KR101003551B1 - Method of analyzing bisphophonate compound using derivative reaction - Google Patents

Method of analyzing bisphophonate compound using derivative reaction Download PDF

Info

Publication number
KR101003551B1
KR101003551B1 KR1020080040537A KR20080040537A KR101003551B1 KR 101003551 B1 KR101003551 B1 KR 101003551B1 KR 1020080040537 A KR1020080040537 A KR 1020080040537A KR 20080040537 A KR20080040537 A KR 20080040537A KR 101003551 B1 KR101003551 B1 KR 101003551B1
Authority
KR
South Korea
Prior art keywords
bisphosphonate
risedronate
plasma
bisphosphonate compound
compound derivative
Prior art date
Application number
KR1020080040537A
Other languages
Korean (ko)
Other versions
KR20090114741A (en
Inventor
김동출
심희옥
김지선
Original Assignee
주식회사 아이바이오팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이바이오팜 filed Critical 주식회사 아이바이오팜
Priority to KR1020080040537A priority Critical patent/KR101003551B1/en
Publication of KR20090114741A publication Critical patent/KR20090114741A/en
Application granted granted Critical
Publication of KR101003551B1 publication Critical patent/KR101003551B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/009Extraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/027Liquid chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

본 발명은 비스포스포네이트 화합물 유도체를 측정하는 방법에 관한 것으로, 더욱 상세하게는 비스포스포네이트 화합물을 트리메칠시아릴디아조메탄을 사용하여 유도체화 시킨 후 HPLC-MS/MS를 이용한 비스포스포네이트 화합물 유도체를 측정하는 방법에 관한 것이다. 본 발명을 이용하여 비스포스포네이트 화합물에 대한 생체이용율시험, 생물학적동등성시험, 치료효과 모니터링 등의 임상시험을 실시함에 있어서, 이들의 혈장 중 농도 또는 요 중 농도를 고감도로 측정할 수 있다. The present invention relates to a method for measuring a bisphosphonate compound derivative, and more particularly to a method for measuring a bisphosphonate compound derivative using HPLC-MS / MS after derivatization of the bisphosphonate compound using trimethyloxyaryldiazomethane. It is about. In the clinical trials such as bioavailability test, bioequivalence test, and therapeutic effect monitoring of bisphosphonate compounds using the present invention, their concentration in plasma or urine concentration can be measured with high sensitivity.

비스포스포네이트 화합물, 트리메칠시아릴디아조메탄, 리세드로네이트 Bisphosphonate compounds, trimethyloxyaryldiazomethane, risedronate

Description

유도체화 반응을 이용한 비스포스포네이트 화합물 측정방법{Method of analyzing bisphophonate compound using derivative reaction}Method of analyzing bisphophonate compound using derivative reaction

본 발명은 유도체화 반응을 이용하여 비스포스포네이트 화합물을 측정하는 방법에 관한 것으로, 더욱 상세하게는 비스포스포네이트 화합물을 트리메칠시아릴디아조메탄을 사용하여 유도체화 시킨 후, HPLC-MS/MS를 이용하여 비스포스포네이트 화합물 유도체를 측정하는 방법에 관한 것이다.The present invention relates to a method for measuring a bisphosphonate compound using a derivatization reaction, and more specifically, after derivatizing the bisphosphonate compound using trimethyloxyaryl diazomethane, the bisphosphonate using HPLC-MS / MS. The present invention relates to a method for measuring a compound derivative.

인구의 노령화와 더불어 골다공증(osteoporosis)환자도 매년 크게 증가하고 있다. 리세드로네이트(Risedronate)는 (도1 및 표1) Procter & Gamble (P&G)에 의해 개발된 제3세대 비스포스포네이트 화합물(bisphophonate compound)이다. In addition to aging population, osteoporosis patients also increase significantly every year. Risedronate (Figure 1 and Table 1) is a third generation bisphophonate compound developed by Procter & Gamble (P & G).

리세드로네이트는 피로포스페이트(Pyrophosphate)의 P-O-P bond를 P-C-P bond로 치환시킴으로써 물리화학적인 안정성과 골 흡수(bone resorption) 억제효과를 증가시킨 것이다. 동물시험결과, 리세드로네이트는 제1, 2 세대의 비스포스포네이트 화합물보다 골 흡수(bone resorption)를 보다 효과적으로 억제하는 것이 증명 되었다(참고문헌 1 참조).Recedronate has increased physicochemical stability and bone resorption inhibition effect by replacing P-O-P bond of pyrophosphate with P-C-P bond. Animal testing has shown that risedronate inhibits bone resorption more effectively than the first and second generation bisphosphonate compounds (see Ref. 1).

P-C-P 구조를 가진 비스포스포네이트 화합물(bisphosphonate compound)들은 골다공증(osteoporosis), 파제트병(Paget's disease), 골연화성 전이(osteolytic metastasis) 등에 광범위하게 사용되고 있다(참고문헌 2, 참고문헌 3 및 참고문헌 4 참조). 따라서 비스포스포네이트 화합물 들의 생체이용율시험(bioavailability, BA), 생물학적동등성시험(bioequivalence, BE), 약물치료효과모니터링(therapeutic drug monitoring, TDM) 등의 목적으로 혈액과 같은 생체조직액(biological fluid) 중에서 비스포스포네이트(bisphosphonate)의 농도를 고감도로 측정할 수 있는 분석법이 매우 중요하다. Bisphosphonate compounds with PCP structure are widely used in osteoporosis, Paget's disease, osteolytic metastasis (see Ref. 2, Ref. 3 and Ref. 4). . Therefore, bisphosphonates in biological fluids such as blood for the purpose of bioavailability (BA), bioequivalence (BE), and therapeutic drug monitoring (TDM) of bisphosphonate compounds. The method of measuring the concentration of) with high sensitivity is very important.

그러나 비스포스포네이트 화합물의 대부분이 발색단(chromophore)을 갖고 있지 않으므로 UV 또는 형광 검출을 위해 2,3-naphthalene dicarboxyaldehyde-5,6 또는 9-fluorenyl-methylchloroformate-7과 반응시켜 유도체화한 후, HPLC로 분석한 것이 보고되어 있다. 또한, GC/MS 또는 LC/MS에서는 bisphosphonates를 아실레이션(acylation) 또는 실리레이션(silylation)에 의해 휘발성 유도체(volatile derivatives)로 변환시켜 분석하였다(참고문헌 8, 참고문헌 9 및 참고문헌 10 참조). 그런데 이런 방법들의 대부분의 정량감도는 1 ng/㎖ 이상이었으며, 비스포스포네이트 화합물의 임상시험 등에 사용하기 위해서는 더욱 고감도의 분석법이 필요하였다. However, since most of the bisphosphonate compounds do not have chromophores, they are derivatized with 2,3-naphthalene dicarboxyaldehyde-5,6 or 9-fluorenyl-methylchloroformate-7 for UV or fluorescence detection and analyzed by HPLC. Is reported. In GC / MS or LC / MS, bisphosphonates were converted into volatile derivatives by acylation or sillation (see Ref. 8, Ref. 9 and Ref. 10). . However, most of these methods had a quantitative sensitivity of 1 ng / ml or more, and more sensitive assays were needed for use in clinical trials of bisphosphonate compounds.

한편, Zhu 등은 디아조메탄(diazomethane)을 유도체화 시약으로 사용하여 혈청(serum)과 소변(urine)중에서 리세드로네이트를 유도체화 시켜 LC-MS/MS법으로 정량감도 0.2 ng/㎖의 분석법을 개발하였다(참고문헌 11 참조). 그러나 디아조메탄(diazomethane)은 독성이 매우 강하고 폭발성이 매우 강해, bisphosphonate의 유도체화 반응은 안전작업대(safety cabinet)에서 실시해야 하지만 현실적으로 실험실에서 실시하기 어려운 결점을 가지고 있다. 또한, 국내에서 디아조메탄은 강력한 폭발성 때문에 반입이 금지되어 있다.On the other hand, Zhu et al. Derivatized risedronate in serum and urine using diazomethane as a derivatization reagent, and quantitative sensitivity of 0.2 ng / ml by LC-MS / MS method. Was developed (see Ref. 11). However, diazomethane is very toxic and highly explosive, so derivatization of bisphosphonate should be carried out in a safety cabinet, but it has a drawback that is difficult to carry out in the laboratory. In addition, diazomethane is banned in Korea due to its strong explosive properties.

본 발명의 목적은 비스포스포네이트 화합물을 트리메칠시아릴디아조메탄을 사용하여 유도체화 시킨 후 HPLC-MS/MS를 이용한 비스포스포네이트 화합물 유도체를 측정하는 방법을 제공하는데 있다. An object of the present invention is to provide a method for derivatizing a bisphosphonate compound derivative using HPLC-MS / MS after derivatizing the bisphosphonate compound with trimethyloxyaryldiazomethane.

상기한 목적을 달성하기 위하여 본 발명은 비스포스포네이트 화합물을 트리메칠시아릴디아조메탄을 사용하여 유도체화 시킨 후 HPLC-MS/MS를 이용한 비스포스포네이트 화합물 유도체를 측정하는 방법을 제공한다.In order to achieve the above object, the present invention provides a method for derivatizing a bisphosphonate compound derivative using HPLC-MS / MS after derivatizing the bisphosphonate compound using trimethyloxyaryl diazomethane.

본 발명에 의하면 비스포스포네이트 화합물에 대한 생체이용율시험(BA), 생물학적동등성시험(BE), 치료효과 모니터링(TDM) 등의 임상시험을 실시함에 있어서, 이들의 혈장 중 농도 또는 요 중 농도를 고감도로 측정할 수 있다.According to the present invention, when performing a clinical test such as bioavailability test (BA), bioequivalence test (BE), therapeutic effect monitoring (TDM), etc., bisphosphonate compounds are measured with high sensitivity in plasma or urine concentration. can do.

본 발명은 비스포스포네이트 화합물 유도체를 측정하기 위하여 (1) 혈장시료에 트리메칠시아릴디아조메탄(trimethylsilyldiazomethane)을 가하여 비스포스포네이트 화합물(bisphosphonate compounds)을 유도체화시키는 단계; (2) 상기 유도 체화 과정을 거친 후, 고상칼럼 추출을 통하여 미반응물질 및 비스포스포네이트 화합물을 제거하는 과정; 및 (3)에서 얻어진 시료를 LC-MS/MS에 주입하는 단계를 통해 비스포스포네이트 화합물 유도체를 측정할 수 있다.The present invention comprises the steps of derivatizing the bisphosphonate compounds (1) by adding trimethylsilyldiazomethane to the plasma sample (bisphosphonate compounds); (2) removing the unreacted material and the bisphosphonate compound through the solid phase extraction after the induction emulsification process; And injecting the sample obtained in (3) into LC-MS / MS to determine the bisphosphonate compound derivative.

상기에서, 비스포스포네이트 화합물은 에티드로네이트(etidronate), 클로드로네이트(clodronate), 틸루드로네이트(tiludronate), 파미드로네이트(pamidronate), 네리드로네이트(neridronate), 올파드로네이트(olpadronate), 알렌드로네이트(alendronate), 이반드로네이트(ibandronate), 리세드로네이트(risedronate) 및 졸레드로네이트(zoledronate) 로 이루어진 군 중<표 1>에서 선택된 어느 하나 이상인 것을 특징으로 한다.In the above, bisphosphonate compounds are etidronate, clodronate, tiludronate, pamidronate, neridronate, olpadronate , Alendronate, albanronate, ibandronate, risedronate and zoleronate, characterized in that any one or more selected from the group consisting of (zoledronate).

상기에서, 트리메칠시아릴디아조메탄(trimethylsilyldiazomethane)을 단독으로 사용하거나 또는 trimethylsilyldiazomethane을 아래에 보인 예와 같이 다른 시약, 메탄올 및 벤젠 등과 적당한 비율로 혼합하여 사용하는 것이 바람직하다.In the above, it is preferable to use trimethylsilyldiazomethane alone or to mix trimethylsilyldiazomethane in an appropriate ratio such as other reagents, methanol, benzene and the like as shown below.

<TMS-DAM Solution><TMS-DAM Solution>

Trimethylsilyldiazomethan:Metanol - 1:1 (v/v)Trimethylsilyldiazomethan: Metanol-1: 1 (v / v)

Trimethylsilyldiazomethan:Metanol - 1:2 (v/v)Trimethylsilyldiazomethan: Metanol-1: 2 (v / v)

Trimethylsilyldiazomethan:Metanol - 1:3 (v/v)Trimethylsilyldiazomethan: Metanol-1: 3 (v / v)

Trimethylsilyldiazomethan:Metanol:Benzen -1:1:1 (v/v/v)Trimethylsilyldiazomethan: Metanol: Benzen -1: 1: 1 (v / v / v)

Trimethylsilyldiazomethan:Metanol:Benzen -1:2:1 (v/v/v)Trimethylsilyldiazomethan: Metanol: Benzen -1: 2: 1 (v / v / v)

Trimethylsilyldiazomethan:Metanol:Benzen -1:2:2 (v/v/v)Trimethylsilyldiazomethan: Metanol: Benzen -1: 2: 2 (v / v / v)

Trimethylsilyldiazomethan:hexane (1:3, v/v)/Metanol:Benzen (1:1, v/v) Trimethylsilyldiazomethan: hexane (1: 3, v / v) / Metanol: Benzen (1: 1, v / v)

- (1/1, v/v)-(1/1, v / v)

Trimethylsilyldiazomethan:hexane (1:3, v/v)/Metanol:Benzen (1:1, v/v) Trimethylsilyldiazomethan: hexane (1: 3, v / v) / Metanol: Benzen (1: 1, v / v)

- (1/2, v/v)-(1/2, v / v)

Trimethylsilyldiazomethan:hexane (1:3, v/v)/Metanol:Benzen (1:1, v/v) Trimethylsilyldiazomethan: hexane (1: 3, v / v) / Metanol: Benzen (1: 1, v / v)

- (1/3, v/v)-(1/3, v / v)

Trimethylsilyldiazomethan:hexane (1:3, v/v)/Metanol:Benzen (1:1, v/v) Trimethylsilyldiazomethan: hexane (1: 3, v / v) / Metanol: Benzen (1: 1, v / v)

- (1/4, v/v)-(1/4, v / v)

상기에서, 고상칼럼은 SAX(예를 들어, InertSep SAX) 고상칼럼인 것이 바람직하며, 이와 유사한 성질을 갖는 칼럼을 사용할 수 있다. In the above description, the solid column is preferably a SAX (eg, InertSep SAX) solid column, and a column having similar properties may be used.

본 발명은 비스포스포네이트(Bisphosphonate)를 트리메칠시아릴디아조메탄(trimethylsilyldiazomethane)으로 유도체화 시킨 후, HPLC, GC-MS, LC-MS, LC-MS/MS 등의 분석기기를 이용하여 정량 또는 정성하는 과정을 통해 이루어지는 것이 바람직하다. The present invention derivatizes bisphosphonate with trimethylsilyldiazomethane, and then quantitates or quantifies it using an analyzer such as HPLC, GC-MS, LC-MS, and LC-MS / MS. It is desirable to make it through the process.

본 발명의 방법은 생체액 중의 비스포스포네이트의 측정에 적용될 수 있다. 생체액이란 혈액, 혈장, 혈청, 요, 조직액, 골수, 뇌척수액 등 생체로부터 유래되는 성분을 말한다. The method of the present invention can be applied to the determination of bisphosphonates in biological fluids. The biological fluid refers to components derived from living bodies such as blood, plasma, serum, urine, tissue fluid, bone marrow, and cerebrospinal fluid.

본 발명의 바람직한 실시예에 의하면 비스포스포네이트 화합물(bisphosphonate compound)의 대표화합물인 리세드로네이트를 폭발성이 전혀 없는 트리메칠시아릴디아조메탄을 유도체화 시약으로 사용하여 리세드로네이트를 유 도체화시킨 후, LC-MS/MS방법으로 정량감도 0.2ng/㎖의 고감도로 분석할 수 있다. 이 방법은 비스포스포네이트 구조를 가진 약물의 정량에 모두 적용할 수 있다. According to a preferred embodiment of the present invention, after derivatizing risedronate using risedronate, which is a representative compound of a bisphosphonate compound, trimethyloxyaryldiazomethane having no explosive properties as a derivatization reagent, LC-MS / MS method can be analyzed with high sensitivity of 0.2ng / ml. This method is applicable to the quantification of drugs with bisphosphonate structures.

본 발명은 리세드로네이트를 경구로 투여한 후 생체이용율 연구를 수행하기에 충분한 감도를 제공하는 것을 확인할 수 있었으며, 또 리세드로네이트의 pharmacokinetic parameters들을 구하는 데에도 문제가 없었다. 따라서 본 발명에서 제시하는 방법을 사용하여 비스포스포네이트의 생체액 중 농도 측정에 적용할 수 있다. The present invention was confirmed to provide sufficient sensitivity to conduct bioavailability studies after oral administration of risedronate, and there was no problem in obtaining the pharmacokinetic parameters of risedronate. Therefore, the method proposed in the present invention can be used to measure the concentration of bisphosphonates in biological fluids.

본 발명은 리세드로네이트의 내부표준물질로서 졸레드로네이트(zoledronate)를 사용하는 것이 바람직하다. The present invention preferably uses zoledronate as an internal standard of risedronate.

또한, 본 발명은 고감도의 정량방법으로서 반응과정도 보통의 실험실에서 특별한 장치 없이 안전하게 진행시킬 수 있어 현실적으로 적용하기에 적합한 방법이며, 충분한 정량감도를 확보하고 있으므로 리세드로네이트를 비롯한 비스포스포네이트(Bisphosphonate)계 약물의 생체이용율시험, 생물학적동등성시험, 약물치료모니터링시험, 임상시험 등에 유용하게 사용될 수 있을 것으로 예상된다. In addition, the present invention is a high-sensitivity quantitative method, the reaction process can be safely carried out without a special device in a common laboratory, and is a suitable method for practical application, and because it has sufficient quantitative sensitivity, it is a bisphosphonate system including risedronate. It is expected to be useful for drug bioavailability test, bioequivalence test, drug treatment monitoring test, and clinical test.

비스포스포네이트 (Bisphosphonate)의 기본 골격은 P-C-P 결합이다. 여기에 어떤 사이드 체인(side chain)이 결합하느냐에 따라서 약효 및 뼈(bone)와의 결합성이 제각각 다른 화합물들이 얻어진다. 지금까지 알려져 있는 비스포스포네이트(bisphosphonate)의 화학구조를 <표 1>에 정리하여 놓았다. The basic backbone of bisphosphonate is P-C-P bonds. Depending on which side chain (binding side) is attached to this, a compound having different drug efficacy and bone bonds is obtained. The chemical structure of bisphosphonate known to date is summarized in <Table 1>.

<표 1> Bisphosphonates의 화학구조 Table 1 Chemical Structure of Bisphosphonates

Compound Compound R1 side chain R1 side chain R2 side chain R2 side chain Etidronate Etidronate -OH -OH -CH3 -CH 3 Clodronate Clodronate -Cl -Cl -Cl -Cl Tiludronate Tiludronate -H -H ClS ClS Pamidronate Pamidronate -OH -OH NH2 NH 2 Neridronate Neridronate -OH -OH NH2(CH2)5 NH 2 (CH 2 ) 5 Olpadronate Olpadronate -OH -OH CH3CH3N CH 3 CH 3 N Alendronate Alendronate -OH -OH NH2 NH 2 Ibandronate Ibandronate -OH -OH CH3(H2C)4CH3NCH 3 (H 2 C) 4 CH 3 N Risedronate Risedronate -OH -OH N N Zoledronate Zoledronate -OH -OH NN NN

<도 1>은 비스포스포네이트의 공통구조를 모식적으로 나타낸 것이다. Long side chain 인 R2 는 화학적 특성, 약리작용의 유형, 약효의 강도 등과 관련이 있으며, short side chain인 R1 은, "갈고리, 또는 낚시 바늘"이라고도 불리며 화학적 특성과 약물동태학적 특성(pharmacokinetics)에 영향을 미치는 것이 알려져 있다. 1 schematically shows a common structure of bisphosphonates. The long side chain R2 is related to chemical properties, types of pharmacological action, the strength of the drug, etc. The short side chain R1, also called "hooks or hooks," affects chemical and pharmacokinetics. It is known to exert.

한편, Zhu 등에 의해 개발된 비스포스포네이트를 디아조메탄(diazomethane)으로 유도체화 시키는 반응의 메커니즘은 <도 2>에 나타난 바와 같이 진행된다. Meanwhile, the mechanism of the derivatization of bisphosphonates developed by Zhu et al. With diazomethane proceeds as shown in FIG. 2.

Zhu 등은 리세드로네이트를 디아조메탄(diazomethane)으로 유도체화 반응을 시켰을 때, 리세드로네이트(risedronate)의 테트라메틸(tetramethyl) 유도체가 형성되었으며 또 이 유도체는 positive ESI mode에서 ionization이 잘 되어 정량 감도를 획기적으로 높이는 결과를 보고하고 있다(참고문헌 11 참조).When Zhu et al. Derivatized risedronate with diazomethane, tetramethyl derivatives of risedronate were formed, and the derivative was well ionized in positive ESI mode. The result is a dramatic increase in sensitivity (see Ref. 11).

그러나 Zhu 등이 사용한 디아조메탄은 독성이 매우 강하며, 폭발성이 매우 강해 일반 실험실에서 사용하기가 대단히 곤란한 시약이다. However, the diazomethane used by Zhu et al. Is highly toxic and highly explosive, making it a difficult reagent for general laboratories.

본 발명에서는 폭발성이 없어 일반실험실에서 보통의 시약처럼 취급할 수 있 는 트리메칠시아릴디아조메탄(trimethylsilyldiazomethane)을 유도체화 시약으로 사용하여 동일한 tetramethyl-bisphosphonate를 얻은 후, 이들 유도체들을 LC-MS/MS를 사용하여 측정함으로써 0.2 ng/㎖의 고감도 분석법의 개발하였다. In the present invention, the same tetramethyl-bisphosphonate is obtained by using trimethylsilyldiazomethane, which is not explosive and can be treated like a general reagent in a general laboratory, as a derivatization reagent, and then these derivatives are converted into LC-MS / A high sensitivity assay of 0.2 ng / ml was developed by measuring using MS.

본 발명의 방법은, The method of the present invention,

리세드로네이트(Risedronate)의 혈장 중 농도를 측정하고자 하는 공여자로부터 혈액을 채취한 후, 이로부터 얻은 혈장을 전처리하여 혈장시료를 전처리하는 단계; Collecting blood from a donor to measure plasma concentrations of risedronate, and pretreating the plasma sample by pretreating the plasma obtained therefrom;

단계 1)에서 얻어진 혈장시료에 유도체화 시약을 가하여 유도체화시키는 단계; Derivatizing by adding a derivatization reagent to the plasma sample obtained in step 1);

단계 2)의 유도체화 과정을 거친 후, 고상칼럼추출을 통하여 미반응물질 및 유도체화 시약을 제거하는 단계; 및After the derivatization process of step 2), removing the unreacted material and the derivatization reagent through solid column extraction; And

단계 3)에서 얻어진 시료를 LC-MS/MS에 주입하여 시료를 측정하는 단계를 포함한다. And injecting the sample obtained in step 3) into LC-MS / MS to measure the sample.

상기 단계 1)∼3)의 전처리 과정은 다음과 같이 진행하였다. The pretreatment process of steps 1) to 3) was carried out as follows.

ⅰ) 검량선용 시료, 정도관리용 시료, 혈장검체 시료를 조제하였다 I) Samples for calibration curves, quality control samples and plasma specimens were prepared.

ⅱ) 상기 각각의 시료 0.6 ㎖에 내부표준물질(zoledronate, 20 ng/㎖) 0.3 ㎖를 시험관에 첨가하였다 Ii) To 0.6 ml of each sample, 0.3 ml of internal standard (20 ng / ml) was added to the test tube.

ⅲ) 물 1.5 ㎖를 첨가하였다. Viii) 1.5 ml of water was added.

ⅳ) Inertsep SAX 고상칼럼에 가하였다. Viii) was added to an Inertsep SAX solid column.

ⅴ) 물 2.0 ㎖로 세정하였다. Iii) washed with 2.0 ml of water.

ⅵ) 메탄올 2.0 ㎖로 세정하였다. V) washed with 2.0 ml methanol.

ⅶ) Acetonitrile 2.0 ㎖로 세정하였다. Viii) washed with 2.0 ml of Acetonitrile.

ⅷ) TMS-DAM solution [Trimethylsilyldiazomethan:hexane (1:3, v/v)/Metanol:Benzen (1:1, v/v) - (1/4, v/v)]1 ㎖를 첨가하여 45℃에서 60분간 방치하였다.Viii) 45 ml of TMS-DAM solution [Trimethylsilyldiazomethan: hexane (1: 3, v / v) / Metanol: Benzen (1: 1, v / v)-(1/4, v / v)] It was left for 60 minutes at.

ⅸ) Methanol 2.0 ㎖로 용출시켰다. V) eluted with 2.0 ml of Methanol.

ⅹ) 용출액을 질소가스 하에서 50℃ 에서 농축 건조하였다. V) The eluate was concentrated to dryness at 50 ° C. under nitrogen gas.

ⅹⅰ) 90% acetonitrile 수용액 0.1 ㎖로 재용해 하였다. V) Redissolved in 0.1 ml of 90% acetonitrile aqueous solution.

ⅹⅱ) 5 ㎕를 LC-MS/MS로 분석하였다. Iiiii) 5 μl was analyzed by LC-MS / MS.

상기 단계 ⅳ)의 LC-MS/MS 측정조건은 다음과 같았다. LC-MS / MS measurement conditions of step iii) were as follows.

<LC conditions><LC conditions> PumpPump LC-20AD (Shimadzu)LC-20AD (Shimadzu) DegasserDegasser DGU-20A5 (Shimadzu)DGU-20A5 (Shimadzu) AutosamplerAutosampler SIL-20AC (Shimadzu)SIL-20AC (Shimadzu) Column compartmentColumn compartment CTO-10ASvp (Shimadzu)CTO-10ASvp (Shimadzu) System controllerSystem controller CBM-20A (Shimadzu)CBM-20A (Shimadzu) Analytical columnAnalytical column Atlantis HILIC, 3㎛, 2.1㎜ I.D. x 50㎜ L. (Waters)Atlantis HILIC, 3 μm, 2.1 mm I.D. x 50mm L. (Waters) Mobile phaseMobile phase A: 10 mmol/L Ammonium formate aq.
B: Acetonitrile
A:B = 10: 90
A: 10 mmol / L Ammonium formate aq.
B: Acetonitrile
A: B = 10: 90
Column temperatureColumn temperature 4040 Sample coolerSample cooler 44 Injection volumeInjection volume 5 ㎕5 μl Run timeRun time 5 min 5 min <Mass system><Mass system> MS/MSMS / MS API-4000QTRAP AB/MDS SCIEXAPI-4000QTRAP AB / MDS SCIEX Data 처리Data processing Analyst (ver. 1.4.2)Analyst (ver. 1.4.2)

이하 본 발명의 내용을 실시예를 통해 더욱 상세하게 설명하기로 한다. 다만 이들 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예로 한정되는 것은 아니다.Hereinafter, the contents of the present invention will be described in more detail with reference to Examples. However, these examples are only presented to understand the content of the present invention, but the scope of the present invention is not limited to these embodiments.

<실시예 1> < Example 1 >

검량선 작성Create calibration curve

리세드로네이트 표준품(LKT Laboratories Inc.)을 H2O로 용해하여 free base로서 100 ㎍/㎖이 되도록 만든 후 냉장보관하고, 이 용액을 냉동보관 하였던 blank 혈장으로 희석하여 리세드로네이트 의 혈장 중 농도가 각각 0.2, 0.5, 1, 2, 5, 10, 16, 20 ng/㎖이 되도록 표준혈장시료를 조제하였다. 표준혈장시료 0.6 ㎖에 내부표준용액(zoledronate, 20 ng/㎖) 0.3 ㎖ 및 H2O 1.5 ㎖을 넣어 혼합하였다. SAX cartridge (Inertsep)를 methanol과 H2O 각각 3㎖로 컨디셔닝을 실시하고, 시료를 적용한 후 H2O, 메탄올(methanol), 아세토니트릴(acetonitrile) 각각 2㎖로 washing하였다. 여기에 트리메칠시아릴디아조메탄 반응시약 [Trimethylsilyldiazomethan:hexane (1:3, v/v)/Metanol:Benzen (1:1, v/v) - (1/4, v/v)] 1㎖를 넣고 60분 동안 반응시킨 후 메탄올 2 ㎖로 용출하였다. 용출액을 진공건조 후 90% 아세토니트릴 용액 (acetonitrile aq.)으로 재용해 하여 5 ㎕를 LC/MS/MS에 주입하여 정량하였다. 여기에서 얻은 내부표준물질의 피이크 면적에 대한 리세드로네이트의 피이크 면적비를 가지고 검량선을 작성하였다. Lysedronate standard (LKT Laboratories Inc.) was dissolved in H 2 O to make 100 ㎍ / ml as a free base, then refrigerated, and the solution was diluted with blank plasma that was stored in frozen plasma to give rise to the concentration of risedronate in plasma. Standard plasma samples were prepared so that they were 0.2, 0.5, 1, 2, 5, 10, 16 and 20 ng / ml, respectively. 0.6 ml of the standard plasma sample was mixed with 0.3 ml of internal standard solution (zoledronate, 20 ng / ml) and 1.5 ml of H 2 O. The SAX cartridge (Inertsep) was conditioned with 3 ml of methanol and H 2 O, respectively, and the samples were applied and washed with 2 ml of H 2 O, methanol, and acetonitrile. Trimethylsilyldiazomethane reaction reagent [Trimethylsilyldiazomethan: hexane (1: 3, v / v) / Metanol: Benzen (1: 1, v / v)-(1/4, v / v)]] 1 ml Added and reacted for 60 minutes, and then eluted with 2 ml of methanol. The eluate was vacuum dried and redissolved in 90% acetonitrile solution (acetonitrile aq.) And 5 μl was injected into LC / MS / MS to quantify. A calibration curve was prepared with the peak area ratio of risedronate to the peak area of the internal standard obtained here.

혈장 시료의 처리Treatment of Plasma Samples

피험자로부터 각 시간별로 채취하여 -20℃에 보관했던 혈장 시료를 실온에 방치하여 녹인 후 30초간 진탕한 다음 이 혈장을 취하여 시험관에 옮기고 여기에 내부표준물질을 가한 후 검량선 작성과 동일한 방법으로 전처리한 후 LC/MS/MS system (API-4000QTRAP, AB/MDX SCIEX)에 주입하였다. Plasma samples collected at each hour from the subject, stored at -20 ° C, were left at room temperature to be dissolved, shaken for 30 seconds, and then the plasma was collected and transferred to the test tube. It was then injected into the LC / MS / MS system (API-4000QTRAP, AB / MDX SCIEX).

혈장 중 농도 계산Calculation of concentration in plasma

얻어진 크로마토그램으로부터 내부표준물질의 피이크면적에 대한 리세드로네이트의 피이크 면적비를 구하여 미리 작성한 검량선으로부터 혈장 중 리세드로네이트의 농도를 구하였다. From the obtained chromatogram, the peak area ratio of risedronate to the peak area of the internal standard was determined, and the concentration of risedronate in plasma was determined from a calibration curve prepared in advance.

<실시예 2> 분석조건의 검증 Example 2 Validation of Analysis Conditions

직선성Linearity

Blank 혈장시료에 표준물질을 spike한 혈장시료(risedronate의 농도는 0.2, 0.5, 1, 2, 5, 10, 16, 20 ng/㎖) 및 검체시료를 처리하여 LC/MS/MS로 분석하였을 때, 혈장시료로부터 구한 리세드로네이트 의 검량선 계산식을 <표 2>에 나타내었다. 이 검량선을 이용하여 검체 분석 및 QC 시료(0.5, 2, 16 ng/㎖)의 적합성을 확인하였다 <표 3>. 검량선 계산식은 Y = 0.174x + 0.00413 (r = 0.9981)로 0.2∼20 ng/㎖ 범위에서 양호한 직선성을 보였다<도 3>. Plasma samples spiked with standard substances (risedronate concentrations of 0.2, 0.5, 1, 2, 5, 10, 16, 20 ng / ml) and sample samples were analyzed by LC / MS / MS. Table 2 shows the calibration curve for risedronate obtained from the plasma samples. This calibration curve was used to confirm the suitability of specimen analysis and QC samples (0.5, 2, 16 ng / ml). The calibration curve equation was Y = 0.174x + 0.00413 (r = 0.9981) and showed good linearity in the range of 0.2-20 ng / ml (Fig. 3).

<표 2> 혈장 중 리세드로네이트의 검량선 계산식 Table 2: Calculation of calibration curves for risedronate in plasma

Analyte Analyte Correlation coefficient (r) Correlation coefficient (r) Calibration curve equation Calibration curve equation Risedronate Risedronate 0.9981 0.9981 Y = 0.0174x - 0.00413 Y = 0.0174x-0.00413

<표 3> 검체시료 분석에 사용된 QC 시료의 정확성 <Table 3> Accuracy of QC samples used for sample analysis

Nominal.
Conc (ng/mL)
Nominal.
Conc (ng / mL)
Sample NameSample Name RisedronateRisedronate I.S.I.S. RatioRatio Measured.
Conc. (ng/mL)
Measured.
Conc. (ng / mL)
R.E (%)R.E (%)
0.50.5 QCA 1QCA 1 1158411584 126239126239 0.0918 0.0918 0.50 0.50 0.50.5 QCA 2QCA 2 95909590 118416118416 0.0810 0.0810 0.44 0.44 -11.8-11.8 22 QCB 1QCB 1 3196531965 9874398743 0.3237 0.3237 1.83 1.83 -8.4-8.4 QCB 2QCB 2 3320933209 110231110231 0.3013 0.3013 1.70 1.70 -14.8-14.8 1616 QCC 1QCC 1 296070296070 104569104569 2.8313 2.8313 16.21 16.21 1.31.3 QCC 2QCC 2 195519195519 6337663376 3.0851 3.0851 17.67 17.67 10.410.4

각 피험자의 시간에 따른 혈장 중 리세드로네이트의 농도추이 Trend of risedronate concentration in plasma over time of each subject

각 피험자에게 대조약을 투여한 후 구한 시간별 혈장 중 약물 농도는 <표 4>에 각각 나타내었으며, 피험자 A1의 투약 전 및 투약 후의 리세드로네이트 및 내부표준물질의 크로마토그램을 <도 4>에 나타내었다. 또한 각 피험자에 있어서의 혈장 중 약물농도-시간 곡선을 <도 5∼도 8>에 각각 나타내었고 이를 평균 혈장 중 약물농도-시간 곡선으로 그려보면 <도 9>과 같다. The plasma concentrations of the drugs obtained after administration of the reference drug to each subject are shown in Table 4, respectively. It was. In addition, the plasma drug concentration-time curves in the respective subjects are shown in FIGS. 5 to 8, respectively.

<표 4> '악토넬정 35㎎' 1정 투여 후 각 피험자의 시간에 따른 혈장 중 리세드로네이트 농도 (ng/㎖) Table 4 Lysedronate concentration in plasma according to the time of each subject after administration of one tablet of 'Actone tablet 35 mg' (ng / ml)

피험자Subject 0 hr0 hr 0.5 hr0.5 hr 1 hr1 hr 2 hr2 hr 3 hr3 hr 4 hr4 hr 6 hr6 hr 8 hr8 hr 12 hr12 hr 24 hr24 hr 48 hr48 hr A1A1 N.D.N.D. 3.38 3.38 8.05 8.05 11.09 11.09 8.88 8.88 5.58 5.58 3.40 3.40 1.94 1.94 0.65 0.65 0.35 0.35 N.D.N.D. A2A2 N.D.N.D. 5.75 5.75 7.90 7.90 6.35 6.35 6.57 6.57 4.54 4.54 2.01 2.01 0.81 0.81 0.33 0.33 N.D.N.D. N.D.N.D. B1B1 N.D.N.D. 10.47 10.47 16.40 16.40 11.47 11.47 8.45 8.45 7.30 7.30 3.05 3.05 1.51 1.51 0.59 0.59 0.29 0.29 N.D.N.D. B2B2 N.D.N.D. 5.33 5.33 7.44 7.44 5.17 5.17 3.81 3.81 2.58 2.58 1.00 1.00 0.55 0.55 0.28 0.28 N.D.N.D. N.D.N.D. MeanMean N.C.N.C. 6.23 6.23 9.95 9.95 8.52 8.52 6.93 6.93 5.00 5.00 2.37 2.37 1.20 1.20 0.46 0.46 0.32 0.32 N.C.N.C. SDSD N.C.N.C. 3.01 3.01 4.31 4.31 3.23 3.23 2.31 2.31 1.97 1.97 1.08 1.08 0.64 0.64 0.18 0.18 0.04 0.04 N.C.N.C.

* N.C. : Not calculated * N.C. : Not calculated

* N.D. : Not detected * N.D. : Not detected

* LLOQ (0.2 ng/㎖)이하 농도는 N.D.로 표시하였다. * Concentrations below LLOQ (0.2 ng / ml) are expressed as N.D.

생체이용률 Bioavailability 파라메타의Parameter 산출 Calculation

각 피험자의 AUC 값은 약물 투여 후 최종채혈시간까지의 각 피험자의 혈장 중 약물농도-시간 곡선들로부터 'BA Calc 2002 (Ver 1.1.1)' 를 이용하여 AUC(area under the blood (plasma) concentration versus time curve), Cmax (the peak plasma concentration of drug), Tmax 및 T1 /2β를 구하였다. Cmax는 각 피험자의 혈장 중 리세드로네이트 농도-시간 곡선으로부터 가장 높은 혈장 중 농도를 읽은 값을 사용하였으며, Tmax는 각 피험자의 혈장 중 약물 농도-시간 곡선으로부터 최고 혈장 중 약물농도에 도달하는 시간을 읽은 값을 사용하였다. T1 /2β는 혈장중 소실반감기로 리세드로네이트가 혈장으로부터 얼마나 빨리 소실되는 가를 나타내는 파라미터이다. 각 피험자에 있어서 생체이용률 파라미터를 정리하면 <표 5>와 같았다. The AUC value of each subject was determined using the area under the blood (plasma) concentration using 'BA Calc 2002 (Ver 1.1.1)' from the plasma drug concentration-time curves from each subject's plasma to the final blood collection time after drug administration. versus time curve), C max (the peak plasma concentration of drug), T max And T 1 / 2β were obtained. C max was used to read the highest plasma concentration from the risedronate concentration-time curve in each subject's plasma, and T max was used to reach the highest plasma drug concentration from the plasma drug concentration-time curve in each subject. The value read from time was used. T 1 / 2β is a parameter indicating whether the risedronate as the plasma elimination half-life being how quickly disappeared from the plasma. In each subject, the bioavailability parameters are summarized in <Table 5>.

<표 5> 각 피험자의 PK 파라미터(parameters) Table 5 PK parameters of each subject

SubjectSubject AUClast AUC last AUCinf AUC inf AUC%AUC% Cmax C max Tmax T max T1 /2β T 1/2 β A1A1 55.99 55.99 58.18 58.18 96.24 96.24 11.09 11.09 2.00 2.00 4.35 4.35 A2A2 35.64 35.64 36.61 36.61 97.35 97.35 7.90 7.90 1.00 1.00 2.04 2.04 B1B1 65.50 65.50 67.10 67.10 97.62 97.62 16.40 16.40 1.00 1.00 3.83 3.83 B2B2 25.31 25.31 26.20 26.20 96.60 96.60 7.44 7.44 1.00 1.00 2.21 2.21 MeanMean 45.61 45.61 47.02 47.02 96.95 96.95 10.71 10.71 1.25 1.25 3.11 3.11 SDSD 18.39 18.39 18.88 18.88 0.64 0.64 4.13 4.13 0.50 0.50 1.16 1.16

AUClast : Area under the curve (AUC) to the last time point (ng·hr/mL)AUC last : Area under the curve (AUC) to the last time point (nghr / mL)

AUCinf : Area under the curve (AUC) to infinity (ng·hr/mL)AUC inf : Area under the curve (AUC) to infinity (nghr / mL)

Cmax : Peak plasma concentration (ng/mL)C max: Peak plasma concentration (ng / mL)

Tmax : Time to peak plasma concentration (hr)T max : Time to peak plasma concentration (hr)

T1 /2β : Elimination half life in β-phase (hr) T 1 / 2β: Elimination half life in β-phase (hr)

AUC%: AUClast/AUCinf ×100 AUC%: AUC last / AUC inf × 100

N.C.: Not Calculated N.C .: Not Calculated

<참고문헌><References>

1. Sietsema WK et al. (1989) Antiresorptive dose-response relationships across three generations of bisphosphonates. Drugs Exp. Clin. Res. 15: 389-396. 1. Sietsema WK et al. (1989) Antiresorptive dose-response relationships across three generations of bisphosphonates. Drugs Exp. Clin. Res . 15: 389-396.

2. Kanakis I et al. (2005) Curr. Pharmaceut. Anal. 1: 225 2. Kanakis I et al. (2005) Curr. Pharmaceut. Anal . 1: 225

3. Goldring SR (2004) Arthritis Rheumatism 50, 2044. Goldring SR (2004) Arthritis Rheumatism 50, 2044.

4. Green JR et al. (2004) Oncologist 9: 3. 4. Green JR et al. (2004) Oncologist 9: 3.

5. Fernandes C. et al. (2005) Quimica Nova 28: 852 5. Fernandes C. et al. (2005) Quimica Nova 28: 852

6. Samdancioglu S. et al. (2003) J. Pharm. Sci. 28: 183 6. Samdancioglu S. et al. (2003) J. Pharm. Sci. 28: 183

7. Ostovic D. et al. (1993) Pharmaceut. Res. 10: 470 7. Ostovic D. et al. (1993) Pharmaceut. Res . 10: 470

8. Leis HJ (2004) Rapid Commun. Mass Spectrum 18: 2781 8. Leis HJ (2004) Rapid Commun. Mass Spectrum 18: 2781

9. Sakiyama N. (2005) Biomed. Chromatogr. 9: 243 9. Sakiyama N. (2005) Biomed. Chromatogr . 9: 243

10. Mitchell DY et al. (1998) Pharmaceuti. Res. 15:228 10. Mitchell DY et al. (1998) Pharmaceuti. Res . 15: 228

11. Zhu LS et al. (2006) A general approach for the quantitative analysis of bisphosphonates in human serum and urine by high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun . Mass Spectrum. 20:3421-3426.11. Zhu LS et al. (2006) A general approach for the quantitative analysis of bisphosphonates in human serum and urine by high-performance liquid chromatography / tandem mass spectrometry. Rapid Commun . Mass Spectrum . 20: 3421-3426.

<도 1>은 bisphosphonate의 공통구조를 모식적으로 나타낸 것이다. Figure 1 schematically shows the common structure of bisphosphonate.

<도 2>는 bisphosphonate를 diazomethane으로 유도체화 시키는 반응의 메커니즘을 나타낸 것이다.Figure 2 shows the mechanism of the reaction to derivatize bisphosphonate with diazomethane.

<도 3>은 혈장 중 risedronate 의 직선성을 나타낸 것이다. Figure 3 shows the linearity of risedronate in plasma.

<도 4a>는 피험자 A1의 투약 전 및 투약 후 0시간째 risedronate 및 내부표준물질의 크로마토그램을 나타낸 것이다. FIG. 4A shows chromatograms of risedronate and internal standards before and after dosing of Subject A1.

<도 4b>는 피험자 A1의 투약 전 및 투약 후 0.5시간째 risedronate 및 내부표준물질의 크로마토그램을 나타낸 것이다. FIG. 4b shows chromatograms of risedronate and internal standards before and after the administration of Subject A1.

<도 5>는 피험자 A1의 혈장 중 risedronate 농도를 나타낸 것이다. Figure 5 shows the risedronate concentration in the plasma of subject A1.

<도 6>은 피험자 A2의 혈장 중 risedronate 농도를 나타낸 것이다. FIG. 6 shows risedronate concentration in plasma of subject A2.

<도 7>은 피험자 B1의 혈장 중 risedronate 농도를 나타낸 것이다. Figure 7 shows the risedronate concentration in the plasma of subject B1.

<도 8>은 피험자 B2의 혈장 중 risedronate농도를 나타낸 것이다. FIG. 8 shows risedronate concentration in plasma of test subject B2.

<도 9>는 피험자의 평균 혈장 중 risedronate 농도를 나타낸 것이다.Figure 9 shows the risedronate concentration in the average plasma of the subject.

(n=4, mean ±SD)  (n = 4, mean ± SD)

Claims (5)

(1) 트리메칠시아릴디아조메탄(trimethylsilyldiazomethane)을 가하여 비스포스포네이트 화합물(bisphosphonate compounds)을 유도체화시키는 단계;(1) adding trimethylsilyldiazomethane to derivatize bisphosphonate compounds; (2) 상기 유도체화 과정을 거친 후, 고상칼럼 추출을 통하여 미반응 물질 및 비스포스포네이트 화합물을 제거하여 비스포스포네이트 화합물 유도체를 얻는 단계;(2) after the derivatization process, to obtain a bisphosphonate compound derivative by removing the unreacted material and the bisphosphonate compound through solid column extraction; (3) 상기 단계 (2)에서 얻어진 비스포스포네이트 화합물 유도체를 액체크로마토그래피-질량분석기(Liquid chromatography-mass spectrometry)에 주입하여 비스포스포네이트 화합물 유도체를 측정하는 방법.(3) A method of measuring the bisphosphonate compound derivative by injecting the bisphosphonate compound derivative obtained in step (2) into a liquid chromatography-mass spectrometry. 제1항에 있어서, 비스포스포네이트 화합물은 에티드로네이트(etidronate), 클로드로네이트(clodronate), 틸루드로네이트(tiludronate), 파미드로네이트(pamidronate), 네리드로네이트(neridronate), 올파드로네이트(olpadronate), 알렌드로네이트(alendronate), 이반드로네이트(ibandronate), 리세드로네이트(risedronate) 및 졸레드로네이트(zoledronate) 로 이루어진 군 중에서 선택된 어느 하나 이상인 것을 특징으로 하는 비스포스포네이트 화합물 유도체를 측정하는 방법. The bisphosphonate compound of claim 1, wherein the bisphosphonate compound is etidronate, clodronate, tiludronate, pamidronate, neridronate, olpadronate. (olpadronate), alendronate (alendronate), ibandronate, risedronate (risedronate) and a method of measuring a bisphosphonate compound derivative, characterized in that at least one selected from the group consisting of (zoledronate). 제1항에 있어서, 트리메칠시아릴디아조메탄을 단독으로 사용하거나 또는 트리메칠시아릴디아조메탄을 메탄올, 벤젠 및 헥산 중에서 선택된 어느 하나 이상과 혼합하여 사용하는 것을 특징으로 하는 비스포스포네이트 화합물 유도체를 측정하는 방법.The bisphosphonate compound derivative according to claim 1, wherein trimethyloxyaryl diazomethane is used alone or in combination with at least one selected from methanol, benzene and hexane. How to measure. 제1항에 있어서, 고상칼럼은 SAX 고상칼럼인 것을 특징으로 하는 비스포스포네이트 화합물 유도체를 측정하는 방법.The method of measuring a bisphosphonate compound derivative according to claim 1, wherein the solid column is a SAX solid column. 제1항에 있어서, 비스포스포네이트 화합물 유도체를 액체 크로마토그래피 질량분석기로 측정할 때 졸레드로네이트(zoledronate)를 내부표준물질(internal standard)로 사용하는 비스포스포네이트 화합물 유도체를 측정하는 방법.The method of claim 1, wherein the bisphosphonate compound derivative is measured using a zoleronate as an internal standard when the bisphosphonate compound derivative is measured by a liquid chromatography mass spectrometer.
KR1020080040537A 2008-04-30 2008-04-30 Method of analyzing bisphophonate compound using derivative reaction KR101003551B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080040537A KR101003551B1 (en) 2008-04-30 2008-04-30 Method of analyzing bisphophonate compound using derivative reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080040537A KR101003551B1 (en) 2008-04-30 2008-04-30 Method of analyzing bisphophonate compound using derivative reaction

Publications (2)

Publication Number Publication Date
KR20090114741A KR20090114741A (en) 2009-11-04
KR101003551B1 true KR101003551B1 (en) 2010-12-30

Family

ID=41555957

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080040537A KR101003551B1 (en) 2008-04-30 2008-04-30 Method of analyzing bisphophonate compound using derivative reaction

Country Status (1)

Country Link
KR (1) KR101003551B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735788A (en) * 2012-07-11 2012-10-17 中国检验检疫科学研究院 Method for analyzing and measuring etidronic acid and salts of etidronic acid in sample

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101877780B1 (en) * 2011-09-08 2018-07-13 (주)바이오메디앙 Method for analyzing Vitis vinifera extract
CN103134886A (en) * 2012-10-10 2013-06-05 成都苑东药业有限公司 Method for analytical separation sodium ibandronate and impurities thereof by utilizing high performance liquid chromatography (HPLC)
CN104062381A (en) * 2014-07-11 2014-09-24 陕西汉江药业集团股份有限公司 Method for determining contents of diphosphonic acid compounds
CN106198830B (en) * 2015-04-09 2018-01-02 泰山医学院 A kind of method of the monomer of liquid chromatographic detection three
CN110308217A (en) * 2019-05-21 2019-10-08 北京九昊医药科技有限公司 Based on before LC-MS/MS in Derivatization Determination human plasma Risedronic Acid method and its application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A general approach for the quantitative analysis of bisphosphonates in human serum and urine by high-performance liquid chromatography/tandem mass spectrometry,[Rapid Communications in Mass Spectromet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735788A (en) * 2012-07-11 2012-10-17 中国检验检疫科学研究院 Method for analyzing and measuring etidronic acid and salts of etidronic acid in sample
CN102735788B (en) * 2012-07-11 2014-10-22 中国检验检疫科学研究院 Method for analyzing and measuring etidronic acid and salts of etidronic acid in sample

Also Published As

Publication number Publication date
KR20090114741A (en) 2009-11-04

Similar Documents

Publication Publication Date Title
KR101003551B1 (en) Method of analyzing bisphophonate compound using derivative reaction
Lacroix et al. Fenofibrate raw materials: HPLC methods for assay and purity and an NMR method for purity
US20120193528A1 (en) Quantitative determination of risedronate in urine by spe-lc-ms-ms
Musteata et al. Fast assay of angiotensin 1 from whole blood by cation-exchange restricted-access solid-phase microextraction
Patil et al. High-performance thin-layer chromatographic determination of lamotrigine in serum
Magiera et al. Simultaneous chiral separation and determination of carvedilol and 5′-hydroxyphenyl carvedilol enantiomers from human urine by high performance liquid chromatography coupled with fluorescent detection
Sun et al. A single LC–tandem mass spectrometry method for the simultaneous determination of four H2 antagonists in human plasma
Wang et al. Quantitative determination of amantadine in human plasma by liquid chromatography–mass spectrometry and the application in a bioequivalence study
Koba et al. Application of UV-derivative spectrophotometry for determination of some bisphosphonates drugs in pharmaceutical formulations
Burmaoglu et al. Determination of zoledronic acid and its related substances by high performance liquid chromatography with evaporative light scattering detection
El-Kimary et al. High-performance thin-layer chromatographic assay of metformin in urine using ion-pair solid-phase extraction: Application for bioavailability and bioequivalence study of new microbeads controlled release formulation
Sreenivas et al. Development and validation of a sensitive LC‐MS/MS method with electrospray ionization for quantitation of doxofylline in human serum: application to a clinical pharmacokinetic study
Kowalski et al. Comparison of HPLC and CE methods for the determination of cetirizine dihydrochloride in human plasma samples
Zang et al. Determination of alachlor and its metabolites in rat plasma and urine by liquid chromatography–electrospray ionization mass spectrometry
El-Wasseef et al. Spectrofluorimetric determination of labetalol in pharmaceutical preparations and biological fluids
Qin et al. Rapid quantification of lisinopril in human plasma by liquid chromatography/tandem mass spectrometry
Rhee et al. Analysis of acamprosate in beagle dog plasma by LC-MS-MS
EL-Houssini et al. Validated RP-LC methods for investigating the degradation behavior of acefylline: Application for analysis in two binary mixtures
Andonie et al. Simultaneous determination of carbamazepine and carbamazepine-10, 11-epoxide in different biological matrices by LC-MS/MS
Gandhi et al. A New Stability-Indicating and Validated RP Estimation of Tolvaptan in Bulk and Pharmaceutical RP-HPLC Method for the Dosage Forms
Giovagnoli et al. Evaluation of a LC–MS method for everolimus preclinical determination in brain by using [13C2D4] RAD001 internal standard
Moriwaki et al. Determination of mercapturic acids in urine by solid-phase extraction followed by liquid chromatography–electrospray ionization mass spectrometry
Plenis et al. Rapid analysis of loratadine in human serum by high-performance liquid chromatography with fluorescence detection
Abdulla et al. Kinetic study of the alkaline degradation of imidapril hydrochloride using a validated stability indicating HPLC method
Belal et al. Development and Validation of GC-MS and HPLC Methods for the Determination of Simvastatin in Tablets and Human Urine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee