KR101011078B1 - Method for Preparing Castable Block Improving Corrosion and Oxidation Resistance - Google Patents

Method for Preparing Castable Block Improving Corrosion and Oxidation Resistance Download PDF

Info

Publication number
KR101011078B1
KR101011078B1 KR1020030095334A KR20030095334A KR101011078B1 KR 101011078 B1 KR101011078 B1 KR 101011078B1 KR 1020030095334 A KR1020030095334 A KR 1020030095334A KR 20030095334 A KR20030095334 A KR 20030095334A KR 101011078 B1 KR101011078 B1 KR 101011078B1
Authority
KR
South Korea
Prior art keywords
carbon
castable block
powder
corrosion resistance
oxidation resistance
Prior art date
Application number
KR1020030095334A
Other languages
Korean (ko)
Other versions
KR20050064062A (en
Inventor
조문규
Original Assignee
재단법인 포항산업과학연구원
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원, 주식회사 포스코 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020030095334A priority Critical patent/KR101011078B1/en
Publication of KR20050064062A publication Critical patent/KR20050064062A/en
Application granted granted Critical
Publication of KR101011078B1 publication Critical patent/KR101011078B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron

Abstract

본 발명은 내식성 및 내산화성을 향상시키는 캐스타블 블록의 제조방법에 관한 것으로, 본 발명의 캐스타블 블록은 입경이 0.010 내지 0.075mm인 산화물 분말과 평균입경이 5 내지 20㎛인 탄소계 분말을 분쇄기로 강하게 혼합함으로써, 산화물 분말이 탄소계 입자로 1차 피복되고, 1차 피복된 혼합분말이 무기물 10 내지 50중량%와 물 50 내지 90중량%로 이루어진 수용액으로 2차 피복된 후 내화골재와 혼합되어 탈기 성형됨으로써 제조되며, 탈기성형 중에 탄소 입자들의 편재나 손실이 없고, 탄소 입자들 주위에 산화 방지제가 균일하게 분포되어 있으며, 내산화성과 내식성이 우수한 캐스타블 블록을 제공하여 제강, 시멘트 등의 공업용 요로의 내장 내화물로 적합하게 이용할 수 있는 효과가 있다.The present invention relates to a method for producing a castable block for improving corrosion resistance and oxidation resistance, and the castable block of the present invention is an oxide powder having a particle diameter of 0.010 to 0.075 mm and a carbon-based powder having an average particle diameter of 5 to 20 μm. By mixing strongly with a pulverizer, the oxide powder is first coated with carbon-based particles, and the first coated mixed powder is secondly coated with an aqueous solution composed of 10 to 50% by weight of inorganic material and 50 to 90% by weight of water, and then refractory aggregate It is manufactured by mixing with and degassing, and there is no ubiquitous or loss of carbon particles during degassing, uniformly distributed antioxidants around the carbon particles, providing a castable block excellent in oxidation resistance and corrosion resistance There is an effect that can be suitably used as interior refractories of industrial urinary tract such as cement.

캐스타블 블록, 부정형 내화물, 탄소함유, 진동성형, 탈기성형, 내장내화물Castable Block, Indefinite Refractory, Carbon Containing, Vibration, Degassing, Interior Refractory

Description

내식성 및 내산화성을 향상시키는 캐스타블 블록의 제조방법{Method for Preparing Castable Block Improving Corrosion and Oxidation Resistance}Method for Preparing Castable Block Improving Corrosion and Oxidation Resistance to Improve Corrosion Resistance and Oxidation Resistance

본 발명은 내식성 및 내산화성을 향상시키는 캐스타블 블록의 제조 방법에 관한 것이다. 더욱 상세하게는 산화물 분말과 탄소계 분말을 강하게 혼합함으로써 산화물 분말을 탄소계 입자로 1차 피복하고, 무기물의 수용액으로 2차 피복함으로써 내식성 및 내산화성을 향상시키는 캐스타블 블록의 제조방법 및 이에 의하여 제조되어 제철, 제강, 시멘트 등 각종 공업용 요로의 내장 내화물로 적합하게 이용할 수 있는 캐스타블 블록에 관한 것이다.The present invention relates to a method for producing a castable block for improving corrosion resistance and oxidation resistance. More specifically, the method for producing a castable block for improving the corrosion resistance and oxidation resistance by first coating the oxide powder with carbon-based particles by strongly mixing the oxide powder and the carbon-based powder and second coating with the aqueous solution of an inorganic material, and The present invention relates to a castable block which is manufactured by the present invention and can be suitably used as interior refractories of various industrial urinary furnaces such as steelmaking, steelmaking, and cement.

각종 공업용 요로의 내장 내화물은 정형 내화벽돌, 부정형 내화물, 그리고 캐스타블 블록으로 구분할 수 있다. 캐스타블 블록은 일정한 형상의 성형 틀에 습식 혼합한 부정형 내화물을 붓고, 양생과 건조처리하여 정형 제품화한 것으로, 부정형 내화물에 비하여 치밀질의 제품 제조가 가능하고, 정형 내화벽돌에 비하여 제조 단가가 저렴하며, 대형화할 수 있다는 장점을 가지고 있어 최근 각광을 받고 있다. Internal refractories of various industrial urinary tracts can be classified into standard refractory bricks, irregular refractory blocks, and castable blocks. The castable block is a product formed by pouring the amorphous refractory material mixed with a wet shape into a mold of a constant shape, curing and drying to form a regular product, and it is possible to manufacture a denser product than the amorphous refractory material, and the manufacturing cost is lower than that of the standard refractory brick. In addition, it has recently been in the spotlight because it has the advantage of being large in size.

대한민국 특허출원공개 제1999-0018884호는 부정형 내화물에 첨가되는 흑연 을 계면활성제로 처리된 미분의 흑연과 수지로 코팅된 조립 흑연의 두 가지 형태로 적절히 제어함으로써, 내화물의 강도 및 수분 첨가량을 소정의 범위에서 유지하면서, 흑연을 다량 첨가하여 내열성, 내열충격성, 및 내식성이 우수한 흑연함유 캐스타블 내화물을 제시하였다. Republic of Korea Patent Application Publication No. 1999-0018884 appropriately controls the graphite added to the amorphous refractory in two forms of finely divided graphite treated with a surfactant and granulated graphite coated with a resin, thereby controlling the strength and amount of moisture of the refractory. Keeping in the range, a large amount of graphite was added to provide a graphite-containing castable refractory having excellent heat resistance, thermal shock resistance, and corrosion resistance.

또한, 대한민국 특허출원공개 제1993-0007859호는 산화마그네슘(MgO)의 순도가 95 내지 99%이고, 입자 크기가 1 내지 5mm인 내화 원료에 전체 첨가할 액상 페놀 수지의 50%를 첨가 혼련하고, 인조 및 천연 흑연, 그리고 금속 분말 산화방지제를 투입, 코팅하고, 나머지 액상페놀수지 50%를 첨가, 혼련하고, 입자 크기가 1 내지 0.001mm인 내화 원료 미분, 피치 분말 그리고 Al2O3를 투입, 혼련시킴으로써 제조되는 마그네시아 탄소질 부정형 내화물을 제시하였다.In addition, Korean Patent Application Publication No. 1993-007007859 adds and kneads 50% of the liquid phenol resin to be added to the refractory raw material having a purity of magnesium oxide (MgO) of 95 to 99% and a particle size of 1 to 5 mm. Artificial and natural graphite and metal powder antioxidant are added and coated, 50% of the remaining liquid phenolic resin is added and kneaded, refractory raw material fine powder having a particle size of 1 to 0.001 mm, pitch powder and Al 2 O 3 are added. Magnesia carbonaceous amorphous refractory prepared by kneading is presented.

그러나, 앞서 제시한 내화물을 이용하여 캐스타블 블록을 제조할 경우 건조 시편의 기공율이 높아서 산화방지제의 첨가 효과가 없고, 흑연의 산화가 급속하게 진행되는 등의 내산화성 및 내식성이 불량한 문제점이 있다. 또한, 제시한 내화물을 이용하여 진공 탈기에 의해 성형하면 탈기 중에 비중이 낮은 흑연 입자들이 부상하거나 기포와 함께 빠져나감으로써 조직이 불균일해지는 등의 문제점이 있다.However, when the castable block is manufactured using the above-mentioned refractory, there is a problem in that the dry specimen has a high porosity, so that there is no effect of adding an antioxidant, and oxidation resistance and corrosion resistance, such as rapid oxidation of graphite, are poor. . In addition, when molding by vacuum degassing using the present refractory, there is a problem such that the graphite particles having a low specific gravity during the degassing rises, or the tissue is uneven due to escape with bubbles.

상기와 같은 문제점을 해결하기 위하여, 본 발명은 내산화성 및 내식성을 향상시키는 캐스타블 블록의 제조방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, an object of the present invention is to provide a method for producing a castable block to improve the oxidation resistance and corrosion resistance.

또한, 본 발명은 내산화성 및 내식성이 향상된 캐스타블 블록을 제공하는 것 을 목적으로 한다.Another object of the present invention is to provide a castable block having improved oxidation resistance and corrosion resistance.

본 발명의 상기 목적 및 기타 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.

상기 목적을 달성하기 위하여, 본 발명은 입경이 0.010 내지 0.075mm인 산화물 분말과 평균입경이 5 내지 20㎛인 탄소계 분말을 분쇄기로 강하게 혼합함으로써, 상기 산화물 분말이 탄소계 입자로 1차 피복된 혼합분말을 제조하는 단계: 상기 1차 피복된 혼합분말이 무기물 10 내지 50중량%와 물 50 내지 90중량%로 이루어진 수용액으로 2차 피복된 혼합분말을 제조하는 단계; 및 상기 2차 피복된 혼합분말과 내화골재를 혼합한 후 탈기 성형하는 단계; 를 포함하여 이루어짐을 특징으로 하는 내산화성 및 내식성을 향상시키는 캐스타블 블록의 제조방법을 제공한다.In order to achieve the above object, the present invention is to strongly mix the oxide powder having a particle size of 0.010 to 0.075mm and the carbon-based powder having an average particle diameter of 5 to 20㎛ by a mill, whereby the oxide powder is first coated with carbon-based particles Preparing a mixed powder: preparing a mixed powder secondary coated with an aqueous solution composed of 10 to 50% by weight of inorganic material and 50 to 90% by weight of water; And degassing and molding the secondary coated mixed powder and refractory aggregate. It provides a method for producing a castable block to improve the oxidation resistance and corrosion resistance, characterized in that made.

상기 분쇄기는 어트리션 밀(Attrition Mill), 볼 밀(Ball Mill) 또는 제트 밀(Jet Mill)일 수 있다.The mill may be an attrition mill, a ball mill or a jet mill.

상기 무기물은 질산 알루미늄(Aluminum Nitrate), 황산 알루미늄(Aluminum Sulfate), 질산 마그네슘(Magnesium Nitrate), 및 붕산(Boric acid)으로 이루어진 군으로부터 선택된 1종 이상의 무기물일 수 있다.The inorganic material may be at least one inorganic material selected from the group consisting of aluminum nitrate, aluminum sulfate, magnesium nitrate, and boric acid.

또한, 본 발명은 상술한 바와 같은 제조방법에 의하여 제조된 내산화성 및 내식성이 향상된 캐스타블 블록을 제공한다.In addition, the present invention provides a castable block with improved oxidation and corrosion resistance produced by the manufacturing method as described above.

이하, 본 발명에 대하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명의 캐스타블 블록의 제조방법은 제철, 제강, 시멘트 등의 공업용 요 로의 내장 내화물로 사용되는 기존의 캐스타블 내화물이 내식성과 내산화성이 불량한 점을 개선하기 위하여, 내식성을 향상시키는 단계로 산화물 분말과 탄소계 분말을 강하게 혼합함으로써 산화물 분말을 탄소계 입자로 1차 피복하는 단계를 포함하고, 내산화성을 향상시키는 단계로 무기물의 수용액으로 2차 피복하는 단계를 포함하여 이루어짐에 특징이 있다.Method for manufacturing a castable block of the present invention is to improve the corrosion resistance in order to improve the corrosion resistance and poor oxidation resistance of the existing castable refractory used as interior refractory of industrial furnaces such as steel, steel, cement And a step of primary coating the oxide powder with carbon-based particles by strongly mixing the furnace oxide powder and the carbon-based powder, and the second coating with an aqueous solution of an inorganic substance to improve oxidation resistance. have.

산화물 분말이 탄소계 입자로 1차 피복된 혼합분말을 제조하는 단계는 0.075mm 이하의 산화물 분말과 평균입경이 20㎛ 이하인 탄소계 분말을 분쇄기로 강하게 혼합하는 단계이다. 강하게 혼합하면 산화물 분말의 표면에 탄소계 분말이 전단력의 작용으로 묻어지면서 물리적으로 강하게 부착된다. 따라서 탈기 성형 중에 산화물 입자와 탄소계 분말의 분리현상이 없고, 탄소계 입자들의 부상도 없으며, 이러한 탄소계 입자들로 인하여 최종적인 캐스타블 블록의 용강 및 슬래그에 대한 내식성을 향상시키는 것이다. The step of preparing a mixed powder in which the oxide powder is first coated with carbon-based particles is a step of strongly mixing an oxide powder of 0.075 mm or less and a carbon-based powder having an average particle diameter of 20 μm or less with a grinder. When the mixing is strong, the carbon-based powder is buried on the surface of the oxide powder by the action of the shear force, and is physically attached strongly. Therefore, there is no separation of oxide particles and carbon-based powders during degassing, no rise of carbon-based particles, and these carbon-based particles improve corrosion resistance of molten steel and slag of the final castable block.

상기 탄소계 입자는 카본 블랙, 핏치 등의 비정질 탄소와 인상흑연, 키쉬 흑연(Kish graphite), 팽창 흑연 등의 결정질 탄소가 바람직하다. 더욱 바람직하게는 결정질 탄소이다. 상기 산화물 분말은 마그네시아, 알루미나, 실리카, 하소 알루미나, 실리카 플라워 등이 바람직하다. 산화물 분말의 입경은 0.075mm 이하이어야 하고, 탄소계 분말의 평균입경은 20㎛ 이하이어야 한다. 산화물 분말의 입경이 0.075mm를 초과하거나 탄소계 분말의 평균입경이 20㎛를 초과하는 경우에는, 산화물 입자에 대한 부착율이 낮아 대부분의 탄소계 분말들이 독립적으로 존재함으로 탈기 성형중에 편재가 되거나 손실이 커지므로 캐스타블 블록의 내산화성이나 내식 성이 낮아지게 된다. 바람직한 산화물 분말의 입경은 0.010 내지 0.075mm이고, 탄소계 분말의 평균입경은 5 내지 20㎛이다.The carbon-based particles are preferably amorphous carbon such as carbon black or pitch, and crystalline carbon such as impression graphite, Kish graphite, expanded graphite, or the like. More preferably crystalline carbon. The oxide powder is preferably magnesia, alumina, silica, calcined alumina, silica flower, or the like. The particle diameter of the oxide powder should be 0.075 mm or less, and the average particle diameter of the carbonaceous powder should be 20 μm or less. When the particle diameter of the oxide powder exceeds 0.075 mm or the average particle diameter of the carbon-based powder exceeds 20 μm, the adhesion rate to the oxide particles is low, so that most carbon-based powders are independently present and become ubiquitous during deaeration molding. As the size becomes larger, the oxidation resistance and the corrosion resistance of the castable block are lowered. The particle size of the preferred oxide powder is 0.010 to 0.075 mm, and the average particle diameter of the carbon-based powder is 5 to 20 µm.

상기 산화물 분말과 탄소계 분말을 혼합할 때는 강한 전단력을 생성할 수 있는 어트리션 밀, 볼 밀, 제트 밀 등의 분쇄기를 사용하는 것이 바람직하다. When mixing the oxide powder and the carbon-based powder, it is preferable to use a grinder such as an attention mill, a ball mill, a jet mill, etc., capable of generating a strong shear force.

2차 피복된 혼합분말을 제조하는 단계는 1차 피복된 혼합분말을 질산 알루미늄, 황산 알루미늄, 질산 마그네슘, 붕산 등의 무기물 10 내지 50중량%와 물 50 내지 90중량%로 이루어진 수용액으로 피복시키는 단계이다. 질산 알루미늄, 황산 알루미늄, 질산 마그네슘, 붕산 등을 물과 혼합하면 수화물이 형성되고, 형성된 수화물이 탄소계 1차 피복층 위에 수화물층을 형성한 후 건조과정을 거치면서 강하게 부착된다. 수화물층은 탄소계 입자의 산화보다 먼저 열분해되면서 산화물로 전이하여 탄소계 입자 표면에 치밀한 보호층을 형성함으로써 탄소계 입자의 산화 방지제로서 작용하게 된다. 따라서, 탄소계 코팅층 표면에 수화물이 균일하게 피복되어 있으므로 내산화성을 향상시키게 되는 것이다.The step of preparing the secondary coated mixed powder is a step of coating the primary coated mixed powder with an aqueous solution consisting of 10 to 50% by weight of inorganic materials such as aluminum nitrate, aluminum sulfate, magnesium nitrate and boric acid and 50 to 90% by weight of water. to be. When nitrate, aluminum sulfate, magnesium nitrate, and boric acid are mixed with water, a hydrate is formed, and the formed hydrate is strongly attached during the drying process after forming a hydrate layer on the carbon-based primary coating layer. The hydrate layer acts as an antioxidant of the carbon-based particles by thermally decomposing prior to the oxidation of the carbon-based particles, thereby transferring to an oxide to form a dense protective layer on the surface of the carbon-based particles. Therefore, since the hydrate is uniformly coated on the surface of the carbon-based coating layer is to improve the oxidation resistance.

상기 무기물의 수용액은 무기물 10 내지 50중량%와 물 50 내지 90중량%로 이루어진 수용액이다. 무기물이 10중량% 미만이면 코팅되는 수화물의 양이 적어서 산화방지 효과가 없고, 50중량%를 초과하면 수화물의 코팅이 불균일하게 진행되어 건조과정에서 피복층의 균열 및 탈락을 일으키고 이에 따라 산화방지 효과가 없으므로 캐스타블 블록의 내산화성과 내식성이 낮다.The aqueous solution of the inorganic material is an aqueous solution consisting of 10 to 50% by weight of inorganic material and 50 to 90% by weight of water. If the inorganic material is less than 10% by weight, the amount of hydrate to be coated is small and there is no anti-oxidation effect. If the amount is more than 50% by weight, the coating of the hydrate proceeds unevenly, causing cracking and dropping of the coating layer during the drying process. Therefore, the castable block has low oxidation resistance and corrosion resistance.

2차 피복된 혼합분말은 내화골재와 적정 비율로 혼합된 후, 탈기 성형을 거쳐 캐스타블 블록을 제조하게 되는 것이다. 혼합 분말과 내화골재를 혼합한 후 탈 기 성형하면, 비중이 낮은 탄소계 입자들의 분리나 탈기에 의한 손실 없이 전체적으로 균일하게 탄소계 입자가 분포한 캐스타블 블록을 얻을 수 있게 된다. 탈기 성형한 캐스타블 블록의 건조 후 겉보기 기공율은 5 내지 8% 정도이다. 혼합분말과 내화골재를 이용한 캐스타블 블록의 제조방법은 대한민국 특허출원 제2002-0083010호에 게재된 방법에 의한다. The secondary coated mixed powder is mixed with the refractory aggregate at an appropriate ratio, and then degassed to produce a castable block. When the mixed powder and the refractory aggregate are mixed and then degassed, the castable block in which the carbon-based particles are uniformly distributed can be obtained without loss of separation or degassing of the carbon-based particles having low specific gravity. The apparent porosity after drying of the degassed castable block is about 5 to 8%. The method for producing a castable block using a mixed powder and fireproof aggregate is based on the method disclosed in Korean Patent Application No. 2002-0083010.

이하, 하기의 실시예를 통하여 본 발명을 더욱 상세히 설명하지만, 본 발명의 범위가 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the examples.

실시예 1 내지 4 및 비교예 1 내지 6Examples 1-4 and Comparative Examples 1-6

[실시예 1]Example 1

입경이 0.075mm 이하인 마그네시아 분말 30중량%와 알루미나 초미분 10중량%을 평균입경이 5~20㎛인 인상흑연 5중량%와 혼합한 후, 볼밀로 강하게 혼합하여 흑연 입자가 마그네시아 분말과 초미분 알루미나 분말의 표면에 1차로 피복된 혼합 분말을 얻었다. 얻은 혼합 분말을 교반하면서 붕산 10중량%와 물 90중량%로 구성된 수용액을 분무함으로써 혼합 분말 표면에 2차 피복하였다. 2차 피복처리 후 계속 교반하면서 70℃에서 100℃까지의 온풍을 가하여 건조하였다. 30% by weight of magnesia powder having a particle diameter of 0.075 mm or less and 10% by weight of ultra fine alumina are mixed with 5% by weight of graphite which has an average particle diameter of 5-20 µm, and then mixed vigorously by a ball mill, and the graphite particles are mixed with the magnesia powder and ultra fine alumina. A mixed powder was obtained which was primarily coated on the surface of the powder. The mixed powder obtained was secondary coated on the mixed powder surface by spraying an aqueous solution composed of 10% by weight of boric acid and 90% by weight of water while stirring. After secondary coating treatment, the mixture was dried by adding warm air from 70 ° C to 100 ° C with continuous stirring.

건조된 혼합 분말을 대한민국 특허출원 제2002-0083010호에 제시된 방법으로 성형하였다. 즉, 실리카 플라워 2중량%, 알루미나 시멘트 3중량%, 분산제인 헥사메타인산소다 0.2중량%, 마그네시아 골재 50중량%, 및 수분 7중량%을 혼합하였다. 하부에 진동자가 설치된 진공조 내부에 성형 몰드를 투입하고, 투입된 성형 몰드에 상기 혼합물을 부은 후 진공조를 닫았다. 수십 토르(torr)로 감압하면서 진동자를 가동함으로써 혼합물 중에 포함되어 있는 기포들을 진공조 외부로 방출하였고, 기포가 방출됨에 따라 혼합물이 몰드 내에서 치밀하게 충전되었다. 작업 종료 후, 몰드를 진공조에서 꺼내어 상온에서 12시간 동안 유지한 후, 몰드를 해체하여 치밀한 캐스타블 블록을 제조하였다.The dried mixed powder was molded by the method disclosed in Korean Patent Application No. 2002-0083010. That is, 2 weight% of silica flowers, 3 weight% of alumina cement, 0.2 weight% of hexamethaphosphate as a dispersing agent, 50 weight% of magnesia aggregate, and 7 weight% of moisture were mixed. The molding mold was put into a vacuum chamber provided with a vibrator at the bottom thereof, and the vacuum chamber was closed after pouring the mixture into the injected molding mold. By operating the vibrator while depressurizing to several tens of torr, bubbles contained in the mixture were discharged out of the vacuum chamber, and as the bubbles were released, the mixture was densely packed in the mold. After the end of the work, the mold was taken out of the vacuum chamber and kept at room temperature for 12 hours, and then the mold was dismantled to prepare a dense castable block.

제조된 케스타블 블록 시편을 100℃에서 건조한 후, 1,000℃와 1,500℃에서 3시간 동안 열처리하여 시편의 무게감량을 측정하였다. The prepared castable block specimen was dried at 100 ° C., and then heat treated at 1,000 ° C. and 1,500 ° C. for 3 hours to measure the weight loss of the specimen.

또한, 제강용 슬래그와 용강을 침식제로 하여 1,650℃에서 회전침식 시험하여 시편의 내식성 및 내산화성을 평가하였는데, 비교예 1의 결과를 100으로 하여 계산한 값을 하기 표 1에 나타내었다.In addition, the corrosion resistance and oxidation resistance of the specimens were evaluated by rotating erosion test at 1,650 ° C. using steelmaking slag and molten steel as erosion agents, and the values calculated using the results of Comparative Example 1 as 100 are shown in Table 1 below.

[실시예 2 내지 4 및 비교예 1 내지 6][Examples 2 to 4 and Comparative Examples 1 to 6]

하기 표 1에 나타낸 바와 같이, 산화물분말입경, 탄소계 분말의 평균입경과 종류, 무기물의 종류와 함량, 탄소입자처리법, 캐스타블 블록의 제조법을 달리한 것을 제외하고는 실시예 1과 동일하게 수행한 후, 그 결과를 하기 표 1에 나타내었다.As shown in Table 1, the same as in Example 1 except for the oxide powder particle size, the average particle diameter and type of the carbon-based powder, the type and content of the inorganic material, the carbon particle treatment method, the manufacturing method of the castable block After performing, the results are shown in Table 1 below.

한편, 비교예 1에서의 수지피복된 조립흑연은 대한민국 특허출원공개 제1999-0018884호에 제시된 것과 동일한 것을 사용하였다.On the other hand, the resin coated granulated graphite in Comparative Example 1 used the same as that shown in the Republic of Korea Patent Application Publication No. 1999-0018884.

구분division 산화물분말
입경(mm)
Oxide powder
Particle diameter (mm)
탄소계 분말Carbonaceous powder 무기물 수용액Mineral aqueous solution 탄소입자 처리법Carbon Particle Treatment 캐스타블 블록Castable block
평균입경(㎛)
Average particle size (㎛)
종류Kinds 무기물의 종류Type of mineral 무기물의 함량(중량%)Mineral content (% by weight) 제조법Recipe 내산화성지수Oxidation Resistance Index 내식성지수Corrosion Resistance Index






room

city

Yes
1One 0.075 이하0.075 or less 2020 인상흑연Impression 붕산Boric acid 1010 본발명Invention 탈기성형Deaeration Molding 200200 190190
22 0.075 이하0.075 or less 1010 키쉬흑연Kish Graphite 질산마그네슘Magnesium nitrate 3030 본발명Invention 탈기성형Deaeration Molding 210210 190190 33 0.075 이하0.075 or less 55 키쉬흑연Kish Graphite 질산알루미늄Aluminum nitrate 5050 본발명Invention 탈기성형Deaeration Molding 220220 200200 44 0.075 이하0.075 or less 1010 인상흑연Impression 붕산Boric acid 2020 본발명Invention 탈기성형Deaeration Molding 210210 190190





ratio

School

Yes
1One 0.075 이하0.075 or less 2020 인상흑연Impression -- -- 수지피복Resin coating 진동성형Vibration molding 100100 100100
22 0.075 이하0.075 or less 2020 인상흑연Impression -- -- 미처리Untreated 진동성형Vibration molding 9090 9090 33 0.075 이하0.075 or less 1515 인상흑연Impression 붕산Boric acid 55 본발명Invention 탈기성형Deaeration Molding 110110 110110 44 0.075 이하0.075 or less 1515 인상흑연Impression 붕산Boric acid 7070 본발명Invention 탈기성형Deaeration Molding 105105 106106 55 1.000 이하1.000 or less 2020 인상흑연Impression 질산알루미늄Aluminum nitrate 1010 본발명Invention 탈기성형Deaeration Molding 115115 120120 66 0.075 이하0.075 or less 4545 인상흑연Impression 질산알루미늄Aluminum nitrate 2020 본발명Invention 탈기성형Deaeration Molding 110110 115115

상기 표 1에 나타낸 바와 같이, 본 발명에 따라 산화물의 입경을 0.075mm 이하로 하고, 탄소계 분말의 평균입경을 5 내지 20㎛로 하며, 붕산, 질산마그네슘 또는 질산알루미늄 10 내지 50중량%의 수용액으로 하고 캐스타블 블록 제조에 있어서 탈기성형을 이용하여 제조된 실시예 1 내지 4의 캐스타블 블록은 무기물 수용액으로 2차 피복하지 않은 제조예 1, 2, 무기물 수용액의 함량을 5, 70으로 한 제조예 3, 4, 산화물 분말의 입경을 1mm 이하로 한 제조예 5 및 탄소계 분말의 평균입경을 45㎛로 한 제조예 6에 비하여 내식성 및 내산화성이 월등히 우수함을 알 수 있다. As shown in Table 1, according to the present invention, the particle size of the oxide is 0.075mm or less, the average particle diameter of the carbon-based powder is 5 to 20㎛, 10-50% by weight aqueous solution of boric acid, magnesium nitrate or aluminum nitrate The castable blocks of Examples 1 to 4 prepared by using the degassing molding in the manufacture of castable blocks are 5, 70 of the contents of Preparation Examples 1 and 2, and the inorganic aqueous solution which are not secondaryly coated with the aqueous inorganic solution. It can be seen that the corrosion resistance and the oxidation resistance are much superior to those of Preparation Examples 3 and 4 and Preparation Example 5 having the particle diameter of the oxide powder being 1 mm or less and Preparation Example 6 having the average particle diameter of the carbon-based powder being 45 µm.                     

또한, 본 발명에 따른 실시예 1 내지 4의 캐스타블 블록은 탄소입자들의 손실이 없었다.In addition, the castable blocks of Examples 1 to 4 according to the present invention had no loss of carbon particles.

이상에서 설명한 바와 같이, 본 발명에 의한 캐스타블 블록의 제조방법은 탈기성형 중에 탄소 입자들의 편재나 손실이 없으며, 탄소 입자들 주위에 산화 방지제가 균일하게 분포하여 내산화성과 내식성이 매우 우수한 캐스타블 블록을 제공하며, 제강, 시멘트 등의 공업용 요로의 내장 내화물로 적합하게 이용할 수 있는 캐스타블 블록을 제공하는 효과가 있는 유용한 발명이다.As described above, the method for manufacturing a castable block according to the present invention is free from ubiquitous or loss of carbon particles during degassing, and is uniformly distributed with antioxidants around the carbon particles, thereby providing excellent oxidation and corrosion resistance. It is a useful invention having the effect of providing a castable block and providing a castable block which can be suitably used as an internal refractory material for industrial urinary furnaces such as steelmaking and cement.

상기에서 본 발명은 기재된 구체예를 중심으로 상세히 설명되었지만, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.While the invention has been described in detail above with reference to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the scope and spirit of the invention, and such modifications and variations fall within the scope of the appended claims. It is also natural.

Claims (4)

입경이 0.010 내지 0.075mm인 산화물 분말과 평균입경이 5 내지 20㎛인 탄소계 분말을 분쇄기로 강하게 혼합함으로써, 상기 산화물 분말이 탄소계 입자로 1차 피복된 혼합분말을 제조하는 단계:Preparing a mixed powder in which the oxide powder is first coated with carbon-based particles by strongly mixing an oxide powder having a particle diameter of 0.010 to 0.075 mm and a carbon-based powder having an average particle diameter of 5 to 20 μm with a grinder: 상기 1차 피복된 혼합분말이 무기물 10 내지 50중량%와 물 50 내지 90중량%로 이루어진 수용액으로 2차 피복된 혼합분말을 제조하는 단계; 및Preparing a mixed powder coated secondly with an aqueous solution composed of 10 to 50% by weight of inorganic and 50 to 90% by weight of water; And 상기 2차 피복된 혼합분말과 내화골재를 혼합한 후 탈기 성형하는 단계; 를 포함하여 이루어짐을 특징으로 하는 내산화성 및 내식성을 향상시키는 캐스타블 블록의 제조방법.Degassing and molding the secondary coated mixed powder and refractory aggregate; Method for producing a castable block to improve the oxidation resistance and corrosion resistance, characterized in that comprises a. 제1항에 있어서,The method of claim 1, 상기 분쇄기가 어트리션 밀(Attrition Mill), 볼 밀(Ball Mill) 또는 제트 밀(Jet Mill)임을 특징으로 하는 내산화성 및 내식성을 향상시키는 캐스타블 블록의 제조방법.Method for producing a castable block to improve the oxidation resistance and corrosion resistance, characterized in that the grinder is an Attrition Mill (Ball Mill), Ball Mill (Jet Mill) or Jet Mill (Jet Mill). 제1항에 있어서,The method of claim 1, 상기 무기물이 질산 알루미늄(Aluminum Nitrate), 황산 알루미늄(Aluminum Sulfate), 질산 마그네슘(Magnesium Nitrate), 및 붕산(Boric acid)으로 이루어진 군으로부터 선택된 1종 이상의 무기물임을 특징으로 하는 내산화성 및 내식성을 향 상시키는 캐스타블 블록의 제조방법.Oxidation resistance and corrosion resistance improvement characterized in that the inorganic material is at least one inorganic material selected from the group consisting of aluminum nitrate (Aluminum Nitrate), aluminum sulfate (Aluminum Sulfate), magnesium nitrate (Magnesium Nitrate), and boric acid (Boric acid) Method of manufacturing a castable block to be. 제1항의 제조방법에 의하여 제조된 내산화성 및 내식성이 향상된 캐스타블 블록.Castable block with improved oxidation and corrosion resistance produced by the manufacturing method of claim 1.
KR1020030095334A 2003-12-23 2003-12-23 Method for Preparing Castable Block Improving Corrosion and Oxidation Resistance KR101011078B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030095334A KR101011078B1 (en) 2003-12-23 2003-12-23 Method for Preparing Castable Block Improving Corrosion and Oxidation Resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030095334A KR101011078B1 (en) 2003-12-23 2003-12-23 Method for Preparing Castable Block Improving Corrosion and Oxidation Resistance

Publications (2)

Publication Number Publication Date
KR20050064062A KR20050064062A (en) 2005-06-29
KR101011078B1 true KR101011078B1 (en) 2011-01-25

Family

ID=37255710

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030095334A KR101011078B1 (en) 2003-12-23 2003-12-23 Method for Preparing Castable Block Improving Corrosion and Oxidation Resistance

Country Status (1)

Country Link
KR (1) KR101011078B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807380B (en) * 2012-08-17 2013-10-23 武汉科技大学 Magnesia-carbon castable and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990052868A (en) * 1997-12-23 1999-07-15 신현준 Manufacturing method of carbon-containing castable refractory
KR100332917B1 (en) * 1997-12-26 2002-06-20 신현준 Graphite-containing castable refractory composition
JP2003212662A (en) * 2002-01-23 2003-07-30 Jfe Steel Kk Coated graphite and coated graphite-containing refractory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990052868A (en) * 1997-12-23 1999-07-15 신현준 Manufacturing method of carbon-containing castable refractory
KR100332917B1 (en) * 1997-12-26 2002-06-20 신현준 Graphite-containing castable refractory composition
JP2003212662A (en) * 2002-01-23 2003-07-30 Jfe Steel Kk Coated graphite and coated graphite-containing refractory

Also Published As

Publication number Publication date
KR20050064062A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JP2017024987A (en) Method for producing light ceramic materials
KR20100087379A (en) Mix and refractory product having a high hydration resistance produced therefrom
CN106518043B (en) The preparation method of the siliceous bottom brick of molten tin bath of low-cost aluminum calcium
JPH072536A (en) Fire brick as bed of tin bath
JPH08283073A (en) Kiln tool
US7101821B2 (en) Silicon composition
Sarkar et al. Study on the effect of deflocculant variation in high-alumina low-cement castable
KR101011078B1 (en) Method for Preparing Castable Block Improving Corrosion and Oxidation Resistance
JP4141158B2 (en) SiC for amorphous refractories with excellent corrosion resistance, spalling resistance, and drying properties, and raw materials for amorphous refractories
JP3217864B2 (en) Graphite-containing composition for amorphous refractories and preparation method thereof
CN112759381B (en) Carbon-free ladle down nozzle and preparation method thereof
JP4388173B2 (en) Magnesia-carbonaceous unfired brick for lining of molten steel vacuum degassing equipment
CN114644525A (en) Composite sagger added with waste materials and preparation method thereof
EP1137611A1 (en) Insulating raw material for high temperature applications
JP3327883B2 (en) Refractories containing massive graphite
CN111592340A (en) Preparation method of magnesium oxide light heat-insulation brick
JPS6046168B2 (en) Molded body for gas injection
KR100356179B1 (en) Graphite-containing castable refractory composition
KR20000076559A (en) Magnesia-spinel refractory and method of producing the same
JPH07109129A (en) Fire brick for lining float bath
KR100349166B1 (en) Graphite-Contraining Castable Refractories
JP3197378B2 (en) Graphite-containing basic amorphous refractory composition
US6113802A (en) Compositions for and synthesis of improved insulations
JP4204246B2 (en) Silicon carbide raw material and amorphous refractory raw material for amorphous refractories with excellent drying and corrosion resistance
KR0136172B1 (en) Method for manufacturing castable block of tundish dam

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140117

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160114

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170117

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180119

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190111

Year of fee payment: 9