KR101032601B1 - Method for treating the surface of silicone sollar cell using high frequency pluse - Google Patents

Method for treating the surface of silicone sollar cell using high frequency pluse Download PDF

Info

Publication number
KR101032601B1
KR101032601B1 KR1020100100603A KR20100100603A KR101032601B1 KR 101032601 B1 KR101032601 B1 KR 101032601B1 KR 1020100100603 A KR1020100100603 A KR 1020100100603A KR 20100100603 A KR20100100603 A KR 20100100603A KR 101032601 B1 KR101032601 B1 KR 101032601B1
Authority
KR
South Korea
Prior art keywords
silicon solar
high frequency
solar cell
solution
battery cell
Prior art date
Application number
KR1020100100603A
Other languages
Korean (ko)
Inventor
정대호
Original Assignee
주식회사 모아기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모아기술 filed Critical 주식회사 모아기술
Priority to KR1020100100603A priority Critical patent/KR101032601B1/en
Application granted granted Critical
Publication of KR101032601B1 publication Critical patent/KR101032601B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A silicon solar battery cell using a high frequency pulse and method for processing the surface of a cell are provided to form a porous surface on the silicon solar battery cell, thereby increasing the non reflection rate of a poly-crystal silicon solar battery cell. CONSTITUTION: A silicon solar battery cell is etched by a potassium hydroxide 10% solution. The silicon solar battery cell is activated in a mixed solution in which a hydrofluoric acid 5% solution or a nitric acid 15% solution are mixed. A porous surface is formed on the silicon solar battery cell by a high frequency electrolytic process. The high frequency electrolytic process uses high frequency pulse power of 10,000~50,000Hz. The silicon solar battery cell is dried in a hot wind drying room.

Description

고주파펄스를 이용한 실리콘 태양전지 셀의 표면처리방법{Method for treating the surface of silicone sollar cell using high frequency pluse}Method for treating the surface of silicone sollar cell using high frequency pluse}

본 발명은 실리콘 태양전지 셀의 표면처리방법으로서, 더욱 상세하게는 실리콘 표면의 전기화학적 전해처리를 통하여 표면에 나노 사이즈 급의 다공성 표면을 형성시켜 다결정 실리콘 태양전지 셀의 비반사율을 증대시킴으로써 태양전지 셀의 집진효율을 증대시키는데 그 목적이 있다.
The present invention is a surface treatment method of a silicon solar cell, and more particularly, by forming a nano-sized porous surface on the surface through electrochemical electrolytic treatment of the silicon surface to increase the specific reflectivity of the polycrystalline silicon solar cell, the solar cell The purpose is to increase the dust collection efficiency of the cell.

태양전지는 빛에너지를 전기에너지로 바꾸는 장치로서 이 태양전지는 지금까지의 화학전지와는 다른 구조를 가진 것으로 물리전지라 할 수 있다.A solar cell is a device that converts light energy into electrical energy. The solar cell has a structure different from that of chemical cells, and can be called a physical cell.

태양전지는 P형 반도체와 N형 반도체라고 하는 2종류의 반도체를 사용해 전기를 일으킨다.A solar cell generates electricity using two types of semiconductors, a P-type semiconductor and an N-type semiconductor.

태양전지의 원리는 태양전지에 빛을 비추면 내부에서 전자와 정공이 발생하고 발생 된 전하들은 P, N극으로 이동하며 이 현상에 의해 P극과 N극 사이에 전위차(광기전력)가 발생하며 이때, 태양전지에 부하를 연결하면 전류가 흐르게 된다.The principle of the solar cell is that when light shines on the solar cell, electrons and holes are generated inside, and the generated charges move to the P and N poles, which causes a potential difference (photovoltaic power) between the P and N poles. At this time, if a load is connected to the solar cell, a current flows.

이를 광전효과라 한다.This is called a photoelectric effect.

태양저지 모듈은 대형의 시스템에서는 여러 태양전지를 직렬 또는 병렬로 연결하여 전력을 꺼낸다.Solar jersey modules draw power by connecting multiple solar cells in series or in parallel in large systems.

도 1은 태양전지의 셀, 모듈, 어레이의 개요도이다.1 is a schematic diagram of a cell, module, and array of a solar cell.

셀은 전기를 일으키는 최소 단위이며, 모듈은 전기를 꺼내는 최소 단위이고 현관문의 반만한 크기이다.The cell is the smallest unit that generates electricity, the module is the smallest unit that draws electricity and is half the size of the front door.

어레이는 직렬 또는 병렬로 끼워진 여러 패널을 말하며, 서브 어레이는 유지보수의 편리함 때문에 여러 개의 모듈을 정리한 단위이다.An array is a series of panels fitted in series or in parallel. A subarray is a unit that organizes several modules for ease of maintenance.

부호 (a)는 셀을, 부호 (b)는 모듈을, 부호 (c)는 어레이를 나타낸다.Symbol (a) denotes a cell, symbol (b) denotes a module, and symbol (c) denotes an array.

태양전지의 효과적인 활용을 위하여 생산단가를 낮추면서 변환효율이 높은 태양전지 셀의 제작이 필수적이다.In order to effectively utilize solar cells, it is essential to manufacture solar cells with high conversion efficiency while lowering production costs.

기존 다결정 실리콘전지 셀의 변환효율을 증가시키기 위한 표면처리방법은 진공증착법을 사용하여 TiO2반사 방지막을 형성시켜 비반사율을 형성시켜 비반사율을 감소시키거나 화학적 에칭(HF, KOH)을 이용하여 표면의 조도를 형성시켜 비반사 효율을 증대시키는 표면처리법이 주를 이루고 있다.Surface treatment method for increasing the conversion efficiency of the existing polycrystalline silicon battery cell is vacuum deposition method to form a TiO 2 anti-reflection film to form a specific reflectivity to reduce the specific reflectivity or surface by using chemical etching (HF, KOH) Surface treatment is mainly used to increase the antireflection efficiency by forming the roughness of.

하지만, 증착법의 경우 생산단가가 높고 대량생산의 문제가 수반됨으로써 그 생산성 및 경제성이 저하되고 화학적 처리법의 경우 비반사 효율이 증대하는 효과가 크지 않음으로써 그 사용범위가 제한되고 있다.However, in the case of the vapor deposition method, the production cost is high and the problem of mass production is accompanied, so that the productivity and economical efficiency are lowered, and in the case of the chemical treatment method, the effect of increasing the non-reflective efficiency is not limited.

일부 양극산화법을 활용하여 다결정 태양전지 셀에 다공성 실리콘표면을 형성시키는 연구가 진행되고 있으나 표면의 균일성과 그 미세화의 정도가 차이가 있어 문제가 제기되고 있다.
Although studies have been made to form porous silicon surfaces in polycrystalline solar cells using some anodization, problems have arisen due to differences in the uniformity of the surface and the degree of refinement thereof.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로 전기화학적 전해처리를 통하여 표면에 나노 사이즈 급의 다공성 표면을 형성시킴으로써 다결정 실리콘 태양전지 셀의 비반사율을 증대시킴으로써 태양전지 셀의 집진효율을 증대시키는 것이다.
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and by increasing the specific reflectivity of a polycrystalline silicon solar cell by forming a nano-sized porous surface on the surface through electrochemical electrolytic treatment, the dust collection efficiency of the solar cell is increased. will be.

본 발명의 과제 해결 수단으로는 실리콘 태양전지 셀이 1단계 에칭공정, 2단계 활성화공정, 3단계 고주파 전해처리공정, 4단계 건조공정의 과정을 거치되, 상기 고주파 전해처리공정은 10,000∼50,000Hz의 고주파펄스 전원을 사용하여 실리콘전지셀의 표면을 (+)극으로 하고 불용성 음극판을 (-)극으로 하여 불화나트륨과 불산, 암모늄설페이트를 주성분으로 하는 전해액에 전류밀도 1∼3A/dm2의 전류밀도로 전해처리하여 300∼600nm 사이즈의 다공성 표면을 형성시키는 것이 특징이다.
As a means for solving the problem of the present invention, the silicon solar cell is subjected to a process of one step etching process, two step activation process, three step high frequency electrolytic treatment process and four step drying process, wherein the high frequency electrolytic treatment process is 10,000 to 50,000 Hz. of the high frequency pulse by using the power and an insoluble anode plate the surface of a silicon cell as a (+) pole (-) current in an electrolyte composed mainly of sodium fluoride and hydrofluoric acid, ammonium sulphate and the pole density of 1~3A / dm 2 The electrolytic treatment is carried out at a current density to form a porous surface having a size of 300 to 600 nm.

본 발명에 따른 고주파펄스를 이용한 실리콘 태양전지 셀의 고효율 표면처리방법은 기존의 진공증착과 화학적 처리방법에 비해 실리콘 표면에 전기화학적 전해처리를 통하여 나노 사이즈 급의 다공성 표면을 형성시킴으로써 다결정 실리콘 태양전지 셀의 비반사율을 증대시킴으로써 태양전지 셀의 집진효율을 증대시킬 수 있다.
In the high efficiency surface treatment method of silicon solar cell using high frequency pulse according to the present invention, polycrystalline silicon solar cell is formed by forming nano-sized porous surface through electrochemical electrolytic treatment on silicon surface as compared to conventional vacuum deposition and chemical treatment methods. By increasing the specific reflectivity of the cell can increase the dust collection efficiency of the solar cell.

도 1은 태양전지의 셀, 모듈, 어레이의 개요도.
도 2는 고주파펄스를 이용한 실리콘태양전지 셀의 표면처리공정을 나타낸 공정도.
도 3은 본 발명의 고주파 전해처리공정의 장치 모식도.
도 4는 전류밀도 차이에 따른 고주파펄스를 이용한 실리콘태양전지 셀의 표면비교 사진.
도 5는 펄스전원의 개요도.
1 is a schematic diagram of a cell, module, array of a solar cell.
2 is a process chart showing a surface treatment process of a silicon solar cell using a high frequency pulse.
3 is a device schematic diagram of a high frequency electrolytic treatment process of the present invention.
Figure 4 is a surface comparison photo of a silicon solar cell using a high frequency pulse according to the current density difference.
5 is a schematic diagram of a pulse power supply.

이하, 첨부한 도면에 의해 본 발명의 고주파펄스를 이용한 실리콘태양전지 셀의 표면처리공정을 상세히 설명하면 다음과 같다.Hereinafter, the surface treatment process of the silicon solar cell using the high frequency pulse of the present invention with reference to the accompanying drawings in detail as follows.

도 2는 고주파펄스를 이용한 실리콘태양전지 셀의 표면처리공정을 나타낸 공정도이다.2 is a process chart showing a surface treatment process of a silicon solar cell using high frequency pulses.

먼저, 1단계 공정으로 실리콘전지 셀의 표면에 부식된 산 제거를 위해 수산화칼륨(KOH) 10%의 용액에 에칭한다.First, in a one step process, the solution is etched in a 10% solution of potassium hydroxide (KOH) to remove acid that is corroded to the surface of the silicon battery cell.

그리고 2단계 활성화공정으로 실리콘전지 셀을 불산(HF) 또는 질산(HNO3 ) 용액에 침지시켜 활성화시킨다.In a two-step activation process, the silicon battery cell is immersed in a hydrofluoric acid (HF) or nitric acid (HNO 3 ) solution.

활성화 공정은 실리콘 웨이프 셀 표면에 존재하는 불순물을 제거하고 표면에 순수 실리콘만이 형성됨으로써 균일한 다공성 피막을 형성할 수 있도록 하기 위하여 행하여지는 공정으로 1단계 에칭하는 공정과 더불어 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 일반적인 조건과 범위 내에서 행할 수 있는 공정이기 때문에 본 발명에서는 자세히 서술하지는 않는다.The activation process is a process performed to remove impurities present on the surface of a silicon wafer cell and to form a uniform porous film by forming only pure silicon on the surface. Those skilled in the art are not described in detail in the present invention because they are processes that can be performed within general conditions and ranges.

3단계 고주파 전해처리공정을 통해 300∼600nm사이즈의 다공성 표면을 형성시키고, 끝으로 4단계 건조공정을 통해 공정이 마무리된다.The porous surface of 300-600nm size is formed through the three-step high frequency electrolytic treatment process, and the process is completed by the four-step drying process.

건조공정에서의 건조조건은 80∼100℃의 열풍 건조로에서 행하여 진다.Drying conditions in the drying step are performed in a hot air drying furnace at 80 to 100 ° C.

각 공정 사이에는 불순물 제거 또는 전 공정의 용액제거를 위한 수세가 구성된다.Between each process, water washing is constituted to remove impurities or to remove the solution of the entire process.

고주파 전해처리공정에 대한 자세한 설명은 후술하기로 한다.Detailed description of the high frequency electrolytic treatment will be described later.

도 3은 본 발명의 고주파 전해처리공정의 장치 모식도이다.3 is a device schematic diagram of a high frequency electrolytic treatment process of the present invention.

도 3에 도시된 바와 같이 실리콘전지 셀을 전해액이 들어 있는 전해조(1)에 침지하고 펄스전원공급장치(7)에 불용성 음극판(4)을 (-)극에 연결한다.As shown in FIG. 3, the silicon battery cell is immersed in the electrolytic cell 1 containing the electrolyte, and the insoluble negative electrode plate 4 is connected to the negative electrode of the pulse power supply 7.

상기 불용성 음극판(4)은 백금(Pt) 또는 티탄(Ti) 중 택일하여 사용한다.The insoluble negative electrode plate 4 is alternatively used among platinum (Pt) or titanium (Ti).

또한, 상기 전해조(1)에는 물론 전해액(2)의 순환을 위한 순환펌프(5)가 구비된다.In addition, the electrolytic cell 1 is provided with a circulation pump 5 for circulation of the electrolyte solution 2.

전해액(2)은 10∼12wt%의 불화나트륨과 25∼30wt%의 불산, 3∼5wt%의 암모늄설페이트를 사용하고 경우에 따라 음이온 계면활성제 0.01wt% 내외를 추가하여 사용한다.The electrolyte solution 2 uses 10 to 12 wt% sodium fluoride, 25 to 30 wt% hydrofluoric acid, and 3 to 5 wt% ammonium sulfate, and optionally adds about 0.01 wt% of anionic surfactant.

나머지는 이온교환수를 이다.The rest is ion exchanged water.

실리콘 태양전지 셀(3)은 (+)전극에 전선이나 부스바로 연결하고 전해액(2)의 온도는 20∼25℃, 전류밀도는 1∼3A/dm2로 통전시키고, 인가 주파수는 10,000∼50,000Hz의 고주파로 한다.The silicon solar cell 3 is connected to the (+) electrode with an electric wire or a busbar. The temperature of the electrolyte solution 2 is 20 to 25 ° C., the current density is 1 to 3 A / dm 2 , and the applied frequency is 10,000 to 50,000. It is a high frequency of Hz.

인가전압은 직류전압 및 교류전압 어느 쪽도 채택할 수 있으나, 본 발명의 항균 피막을 위한 다음 공정을 고려하여 교류 전원을 사용하는 것이 바람직하다.Although the applied voltage can adopt either a DC voltage and an AC voltage, it is preferable to use an AC power supply in consideration of the following process for the antimicrobial film of this invention.

도 3에 도시된 장치 모식도는 양극 산화공정의 모식도와 동일하므로 양극산화공정처럼 산화반응시 상승하는 전해액의 온도유지가 아주 중요하기 때문에 온도유지를 위하여 온도조절장치(6)를 구비한다.Since the device schematic diagram shown in FIG. 3 is the same as the schematic diagram of the anodic oxidation process, the temperature control device 6 is provided for maintaining the temperature because the temperature maintenance of the electrolyte solution rising during the oxidation reaction is very important like the anodization process.

또한, 원활한 전해액(2)의 교반 및 표면 산화를 촉진하기 위하여 공기교반장치로서 순환펌프(5)를 사용하여 전해액을 교반한다.In addition, in order to promote smooth agitation and surface oxidation of the electrolyte solution 2, the electrolyte solution is stirred using a circulation pump 5 as an air stirring device.

부호 In는 전해액 입구를 Out는 전해액 출구를 나타낸다.Symbol In denotes an electrolyte inlet and Out denotes an electrolyte outlet.

<실시예><Examples>

1∼10Ω·cm인 P형 다결정 실리콘웨이퍼(3.3cm×3.3cm)를 시료로 수산화칼륨 10%용액에 침지하여 에칭처리하고, 불산(HF) 5%용액과 질산(HNO3) 15%혼합용액에 3분간 활성화하여 전처리를 행하였다.A P-type polycrystalline silicon wafer (3.3 cm x 3.3 cm) of 1 to 10 占 Ωcm was immersed in a 10% solution of potassium hydroxide as a sample and etched. A 5% solution of hydrofluoric acid (HF) and 15% mixed solution of nitric acid (HNO 3 ) Activated for 3 minutes and pretreated.

전해처리조건은 표 1과 같은 조성과 조건으로 다공성 전해처리를 행하였다.Electrolytic treatment conditions were porous electrolytic treatment in the composition and conditions shown in Table 1.

이에 대한 표면처리 표면의 반사율의 대한 결과를 나타내었다.The result of the reflectance of the surface-treated surface is shown.


구분

division
전해처리조건Electrolytic Treatment Condition
전해액 조성Electrolyte composition
전원종류

Type of power

온도
(℃)

Temperature
(℃)

펄스주기
(ms)

Pulse period
(ms)

듀티사이클
(%)

Duty cycle
(%)

반사율
(600nm)

reflectivity
(600nm)
불화나트륨(wt%)Sodium fluoride (wt%) 불산
(wt%)
Foshan
(wt%)
암모늄설페이트
(wt%)
Ammonium sulfate
(wt%)
실시예 1Example 1 1010 2525 00 펄스pulse 5050 0.50.5 5050 1515 실시예 1Example 1 1010 2525 235235 펄스pulse 5050 0.50.5 6060 1212 실시예 1Example 1 1010 2525 55 펄스pulse 5050 0.50.5 7070 1212 실시예 1Example 1 1212 2525 33 펄스pulse 5050 0.50.5 8080 1010 실시예 1Example 1 1212 3030 33 펄스pulse 5050 1.01.0 5050 1010 실시예 1Example 1 1212 3030 33 펄스pulse 5050 1.01.0 6060 1010 비교예 1Comparative Example 1 00 2525 00 DCDC -- -- -- 2525 비교예 2Comparative Example 2 55 3030 00 DCDC -- -- -- 2020

상기와 같이 전해처리를 실시예 1∼10까지 같은 조건의 비교예 1∼2를 실시하였다.As described above, Comparative Examples 1 to 2 under the same conditions as in Examples 1 to 10 were conducted.

도 4는 전류밀도 차이에 따른 고주파펄스를 이용한 실리콘태양전지 셀의 표면비교 사진이다.4 is a surface comparison photograph of a silicon solar cell using a high frequency pulse according to the difference in current density.

도 4에서 ① 전류밀도 1A/dm2, ② 전류밀도 1.5A/dm2, ③ 전류밀도 2A/dm2, ④ 전류밀도 3A/dm2이다.4, ① current density 1A / dm 2 , ② current density 1.5A / dm 2 , ③ current density 2A / dm 2 , and ④ current density 3A / dm 2 .

전류밀도가 1∼3A/dm2 일 때 양호한 표면처리가 되는 것을 알 수 있다.Current density of 1 to 3 A / dm 2 It can be seen that when the surface treatment is good.

DC전원의 경우 전해처리시 실리콘표면에 생성되는 산소에 의해 이온분극현상이 발생하여 균일한 표면처리가 불가하다.In the case of DC power supply, ion polarization phenomenon is generated by oxygen generated on the silicon surface during electrolytic treatment, so that uniform surface treatment is impossible.

일반적인 AC전원은 사인파(sign)파로서 우리나라에서는 통상 60㎐가 AC전원의 주파수이며, 일본이나 미국의 경우 50㎐가 일반적인 AC전원으로 사용되고 있다.A typical AC power source is a sine wave (sign) wave, and in Korea, 60 GHz is the frequency of an AC power source.

도 5는 펄스전원의 개요도이다.5 is a schematic diagram of a pulse power supply.

듀티사이클(%) = ton / (ton + toff) × 100Duty cycle (%) = t on / (t on + t off ) × 100

ton: 전류가 인가되는 시간t on : time when current is applied

toff: 전류가 인가되지 않는 시간t off : Time when no current is applied

도 5와 같이 펄스전원은 사인파가 아닌 직각파(square wave)로서 전압전류를 서로 반대 극성으로 변환하면서 일정시간 전원을 off하는 시간을 줌으로써 도금액(항균금속전착)의 이온분극현상을 줄여줌으로써 아주 세밀한 기공(pore)층과 같은 좁은 구멍에 균일하게 피막을 채워주는 역할을 수행하는 우수한 전원이다.As shown in FIG. 5, the pulse power source is a square wave, not a sine wave, and thus, the voltage current is turned to the opposite polarity to give the time to turn off the power for a predetermined time, thereby reducing the ion polarization phenomenon of the plating solution (antibacterial metal electrodeposition). It is an excellent power source that serves to uniformly fill the film in narrow holes such as a pore layer.

또한, 펄스전원의 경우 AC전원과 달리 위의 도 5의 그림처럼 듀티사이클에 따라서 항균금속이 균일하게 전착되는 것이 다르며, 또한 펄스주기(ms)의 경우 주파수를 나타내는 것으로 주파수는 1/펄스주기로 표시됨으로써 고주파의 경우 그 주기가 굉장히 짧아 그 효과는 크다고 할 수 있다.In addition, in the case of the pulse power supply, unlike the AC power supply, the antimicrobial metal is uniformly electrodeposited according to the duty cycle as shown in FIG. 5, and in the case of the pulse period (ms), the frequency represents 1 / pulse period As a result, the frequency of the high frequency is very short and the effect is large.

따라서, 펄스전원에서의 듀티사이클과 주기는 선택가능한 수치가 아니라 실리콘 태양전지 셀의 피막 기공층에 균일하게 채워넣기 위한 가장 중요한 요소이다.
Therefore, the duty cycle and period in the pulse power source is not a selectable value but the most important factor for uniformly filling the film pore layer of the silicon solar cell.

1. 전해조 2. 전해액
3. 실리콘 태양전지 셀 4. 음극판
5. 순환펌프장치 6. 온도조절장치
8. 펄스전원공급장치
1. Electrolyzer 2. Electrolyte
3. Silicon Solar Cell 4. Negative Plate
5. Circulation pump device 6. Temperature controller
8. Pulse Power Supply

Claims (3)

실리콘 태양전지 셀의 표면처리방법에 있어서,
1단계 실리콘 태양전지 셀을 수산화칼륨(KOH) 10% 용액에 에칭하는 공정과;
2단계 에칭공정을 거친 실리콘 태양전지 셀을 불산(HF) 5%용액 또는 질산(HNO3) 15% 혼합용액에서 활성화하는 공정과;
3단계 활성화 공정을 거친 실리콘 태양전지 셀을 300∼600nm사이즈의 다공성 표면을 형성시키는 고주파 전해처리공정;
4단계 고주파 전해처리공정을 거친 실리콘 태양전지 셀을 80∼100℃의 열풍건조실에서 건조시키는 건조공정;
으로 이루어지되,
상기 고주파 전해처리공정은 10,000∼50,000Hz의 고주파펄스 전원을 사용하여 실리콘 태양전지셀(3)의 표면을 (+)로 하고 불용성 음극판(4)을 (-)극으로 하여 10∼12wt%의 불화나트륨과 25∼30wt%의 불산, 3∼5wt%의 암모늄설페이트로 이루어진 전해액(2)에 전류밀도 1∼3A/dm2의 전류밀도로 20∼25℃에서 전해처리를 하는 것이 특징인 고주파펄스를 이용한 실리콘 태양전지 셀의 표면처리방법.
In the surface treatment method of a silicon solar cell,
Etching the first step silicon solar cell in a 10% solution of potassium hydroxide (KOH);
Activating a silicon solar cell subjected to a two-step etching process in a 5% solution of hydrofluoric acid (HF) or a 15% mixed solution of nitric acid (HNO 3) ;
A high frequency electrolytic treatment process for forming a porous surface having a size of 300 to 600 nm in a silicon solar cell subjected to a three-step activation process;
A drying step of drying the silicon solar cell subjected to the four-step high frequency electrolytic treatment in a hot air drying chamber at 80 to 100 ° C .;
Consisting of
In the high frequency electrolytic treatment process, the surface of the silicon solar cell 3 is made of (+) and the insoluble anode plate 4 is made of (-). High frequency pulses characterized by electrolytic treatment at 20-25 ° C. with an electric current density of 1 to 3 A / dm 2 in an electrolyte solution 2 consisting of sodium, 25 to 30 wt% hydrofluoric acid and 3 to 5 wt% ammonium sulfate. Surface treatment method of the silicon solar cell using.
삭제delete 제 2항에 있어서,
불용성 음극판(4)은 백금(Pt) 또는 티탄(Ti) 중 택일하여 사용할 수 있는 것이 특징인 고주파펄스를 이용한 실리콘 태양전지 셀의 표면처리방법.
The method of claim 2,
The insoluble negative electrode plate (4) is a surface treatment method of a silicon solar cell using high frequency pulses, characterized in that can be used alternatively of platinum (Pt) or titanium (Ti).
KR1020100100603A 2010-10-15 2010-10-15 Method for treating the surface of silicone sollar cell using high frequency pluse KR101032601B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100100603A KR101032601B1 (en) 2010-10-15 2010-10-15 Method for treating the surface of silicone sollar cell using high frequency pluse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100100603A KR101032601B1 (en) 2010-10-15 2010-10-15 Method for treating the surface of silicone sollar cell using high frequency pluse

Publications (1)

Publication Number Publication Date
KR101032601B1 true KR101032601B1 (en) 2011-05-06

Family

ID=44365550

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100100603A KR101032601B1 (en) 2010-10-15 2010-10-15 Method for treating the surface of silicone sollar cell using high frequency pluse

Country Status (1)

Country Link
KR (1) KR101032601B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342791A (en) * 2002-03-15 2003-12-03 Canon Inc Structure having hole and method for producing the same
JP2005011566A (en) * 2003-06-17 2005-01-13 Tokyo Electron Ltd Positive electrode oxidation device, manufacturing method of oxidation layer, field emission type electron source, and manufacturing method of field emission type electron source
KR20090040728A (en) * 2007-10-22 2009-04-27 엘지전자 주식회사 Solar cell using a semiconductor wafer substrate with porous surface and fabrication thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342791A (en) * 2002-03-15 2003-12-03 Canon Inc Structure having hole and method for producing the same
JP2005011566A (en) * 2003-06-17 2005-01-13 Tokyo Electron Ltd Positive electrode oxidation device, manufacturing method of oxidation layer, field emission type electron source, and manufacturing method of field emission type electron source
KR20090040728A (en) * 2007-10-22 2009-04-27 엘지전자 주식회사 Solar cell using a semiconductor wafer substrate with porous surface and fabrication thereof

Similar Documents

Publication Publication Date Title
Oh et al. Nanoporous black silicon photocathode for H 2 production by photoelectrochemical water splitting
RU2399119C2 (en) Method of making solar cell electrodes and electrochemical deposition device
Hara et al. Crystalline Si photovoltaic modules based on TiO 2-coated cover glass against potential-induced degradation
JP2007524762A (en) Method and apparatus for hydrogen generation
US20120017989A1 (en) Metal and metal oxide surface texturing
CN101608316B (en) Device for producing hydrogen through decomposing water
CN101814375B (en) Preparation method of nitrogen-doped titanium dioxide nano line electrode
CN109706478A (en) The thin layer titanium carbide of hydrogen reducing loads photoelectrolysis water cuprous oxide photocathode material and preparation method thereof
CN205088310U (en) A electrolytic bath device that is used for cloudy anode chamber of partition of electrolytic preparation ozone water
CN103489651A (en) Preparing method for embellish titanium dioxide nanotube array electrode material embellished by cadmium selenide nano-particles
CN108364792A (en) A kind of preparation method and applications of nickel cobalt selenium hollow ball-shape multilevel structure material
WO2023231624A1 (en) Preparation process for solar corrosion-resistant aluminum frame
Chandra et al. Photoelectrochemical cell for solar energy conversion using electrocodeposited CdSe films
CN102222574A (en) Ag modified TiO2 membrane electrode for solar cell and preparation method thereof
Wang et al. Influence of grain size on photoelectrocatalytic performance of CuBi2O4 photocathodes
CN101935819B (en) Preparation method of titanium dioxide film grown in situ on surface of titanium or titanium alloy material
CN105040062B (en) Cu2O nano-particles are sensitized TiO2The method of nanotube array photoelectrode
CN101956194A (en) Method for preparing TiO2 thin film modified titanium-based beta-PbO2 photoelectrode
CN104241439A (en) Method for preparing cadmium telluride thin-film solar cell
CN107268020B (en) A kind of Ta3N5The preparation method and Ta of film3N5The application of film
KR101032601B1 (en) Method for treating the surface of silicone sollar cell using high frequency pluse
CN104051570A (en) Manufacturing method of solar cell
CN109453777A (en) α-Fe is improved based on ternary layered double-metal hydroxide2O3The method of photoelectrocatalysis hydrogen production by water decomposition performance
CN106367796B (en) A kind of preparation method for being laminated shape titanium dioxide/cadmium selenide/gold laminated film
Pan et al. Effect of irradiation on deposition of CdS in fabricating co-axial heterostructure of TiO2 nanotube arrays via chemical deposition

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140718

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151126

Year of fee payment: 5

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20160721

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170424

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180425

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191024

Year of fee payment: 9