KR101002716B1 - Multi-layer sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature - Google Patents

Multi-layer sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature Download PDF

Info

Publication number
KR101002716B1
KR101002716B1 KR1020080123384A KR20080123384A KR101002716B1 KR 101002716 B1 KR101002716 B1 KR 101002716B1 KR 1020080123384 A KR1020080123384 A KR 1020080123384A KR 20080123384 A KR20080123384 A KR 20080123384A KR 101002716 B1 KR101002716 B1 KR 101002716B1
Authority
KR
South Korea
Prior art keywords
dissolved oxygen
sensor layer
fluorescent dye
optical sensor
temperature
Prior art date
Application number
KR1020080123384A
Other languages
Korean (ko)
Other versions
KR20100064785A (en
Inventor
이종일
김춘광
손옥재
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020080123384A priority Critical patent/KR101002716B1/en
Publication of KR20100064785A publication Critical patent/KR20100064785A/en
Application granted granted Critical
Publication of KR101002716B1 publication Critical patent/KR101002716B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/80Indicating pH value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • G01N31/223Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols
    • G01N31/225Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols for oxygen, e.g. including dissolved oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

본 발명은 용존산소, pH 및 온도의 2종 이상의 변수의 동시 검출용 다중층 광학 센서막 제조방법에 관한 것으로, 보다 상세하게는 지지체 수지층 위에, 온도 검출용 센서층, 용존산소 검출용 센서층 및 pH 검출용 센서층을 적층구조로 포함하는 고감도 광학 센서막으로 광섬유 센서 프로브에 적용할 수 있을 뿐만 아니라 멀티-웰 플레이트에 적용시켜 모니터링용 마이크로 생물반응기로 이용할 수 있다. The present invention relates to a method for producing a multilayer optical sensor film for the simultaneous detection of two or more variables of dissolved oxygen, pH and temperature, and more particularly, on the support resin layer, a sensor layer for temperature detection and a sensor layer for dissolved oxygen detection. And a high-sensitivity optical sensor film including a pH layer sensor layer in a stacked structure, which can be applied to an optical fiber sensor probe as well as a multi-well plate and used as a monitoring micro bioreactor.

다중층, 동시검출, 광학 센서막, 졸-겔, 형광염료 Multi-layer, Simultaneous Detection, Optical Sensor Membrane, Sol-Gel, Fluorescent Dye

Description

용존산소, pH 및 온도의 2종 이상의 변수의 동시 검출용 다중층 광학 센서막 제조방법 및 장치{Multi-layer sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature}Multi-layer sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature }

본 발명은 용존산소, pH 및 온도의 2종 이상의 변수의 동시 검출용 다중층 광학 센서막 제조방법에 관한 것으로, 보다 상세하게는 지지체 수지층 위에, 온도 검출용 센서층, 용존산소 검출용 센서층 및 pH 검출용 센서층을 포함하는 다중층 광학 센서막의 제조방법에 관한 것이다.The present invention relates to a method for producing a multilayer optical sensor film for the simultaneous detection of two or more variables of dissolved oxygen, pH and temperature, and more particularly, on the support resin layer, a sensor layer for temperature detection and a sensor layer for dissolved oxygen detection. And it relates to a method for producing a multilayer optical sensor film comprising a sensor layer for pH detection.

용존산소, 온도 및 pH는 환경 모니터링, 해양연구, 식품산업, 생물공학과 의약 분야에서 중요한 변수이다. 광학적 검출은 생물반응기나 반응용기의 유리창을 통해 비침투적으로 측정이 가능하기 때문에 다른 방법 이상의 장점을 가지고 있다. 이 경우, 센싱 물질은 반응용기 내벽에 위치되고, 반사나 형광에 의한 검출은 반응용기 바깥에서 수행된다. 또한, 광학 센서는 기존의 전자소자 대신 빛을 이용하여 신호를 측정하고 측정 정보의 전달도 빛으로 하므로 전자기장이 발생하지 않는 장점을 지니고 있다. 특히 특정 물질(용존산소 분자, 이산화탄소 분자 등)이나 pH 변 화에 따라 선택적으로 발광하는 광학 염료의 개발로 여러 센서분야에서의 이용이 부각되고 있다. 이러한 광학적 분석은 시간과 비용 절감이라는 상업적 요소를 충분히 갖추고 있어 여러 분야에서 다양하게 쓰이고 있다. 나아가 최근 배양기를 소형화하고 광학 모니터링 기법을 이용하여 소형 다중 생물반응기 개발이 활발히 진행되고 있다. 소형 다중 생물반응기는 제약, 생물제품 생산공정의 최적화에 있어서 적은 비용과 짧은 시간에 이루고자 하는 공정조건을 개발할 수 있도록 하여, 공정개발 비용을 최소화할 수 있는 장점을 가지고 있다.Dissolved oxygen, temperature and pH are important variables in environmental monitoring, marine research, food industry, biotechnology and medicine. Optical detection has advantages over other methods because non-invasive measurements can be made through the windows of bioreactors or reaction vessels. In this case, the sensing material is located on the inner wall of the reaction vessel, and the detection by reflection or fluorescence is performed outside the reaction vessel. In addition, the optical sensor has a merit that does not generate an electromagnetic field because it measures the signal using light instead of the conventional electronic device and also transmits the measurement information to the light. In particular, the development of optical dyes that selectively emit light according to a specific material (dissolved oxygen molecules, carbon dioxide molecules, etc.) or pH change has been used in various sensor fields. Such optical analysis is widely used in various fields because it has sufficient commercial elements such as time and cost savings. In recent years, small multi bioreactors have been actively developed by miniaturizing the incubator and using optical monitoring techniques. Small multiple bioreactors have the advantage of minimizing process development costs by enabling the development of low cost and short time requirements for the optimization of pharmaceutical and biological product production processes.

한편, 용존산소, pH 및 온도를 감응할 수 있는 형광염료로는 Rudpp(트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체), HPTS(8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염), CdSeTe(cadimium selenium tellurium)를 들 수 있다. Rudpp는 480㎚의 여기광을 입사시켰을 때 600㎚의 형광을 방출하는 특성을 가지고 있으며, 용존산소의 농도에 반비례하여 형광을 발생시킨다. 또한, HPTS는 410㎚의 여기광을 입사시켰을 때 520㎚의 형광을 방출하는 특성을 가지고 있으며, 수소이온농도가 감소할수록 형광세기가 증가하는 경향을 나타낸다. 또한, CdSeTe(cadimium selenium tellurium)는 온도 검출용 형광염료로 사용되는 물질이다.On the other hand, fluorescent dyes capable of reacting dissolved oxygen, pH and temperature include Rudpp (tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex) and HPTS (8-hydroxypyrene). -1,3,6-trisulfonic acid trisodium salt) and CdSeTe (cadimium selenium tellurium). Rudpp emits 600 nm of fluorescence when incident light of 480 nm is incident, and generates fluorescence in inverse proportion to the concentration of dissolved oxygen. In addition, HPTS has a characteristic of emitting 520 nm of fluorescence when incident light of 410 nm is incident, and shows a tendency of fluorescence intensity to increase with decreasing hydrogen ion concentration. In addition, CdSeTe (cadimium selenium tellurium) is a material used as a fluorescent dye for temperature detection.

용존산소, pH 및 온도의 2종 이상의 변수의 동시 측정이 복잡한 배양과 공정에서 요구된다. 더욱이 용존산소에 의한 퀀칭(quenching)이 온도에 의해 크게 영향을 받기 때문에 용존산소의 광학적 검출에서 온도를 아는 것이 특히 중요하다. 최근 두 변수의 동시 광학 검출을 위한 형광물질에 대해 보고되고 있다. 예를 들어, 문헌[Talanta 47(1998) 1071-1076]은 철 지시제(indicator)인 페로진(ferrozine)과 pH 지시제인 HPTS를 동일한 박막 상의 인접부에 고정화하여 철과 pH를 분리된 두 파장에서 ATR(attenuated total reflection) 분광분석에 의해 검출하는 기술을 보고하였다. 문헌 [Chem. Mater. 2006, 18, 4609-4616]은 카복시플루오레세인을 pH 프로브로, Rudpp를 용존산소 프로브로 각각 사용하여 단일-섬유 광학 센서를 통해 pH와 용존산소를 동시에 검출할 수 있는 센서를 보고한 바 있다. 그러나, 이들은 Rudpp, HPTS, 및 CdSeTe 형광염료를 각각의 센서층으로 만든 센서막에 대해서는 전혀 개시한 바 없다.Simultaneous measurement of two or more variables of dissolved oxygen, pH and temperature is required in complex cultures and processes. Moreover, knowing the temperature in optical detection of dissolved oxygen is particularly important because quenching by dissolved oxygen is greatly influenced by temperature. Recently, fluorescent materials for simultaneous optical detection of two variables have been reported. For example, Talanta 47 (1998) 1071-1076 describes two wavelengths separated from iron and pH by immobilizing an iron indicator, ferrozine, and a pH indicator, HPTS, in the vicinity of the same thin film. A technique for detecting by attenuated total reflection (ATR) spectroscopy has been reported. Chem. Mater. 2006, 18, 4609-4616] reported a sensor that can simultaneously detect pH and dissolved oxygen through a single-fiber optical sensor using carboxyfluorescein as a pH probe and Rudpp as a dissolved oxygen probe. . However, they have not disclosed any of the sensor films in which Rudpp, HPTS, and CdSeTe fluorescent dyes are made of the respective sensor layers.

이에, 본 발명은 상기와 같은 문제점을 감안하여 발명된 것으로, 본 발명은 용존산소, pH 및 온도의 2종 이상의 변수의 동시 검출을 위해 지지체 수지층 위에 센서의 조건이 최적화된 온도 검출용 센서층, 용존산소 검출용 센서층 및 pH 검출용 센서층을 포함하는 다중층 광학 센서막의 제조방법을 제공하기 위한 것이다.Accordingly, the present invention was invented in view of the above problems, and the present invention provides a sensor layer for temperature detection in which the conditions of the sensor are optimized on the support resin layer for simultaneous detection of two or more variables of dissolved oxygen, pH, and temperature. To provide a method of manufacturing a multilayer optical sensor film comprising a sensor layer for detecting dissolved oxygen and a sensor layer for detecting pH.

본 발명의 다른 목적은 상기 다중층 광학 센서막을 포함하는 광학 검출 장치를 제공하기 위한 것이다.Another object of the present invention is to provide an optical detection device including the multilayer optical sensor film.

본 발명은 지지체 수지층 위에 CdSeTe(cadimium selenium tellurium) 형광염료가 고정화되어 있는 온도 검출용 센서층, 트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체(Rudpp) 형광염료가 고정화되어 있는 용존산소 검출용 센서층 및 8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염(8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) 형광염료가 고정화되어 있는 pH 검출용 센서층을 포함하고 있는 다중층 광학 센서막의 제조방법을 제공하고자 한다. The present invention is a sensor layer for detecting the temperature is fixed CdSeTe (cadimium selenium tellurium) fluorescent dye on the support resin layer, tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex (Rudpp) Sensor layer for detection of dissolved oxygen and fluorescence of 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) An object of the present invention is to provide a method for manufacturing a multilayer optical sensor film including a sensor layer for pH detection in which a dye is immobilized.

본 발명은 상기 광학 센서막을 포함하는 용존산소, pH 및 온도의 2이상의 변수를 동시에 검출하기 위한 장치를 제공한다.The present invention provides an apparatus for simultaneously detecting two or more variables of dissolved oxygen, pH and temperature comprising the optical sensor film.

이하 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은,The present invention,

a) 지지체 상에, CdSeTe(cadimium selenium tellurium) 형광염료가 고정된 온도 검출용 센서층을 제조하는 단계;a) preparing a temperature detection sensor layer on which a CdSeTe (cadimium selenium tellurium) fluorescent dye is fixed;

b) 상기 온도 검출용 센서층 위에 트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체(Rudpp) 형광염료가 고정된 용존산소 검출용 센서층을 제조하는 단계; 및b) preparing a sensor layer for detecting dissolved oxygen having a tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex (Rudpp) fluorescent dye fixed on the temperature detecting sensor layer; And

c) 제조된 용존산소 검출용 센서층 위에 8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염(8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) 형광염료가 고정된 pH 검출용 센서층을 제조하는 단계;c) 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) fluorescent dye on the prepared sensor layer for detecting dissolved oxygen Preparing a sensor layer for fixed pH detection;

를 포함하는 다중층 광학 센서막 제조방법을 제공하고자 한다.To provide a multi-layer optical sensor film manufacturing method comprising a.

본 발명은 용존산소 농도, pH 및 온도의 2종 이상의 변수의 동시 광학 검출을 위하여, 종래 기술과 다르게, 지지층 상에 기능이 다른 센서층을 고정함으로써 센서막을 제작하는 것을 특징으로 한다.The present invention is characterized by fabricating a sensor film by fixing a sensor layer having a different function on a support layer, unlike the prior art, for simultaneous optical detection of two or more variables of dissolved oxygen concentration, pH and temperature.

본 발명은 용존산소 농도, pH 및 온도의 2종 이상의 변수의 동시 광학 검출을 위하여, 각각 CdSeTe, 트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체(Rudpp), 8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염(8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS)의 형광염료를 사용하는 것을 특징으로 한다.The present invention provides for simultaneous optical detection of two or more variables of dissolved oxygen concentration, pH and temperature, CdSeTe, Tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex (Rudpp), respectively. , 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) is characterized by using a fluorescent dye.

상기 형광염료는 3-글리시독시프로필트리메톡시실란, 3-아미노프로필트리메톡시실란, 페닐트리메톡시실란, 비닐트리메톡시실란, 3-(트리메톡시실릴)프로필 메타크릴레이트, 메틸트리메톡시실란, 테트라메톡시실란, 디메틸디메톡시실란, 테트라에톡시실란, 메틸트리에톡시실란, 디메틸디에톡시실란, 페닐트리메톡시실란, 디 페닐디메톡시실란, 페닐트리에톡시실란, 디페닐디에톡시실란, 데실트리메톡시실란, 이소부틸트리메톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 글리시도옥시프로필트리메톡시실란, 머캡토프로필트리메톡시실란으로 이루어진 군에서 선택된 1종 이상의 실란 커플링제를 사용하여 고정화하는 것이 바람직하며, 상기 CdSeTe(cadimium selenium tellurium) 및 8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염(8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) 형광염료의 고정은 3-글리시독시프로필트리메톡시실란, 3-아미노프로필트리메톡시실란, 페닐트리메톡시실란을 포함하는 졸-겔을 사용하여 고정하는 것이 더욱 바람직하다. 또한, 트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체(Rudpp) 형광염료의 고정은 메틸트리메톡시실란을 포함하는 졸-겔을 사용하여 고정하는 것이 더욱 바람직하다.The fluorescent dye is 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, phenyltrimethoxysilane, vinyltrimethoxysilane, 3- (trimethoxysilyl) propyl methacrylate, methyl Trimethoxysilane, tetramethoxysilane, dimethyldimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, phenyltriethoxysilane, di Phenyl diethoxysilane, decyltrimethoxysilane, isobutyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, glycidoxyoxytrimethoxysilane, mercaptopropyltrimethoxysilane It is preferable to immobilize using one or more selected silane coupling agents, and CdSeTe (cadimium selenium tellurium) and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (8-hydroxypyrene-1,3 , 6-trisulf onic acid trisodium salt (HPTS) fluorescent dyes may be fixed using a sol-gel comprising 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, or phenyltrimethoxysilane. desirable. In addition, the fixation of the tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex (Rudpp) fluorescent dye is more preferably fixed using a sol-gel containing methyltrimethoxysilane. desirable.

본 발명에서는, 이들 3가지 형광염료는 지지체 상에 고정화하기 위하여 당업계에 알려진 통상적인 방법을 제한 없이 사용할 수 있는바, 예를 들어, 졸-겔(sol-gel) 용액, 하이드로겔(hydrogel), 셀룰로오스 또는 그의 유도체, 예를 들어 알킬셀룰로오스, 특히 C1~6알킬셀룰로오스, 보다 특히 에틸셀룰로오스를 사용할 수 있으며, 바람직하게는 졸-겔 용액을 사용할 수 있다. 졸-겔 용액을 사용한 형광염료의 고정화는 당업계에 잘 알려져 있는 바, 통상의 공지된 기술에 따라 고정화를 수행할 수 있다. In the present invention, these three fluorescent dyes can be used without limitation conventional methods known in the art to immobilize on the support, for example, sol-gel (sol-gel) solution, hydrogel (hydrogel) , Cellulose or derivatives thereof, for example alkyl cellulose, in particular C 1-6 alkyl cellulose, more particularly ethyl cellulose, and preferably sol-gel solutions. Immobilization of fluorescent dyes using a sol-gel solution is well known in the art, and may be performed according to a conventionally known technique.

본 발명에서 Rudpp와 HPTS는 하나 이상을 흡착제에 흡착시켜 사용하며 CdSeTe(cadimium selenium tellurium)는 흡착하지 않고 사용한다. 상기 흡착제로는 당업계에 알려진 것들 중에서 임의로 선택하여 사용할 수 있으며, 예를 들어 실리카겔, 유기적으로 변형된 실리케이트(organically-modified silicate)(예:오르모실 비드(Ormosil beads)), 폴리(스티렌-블록-비닐피롤리돈) 비드(Poly(styrene-block-vinylpyrrolidone) beads)를 사용할 수 있으며, 바람직하게는 Rudpp와 HPTS는 실리카겔을 사용한다. 이것은 형광염료를 흡착시켜 사용함으로써 형광피크의 전이(shift)를 막고 효과적인 검출이 가능하기 때문이다.In the present invention, Rudpp and HPTS are used by adsorbing at least one adsorbent and CdSeTe (cadimium selenium tellurium) is used without adsorption. The adsorbent may be used arbitrarily selected from those known in the art, for example, silica gel, organically-modified silicate (eg, Ormosil beads), poly (styrene-block) Poly (styrene-block-vinylpyrrolidone) beads (Poly) can be used. Preferably, Rudpp and HPTS use silica gel. This is because the adsorption of the fluorescent dyes can be used to prevent the shift of the fluorescent peaks and to effectively detect the dyes.

본 발명에서는, 다중층 광학 센서막을 제작하기 위한 지지체로서 당업계에 알려진 통상적인 것들 중 어느 것이라도 사용할 수 있으나, 석영 유리판, 유리판, 폴리스틸렌 등의 투명 고분자나 마이크로타이터 플레이트를 사용하는 것이 보다 바람직하다.In the present invention, any of conventional ones known in the art may be used as a support for fabricating the multilayer optical sensor film, but it is more preferable to use a transparent polymer such as a quartz glass plate, a glass plate, a polystyrene or a microtiter plate. Do.

먼저, 지지체 상에 CdSeTe(cadimium selenium tellurium) 형광염료가 고정된 온도 검출용 센서층의 제조는 다음과 같다. 졸-겔 형성물질로서 3-글리시독시프로필트리메톡시실란, 3-아미노프로필트리메톡시실란, 용매로서 아세톤, 졸-겔의 축합반응을 위한 산 촉매로서 염산을 사용할 수 있다. 예를 들어, 3-글리시독시프로필트리메톡시실란, 3-아미노프로필트리메톡시실란, 아세톤, 물 및 30 내지 40중량% 염산을 1 내지 5 : 1 내지 3 : 3 내지 8 : 3 내지 15 : 1의 부피비로 포함하는 졸-겔 용액을 사용하는 것이 바람직한바, 이것이 혼합 형광염료의 고정화 효율을 높일 수 있기 때문이다. 구체적으로는, 3-글리시독시프로필트리메톡시실란 1.25㎖, 3-아미노프로필트리메톡시실란 625㎕, 아세톤 2.708㎖, 물 5.417㎖ 및 35중량% 염산 400㎕를 2 내지 5시간, 특히 3시간 동안 교반하여 숙성시킨 후, 여기에 형광염료들을 가하고 균질한 용액으로 제조하기 위하여 5 내지 20분간, 특히 10분간 초음파 처리한다. 이렇게 얻어진 혼합 형광염료 용액을 이렇게 얻어진 혼합 형광염료 용액을 코팅을 할 때 형광염료가 균일하게 퍼지도록 돌릴 수 있는 손잡이 부분과 지지체 상에 얇게 코팅되도록 하는 코팅기(one-well knife coating)를 이용하여 얇게 코팅한 후 실온에서 12 내지 48시간, 특히 24시간 동안 건조한 후 50 내지 70℃, 특히 60℃에서 건조하여 온도 검출용 센서층을 제작한다.First, the preparation of a temperature detecting sensor layer in which a CdSeTe (cadimium selenium tellurium) fluorescent dye is fixed on a support is as follows. Hydroxylic acid may be used as the acid catalyst for the condensation reaction of 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane as a sol-gel forming material, acetone as a solvent and sol-gel. For example, 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, acetone, water and 30 to 40% by weight hydrochloric acid may be added from 1 to 5: 1 to 3: 3 to 8: 3 to 15 It is preferable to use a sol-gel solution containing in a volume ratio of 1: 1 because this can increase the immobilization efficiency of the mixed fluorescent dye. Specifically, 1.25 ml of 3-glycidoxypropyltrimethoxysilane, 625 µl of 3-aminopropyltrimethoxysilane, 2.708 ml of acetone, 5.417 ml of water and 400 µl of 35% by weight hydrochloric acid were added for 2 to 5 hours, especially 3 After aging with stirring for a period of time, fluorescent dyes are added thereto and sonicated for 5 to 20 minutes, in particular 10 minutes, to prepare a homogeneous solution. The mixed fluorescent dye solution thus obtained is thinned by using a handle portion which can be rotated to spread the fluorescent dye evenly when coating the mixed fluorescent dye solution thus obtained, and a one-well knife coating to be thinly coated on the support. After coating, the film was dried at room temperature for 12 to 48 hours, in particular for 24 hours, and then dried at 50 to 70 ° C., particularly at 60 ° C., to produce a sensor layer for temperature detection.

다음 단계로 상기 제조된 온도 검출용 센서층 위의 트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체(Rudpp) 형광염료가 고정된 용존산소 검출용 센서층을 제조한다. 상기 용존산소 검출용 센서층은 졸-겔 형성물질로서 메틸트리메톡시실란(methyl trimethoxy silane, MTMS), 용매로서 아세톤, 졸-겔의 축합반응을 위한 산 촉매로서 염산을 사용할 수 있다. 예를 들어, 메틸트리메톡시실란, 아세톤, 물 및 30 내지 40중량% 염산을 200 내지 250 : 80 내지 120 : 30 내지 50 : 1의 부피비로 포함하는 졸-겔 용액을 사용하는 것이 바람직한바, 이것이 혼합 형광염료의 고정화 효율을 높일 수 있기 때문이다. 구체적으로는, 메틸트리메톡시실란 3.97㎖, 아세톤 1.84㎖, 물 0.72㎖ 및 35중량% 염산 18㎕를 포함하는 졸-겔 용액을 사용할 수 있다. In the next step, the dissolved oxygen detection sensor layer having the tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex (Rudpp) fluorescent dye fixed on the prepared temperature detection sensor layer was Manufacture. The sensor layer for detecting dissolved oxygen may use methyl trimethoxy silane (MTMS) as a sol-gel forming material, hydrochloric acid as an acid catalyst for condensation of acetone and sol-gel as a solvent. For example, it is preferable to use a sol-gel solution containing methyltrimethoxysilane, acetone, water and 30 to 40% by weight hydrochloric acid in a volume ratio of 200 to 250: 80 to 120: 30 to 50: 1. This is because the immobilization efficiency of the mixed fluorescent dye can be improved. Specifically, a sol-gel solution containing 3.97 ml of methyltrimethoxysilane, 1.84 ml of acetone, 0.72 ml of water and 18 µl of 35% by weight hydrochloric acid can be used.

본 발명의 구체적인 예에서는, 메틸트리메톡시실란 3.97㎖, 아세톤 1.84㎖, 증류수 0.72㎖ 및 35 중량% 염산 18㎕를 2 내지 5시간, 특히 3시간 동안 교반하여 숙성시킨 후, 여기에 형광염료들을 가하고 균질한 용액으로 제조하기 위하여 5 내 지 20분간, 특히 10분간 초음파 처리한다. 이렇게 얻어진 혼합 형광염료 용액을 코팅기(one-well knife coating)를 이용하여 얇게 코팅한 후 실온에서 12 내지 48시간, 특히 24시간 동안 건조한 후 50 내지 70℃, 특히 60℃에서 건조하여 용존산소 검출용 센서층을 제작한다.In a specific example of the present invention, 3.97 ml of methyltrimethoxysilane, 1.84 ml of acetone, 0.72 ml of distilled water and 18 µl of 35 wt% hydrochloric acid are aged by stirring for 2 to 5 hours, especially 3 hours, and then fluorescent dyes are added thereto. And sonicate for 5 to 20 minutes, in particular 10 minutes, to produce a homogeneous solution. The mixed fluorescent dye solution thus obtained was thinly coated using a one-well knife coating, and then dried at room temperature for 12 to 48 hours, especially 24 hours, and then dried at 50 to 70 ° C, especially 60 ° C, to detect dissolved oxygen. Produce a sensor layer.

마지막 단계로 상기 제조된 용존산소 검출용 센서층 위의 8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염(8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) 형광염료가 고정된 pH 검출용 센서층은 졸-겔 형성물질로서 3-글리시독시프로필트리메톡시실란, 3-아미노프로필트리메톡시실란, 용매로서 아세톤, 졸-겔의 축합반응을 위한 산 촉매로서 염산을 사용할 수 있다. 예를 들어, 3-글리시독시프로필트리메톡시실란, 3-아미노프로필트리메톡시실란, 아세톤, 물 및 30 내지 40 중량% 염산을 1 내지 5 : 1 내지 3 : 3 내지 8 : 3 내지 15 : 1의 부피비로 포함하는 졸-겔 용액을 사용하는 것이 바람직한바, 이것이 혼합 형광염료의 고정화 효율을 높일 수 있기 때문이다. 구체적으로는, 3-글리시독시프로필트리메톡시실란 1.25㎖, 3-아미노프로필트리메톡시실란 625, 아세톤 2.708㎖, 물 5.417㎖ 및 35중량% 염산 400㎕를 2 내지 5시간, 특히 3시간 동안 교반하여 숙성시킨 후, 여기에 형광염료들을 가하고 균질한 용액으로 제조하기 위하여 5 내지 20분간, 특히 10분간 초음파 처리한다. 이렇게 얻어진 혼합 형광염료 용액을 지지체, 예를 들어 석영 유리판 또는 멀티-웰(예: 24-웰) 마이크로타이터 플레이트의 각 웰에 도포한 후 15 내지 30℃, 특히 실온에서 12 내지 48시간, 특히 24시간 동안 건조한 후 50 내지 70℃, 특히 60℃에서 건조하여 다중층 광학 센서막을 제작한다.Finally, 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) on the prepared dissolved oxygen detection sensor layer. Sensor layer for pH detection in which the fluorescent dye is fixed is 3-glycidoxypropyltrimethoxysilane as a sol-gel forming material, 3-aminopropyltrimethoxysilane, acetone as a solvent, and an acid for condensation of sol-gel. Hydrochloric acid can be used as a catalyst. For example, 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, acetone, water and 30 to 40% by weight hydrochloric acid may be added from 1 to 5: 1 to 3: 3 to 8: 3 to 15 It is preferable to use a sol-gel solution containing in a volume ratio of 1: 1 because this can increase the immobilization efficiency of the mixed fluorescent dye. Specifically, 1.25 ml of 3-glycidoxypropyltrimethoxysilane, 625, 3-aminopropyltrimethoxysilane 625, 2.708 ml of water, 5.417 ml of water and 400 µl of 35% by weight hydrochloric acid were added for 2 to 5 hours, especially 3 hours. After aging by stirring for a while, fluorescent dyes are added thereto and sonicated for 5 to 20 minutes, in particular for 10 minutes, to prepare a homogeneous solution. The mixed fluorescent dye solution thus obtained is applied to each well of a support, such as a quartz glass plate or a multi-well (eg 24-well) microtiter plate, and then 15 to 30 ° C., especially at room temperature 12 to 48 hours, in particular After drying for 24 hours, it is dried at 50 to 70 ℃, especially 60 ℃ to produce a multilayer optical sensor film.

상기 다중층의 구조는 온도 검출용 센서층, 용존산소 검출용 센서층 및 pH 검출용 센서층인 것이 바람직하나 센서층간의 위치 변화는 크게 제한을 받지 않는다.The structure of the multilayer is preferably a temperature detecting sensor layer, a dissolved oxygen detecting sensor layer, and a pH detecting sensor layer, but the positional change between the sensor layers is not particularly limited.

본 발명에 따른 다중층 광학 센서막은 광섬유 프로브에 적용시켜 광섬유 센서로 사용할 수 있으며, 광학 센서막이 코팅된 멀티-웰 마이크로타이터 플레이트는 모니터링용 다채널 마이크로 생물반응기로 유용하게 사용될 수 있다.The multilayer optical sensor film according to the present invention may be applied to an optical fiber probe and used as an optical fiber sensor, and the multi-well microtiter plate coated with the optical sensor film may be usefully used as a multichannel micro bioreactor for monitoring.

본 발명에 따른 다중층 광학 센서막은 각각의 센서층이 센서막을 구성하고 있어 센서막 내의 형광염료가 서로 간섭을 받지 않아 용존산소, pH 및 온도의 2종 이상의 변수의 동시 검출시에도 넓은 측정 범위 및 높은 정확도와 정밀도를 가지고 있는 장점이 있다.In the multilayer optical sensor film according to the present invention, since each sensor layer constitutes a sensor film, fluorescent dyes in the sensor film do not interfere with each other, so that a wide measurement range can be achieved even when simultaneous detection of two or more variables of dissolved oxygen, pH, and temperature is performed. It has the advantage of high accuracy and precision.

본 발명에 따른 다중층 광학 센서막은 광섬유 센서 프로브에 적용시켜 생물반응기에 장착하여 반응기 내 용존산소, pH 및 온도의 온라인 모니터링에 유용하게 사용할 수 있을 뿐만 아니라, 하나의 센서막으로 2가지 이상의 변수를 모니터링할 수 있어 공정에서 유용하게 사용할 수 있다.The multilayer optical sensor film according to the present invention can be applied to a fiber optic sensor probe and mounted in a bioreactor, which can be usefully used for on-line monitoring of dissolved oxygen, pH and temperature in a reactor. It can be monitored and useful in the process.

또한, 멀티-웰 마이크로타이터 플레이트에 적용시켜 모니터링용 다채널 멀티-웰 마이크로 생물반응기를 제작함으로써, 비침투 방식으로 센서막에 여러 조건을 최적화할 수 있으므로, 생산공정의 최적화할 수 있어 비용을 절감하고 시간을 단축하여 공정개발 비용을 최소화할 수 있다.In addition, by applying to a multi-well microtiter plate to manufacture a multi-channel multi-well micro bioreactor for monitoring, non-invasive method can optimize the various conditions on the sensor membrane, thereby optimizing the production process cost Savings and time savings can minimize process development costs.

이하, 본 발명의 실시예에 의해 구체적으로 설명하나, 이는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위를 어떤 식으로든 제한하는 것은 아니다.Hereinafter, the present invention will be described in detail by way of example, but it is only for better understanding of the present invention and does not limit the scope of the present invention in any way.

[제조예 1] 트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체(Rudpp) 고정화 졸-겔( MTMS sol-gel) 제조Preparation Example 1 Preparation of Tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) Complex (Rudpp) Immobilized Sol-gel (MTMS sol-gel)

졸-겔을 형성시키기 위해 MTMS를 사용하고, 용매로는 99% 아세톤을 사용하였으며, 촉매로는 35% HCl을 사용하였다.MTMS : 아세톤 : 물 : HCl = 3.97㎖ : 1.84㎖ : 0.72㎖ : 18㎕의 비율로 혼합한 후 3시간 동안 격렬히 교반하여 졸-겔을 형성하였다.MTMS was used to form the sol-gel, 99% acetone was used as the solvent, and 35% HCl was used as the catalyst. MTMS: Acetone: Water: HCl = 3.97 mL: 1.84 mL: 0.72 mL: 18 After mixing at a ratio of μl and vigorously stirring for 3 hours to form a sol-gel.

[제조예 2] 8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염(8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) 고정화 졸-겔( GA sol-gel) 제조Preparation Example 2 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) immobilized sol-gel (GA sol-gel ) Produce

졸-겔을 형성시키기 위해 GPTMS와 APTMS를 사용하고, 용매로는 99% 아세톤을 사용하였으며, 촉매로는 35% HCl을 사용하였다. GPTMS : APTMS : 아세톤 : 물 : HCl = 1.25㎖ : 625㎕ : 2.708㎖ : 5.417㎖ : 400㎕의 비율로 혼합한 후 3시간 동안 격렬히 교반하여 졸-겔을 형성하였다.GPTMS and APTMS were used to form the sol-gel, 99% acetone was used as the solvent, and 35% HCl was used as the catalyst. GPTMS: APTMS: Acetone: Water: HCl = 1.25 mL: 625 μL: 2.708 mL: 5.417 mL: 400 μL was mixed at vigorous stirring for 3 hours to form a sol-gel.

[제조예 3] CdSeTe 고정화 졸-겔(GA sol-gel) 제조Preparation Example 3 Preparation of CdSeTe Immobilized Sol-Gel (GA sol-gel)

졸-겔을 형성시키기 위해 GPTMS와 APTMS를 사용하고, 용매로는 99% 아세톤을 사용하였으며, 촉매로는 35% HCl을 사용하였다. GPTMS : APTMS : 아세톤 : 물 : HCl = 1.25㎖ : 625㎕ : 2.708㎖ : 5.417㎖ : 400㎕의 비율로 혼합한 후 3 시간 동안 격렬히 교반하여 졸-겔을 형성하였다.GPTMS and APTMS were used to form the sol-gel, 99% acetone was used as the solvent, and 35% HCl was used as the catalyst. GPTMS: APTMS: Acetone: Water: HCl = 1.25 mL: 625 μL: 2.708 mL: 5.417 mL: 400 μL was mixed at vigorous stirring for 3 hours to form a sol-gel.

[비교예 1] 용존산소와 pH의 검출용 광학 센서막의 제조Comparative Example 1 Preparation of Optical Sensor Film for Detection of Dissolved Oxygen and pH

용존산소와 pH의 검출용 센서막을 제조하기 위해, 제조예 1에서 얻은 MTMS 졸-겔 용액에 Rudpp 5mg/mL을 혼합하여 센서층 용액을 제조하였다. 이때 Rudpp는 실리카겔에 흡착시켜 사용하였다. 즉, 12㎖의 클로로포름(CHCl3)에 0.6g의 Rudpp를 가하고 2g의 실리카겔(4㎛, 동양제철화학)을 넣은 후 24시간 동안 교반하고, 이것을 여과지에 여과하고 3차 증류수로 3회 세척한 후 건조하여 사용하였다. 폴리스틸렌 표면에 제조된 Rudpp 졸-겔 용액 20㎕를 떨어뜨린 후 지지체 상에 얇게 코팅되도록 하는 코팅기(one-well knife coating)를 이용하여 얇게 코팅한 후 공기 중에 하루 동안 건조 한 후 센서층 표면을 매끄럽게 하기 위하여 60℃에서 하루 동안 건조시켜 용존산소 검출용 센서층을 형성하였다. 상기 제조예 2에서 제조된 GA 졸-겔 용액에 HPTS 5.2 mg/mL을 혼합하여 센서층 용액을 제조한 후 완전 건조된 용존산소 검출막 위에 HPTS 졸-겔 용액을 20㎕ 떨어뜨린 후 코팅기(one-well knife coating)를 이용하여 얇게 코팅한 후 공기 중에 하루 동안 건조하고 센서층 표면을 매끄럽게 하기 위하여 60℃에서 하루 동안 건조시켜 용존산소와 pH 검출용 다중층 광학 검출층을 완성시켰다. In order to prepare a sensor film for detecting dissolved oxygen and pH, a sensor layer solution was prepared by mixing Rudpp 5mg / mL in the MTMS sol-gel solution obtained in Preparation Example 1. At this time, Rudpp was used by adsorbing on silica gel. That is, 0.6 g of Rudpp was added to 12 ml of chloroform (CHCl 3 ), 2 g of silica gel (4 μm, Dongyang Steel Chemical) was added and stirred for 24 hours, which was filtered through a filter paper and washed three times with tertiary distilled water. After drying it was used. 20 μl of Rudpp sol-gel solution prepared on the polystyrene surface was dropped and then coated with a one-well knife coating to allow a thin coating on the support, followed by drying in air for a day, and then smoothing the surface of the sensor layer. In order to dry for one day at 60 ℃ to form a sensor layer for detecting dissolved oxygen. After preparing a sensor layer solution by mixing 5.2 mg / mL of HPTS in the GA sol-gel solution prepared in Preparation Example 2, 20 μl of HPTS sol-gel solution was dropped on a completely dried oxygen detection membrane, followed by a coater (one After coating a thin layer using a -well knife coating, the layer was dried for one day in air and dried at 60 ° C for one day to smooth the surface of the sensor layer, thereby completing a multilayer optical detection layer for detecting dissolved oxygen and pH.

[비교예 2] 용존산소, pH 및 온도 검출용 복합 광학 센서막의 제조Comparative Example 2 Preparation of Composite Optical Sensor Membrane for Detection of Dissolved Oxygen, pH and Temperature

용존산소와 pH 및 온도 검출용 센서막을 제조하기 위해, 제조예 1에서 얻은 MTMS 졸-겔 용액에 Rudpp 5 mg/mL을 혼합하여 센서 막 용액을 제조하였다. 용존산소와 pH의 검출용 센서층을 제조하기 위해, 제조예 1에서 얻은 MTMS 졸-겔 용액에 Rudpp 5mg/mL을 혼합하여 센서층 용액을 제조하였다. 이때 Rudpp는 실리카겔에 흡 착시켜 사용하였다. 즉, 12㎖의 클로로포름(CHCl3)에 0.6g의 Rudpp를 가하고 2g의 실리카겔(4㎛, 동양제철화학)을 넣은 후 24시간 동안 교반하고, 이것을 여과지에 여과하고 3차 증류수로 3회 세척한 후 건조하여 사용하였다. 폴리스틸렌 표면에 제조된 Rudpp 졸-겔 용액 20㎕를 떨어뜨린 후 지지체 상에 얇게 코팅되도록 하는 코팅기(one-well knife coating)를 이용하여 얇게 코팅한 후 공기 중에 하루 동안 건조 한 후 센서층 표면을 매끄럽게 하기 위하여 60℃에서 하루 동안 건조시켜 용존산소 검출용 센서층을 형성하였다. 상기 제조예 2와 3에서 제조된 GA 졸-겔 용액에 실리카겔에 흡착시킨 HPTS 5.2mg/mL와 CdSeTe 2mg/mL를 혼합하여 센서층 용액을 제조한 후 완전 건조된 용존산소 검출층 위에 HPTS 졸-겔 용액을 20㎕ 떨어뜨린 후 지지체 상에 얇게 코팅되도록 하는 코팅기(one-well knife coating)를 이용하여 얇게 코팅한 후 공기 중에 하루 동안 건조하고 센서층 표면을 매끄럽게 하기 위하여 60℃에서 하루 동안 건조시켜 용존산소, pH 및 온도 검출용 복합 광학 센서막을 완성시켰다. 상기 CdSeTe는 진공조건에서 CdO 32㎎을 Hexa 1.5mg, TOPO 3.0g을 첨가하여 150℃로 가열한 후 반응용기에 질소가스를 채워 완전히 녹을때까지 320℃에서 가열하였다. 상기 반응용기에 TOP(Trioctylphosphine)에 각각 녹아있는 Se 및 Te를 첨가하여 320℃에서 18초간 반응시켜 합성된 온도검출용 CdSeTe를 사용하였다.In order to prepare dissolved oxygen and a sensor film for pH and temperature detection, Rudpp 5 mg / mL was mixed with the MTMS sol-gel solution obtained in Preparation Example 1 to prepare a sensor membrane solution. In order to prepare a sensor layer for detecting dissolved oxygen and pH, a sensor layer solution was prepared by mixing Rudpp 5mg / mL in the MTMS sol-gel solution obtained in Preparation Example 1. At this time, Rudpp was used by adsorbing on silica gel. That is, 0.6 g of Rudpp was added to 12 ml of chloroform (CHCl 3 ), 2 g of silica gel (4 μm, Dongyang Steel Chemical) was added and stirred for 24 hours, which was filtered through a filter paper and washed three times with tertiary distilled water. After drying it was used. 20 μl of Rudpp sol-gel solution prepared on the polystyrene surface was dropped and then coated with a one-well knife coating to allow a thin coating on the support, followed by drying in air for a day, and then smoothing the surface of the sensor layer. In order to dry for one day at 60 ℃ to form a sensor layer for detecting dissolved oxygen. After preparing a sensor layer solution by mixing 5.2 mg / mL of HPTS adsorbed on silica gel and 2 mg / mL of CdSeTe in the GA sol-gel solution prepared in Preparation Examples 2 and 3, the HPTS sol- on the completely dried dissolved oxygen detection layer. 20 μl of the gel solution is then thinly coated using a one-well knife coating on a support, followed by one day drying in air and one day at 60 ° C. to smooth the surface of the sensor layer. A composite optical sensor film for detecting dissolved oxygen, pH and temperature was completed. The CdSeTe was heated to 150 ° C. by adding 32 mg of CdO, 1.5 mg of Hexa, and 3.0 g of TOPO under vacuum, and then heated at 320 ° C. until nitrogen was completely dissolved in a reaction vessel. Se and Te dissolved in TOP (Trioctylphosphine) were added to the reaction vessel and reacted at 320 ° C. for 18 seconds to use the synthesized CdSeTe for temperature detection.

[실시예 1] 용존산소, pH 및 온도 검출용 다중층 광학 센서막의 제조Example 1 Preparation of Multi-layer Optical Sensor Film for Dissolved Oxygen, pH and Temperature Detection

용존산소, pH 및 온도 검출용 다중층 광학 센서막을 제조하기 위해, 제조예 3에서 얻은 GA 졸-겔 용액에 CdSeTe 1mg/mL을 혼합하여 센서층 용액을 제조하였다. 폴리스틸렌 표면에 CdSeTe 졸-겔 용액 20㎕를 떨어뜨린 후 지지체 상에 얇게 코팅되도록 하는 코팅기(one-well knife coating)를 이용하여 얇게 코팅한 후 공기 중에 하루 동안 건조 한 후 센서 막 표면을 매끄럽게 하기 위하여 60℃에서 하루 동안 건조시켜 온도 검출용 센서 막을 형성하였다. 완전히 건조된 온도 검출용 센서층 위에 MTMS 졸-겔에 Rudpp 5mg/mL을 혼합하여 만든 센서층 용액을 20㎕ 떨어뜨린 후 지지체 상에 얇게 코팅되도록 하는 코팅기(one-well knife coating)를 이용하여 얇게 코팅한 후 공기 중에 하루 동안 건조 한 후 센서층 표면을 매끄럽게 하기 위하여 60℃에서 하루 동안 건조시켰다. 같은 방법으로 GA 졸-겔 용액에 HPTS 5.2mg/mL을 혼합한 센서층 용액을 20㎕ 떨어뜨린 후 코팅기(one-well knife coating)를 이용하여 얇게 코팅한 후 공기 중에 하루 동안 건조 한 후 센서층 표면을 매끄럽게 하기 위하여 60℃에서 하루 동안 건조시켜 용존산소, pH 및 온도 검출용 다중층 광학 센서막을 완성시켰다.In order to prepare a multilayer optical sensor film for detecting dissolved oxygen, pH and temperature, a sensor layer solution was prepared by mixing CdSeTe 1 mg / mL with the GA sol-gel solution obtained in Preparation Example 3. 20 μl of CdSeTe sol-gel solution was dropped on the polystyrene surface, and then thinly coated using a one-well knife coating to allow a thin coating on the support. It dried at 60 degreeC for one day, and formed the sensor film for temperature detection. 20μl of a sensor layer solution prepared by mixing Rudpp 5mg / mL in MTMS sol-gel on a completely dried temperature detection sensor layer was thinned by using a one-well knife coating to make a thin coating on a support. After coating and drying in the air for one day, it was dried for one day at 60 ℃ to smooth the surface of the sensor layer. In the same way, 20 μl of a solution layer of HPTS 5.2mg / mL mixed with a GA sol-gel solution was applied, and then thinly coated using a one-well knife coating. In order to smooth the surface, it was dried at 60 ° C. for one day to complete the multilayer optical sensor film for detecting dissolved oxygen, pH and temperature.

[실험예 1] 용존산소, pH 및 온도 2종 이상의 변수의 동시검출 가능성 확인Experimental Example 1 Confirmation of Simultaneous Detection of Dissolved Oxygen, pH and Temperature of Two or More Variables

용존산소 검출막과 pH 검출막이 적층구조로 이루어진 다중층 광학 센서막의 검출 가능성을 알아보았다. 3차 증류수와 황산나트륨 수용액(40g/L)을 이용하여 용존산소농도가 100%와 0%일 때의 형광 세기를 여기 파장 480nm, 방출 파장 600nm에서 측정한 것을 도 2에 나타냈다.The detection possibility of the multilayer optical sensor film having a laminated structure of the dissolved oxygen detection film and the pH detection film was investigated. The fluorescence intensity measured at the excitation wavelength of 480 nm and the emission wavelength of 600 nm at the dissolved oxygen concentrations of 100% and 0% using tertiary distilled water and an aqueous sodium sulfate solution (40 g / L) is shown in FIG. 2.

도 2에서 알 수 있듯이 용존산소 농도가 높을 때 형광 세기는 낮은 값을 나타냈고 용존산소 농도가 낮을 때 형광세기는 높게 나타났다. 또한, pH에 따른 형광 특성 변화를 자세히 조사하기 위하여 각기 다른 pH의 인산완충용액 (pH 3 내지 pH 9)으로 형광 세기를 측정하였다. 도 2에서 pH가 증가함에 따라 측정된 형광 세기가 증가하였고 5 mg/mL Rudpp와 5.2 mg/mL HPTS로 구성된 다중층 센서 막으로 용존산소농도와 pH의 동시 검출이 가능함을 확인하였다.As can be seen in FIG. 2, the fluorescence intensity was low when the dissolved oxygen concentration was high, and the fluorescence intensity was high when the dissolved oxygen concentration was low. In addition, in order to investigate the change in fluorescence characteristics in accordance with pH in detail, the fluorescence intensity was measured with phosphate buffer solution (pH 3 to pH 9) of different pH. In FIG. 2, the measured fluorescence intensity increased with increasing pH, and it was confirmed that simultaneous detection of dissolved oxygen concentration and pH was possible with a multilayer sensor membrane composed of 5 mg / mL Rudpp and 5.2 mg / mL HPTS.

도 1은 본 발명의 졸-겔 용액에 고정화된 다중층 광학 센서막의 단면을 나타낸 것이다.Figure 1 shows a cross section of a multilayer optical sensor film immobilized in the sol-gel solution of the present invention.

도 2는 본 발명에 따른 다중층 광학 센서막의 용존산소 및 pH의 동시 검출의 결과를 나타낸 그래프이다.2 is a graph showing the results of simultaneous detection of dissolved oxygen and pH of a multilayer optical sensor film according to the present invention.

도 3은 본 발명에 따른 다중층 광학 센서막의 24-웰 마이크로타이터 플레이트에 제작한 모니터링용 마이크로 생물반응기에서 용존산소 및 pH의 동시 검출을 실시간 모니터링 한 결과를 나타낸 그래프이다.Figure 3 is a graph showing the results of real-time monitoring of the simultaneous detection of dissolved oxygen and pH in the monitoring microbioreactor fabricated on a 24-well microtiter plate of the multilayer optical sensor film according to the present invention.

*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

10: pH 검출용 센서층10: sensor layer for pH detection

20: 용존산소 검출용 센서층20: sensor layer for detecting dissolved oxygen

30: 온도 검출용 센서층30: sensor layer for temperature detection

40: 지지체 수지층40: support resin layer

Claims (9)

삭제delete 다중층 광학 센서막의 제조방법에 있어서,In the manufacturing method of the multilayer optical sensor film, a) 지지체 상에, CdSeTe(cadimium selenium tellurium) 형광염료가 고정된 온도 검출용 센서층을 제조하는 단계;a) preparing a temperature detection sensor layer on which a CdSeTe (cadimium selenium tellurium) fluorescent dye is fixed; b) 상기 온도 검출용 센서층 위에 트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체(Rudpp) 형광염료가 고정된 용존산소 검출용 센서층을 제조하는 단계; 및b) preparing a sensor layer for detecting dissolved oxygen having a tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex (Rudpp) fluorescent dye fixed on the temperature detecting sensor layer; And c) 제조된 용존산소 검출용 센서층 위에 8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염(8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) 형광염료가 고정된 pH 검출용 센서층을 제조하는 단계;를 포함하는 것을 특징으로 하는 다중층 광학 센서막 제조방법.c) 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) fluorescent dye on the prepared sensor layer for detecting dissolved oxygen A method for manufacturing a multilayer optical sensor film, the method comprising: manufacturing a fixed pH detection sensor layer. 제 2항에 있어서,3. The method of claim 2, 상기 a) 단계의 CdSeTe(cadimium selenium tellurium) 및 c)단계의 8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염(8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) 형광염료는 3-글리시독시프로필트리메톡시실란, 3-아미노프로필트리메톡시실란, 페닐트리메톡시실란, 비닐트리메톡시실란, 3-(트리메톡시실릴)프로필 메타크릴레이트으로 이루어진 군에서 선택된 1종 이상의 실란 커플링제를 사용하여 고정화하는 것을 특징으로 하는 다중층 광학 센서막의 제조방법.CdSeTe (cadimium selenium tellurium) in step a) and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt in step c), HPTS) fluorescent dyes are 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, phenyltrimethoxysilane, vinyltrimethoxysilane, 3- (trimethoxysilyl) propyl methacrylate A method of manufacturing a multilayer optical sensor film, characterized in that the immobilization is carried out using at least one silane coupling agent selected from the group consisting of: 제 2항에 있어서,3. The method of claim 2, 상기 b) 단계의 트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체(Rudpp) 형광염료는 메틸트리메톡시실란, 테트라메톡시실란, 디메틸디메톡시실란, 테트라에톡시실란, 메틸트리에톡시실란, 디메틸디에톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 페닐트리에톡시실란, 디페닐디에톡시실란, 데실트리메톡시실란, 이소부틸트리메톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 글리시도옥시프로필트리메톡시실란, 머캡토프로필트리메톡시실란으로 이루어진 군에서 선택된 1종 이상의 실란 커플링제를 사용하여 고정화하는 것을 특징으로 하는 다중층 광학 센서막의 제조방법.The tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex (Rudpp) fluorescent dye of step b) is methyltrimethoxysilane, tetramethoxysilane, dimethyldimethoxysilane, tetra Ethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, decyltrimethoxysilane, isobutyltrimethoxy Immobilized by using at least one silane coupling agent selected from the group consisting of silane, vinyltrimethoxysilane, vinyltriethoxysilane, glycidoxyoxypropyltrimethoxysilane and mercaptopropyltrimethoxysilane. Method for producing a multilayer optical sensor film. 제 3항 또는 제 4항에 있어서,The method according to claim 3 or 4, 상기 고정화는 졸-겔(sol-gel), 하이드로겔(hydrogel), 셀룰로스 또는 그의 유도체를 사용하여 고정화하는 것을 특징으로 하는 다중층 광학 센서막의 제조방법.The immobilization method of manufacturing a multilayer optical sensor film, characterized in that the immobilization using a sol-gel (hydro-gel), hydrogel (hydrogel), cellulose or a derivative thereof. 제 2항에 있어서,3. The method of claim 2, 상기 지지체는 석영 유리판, 유리판, 투명 고분자 또는 멀티-웰마이크로타이터 플레이트인 것을 특징으로 하는 광학 센서막의 제조방법.The support is a method of manufacturing an optical sensor film, characterized in that the quartz glass plate, glass plate, transparent polymer or multi-well microtiter plate. CdSeTe(cadimium selenium tellurium) 형광염료가 고정된 온도 검출용 센서층;CdSeTe (cadimium selenium tellurium) fluorescent dye fixed temperature sensor layer; 트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체(Rudpp) 형광염료가 고정된 용존산소 검출용 센서층; 및A sensor layer for detecting dissolved oxygen to which a tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex (Rudpp) fluorescent dye is fixed; And 8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염(8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) 형광염료가 고정된 pH 검출용 센서층;을 포함하는 다중층 광학 센서막.8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) is a sensor layer for detecting the pH of the fluorescent dye fixed; comprising Multilayer optical sensor film. 제 7항에 있어서,The method of claim 7, wherein 상기 다중층 광학 센서막은 지지체 상에, CdSeTe(cadimium selenium tellurium) 형광염료가 고정된 온도 검출용 센서층;The multilayer optical sensor film is a sensor layer for detecting the temperature of the CdSeTe (cadimium selenium tellurium) fluorescent dye is fixed on the support; 상기 온도 검출용 센서층 위에 트리스(4,7-디페닐-1,10-페난트롤린)루테늄(Ⅱ) 복합체(Rudpp) 형광염료가 고정된 용존산소 검출용 센서층; 및A sensor layer for detecting dissolved oxygen having a tris (4,7-diphenyl-1,10-phenanthroline) ruthenium (II) complex (Rudpp) fluorescent dye fixed on the temperature detecting sensor layer; And 상기 용존산소 검출용 센서막 위에 8-하이드록시피렌-1,3,6-트리설폰산 트리소디움염(8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS) 형광염료가 고정된 pH 검출용 센서층;을 포함하는 것을 특징으로 하는 다중층 광학 센서막.PH of 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) fluorescent dye fixed on the sensor film for detecting dissolved oxygen Detection sensor layer; multilayer optical sensor film comprising a. 제 7항 또는 8항에 따른 광학 센서막을 포함하는 용존산소, pH 및 온도의 2종 이상의 변수를 동시에 검출하기 위한 장치.An apparatus for simultaneously detecting two or more variables of dissolved oxygen, pH and temperature comprising an optical sensor film according to claim 7.
KR1020080123384A 2008-12-05 2008-12-05 Multi-layer sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature KR101002716B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080123384A KR101002716B1 (en) 2008-12-05 2008-12-05 Multi-layer sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080123384A KR101002716B1 (en) 2008-12-05 2008-12-05 Multi-layer sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature

Publications (2)

Publication Number Publication Date
KR20100064785A KR20100064785A (en) 2010-06-15
KR101002716B1 true KR101002716B1 (en) 2010-12-21

Family

ID=42364343

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080123384A KR101002716B1 (en) 2008-12-05 2008-12-05 Multi-layer sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature

Country Status (1)

Country Link
KR (1) KR101002716B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075902A (en) 2020-11-30 2022-06-08 (주)피앤지바이오메드 Culture medium
WO2022145766A1 (en) * 2020-12-29 2022-07-07 주식회사 조인트리 Optical sensor membrane for detecting dissolved oxygen having micro-fine structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841080B (en) * 2012-08-06 2014-10-15 上海交通大学 Two-parameter optical fiber sensor used for measurement of pH value and dissolved oxygen
CN113155798A (en) * 2021-04-22 2021-07-23 华南师范大学 Application of hydroxypyrene as pH fluorescent probe
KR20230093951A (en) * 2021-12-20 2023-06-27 주식회사 유니드 Composition for hydrogen sensing paste and manufacturing method thereof
CN117030667A (en) * 2023-07-14 2023-11-10 北京邮电大学 Multifunctional optical sensor and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100860958B1 (en) 2007-08-08 2008-09-30 전남대학교산학협력단 A multi-channel bioreactor with the immobillization of optical sensing membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100860958B1 (en) 2007-08-08 2008-09-30 전남대학교산학협력단 A multi-channel bioreactor with the immobillization of optical sensing membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075902A (en) 2020-11-30 2022-06-08 (주)피앤지바이오메드 Culture medium
WO2022145766A1 (en) * 2020-12-29 2022-07-07 주식회사 조인트리 Optical sensor membrane for detecting dissolved oxygen having micro-fine structure

Also Published As

Publication number Publication date
KR20100064785A (en) 2010-06-15

Similar Documents

Publication Publication Date Title
Kumar et al. Recent optical sensing technologies for the detection of various biomolecules
US8574921B2 (en) Optical sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature
KR101002716B1 (en) Multi-layer sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature
Zhang et al. DNAzyme-triggered visual and ratiometric electrochemiluminescence dual-readout assay for Pb (II) based on an assembled paper device
Fathi et al. Photonic crystal based biosensors: Emerging inverse opals for biomarker detection
Yu et al. Microelectromechanical microsystems-supported photothermal immunoassay for point-of-care testing of aflatoxin B1 in foodstuff
Lobnik et al. Optical chemical sensors: design and applications
Wang et al. Polydiacetylene-based sensor for highly sensitive and selective Pb2+ detection
Tran-Thi et al. Optical chemical sensors based on hybrid organic–inorganic sol–gel nanoreactors
Wolfbeis Fiber-optic chemical sensors and biosensors
Dash et al. Organically modified silica: Synthesis and applications due to its surface interaction with organic molecules
Jenie et al. Recent advances on luminescent enhancement-based porous silicon biosensors
KR100860958B1 (en) A multi-channel bioreactor with the immobillization of optical sensing membrane
KR100940513B1 (en) Optical sensing membranes, devices and methods for simultaneous detection of two or more parameters of dissolved oxygen concentration, pH and temperature
US11899011B2 (en) Selective optical detection of organic analytes in liquids
Chu et al. Optical fiber sensor for dual sensing of H2O2 and DO based on CdSe/ZnS QDs and Ru (dpp) 32+ embedded in EC matrix
EP1630548B1 (en) An optical biosensor
Zhang et al. Photoacoustic-based miniature device with smartphone readout for point-of-care testing of uric acid
Sadani et al. Enzymatic optical biosensors for healthcare applications
Yang et al. Oxygen gas optrode based on microstructured polymer optical fiber segment
Podbielska et al. Sol-gels for optical sensors
KR20220094741A (en) Optical sensor film for dissolved oxygen detection with micro-micro-structure
Hernaez et al. Nanostructured materials in optical fiber sensing
CN113125420B (en) Chemiluminescence-based multi-element analysis photonic crystal chip and preparation method and application thereof
Hreniak et al. A luminescence endotoxin biosensor prepared by the sol–gel method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131108

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141209

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171212

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181105

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191216

Year of fee payment: 10