH 7.0 이상에서는 항상 일정한 크기를 유지하지만 pH 7.0 이하에서는 고분자의 소수화로 인해 나노입자간의 응집이 발생하여 암세포와는 상호작용을 하지만 정상세포와는 상호작용을 하지 않음을 발견하였다. 이러한 현상으로 나노입자가 암세포 주위에 쉽게 축적될 수 있기 때문에, 나노입자의 이러한 현상을 이용하면 암세포에 대한 암 표적화율을 높일 수 있을 것으로 생각된다.On the other hand, the pH around cancer cells shows a lower pH distribution than normal tissue because of the organic acid generated by the vigorous metabolism of cancer cells. That is, the pH of cancer cells is about 6.5 or less, which is slightly acidic than that of normal cells (Nano Letters, 2005, 5, pages 325-329 by Bae et al.). Therefore, much research has been conducted on the preparation of pH-sensitive polymer nanoparticles that can recognize the pH difference between cancer cells and normal cells. As an example of this study, a pH-sensitive polymer nanoparticles prepared by conjugating sulfonamide to polysaccharides were prepared, or nanoparticles were prepared by conjugating a low molecular weight endogenous ligand or cell permeation peptide to a histidine-derived polymer sensitive to cancer cells. The prepared nanoparticles always maintain a constant size at pH 7.0 and above, but at pH 7.0 and below, agglomeration of the nanoparticles occurs due to hydrophobicity of the polymer, thereby interacting with cancer cells but not with normal cells. It was. Because of this phenomenon, nanoparticles can easily accumulate around cancer cells, and this phenomenon of nanoparticles is expected to increase the cancer targeting rate against cancer cells.

따라서, pH 변화에 대해 지속적인 약물 방출 형태를 가지며, 암세포에 대한 암 표적화율을 높일 수 있는 약물전달용 생체적합성 나노복합체에 대한 개발의 필요성이 요구되고 있다.Therefore, there is a need for development of a biocompatible nanocomposite for drug delivery that has a continuous drug release form against pH change and can increase cancer targeting rate to cancer cells.

본 발명자들은 pH 변화에 대해 지속적인 약물 방출 형태를 가지며, 암세포에 대한 암 표적화율을 높일 수 있는 약물전달용 생체적합성 나노복합체에 대해 연구하던 중, 항암제, 계면활성제 및 트리블록 공중합체를 혼합한 후 동결건조하여 나노 혼합체를 얻은 다음, 상기 나노 혼합체의 표면에 글리콜 키토산과 헤파린을 흡착시켜 표면 수식 및 안정화시킨 후 동결건조하여 나노복합체를 제조하였으며, 상기 나노복합체가 기존의 약물전달체와 비교하여 지속적인 약물 방출 형태를 나타내며, 민감한 pH 변화에 대응하는 지능형 약물 방출 형태를 나타냄을 확인하고, 본 발명을 완성하였다.The present inventors have a continuous drug release form against pH changes, and while studying a biocompatible nanocomposite for drug delivery that can increase the cancer targeting rate to cancer cells, after mixing the anticancer agent, the surfactant and the triblock copolymer After lyophilization to obtain a nano-mixture, the surface of the nano-mixture was adsorbed glycol chitosan and heparin, surface modification and stabilization and then lyophilized to prepare a nanocomposite, the nanocomposite is a continuous drug compared to the conventional drug delivery It was confirmed that the present invention exhibits a form of release and an intelligent form of drug release corresponding to a sensitive pH change, thus completing the present invention.

본 발명은 pH 민감성을 갖는 약물전달용 생체적합성 나노복합체 및 이의 제조방법을 제공하고자 한다.The present invention seeks to provide a biocompatible nanocomposite for drug delivery and a method of preparing the same having a HH sensitivity.

본 발명은 항암제, 계면활성제 및 하기 화학식 1로 표시되는 트리블록 공중합체를 혼합한 후 동결건조하여 나노 혼합체를 얻은 다음, 상기 나노 혼합체의 표면에 글리콜 키토산과 헤파린을 흡착시켜 표면 수식 및 안정화시킨 후 동결건조하여 제조되며, 입자의 평균 크기가 50~200㎚이고, 나노복합체 내 항암제의 포접율이 80~98%인 것을 특징으로 하는, pH 민감성을 갖는 약물전달용 생체적합성 나노복합체를 제공한다.The present invention is a mixture of an anticancer agent, a surfactant and a triblock copolymer represented by the following formula (1) and then lyophilized to obtain a nano-mixture, and then by adsorbing glycol chitosan and heparin on the surface of the nano-mixture to modify and stabilize the surface It is prepared by lyophilization, the average size of the particles is 50 ~ 200nm, characterized in that the inclusion ratio of the anticancer agent in the nanocomposite is 80 ~ 98%, provides a biocompatible nanocomposite for drug delivery with JH sensitivity.

본 발명은The present invention

1) 항암제, 계면활성제 및 하기 화학식 1로 표시되는 트리블록 공중합체를 혼합한 후 동결건조하여 나노 혼합체를 제조하는 단계,1) preparing a nano-mixture by mixing the anticancer agent, the surfactant and the triblock copolymer represented by Formula 1 and then lyophilized,

2) 상기 나노 혼합체를 글리콜 키토산 수용액과 헤파린 수용액에 첨가하여 나노 혼합체 표면에 글리콜 키토산과 헤파린을 흡착시켜 표면 수식 및 안정화하는 단계, 및2) adding the nanomixture to an aqueous solution of glycol chitosan and an aqueous solution of heparin to adsorb glycol chitosan and heparin on the surface of the nanomixture to modify and stabilize the surface thereof; and

3) 상기 표면 수식 및 안정화된 나노 혼합체를 동결건조하여 항암제가 포접된 나노복합체를 제조하는 단계를 포함하는, pH 민감성을 갖는 약물전달용 생체적합성 나노복합체의 제조방법을 제공한다.3) provides a method for producing a biocompatible nanocomposite for drug delivery having pH sensitivity, comprising the step of lyophilizing the surface modification and stabilized nanomixture to produce a nanocomposite containing the anticancer agent.

HO(C2H4O)a(C3H6O)b(C2H4O)cHHO (C 2 H 4 O) a (C 3 H 6 O) b (C 2 H 4 O) c H

상기 화학식 1에서, b≥10 이고, a+c는 이들 말단 부분이 중합체의 5 내지 95 중량%, 바람직하게는 20 내지 90 중량%를 포함하도록 하는 수이다.In Formula 1, b ≧ 10 and a + c is a number such that these terminal portions comprise 5 to 95% by weight, preferably 20 to 90% by weight of the polymer.

이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 pH 민감성을 갖는 약물전달용 생체적합성 나노복합체는, 항암제, 계면활성제 및 상기 화학식 1로 표시되는 트리블록 공중합체를 혼합한 후 동결건조하여 나노 혼합체를 얻은 다음, 상기 나노 혼합체의 표면에 글리콜 키토산과 헤파린을 흡착시켜 표면 수식 및 안정화시킨 후 동결건조하여 제조된 것을 특징으로 한다.Biocompatible nanocomposite for drug delivery having pH sensitivity according to the present invention, after mixing the anticancer agent, the surfactant and the triblock copolymer represented by the formula (1) and then lyophilized to obtain a nanomixture, the surface of the nanomixture Adsorption of glycol chitosan and heparin to the surface modification and stabilization and characterized in that it is prepared by lyophilization.

상기 항암제는 독소루비신, 파클리탁셀, 도세탁셀, 5-FU(5-fluorouracil), 타목신, 아나스테로졸, 카보플라틴, 토포테칸, 벨로테칸, 이마티닙, 이리노테칸, 플록수리딘, 비노렐빈, 겜시타빈, 루프롤리드(leuprolide), 플루타미드, 졸레드로네이트, 메토트렉세이트, 캄토테신, 시스플라틴, 빈크리스틴, 히드록시우레아, 스트렙토조신 및 발루비신으로 이루어진 군으로부터 선택된 1종 이상을 포함하나, 이에 한정되지 않는다.The anticancer agent is doxorubicin, paclitaxel, docetaxel, 5-FU (5-fluorouracil), tamoxin, anasterazole, carboplatin, topotecan, velotecan, imatinib, irinotecan, phloxuridine, vinorelbine, gemcitabine, But not limited to one or more selected from the group consisting of leuprolide, flutamide, zoleronate, methotrexate, camptothecin, cisplatin, vincristine, hydroxyurea, streptozosin and valerubicin Do not.

상기 계면활성제는 폴리옥시에틸렌 소르비탄 모노라우레이트 (polyoxyethylene sorbitan monolaurate, Tween 20), 폴리옥시에틸렌 소르비탄 모노팔미테이트(polyoxyethylene sorbitan monopalmitate, Tween 40), 폴리옥시에틸렌 소르비탄 모노스테아레이트(polyoxyethylene sorbitan monostearate, Tween 60) 및 폴리옥시에틸렌 소르비탄 올레이트(polyoxyethylene sorbitan oleate, Tween 80)로 이루어진 군으로부터 선택된 1종 이상을 포함하나, 이에 한정되지 않는다. 상기 트윈 계열의 계면활성제는 미국 식품의약국(FDA)에서 인체의 정맥주사에 사용을 허가한 물질이다.The surfactant is polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene sorbitan monopalmitate (Tween 40), polyoxyethylene sorbitan monostearate (polyoxyethylene sorbitan monostearate) , Tween 60) and polyoxyethylene sorbitan oleate (Tween 80), but are not limited thereto. The twin-based surfactant is a substance licensed for intravenous injection by the US Food and Drug Administration (FDA).

상기 화학식 1의 트리블록 공중합체는 폴리옥시에틸렌-폴리옥시프로필렌-폴리옥시에틸렌의 트리블록공중합체로 물에 용해된다. 상기 트리블록공중합체는 폴록사머가 바람직하다. 폴록사머는 문헌에 기재된 방법으로 제조할 수 있거나 시판되는 제품을 사용할 수 있다. 본 발명에서 사용하는 폴록사머는 1000 내지 16000의 분자량을 가지며, 이들의 성질은 폴리옥시프로필렌 블록 및 폴리옥시에틸렌 블록의 비율, 즉 화학식 1에서 b 및 a+c의 비율에 좌우된다. 폴록사머는 실온에서 고체이 고, 물과 에탄올에 용해되며, 폴록사머의 종류로는 폴록사머 68, 127, 188, 237, 338, 및 407 등이 시판되고 있다. 예를 들어, 폴록사머 188이란 b가 30이고 a+c가 약 75인 화학식 1의 화합물로서 분자량이 약 8350인 폴록사머를 의미한다.The triblock copolymer of Chemical Formula 1 is dissolved in water as a triblock copolymer of polyoxyethylene-polyoxypropylene-polyoxyethylene. The triblock copolymer is preferably a poloxamer. Poloxamers may be prepared by the methods described in the literature or may use commercially available products. Poloxamers used in the present invention have a molecular weight of 1000 to 16000, and their properties depend on the ratio of the polyoxypropylene block and the polyoxyethylene block, that is, the ratio of b and a + c in the formula (1). Poloxamers are solid at room temperature, are soluble in water and ethanol, and poloxamers 68, 127, 188, 237, 338, and 407 are commercially available. For example, poloxamer 188 means a poloxamer having a molecular weight of about 8350 as a compound of Formula 1 wherein b is 30 and a + c is about 75.

상기 트리블록 공중합체와 계면활성제는 중량 비율로 2:8 내지 99:1, 바람직하게는 5:5 내지 9:1로 혼합한다. 만일 혼합 비율이 상기 범위를 벗어나면 안정한 나노 혼합체를 얻을 수 없고 빠른 약물 방출이 일어나게 된다.The triblock copolymer and the surfactant are mixed in a weight ratio of 2: 8 to 99: 1, preferably 5: 5 to 9: 1. If the mixing ratio is out of the above range, stable nanomixtures cannot be obtained and rapid drug release occurs.

본 발명에 따른 나노복합체에서 글리콜 키토산과 헤파린은 나노 혼합체의 표면을 수식 및 안정화시키기 위하여 사용된다.In the nanocomposite according to the present invention, glycol chitosan and heparin are used to modify and stabilize the surface of the nanomixture.

상기 글리콜 키토산은 수용성 키토산으로 물에 용해된다. 키토산은 키틴을 고농도의 알칼리로 처리함으로써 N-탈아세틸화하여 제조되는 염기성 다당류로서, 세포 흡착능, 생체적합성, 생분해성 및 성형성 등에서 다른 합성고분자들에 비해 우수함이 알려져 있다. 본 발명에서 사용하는 글리콜 키토산은 400,000의 분자량을 갖는 것이 바람직하나, 이에 한정되는 것은 아니다.The glycol chitosan is water soluble chitosan, soluble in water. Chitosan is a basic polysaccharide prepared by N-deacetylation by treating chitin with a high concentration of alkali, and is known to be superior to other synthetic polymers in terms of cell adsorption capacity, biocompatibility, biodegradability and moldability. The glycol chitosan used in the present invention preferably has a molecular weight of 400,000, but is not limited thereto.

상기 헤파린은 설페이트화된 선형의 다당류로 이루어져 있으며, 주로 우론산 (uronic acid)으로 구성되어 있다. 헤파린은 다양한 구조의 혼합체로서 항혈전성, 염증억제, 혈관신생 암 성장 억제 및 면역 억제 등의 다양한 성질을 가지고 있다. 본 발명에서 사용하는 헤파린은 약 20,000의 분자량을 갖는 것이 바람직하나, 이에 한정되는 것은 아니다. 헤파린은 실온에서 고체이고, 물에 잘 용해된다. 항응고제로 사용되는 헤파린은 암 환자들에게 많이 생길 수 있는 혈전현상을 막기 위해 사용되기도 한다. 또한 종양세포 주변에 응고작용 촉진 효소의 과정을 방해하여 피브 린이 형성되는 것을 억제할 수 있고, 비정상적인 지혈 기전을 막을 수 있게 된다. 이와 관련하여 암 세포 주변의 피브린 형성은 일반적으로 두꺼운 쉘(shell)을 형성하여 면역 시스템으로부터 영향을 받기 어려우나, 헤파린이 피브린 형성을 억제하면 종양세포가 자연살해세포로부터 좀 더 쉽게 접근할 수 있게 되고, 사이토카인 등과 결합하거나 그들의 활동성을 조절하여 면역 시스템 작용에 의한 종양세포의 파괴 또는 사멸을 유도할 수 있다.The heparin is composed of sulfated linear polysaccharides, mainly composed of uronic acid. Heparin is a mixture of various structures and has various properties such as antithrombogenicity, inflammation inhibition, angiogenic cancer growth inhibition and immunosuppression. Heparin used in the present invention preferably has a molecular weight of about 20,000, but is not limited thereto. Heparin is a solid at room temperature and soluble in water. Heparin, which is used as an anticoagulant, is also used to prevent the thrombosis that can occur in cancer patients. In addition, it is possible to inhibit the formation of fibrin by interfering with the process of the coagulation promoting enzyme around the tumor cells, and to prevent abnormal hemostatic mechanisms. In this regard, fibrin formation around cancer cells is generally difficult to be affected by the immune system by forming a thick shell, but when heparin inhibits fibrin formation, tumor cells are more easily accessible from natural killer cells. , Cytokines and the like, or by regulating their activity, can induce destruction or death of tumor cells by immune system action.

본 발명에 따른 나노복합체의 평균 입자 크기는 50~200㎚, 바람직하게는 100~150㎚이며, 입도 분포가 균일하다. 또한, 본 발명에 따른 나노복합체 내에 포접된 약물의 포접율은 80~98%로 매우 높게 나타남으로써, 약물이 트리블록 공중합체의 미소구 내에 대부분 포획되어 나노복합체를 형성함을 알 수 있다.The average particle size of the nanocomposites according to the invention is 50-200 nm, preferably 100-150 nm, with a uniform particle size distribution. In addition, the inclusion rate of the drug encapsulated in the nanocomposite according to the present invention is very high as 80 ~ 98%, it can be seen that the drug is mostly trapped in the microspheres of the triblock copolymer to form a nanocomposite.

본 발명에 따른 나노복합체는 기존의 약물전달체와 비교하여 지속적인 약물 방출 형태를 나타내며, 민감한 pH 변화에 대응하는 지능형 약물 방출 형태를 나타낸다. 따라서, 본 발명에 따른 나노복합체는 항암제 전달체로서 매우 유용하게 사용될 수 있다. 또한, 본 발명에 따른 나노복합체는 제조 공정 중 유기용매를 사용하지 않으므로 잔류물질이 없어 안정성이 우수하다.The nanocomposite according to the present invention exhibits a sustained drug release form as compared to conventional drug delivery agents, and an intelligent drug release form corresponding to sensitive pH changes. Therefore, the nanocomposite according to the present invention can be very usefully used as an anticancer drug carrier. In addition, since the nanocomposite according to the present invention does not use an organic solvent during the manufacturing process, there is no residual material and thus stability is excellent.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the examples.

실시예 1Example 1 : 나노복합체의 제조 : Preparation of Nanocomposites

2.9㎎의 독소루비신과 5㎎의 트윈 80을 혼합하여 균질한 혼합체를 제조하였 다. 상기 혼합물을 1 중량% F-68(pluronic의 한 종류) 5㎖에 첨가하여 교반한 후 동결건조하여 나노 혼합체를 제조하였다. 이렇게 얻어진 나노 혼합체를 0.00625 중량% 글리콜 키토산 수용액 0.5㎖에 첨가한 후 0.01 중량% 헤파린 수용액 0.5㎖에 첨가하여 나노 혼합체 표면에 글리콜 키토산과 헤파린을 흡착시켜 표면 수식 및 안정화를 유도하였다. 그 다음 상기 혼합물을 동결건조하여 독소루비신이 포접된 나노복합체를 얻었다. 상기 제조된 나노복합체의 입자 크기는 입자분석기로 측정하였으며, 나노복합체 내에 포접된 약물의 포접율은 HPLC(고성능 액체 크로마토그래피)로 분석하였다. 사용되는 독소루비신의 양에 따라 나노복합체 총량의 5 중량%, 7 중량%, 10 중량%의 약물 충진율을 유지할 수 있고 그 이상의 약물 충진율도 가능하다.A homogeneous mixture was prepared by mixing 2.9 mg of doxorubicin and 5 mg of Tween 80. The mixture was added to 5 ml of 1% by weight F-68 (a kind of pluronic), stirred, and lyophilized to prepare a nanomixture. The nanomixture thus obtained was added to 0.5 ml of 0.00625 wt% glycol chitosan solution and then 0.5 ml of 0.01 wt% aqueous heparin solution to adsorb glycol chitosan and heparin on the surface of the nanomixture to induce surface modification and stabilization. The mixture was then lyophilized to obtain nanocomposites containing doxorubicin. The particle size of the prepared nanocomposite was measured by a particle analyzer, and the inclusion rate of the drug entrapped in the nanocomposite was analyzed by HPLC (high performance liquid chromatography). Depending on the amount of doxorubicin used, it is possible to maintain a drug filling rate of 5% by weight, 7% by weight, and 10% by weight of the total amount of the nanocomposite, and even higher drug filling rates are possible.

상기 제조된 나노복합체의 평균 입자 크기는 100㎚ 이었으며, 나노복합체 내 독소루비신의 포접율은 95% 이었다.The average particle size of the prepared nanocomposites was 100 nm, and the inclusion rate of doxorubicin in the nanocomposites was 95%.

상기 제조된 나노복합체를 주사전자현미경(Fe-SEM)으로 관찰한 결과는 도 1에 나타내었다.The result of observing the prepared nanocomposite with a scanning electron microscope (Fe-SEM) is shown in FIG.

실시예 2Example 2 : 나노복합체의 제조 : Preparation of Nanocomposites

상기 실시예 1에서 F-68 대신 폴리옥시에틸렌 블록의 길이가 증가된 F-127을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 나노복합체를 제조하였다.A nanocomposite was prepared in the same manner as in Example 1, except that F-127 in which the length of the polyoxyethylene block was increased instead of F-68 was used in Example 1.

상기 제조된 나노복합체의 평균 입자 크기는 110㎚ 이었으며, 나노복합체 내 독소루비신의 포접율은 96.5% 이었다.The average particle size of the prepared nanocomposites was 110 nm, and the inclusion rate of doxorubicin in the nanocomposites was 96.5%.

실시예 3Example 3 : 나노복합체의 제조 : Preparation of Nanocomposites

상기 실시예 1에서 독소루비신 대신 파클리탁셀(0.042g)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 나노복합체를 제조하였다.A nanocomposite was prepared in the same manner as in Example 1, except that paclitaxel (0.042 g) was used instead of doxorubicin in Example 1.

상기 제조된 나노복합체의 평균 입자 크기는 150㎚ 이었으며, 나노복합체 내 파클리탁셀의 포접율은 80% 이었다.The average particle size of the prepared nanocomposites was 150 nm, and the inclusion rate of paclitaxel in the nanocomposites was 80%.

실시예 4Example 4 : 나노복합체의 제조 : Preparation of Nanocomposites

상기 실시예 1에서 독소루비신 대신 도세탁셀(0.042g)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 나노복합체를 제조하였다.A nanocomposite was prepared in the same manner as in Example 1, except that docetaxel (0.042 g) was used instead of doxorubicin in Example 1.

상기 제조된 나노복합체의 평균 입자 크기는 140㎚ 이었으며, 나노복합체 내 도세탁셀의 포접율은 86% 이었다.The average particle size of the prepared nanocomposite was 140 nm, and the inclusion rate of docetaxel in the nanocomposite was 86%.

실험예 1Experimental Example 1 : 표면 수식 전과 표면 수식 후에 나노복합체 내에 포접된 약물의 방출 형태 Release form of drug entrapped in nanocomposite before and after surface modification

본 발명의 나노복합체의 표면 수식 전과 표면 수식 후에 나노복합체 내에 포접된 약물의 방출 형태를 확인하기 위하여, 하기와 같은 실험을 수행하였다.In order to confirm the release form of the drug entrapped in the nanocomposite before and after surface modification of the nanocomposite of the present invention, the following experiment was performed.

표면 수식 전의 방출 형태는, 문헌(Colloids and Surfaces B: Biointerfaces, 1999, volume 16, pages 113-134, 및 British Journal of Cancer, 2004, volume 90, pages 2085-2091)에 보고되어 현재 임상 실험중인 SP1049C (pluronic/doxorubicin 복합체: Supratek Pharma Inc 제조)의 실험 조건과 동일한 조건에서 제조된 약물 전달체를 이용하여 측정하였다. 표면 수식 후의 방출 형태는, 상기 실시예 1에서 제조한 나노복합체를 이용하여 측정하였다.Release forms prior to surface modification are reported in Colloids and Surfaces B: Biointerfaces, 1999, volume 16, pages 113-134, and British Journal of Cancer, 2004, volume 90, pages 2085-2091 and are currently in clinical trials. (pluronic / doxorubicin complex: manufactured by Supratek Pharma Inc) was measured using a drug carrier prepared under the same conditions. The release form after surface modification was measured using the nanocomposite prepared in Example 1 above.

구체적으로, SP1049C과 상기 실시예 1에서 제조한 나노복합체를 각각 20㎎씩 재어 투석비닐막(dialysis bag, 분자량 여과 한계 - 100,000)에 넣고, 이를 200㎖의 인산염완충용액(PBS, pH 7.4)에 함침시켰다. 이때, 온도는 37.5℃를 유지하면서 600rpm으로 인산염완충용액을 교반하였다. 일정한 시간이 지나면 인산염완충용액 5㎖를 취하여 나노복합체로부터 방출된 독소루비신의 양을 HPLC로 측정하였다. sink condition을 유지하기 위하여, 시료 채취 후 5㎖의 새로운 인산염완충용액을 첨가하였다.Specifically, SP1049C and the nanocomposites prepared in Example 1 were weighed 20 mg each, and placed in a dialysis vinyl membrane (dialysis bag, molecular weight filtration limit-100,000), which was added to 200 ml of phosphate buffer solution (PBS, pH 7.4). Impregnated. At this time, the phosphate buffer solution was stirred at 600 rpm while maintaining the temperature of 37.5 ℃. After a certain time, 5 ml of phosphate buffer solution was taken and the amount of doxorubicin released from the nanocomposite was measured by HPLC. To maintain the sink condition, 5 ml of fresh phosphate buffer solution was added after sampling.

결과는 도 3에 나타내었다.The results are shown in FIG.

도 3에 나타난 바와 같이, 본 발명에 따른 나노복합체의 경우 표면 수식 전에 비해 표면 수식 후에 약물의 방출 양이 크게 감소함을 확인하였다. 따라서, 본 발명에 따른 나노복합체는 지속적인 약물 방출이 이루어짐을 알 수 있다.As shown in Figure 3, in the case of the nanocomposite according to the invention it was confirmed that the release amount of the drug after the surface modification significantly compared to before the surface modification. Therefore, it can be seen that the nanocomposite according to the present invention is sustained drug release.

실험예 2Experimental Example 2 : pH 변화에 따른 나노복합체 내에 포접된 약물의 방출 형태 : Release form of drug entrapped in nanocomposite with pH change

pH 변화에 따른 본 발명의 나노복합체 내에 포접된 약물의 방출 형태를 확인하기 위하여, 하기와 같은 실험을 수행하였다.In order to confirm the release form of the drug entrapped in the nanocomposite of the present invention according to the pH change, the following experiment was performed.

일반적으로, 암세포의 pH는 약 6.5 이하로, 정상세포의 pH 7.4 보다 약간 산성이다(Nano Letters, 2005, 5, pages 325-329 by Bae et al.). 따라서, 상기 실시 예 1에서 제조한 나노복합체를 pH 6.5의 인산염완충용액에서 상기 실험예 1과 동일한 방법으로 수행하여 나노복합체로부터 방출된 독소루비신의 양을 측정하였다. pH 7.4의 인산염완충용액에서의 실험결과는 상기 실험예 1을 참고하였다.In general, the pH of cancer cells is about 6.5 or less, slightly acidic than pH 7.4 of normal cells (Nano Letters, 2005, 5, pages 325-329 by Bae et al.). Therefore, the nanocomposite prepared in Example 1 was performed in the same manner as Experimental Example 1 in the phosphate buffer solution of pH 6.5 to determine the amount of doxorubicin released from the nanocomposite. Experimental results in the phosphate buffer solution of pH 7.4 refer to Experimental Example 1.

결과는 도 4에 나타내었다.The results are shown in FIG.

도 4에 나타난 바와 같이, 본 발명에 따른 나노복합체의 경우 pH 6.5에서는 약물의 방출 양이 증가하나, pH 7.4에서는 약물의 방출 양이 크게 감소함을 확인하였다. 따라서, 본 발명에 따른 나노복합체는 민감한 pH 변화에 대응하는 지능형 약물 방출 형태를 나타냄을 알 수 있다.As shown in FIG. 4, in the case of the nanocomposite according to the present invention, the release amount of the drug was increased at pH 6.5, but the release amount of the drug was greatly reduced at pH 7.4. Thus, it can be seen that the nanocomposites according to the present invention exhibit intelligent drug release forms corresponding to sensitive pH changes.

본 발명에 따른 나노복합체는 기존의 약물전달체와 비교하여 지속적인 약물 방출 형태를 나타내며, 민감한 pH 변화에 대응하는 지능형 약물 방출 형태를 나타낸다. 따라서, 본 발명에 따른 나노복합체는 항암제 전달체로서 매우 유용하게 사용될 수 있다. 또한, 본 발명에 따른 나노복합체는 제조 공정 중 유기용매를 사용하지 않으므로 잔류물질이 없어 안정성이 우수하다.The nanocomposite according to the present invention exhibits a sustained drug release form as compared to conventional drug delivery agents, and an intelligent drug release form corresponding to sensitive pH changes. Therefore, the nanocomposite according to the present invention can be very usefully used as an anticancer drug carrier. In addition, since the nanocomposite according to the present invention does not use an organic solvent during the manufacturing process, there is no residual material and thus stability is excellent.

도 1은 본 발명에 따른 나노복합체를 주사전자현미경(Fe-SEM)으로 관찰한 도이다.1 is a view of the nanocomposite according to the present invention with a scanning electron microscope (Fe-SEM).

도 2는 본 발명에 따른 나노복합체의 입도분포 그래프를 나타낸 도이다.2 is a view showing a particle size distribution graph of a nanocomposite according to the present invention.

도 3은 본 발명의 일 실시예(실시예 1)에 따른 나노복합체의 표면 수식 전과 표면 수식 후에 나노복합체 내에 포접된 약물의 방출 형태를 나타낸 도이다.3 is a view showing the release form of the drug entrapped in the nanocomposite before and after the surface modification of the nanocomposite according to an embodiment (Example 1) of the present invention.

도 4는 pH 변화(pH 6.5 및 pH 7.4)에 따른 본 발명의 일 실시예(실시예 1)에 따른 나노복합체 내에 포접된 약물의 방출 형태를 나타낸 도이다.Figure 4 is a view showing the release form of the drug entrapped in the nanocomposite according to one embodiment of the present invention (Example 1) according to the pH change (pH 6.5 and pH 7.4).

Claims (9)

항암제, 계면활성제 및 하기 화학식 1로 표시되는 트리블록 공중합체를 혼합한 후 동결건조하여 나노 혼합체를 얻은 다음, 상기 나노 혼합체의 표면에 글리콜 키토산과 헤파린을 흡착시켜 표면 수식 및 안정화시킨 후 동결건조하여 제조되며, 입자의 평균 크기가 50~200㎚이고, 나노복합체 내 항암제의 포접율이 80~98%인 것을 특징으로 하는, pH 민감성을 갖는 약물전달용 생체적합성 나노복합체:After mixing the anticancer agent, the surfactant and the triblock copolymer represented by the following formula (1) to freeze-dried to obtain a nano-mixture, adsorb the glycol chitosan and heparin on the surface of the nano-mixture, surface modification and stabilization and then lyophilization Prepared, characterized in that the average size of the particles is 50 ~ 200nm, the inclusion ratio of the anticancer agent in the nanocomposite is 80 ~ 98%, biocompatible nanocomposite for drug delivery with JH sensitivity: <화학식 1><Formula 1> HO(C2H4O)a(C3H6O)b(C2H4O)cHHO (C 2 H 4 O) a (C 3 H 6 O) b (C 2 H 4 O) c H 상기 화학식 1에서, b≥10 이고, a+c는 이들 말단 부분이 중합체의 5 내지 95 중량%를 포함하도록 하는 수이다.In Formula 1, b ≧ 10 and a + c is a number such that these terminal portions comprise 5 to 95 wt% of the polymer. 제 1항에 있어서, 상기 항암제는 독소루비신, 파클리탁셀, 도세탁셀, 5-FU (5-fluorouracil), 타목신, 아나스테로졸, 카보플라틴, 토포테칸, 벨로테칸, 이마티닙, 이리노테칸, 플록수리딘, 비노렐빈, 겜시타빈, 루프롤리드(leuprolide), 플루타미드, 졸레드로네이트, 메토트렉세이트, 캄토테신, 시스플라틴, 빈크리스틴, 히드록시우레아, 스트렙토조신 및 발루비신으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, pH 민감성을 갖는 약물전달용 생체적합성 나노복합체.The method of claim 1, wherein the anticancer agent is doxorubicin, paclitaxel, docetaxel, 5-FU (5-fluorouracil), tamoxin, anasterazole, carboplatin, topotecan, velotecan, imatinib, irinotecan, phloxuridine, At least one member selected from the group consisting of vinorelbine, gemcitabine, leuprolide, flutamide, zoleronate, methotrexate, camptothecin, cisplatin, vincristine, hydroxyurea, streptozosin and valerubicin A biocompatible nanocomposite for drug delivery, characterized by comprising HH sensitivity. 제 1항에 있어서, 상기 계면활성제는 폴리옥시에틸렌 소르비탄 모노라우레이트(polyoxyethylene sorbitan monolaurate, Tween 20), 폴리옥시에틸렌 소르비탄 모노팔미테이트(polyoxyethylene sorbitan monopalmitate, Tween 40), 폴리옥시에틸렌 소르비탄 모노스테아레이트(polyoxyethylene sorbitan monostearate, Tween 60) 및 폴리옥시에틸렌 소르비탄 올레이트(polyoxyethylene sorbitan oleate, Tween 80)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, pH 민감성을 갖는 약물전달용 생체적합성 나노복합체.The method of claim 1, wherein the surfactant is polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene sorbitan monopalmitate (Tween 40), polyoxyethylene sorbitan mono Stearic acid (polyoxyethylene sorbitan monostearate, Tween 60) and polyoxyethylene sorbitan oleate (polyoxyethylene sorbitan oleate, Tween 80), characterized in that it comprises at least one member selected from the group consisting of pH sensitive drug delivery biological Compatibility Nanocomposites. 제 1항에 있어서, 상기 화학식 1의 트리블록 공중합체는 폴록사머인 것을 특징으로 하는, pH 민감성을 갖는 약물전달용 생체적합성 나노복합체.The biocompatible nanocomposite for drug delivery according to claim 1, wherein the triblock copolymer of Chemical Formula 1 is poloxamer. 1) 항암제, 계면활성제 및 하기 화학식 1로 표시되는 트리블록 공중합체를 혼합한 후 동결건조하여 나노 혼합체를 제조하는 단계,1) preparing a nano-mixture by mixing the anticancer agent, the surfactant and the triblock copolymer represented by Formula 1 and then lyophilized, 2) 상기 나노 혼합체를 글리콜 키토산 수용액과 헤파린 수용액에 첨가하여 나노 혼합체 표면에 글리콜 키토산과 헤파린을 흡착시켜 표면 수식 및 안정화하는 단계, 및2) adding the nanomixture to an aqueous solution of glycol chitosan and an aqueous solution of heparin to adsorb glycol chitosan and heparin on the surface of the nanomixture to modify and stabilize the surface thereof; and 3) 상기 표면 수식 및 안정화된 나노 혼합체를 동결건조하여 항암제가 포접된 나노복합체를 제조하는 단계를 포함하는, 제 1항의 pH 민감성을 갖는 약물전달용 생체적합성 나노복합체의 제조방법:3) A method for preparing a biocompatible nanocomposite for drug delivery having a pH sensitivity according to claim 1, comprising the step of lyophilizing the surface modified and stabilized nanomixture to produce a nanocomposite containing the anticancer agent. <화학식 1><Formula 1> HO(C2H4O)a(C3H6O)b(C2H4O)cHHO (C 2 H 4 O) a (C 3 H 6 O) b (C 2 H 4 O) c H 상기 화학식 1에서, b≥10 이고, a+c는 이들 말단 부분이 중합체의 5 내지 95 중량%를 포함하도록 하는 수이다.In Formula 1, b ≧ 10 and a + c is a number such that these terminal portions comprise 5 to 95 wt% of the polymer. 제 5항에 있어서, 상기 1)단계에서 항암제는 독소루비신, 파클리탁셀, 도세탁셀, 5-FU(5-fluorouracil), 타목신, 아나스테로졸, 카보플라틴, 토포테칸, 벨로테칸, 이마티닙, 이리노테칸, 플록수리딘, 비노렐빈, 겜시타빈, 루프롤리드 (leuprolide), 플루타미드, 졸레드로네이트, 메토트렉세이트, 캄토테신, 시스플라틴, 빈크리스틴, 히드록시우레아, 스트렙토조신 및 발루비신으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 제 1항의 pH 민감성을 갖는 약물전달용 생체적합성 나노복합체의 제조방법.According to claim 5, wherein the anticancer agent in step 1) doxorubicin, paclitaxel, docetaxel, 5-FU (5-fluorouracil), tamoxin, anasterazole, carboplatin, topotecan, velotecan, imatinib, irinotecan, Selected from the group consisting of phloxuridine, vinorelbine, gemcitabine, leuprolide, flutamide, zoleronate, methotrexate, camptothecin, cisplatin, vincristine, hydroxyurea, streptozosin and valerubicin A method for producing a biocompatible nanocomposite for drug delivery, comprising one or more of the above, wherein the sensitivity of the pH of claim 1. 제 5항에 있어서, 상기 1)단계에서 계면활성제는 폴리옥시에틸렌 소르비탄 모노라우레이트(polyoxyethylene sorbitan monolaurate, Tween 20), 폴리옥시에틸렌 소르비탄 모노팔미테이트(polyoxyethylene sorbitan monopalmitate, Tween 40), 폴리옥시에틸렌 소르비탄 모노스테아레이트(polyoxyethylene sorbitan monostearate, Tween 60) 및 폴리옥시에틸렌 소르비탄 올레이트(polyoxyethylene sorbitan oleate, Tween 80)로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 제 1항의 pH 민감성을 갖는 약물전달용 생체적합성 나노복합체의 제조방법.The method of claim 5, wherein the surfactant in step 1) is polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene sorbitan monopalmitate (Tween 40), polyoxy The OH of claim 1, which comprises at least one member selected from the group consisting of ethylene sorbitan monostearate (Tween 60) and polyoxyethylene sorbitan oleate (Tween 80). Method for producing a biocompatible nanocomposite for drug delivery having sensitivity. 제 5항에 있어서, 상기 1)단계에서 화학식 1의 트리블록 공중합체는 폴록사머인 것을 특징으로 하는, 제 1항의 pH 민감성을 갖는 약물전달용 생체적합성 나노복합체의 제조방법.The method of claim 5, wherein the triblock copolymer of Chemical Formula 1 in step 1) is a poloxamer, the method of producing a biocompatible nanocomposite for drug delivery having a pH sensitivity of claim 1. 제 5항에 있어서, 상기 1)단계에서 상기 트리블록 공중합체와 계면활성제는 중량 비율로 2:8 내지 99:1로 혼합하는 것을 특징으로 하는, 제 1항의 pH 민감성을 갖는 약물전달용 생체적합성 나노복합체의 제조방법.6. The biocompatibility for drug delivery according to claim 1, wherein the triblock copolymer and the surfactant are mixed in a weight ratio of 2: 8 to 99: 1 in step 1). Method for producing a nanocomposite.
KR1020090025826A 2009-03-26 2009-03-26 Biocompatible nanocomposite having pH sensitivity for drug delivery and process for preparing the same KR101039095B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090025826A KR101039095B1 (en) 2009-03-26 2009-03-26 Biocompatible nanocomposite having pH sensitivity for drug delivery and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090025826A KR101039095B1 (en) 2009-03-26 2009-03-26 Biocompatible nanocomposite having pH sensitivity for drug delivery and process for preparing the same

Publications (2)

Publication Number Publication Date
KR20100107646A KR20100107646A (en) 2010-10-06
KR101039095B1 true KR101039095B1 (en) 2011-06-03

Family

ID=43129312

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090025826A KR101039095B1 (en) 2009-03-26 2009-03-26 Biocompatible nanocomposite having pH sensitivity for drug delivery and process for preparing the same

Country Status (1)

Country Link
KR (1) KR101039095B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308746B1 (en) * 2010-12-17 2013-09-12 한국과학기술연구원 Preparation of biocompatible polymeric drug delivery system with advanced tumor accumulation
KR102156733B1 (en) * 2018-11-08 2020-09-16 충남대학교 산학협력단 Self-assembled polymeric micelles of phosphonium glycol chitosan derivatives specifically targeting mitochondria, preparation method and uses thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185101A1 (en) 2001-03-27 2004-09-23 Macromed, Incorporated. Biodegradable triblock copolymers as solubilizing agents for drugs and method of use thereof
US20060002994A1 (en) 2004-03-23 2006-01-05 Thomas James L Responsive liposomes for ultrasonic drug delivery
KR20080096347A (en) * 2007-04-27 2008-10-30 한남대학교 산학협력단 Preparation of nanospheres composed of biocompatible polymers using polymer melt process for drug delivery and nanospheres thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040185101A1 (en) 2001-03-27 2004-09-23 Macromed, Incorporated. Biodegradable triblock copolymers as solubilizing agents for drugs and method of use thereof
US20060002994A1 (en) 2004-03-23 2006-01-05 Thomas James L Responsive liposomes for ultrasonic drug delivery
KR20080096347A (en) * 2007-04-27 2008-10-30 한남대학교 산학협력단 Preparation of nanospheres composed of biocompatible polymers using polymer melt process for drug delivery and nanospheres thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문 Biochimica et Biophysica Acta, Vol. 1472, pp.399-403 (1999)

Also Published As

Publication number Publication date
KR20100107646A (en) 2010-10-06

Similar Documents

Publication Publication Date Title
Vijayakumar et al. Intravenous administration of trans-resveratrol-loaded TPGS-coated solid lipid nanoparticles for prolonged systemic circulation, passive brain targeting and improved in vitro cytotoxicity against C6 glioma cell lines
Wang et al. Preferential tumor accumulation and desirable interstitial penetration of poly (lactic-co-glycolic acid) nanoparticles with dual coating of chitosan oligosaccharide and polyethylene glycol-poly (D, L-lactic acid)
Li et al. Self-assembled polymeric micellar nanoparticles as nanocarriers for poorly soluble anticancer drug ethaselen
Jadon et al. Docetaxel-loaded lipid-polymer hybrid nanoparticles for breast cancer therapeutics
Li et al. PEG–PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations
Kesharwani et al. Cationic bovine serum albumin (CBA) conjugated poly lactic-co-glycolic acid (PLGA) nanoparticles for extended delivery of methotrexate into brain tumors
Tao et al. Reduction-responsive gold-nanoparticle-conjugated Pluronic micelles: an effective anti-cancer drug delivery system
Yue et al. Molecular structure matters: PEG-b-PLA nanoparticles with hydrophilicity and deformability demonstrate their advantages for high-performance delivery of anti-cancer drugs
Yordanov et al. Epirubicin loaded to pre-polymerized poly (butyl cyanoacrylate) nanoparticles: preparation and in vitro evaluation in human lung adenocarcinoma cells
Yu et al. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization
Jäger et al. Self-assembly of biodegradable copolyester and reactive HPMA-based polymers into nanoparticles as an alternative stealth drug delivery system
CN109771663B (en) Preparation and application of acid-responsive anticancer nano-drug
CN110623925B (en) Rapamycin nanometer sustained release agent and preparation method thereof
Ramasamy et al. Cationic drug-based self-assembled polyelectrolyte complex micelles: Physicochemical, pharmacokinetic, and anticancer activity analysis
Gonzalez-Fajardo et al. Reduced in vivo toxicity of doxorubicin by encapsulation in cholesterol-containing self-assembled nanoparticles
JP5449388B2 (en) Polymeric micelle composition for resistant cancer treatment and method for producing the same
Fang et al. Sgc8 aptamer targeted glutathione-responsive nanoassemblies containing Ara-C prodrug for the treatment of acute lymphoblastic leukemia
Bernabeu et al. Deoxycholate-TPGS mixed nanomicelles for encapsulation of methotrexate with enhanced in vitro cytotoxicity on breast cancer cell lines
CN111110655B (en) Nano composite and preparation method and application thereof
Ao et al. Low density lipoprotein modified silica nanoparticles loaded with docetaxel and thalidomide for effective chemotherapy of liver cancer
Lee et al. In vitro and in vivo Evaluation of drug-encapsulated lignin nanoparticles for release control
Liang et al. Gemcitabine-based polymer-drug conjugate for enhanced anticancer effect in colon cancer
Nguyen et al. Curcumin and paclitaxel co-loaded heparin and poloxamer p403 hybrid nanocarrier for improved synergistic efficacy in breast cancer
CN107126425A (en) A kind of tanshinone IIA PEG PLGA PEG nanoparticles and preparation method thereof
KR101039095B1 (en) Biocompatible nanocomposite having pH sensitivity for drug delivery and process for preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170427

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee