KR101002298B1 - Method of manufacturing aromatic polyamide filament - Google Patents

Method of manufacturing aromatic polyamide filament Download PDF

Info

Publication number
KR101002298B1
KR101002298B1 KR1020050060580A KR20050060580A KR101002298B1 KR 101002298 B1 KR101002298 B1 KR 101002298B1 KR 1020050060580 A KR1020050060580 A KR 1020050060580A KR 20050060580 A KR20050060580 A KR 20050060580A KR 101002298 B1 KR101002298 B1 KR 101002298B1
Authority
KR
South Korea
Prior art keywords
aromatic polyamide
wholly aromatic
sulfuric acid
filament
polymer
Prior art date
Application number
KR1020050060580A
Other languages
Korean (ko)
Other versions
KR20070005312A (en
Inventor
인 식 한
Original Assignee
주식회사 코오롱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코오롱 filed Critical 주식회사 코오롱
Priority to KR1020050060580A priority Critical patent/KR101002298B1/en
Publication of KR20070005312A publication Critical patent/KR20070005312A/en
Application granted granted Critical
Publication of KR101002298B1 publication Critical patent/KR101002298B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 전방향족 폴리아미드 필라멘트의 제조방법에 관한 것으로서, 전방향족 폴리아미드 중합체를 농황산 용매에 용해시켜 방사원액을 제조할 때 냉동 분말 황산과 전방향족 폴리아미드 중합체를 -20~0℃의 온도에서 혼합한 다음, 80~95℃의 온도에서 농황산 용매에 전방향족 폴리아미드 중합체를 용해시킨 후 탈포하여 방사원액을 제조하는 것을 특징으로 한다.The present invention relates to a method for producing an wholly aromatic polyamide filament, wherein the frozen powdered sulfuric acid and the wholly aromatic polyamide polymer are prepared at a temperature of -20 ° C. to 0 ° C. when preparing the spinning solution by dissolving the wholly aromatic polyamide polymer in a concentrated sulfuric acid solvent. After mixing, dissolving the wholly aromatic polyamide polymer in a concentrated sulfuric acid solvent at a temperature of 80 ~ 95 ℃ and degassing characterized in that to prepare a spinning stock solution.

본 발명은 방사원액 제조시 전방향족 폴리아미드 중합체의 고유점도가 저하되는 것을 효과적으로 방지할 수 있고, 방사원액을 균일하게 할 수 있다. 그로 인해 본 발명으로 제조된 전방향족 폴리아미드 필라멘트는 보다 향상된 강도 및 탄성률 등의 물성을 나타낸다.The present invention can effectively prevent the intrinsic viscosity of the wholly aromatic polyamide polymer during the production of spinning stock solution, and can make the spinning stock solution uniform. Therefore, the wholly aromatic polyamide filament produced by the present invention exhibits improved physical properties such as strength and elastic modulus.

전방향족 폴리아미드, 필라멘트, 중합체, 방사원액, 고유점도, 냉동 분말 황산, 강도, 탄성률. Wholly aromatic polyamide, filament, polymer, spinning stock solution, intrinsic viscosity, frozen powder sulfuric acid, strength, modulus of elasticity.

Description

전방향족 폴리아미드 필라멘트의 제조방법{Method of manufacturing aromatic polyamide filament} Method of manufacturing aromatic polyamide filament {Method of manufacturing aromatic polyamide filament}

도 1은 건습식 방사 방식으로 전방향족 폴리아미드 필라멘트를 제조하는 공정 개략도.1 is a process schematic diagram of making a wholly aromatic polyamide filament in a wet-wet spinning manner.

*도면중 주요 부분에 대한 부호 설명* Description of symbols on the main parts of the drawings

40 : 방사 구금 50 : 응고액 욕조40: spinneret 50: coagulation bath

60 : 수세 장치 70 : 건조장치60: washing device 70: drying device

80 : 열처리 장치 90 : 권취기80: heat treatment apparatus 90: winder

본 발명은 전방향족 폴리아미드 필라멘트의 제조방법에 관한 것으로서, 보다 구체적으로는 고강도와 고탄성의 물성을 갖는 전방향족 폴리아미드 필라멘트의 제조방법에 관한 것이다.The present invention relates to a method for producing a wholly aromatic polyamide filament, and more particularly to a method for producing a wholly aromatic polyamide filament having high strength and high elastic properties.

전방향족 폴리아미드 필라멘트는 미국특허 제 3,869,492 호 및 미국특허 제3,869,430 호 등에 게재되어 있는 바와 같이 방향족 디아민과 방향족 디에시드클로라이드를 N-메틸-2-피롤리돈을 포함하는 중합용매 중에서 중합시켜 전방향족 폴리아미드 중합체를 제조하는 공정과, 상기 중합체를 농황산 용매에 용해시켜 방사원액을 제조하는 공정과, 상기 방사원액을 방사 구금으로부터 방사하여 방사된 방사물을 비응고성 유체층을 통해 응고액 욕조내로 통과시켜 필라멘트를 형성하는 공정과, 상기 필라멘트를 수세, 건조 및 열처리하는 공정 들을 거쳐 제조된다.The wholly aromatic polyamide filaments are prepared by polymerizing aromatic diamines and aromatic dieside chlorides in a polymerization solvent containing N-methyl-2-pyrrolidone, as disclosed in U.S. Patent Nos. 3,869,492 and 3,869,430. Preparing a polyamide polymer; dissolving the polymer in a concentrated sulfuric acid solvent to produce a spinning stock solution; spinning the spinning stock solution from a spinneret and passing the spun spinning material through a non-coagulating fluid layer into a coagulating bath. And filaments are formed, and the filaments are washed with water, dried and heat treated.

도 1은 통상적인 건습식 방사 방식으로 전방향족 폴리아미드 필라멘트를 제조하는 공정 개략도이다.1 is a process schematic diagram of making a wholly aromatic polyamide filament in a conventional wet and dry spinning manner.

종래에는 상온 이상의 온도에서 농황산 용매에 바로 전방향족 폴리아미드 중합체를 용해시켜 방사원액을 제조하였기 때문에 상기 중합체가 농황산 용매에 용해되는 과정에서 고유점도가 저하되는 문제가 발생하였고, 그로 인해 최종 제품인 전방향족 폴리아미드 필라멘트의 강도 및 탄성율이 저하되는 결과를 초래하였다.Conventionally, since the spinning solution was prepared by directly dissolving the wholly aromatic polyamide polymer in a concentrated sulfuric acid solvent at a temperature higher than or equal to room temperature, the intrinsic viscosity was lowered while the polymer was dissolved in the concentrated sulfuric acid solvent. This resulted in lowering the strength and modulus of the polyamide filament.

이와 같은 문제점들은 중합체가 농황산 용매와 혼합되는 과정과 농황산 용매에 용해되는 과정이 구분없이 동시에 진행되기 때문에 발생된다.Such problems occur because the process of mixing the polymer with the concentrated sulfuric acid solvent and dissolving in the concentrated sulfuric acid solvent proceed simultaneously.

본 발명에서는 이와 같은 종래의 문제점을 해결함으로써 강도 및 탄성률이 더욱 향상된 전방향족 폴리아미드 필라멘트를 제조하기 위한 것이다.The present invention is to produce a wholly aromatic polyamide filament with improved strength and elastic modulus by solving such a conventional problem.

본 발명은 방사원액 제조시 전방향족 폴리아미드 중합체의 고유점도가 저하 되는 것을 효과적으로 방지하여 최종 제품인 전방향족 폴리아미드 필라멘트의 강도 및 탄성률을 보다 향상시키는 것을 기술적 과제로 한다.The present invention is to effectively prevent the decrease in intrinsic viscosity of the wholly aromatic polyamide polymer during the production of spinning stock solution to improve the strength and elastic modulus of the wholly aromatic polyamide filament as a final product.

이와 같은 기술적 과제를 해결하기 위하여 본 발명에서는 방향족 디아민과 방향족 디에시드클로라이드를 N-메틸-2-피롤리돈을 포함하는 중합용매 중에서 중합시켜 전방향족 폴리아미드 중합체를 제조하는 공정과 상기 중합체를 농황산 용매에 용해시켜 방사원액을 제조하는 공정과 상기 원액을 방사 구금으로부터 방사하여 방사된 방사물을 비응고성 유체층을 통해 응고액 용조 내로 통과시켜 필라멘트를 형성하는 공정과 상기 필라멘트를 수세, 건조 및 열처리하는 공정들을 거쳐 전방향족 폴리아미드 필라멘트를 제조함에 있어서, 전방향족 폴리아미드 중합체를 농황산 용매에 용해시켜 방사원액을 제조할 때 냉동 분말 황산과 전방향족 폴리아미드 중합체를 -20~0℃의 온도에서 혼합한 다음, 80~95℃의 온도에서 농황산 용매에 전방향족 폴리아미드 중합체를 용해시킨 후 탈포하여 방사원액을 제조하는 것을 특징으로 한다.In order to solve the above technical problem, the present invention polymerizes an aromatic diamine and an aromatic dieside chloride in a polymerization solvent containing N-methyl-2-pyrrolidone to produce a wholly aromatic polyamide polymer, and the polymer is concentrated sulfuric acid. Dissolving in a solvent to prepare a spinning stock solution, spinning the spinning stock from the spinneret, and passing the spun spinning material through a non-coagulating fluid layer into a coagulation bath to form a filament; and washing, drying, and heat treating the filament. In the preparation of the wholly aromatic polyamide filament through the process of mixing, the frozen powdered sulfuric acid and the wholly aromatic polyamide polymer are mixed at a temperature of -20 to 0 ° C. when dissolving the wholly aromatic polyamide polymer in a concentrated sulfuric acid solvent to prepare a spinning stock solution. Then, in a wholly aromatic polyamide in a concentrated sulfuric acid solvent at a temperature of 80 ~ 95 ℃ It is characterized by dissolving the coalescence and then defoaming to prepare a spinning solution.

이하, 첨부한 도면 등을 통하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings, it will be described in detail.

먼저, 본 발명에서는 방향족 디아민과 방향족 디에시드클로라이드를 N-메틸-2-피롤리돈을 포함하는 중합용매 중에서 중합시켜 전방향족 폴리아미드 중합체를 제조한다.First, in the present invention, an aromatic diamine and an aromatic dieside chloride are polymerized in a polymerization solvent containing N-methyl-2-pyrrolidone to prepare a wholly aromatic polyamide polymer.

상기 방향족 디아민은 P-페닐렌디아민 등이고, 방향족 디에시드클로라이드는 테레프탈로일 클로라이드 등이다.The aromatic diamine is P-phenylenediamine and the like, and the aromatic dieside chloride is terephthaloyl chloride and the like.

또한, 상기의 중합용매는 염화칼슘이 용해되어 있는 N-메틸-2-피롤리돈 등이다.The polymerization solvent is N-methyl-2-pyrrolidone or the like in which calcium chloride is dissolved.

전방향족 폴리아미드 중합체의 고유점도는 5.0 이상인 것이 필라멘트의 강도 및 탄성률 향상에 바람직하다.It is preferable for the intrinsic viscosity of the wholly aromatic polyamide polymer to be 5.0 or more for improving the strength and elastic modulus of the filament.

중합체의 중합조건은 미국등록 특허 제 3,869,429 호 등에 게재된 공지의 중합조건들과 동일하다.Polymerization conditions of the polymer are the same as known polymerization conditions disclosed in US Pat. No. 3,869,429 and the like.

중합체를 제조하는 한가지 예로는 1몰의 파라-페닐렌디아민을 약 1몰의 염화칼슘을 포함하는 N-메틸-2-피롤리돈에 용해시킨 용액과 1몰의 테레프탈로일 클로라이드를 중합용 반응기 내에 투입한후 교반하여 겔상의 중합체를 제조하고, 이를 분쇄, 수세 및 건조하여 미세 분말상의 중합체를 제조한다. 이때 상기 테레프탈로일 클로라이드는 2단계로 나누어 중합용 반응기 내에 투입할 수도 있다.One example of preparing the polymer is a solution of 1 mole of para-phenylenediamine dissolved in N-methyl-2-pyrrolidone containing about 1 mole of calcium chloride and 1 mole of terephthaloyl chloride in a polymerization reactor. After the addition, it is stirred to prepare a gel polymer, which is ground, washed with water and dried to prepare a fine powder polymer. In this case, the terephthaloyl chloride may be added into the reactor for polymerization in two stages.

다음으로는, 냉동 분말 황산과 전방향족 폴리아미드 중합체를 -20~0℃의 온도에서 혼합한 다음, 80~95℃의 온도에서 농황산 용매에 전방향족 폴리아미드 중합체를 용해시킨 후 탈포하여 방사원액을 제조한다.Next, the frozen powdered sulfuric acid and the wholly aromatic polyamide polymer were mixed at a temperature of -20 to 0 ° C., and then the total aromatic polyamide polymer was dissolved in a concentrated sulfuric acid solvent at a temperature of 80 to 95 ° C., followed by degassing. Manufacture.

냉동 분말 황산과 전방향족 폴리아미드 중합체는 -20~0℃의 온도에서 혼합한다. 혼합온도가 0℃보다 온도가 높은 경우에는 농황산 용매에 중합체가 혼합됨과 동시에 용해되는 현상이 함께 일어나 중합체의 고유점도가 저하될 수 있다.Frozen powder sulfuric acid and the wholly aromatic polyamide polymer are mixed at a temperature of -20 to 0 ° C. When the mixing temperature is higher than 0 ° C, the polymer may be mixed with the concentrated sulfuric acid solvent and dissolved at the same time, thereby decreasing the intrinsic viscosity of the polymer.

한편, 냉동 분말 황산과 혼합되는 전방향족 폴리아미드 중합체의 평균입경은 1~50㎛인 것이 균일한 방사원액의 제조에 바람직하다.On the other hand, the average particle diameter of the wholly aromatic polyamide polymer mixed with frozen powder sulfuric acid is preferably 1 to 50 µm for the production of uniform spinning stock solution.

상기 중합체의 평균입경이 50㎛를 초과하는 경우에는 용해속도가 늦어져 균일한 방사원액의 제조가 어렵게 되고, 그로 인해 방사성이 저하될 수 있다.When the average particle diameter of the polymer is more than 50 μm, the dissolution rate becomes slow, making it difficult to prepare a uniform spinning stock solution, and thus radioactivity may be lowered.

방사원액 제조시에 사용되는 농황산 농도를 97%~100%이며, 클로로황산이나 플루오로황산 등도 사용될 수 있다.The concentration of concentrated sulfuric acid used in preparing the spinning stock solution is 97% to 100%, and chlorosulfuric acid, fluorosulfuric acid, and the like may also be used.

이때 황산의 농도가 97% 미만인 경우에는 폴리머의 용해성이 저하되고 비등방성 용액의 액정성 발현이 곤란해지며, 따라서 일정한 점도의 방사원액 제조가 어려워져 방사시 공정관리가 힘들고 최종 섬유의 기계적 물성이 저하될 수 있다.At this time, when the concentration of sulfuric acid is less than 97%, the solubility of the polymer is reduced and the liquid crystalline expression of the anisotropic solution becomes difficult. Therefore, it is difficult to manufacture a spinning solution having a constant viscosity, which makes it difficult to control the process during spinning and to provide mechanical properties of the final fiber. Can be degraded.

반대로, 농황산의 농도가 100%를 초과하면, 과리(過離) SO3를 함유하는 발연 황산에서 SO3가 과다해져 취급상 바람직하지 않을 뿐만 아니라 고분자의 부분적 용해가 일어나기 때문에 방사원액으로는 부적당하며, 또한, 비록 방사하여 얻어진 섬유라 할지라도 섬유의 내부구조가 치밀하지 않고 외관상 광택이 없으며 응고용액 내로 확산되는 황산의 속도가 떨어져 섬유의 기계적 물성이 저하되는 문제점이 발생될 수 있다.On the other hand, if the concentration of the concentrated sulfuric acid exceeds 100%, gwari (過離) because in oleum containing SO 3, as well as undesirable phase handled becomes an SO 3 over takes place is partly dissolved in the polymer spinning solution to the inadequate and In addition, even if the fiber is obtained by spinning, there may be a problem that the internal structure of the fiber is not dense, the appearance is not gloss, and the speed of sulfuric acid diffused into the coagulation solution is lowered, thereby lowering the mechanical properties of the fiber.

한편, 방사 원액내 중합체의 농도는 10~25중량% 인 것이 섬유물성에 바람직 하다.On the other hand, the concentration of the polymer in the spinning stock solution is preferably 10 to 25% by weight for the fiber properties.

그러나, 본 발명에서는 농황산의 농도 및 방사 원액내 중합체의 농도를 특별하게 한정하는 것은 아니다.However, the present invention does not specifically limit the concentration of concentrated sulfuric acid and the concentration of the polymer in the spinning stock solution.

다음으로는, 도 1에 도시된 바와 같이 상기 방사원액을 방사 구금(40)을 통해 방사 한 후 방사된 방사물을 비응고성 유체층을 통해 응고액 욕조(50)내로 통과 시켜 필라멘트를 형성한 다음, 형성된 필라멘트를 수세, 건조 및 열처리하여 전방향족 폴리아미드 필라멘트를 제조한다. 도 1은 방사원액을 건습식 방사하여 전방향족 폴리아미드 필라멘트를 제조하는 공정 개략도이다.Next, as shown in FIG. 1, after spinning the spinning solution through the spinneret 40, the spinning material is passed through the non-coagulating fluid layer into the coagulation bath 50 to form a filament. The filaments formed are washed with water, dried and heat treated to produce wholly aromatic polyamide filaments. 1 is a process schematic diagram of producing a wholly aromatic polyamide filament by wet spinning spinning spinning solution.

상기의 비응고성 유체층은 주로 공기층이나 불활성 기체층도 사용될 수 있다.The non-coagulating fluid layer may mainly be an air layer or an inert gas layer.

비응고성 유체층의 길이, 다시 말해 방사 구금(40)의 저면과 응고액 욕조(50) 내에 담겨져 있는 응고액의 표면까지의 거리는 0.1~15cm인 것이 방사성이나 필라멘트의 물성 향상에 바람직하다.The length of the non-coagulating fluid layer, that is, the distance between the bottom surface of the spinneret 40 and the surface of the coagulating solution contained in the coagulating bath 50 is preferably 0.1 to 15 cm for improving the properties of the radioactive or filament.

상기의 응고액 욕조(50) 내의 응고액은 오버플로우 될 수도 있다. 응고액으로는 물, 염수 또는 농도가 70% 이하인 황산 수용액 등을 사용한다.The coagulant liquid in the coagulant bath 50 may overflow. As the coagulating solution, water, brine or an aqueous sulfuric acid solution having a concentration of 70% or less is used.

방사 권취 속도는 300~1,500m/분 수준으로 한다.Spinning speed is 300 ~ 1500m / min.

이하, 실시예 및 비교 실시예를 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail through Examples and Comparative Examples.

그러나, 본 발명은 하기 실시예에 의하여 그의 보호범위가 한정되는 것은 아니다.However, the present invention is not limited to the scope of protection by the following examples.

실시예Example 1 One

1,000kg의 N-메틸-2-피롤리돈을 80℃로 유지시키고 여기에 염화칼슘 80kg과 48.67kg의 파라-페닐렌디아민을 녹여서 방향족 디아민 용액을 제조하였다.An aromatic diamine solution was prepared by maintaining 1,000 kg of N-methyl-2-pyrrolidone at 80 ° C. and dissolving 80 kg of calcium chloride and 48.67 kg of para-phenylenediamine.

상기의 방향족 디아민 용액을 중합용 반응기 내로 투입함과 동시에 파라-페닐렌디아민 동몰량의 용융 테레프탈로일 클로라이드를 중합용 반응기 내로 동시에 투입한 후 이들을 교반하여 고유점도가 5.5인 폴리(파라-페닐렌테레프탈아미드) 중합체를 제조하였다.At the same time, the aromatic diamine solution was introduced into the polymerization reactor, and at the same time, a molten terephthaloyl chloride having an equimolar amount of para-phenylenediamine was introduced into the polymerization reactor, and the mixture was stirred to give poly (para-phenylene) having an intrinsic viscosity of 5.5. Terephthalamide) polymer was prepared.

다음으로, 농도가 98%인 냉동 분말 황산과 평균입경이 30㎛인 전방향족 폴리아미드 중합체를 -10℃로 냉동시키면서 혼합한 다음, 90℃의 온도에서 농황산 용매에 상기 중합체를 용해시킨 후 탈포하여 중합체 함량이 18중량%인 광학적 비등방성 방사원액을 제조하였다.Next, the frozen powdered sulfuric acid having a concentration of 98% and the wholly aromatic polyamide polymer having an average particle diameter of 30 μm were mixed while freezing at −10 ° C., and then dissolved in the concentrated sulfuric acid solvent at 90 ° C., followed by degassing. An optically anisotropic spinning stock solution having a polymer content of 18% by weight was prepared.

다음으로, 상기와 같이 제조된 방사원액을 도 1에 도시된 바와 같이 방사 구금(40)을 통해 방사한 후, 방사된 방사물을 7mm의 공기층을 통해 응고액인 물이 담겨져 있는 응고액 욕조(50) 내로 통과시켜 필라멘트를 형성하였다.Next, after spinning the spinning stock solution prepared as described above through the spinneret 40 as shown in FIG. 50) to form a filament.

다음으로, 상기와 같이 형성된 필라멘트를 수세 및 건조한 후 550℃에서 0.3초간 열처리하는 공정을 5회 반복하여 폴리(파라-페닐렌테레프탈아미드) 필라멘트를 제조하였다.Next, a poly (para-phenylene terephthalamide) filament was prepared by repeating the process of washing the filament formed as described above with water and drying, followed by heat treatment at 550 ° C. for 0.3 seconds five times.

제조한 폴리(파라-페닐렌테레프탈아미드) 필라멘트의 고유점도, 강도 및 탄성률을 측정한 결과를 표 1과 같다.Table 1 shows the results of measuring the intrinsic viscosity, strength and elastic modulus of the prepared poly (para-phenylene terephthalamide) filament.

비교실시예Comparative Example 1 One

실시예 1에서 제조한 폴리(파라-페닐렌테레프탈아미드) 중합체를 상온에서 농도가 98%인 농황산 용매와 혼합한 다음, 90℃의 온도에서 농황산 용매에 상기 중합체를 용해시킨 후 탈포하여 방사원액을 제조한 것을 제외하고는 실시예 1과 동일한 조건으로 폴리(파라- 페닐렌테레프탈아미드) 필라멘트를 제조하였다.The poly (para-phenylene terephthalamide) polymer prepared in Example 1 was mixed with a concentrated sulfuric acid solvent having a concentration of 98% at room temperature, and then dissolved in the concentrated sulfuric acid solvent at a temperature of 90 ° C., followed by degassing. A poly (para-phenylene terephthalamide) filament was prepared under the same conditions as in Example 1 except for the preparation.

제조한 폴리(파라-페닐렌테레프탈아미드) 필라멘트의 고유점도, 강도 및 탄성률을 측정한 결과는 표 1과 같다.Table 1 shows the results of measuring the intrinsic viscosity, strength, and elastic modulus of the prepared poly (para-phenylene terephthalamide) filament.

<표1> 필라멘트 물성 평가 결과<Table 1> Filament Property Evaluation Results

구분division 실시예 1Example 1 비교실시예 1Comparative Example 1 강도(g/d)Strength (g / d) 2626 2323 탄성률(g/d)Modulus of elasticity (g / d) 880880 740740 고유점도Intrinsic viscosity 5.45.4 5.05.0

본 발명에 있어서 강도 및 탄성률은 아래와 같은 방법으로 측정하였다In the present invention, the strength and elastic modulus were measured by the following method.

·강도(g/d)Strength (g / d)

인스트론 시험기(Instron Engineering Corp, Canton, Mass)에서 길이가 25cm인 샘플사를 이용하여 샘플사가 파단될 때의 강력(g)을 측정한 다음 이를 샘플사의 데니어로 나누어 강도를 구하였다. 상기 강도는 5회 테스트한 후 그 평균값으로 하였다. 이때 인장속도는 300 mm/분으로 하였고, 초하중은 섬도×1/30g으로 하였다.Instron tester (Instron Engineering Corp, Canton, Mass) was used to measure the strength (g) when the sample yarn is broken using a sample yarn having a length of 25cm and then divided by the denier of the sample yarn to obtain the strength. The said intensity | strength was made into the average value after testing 5 times. At this time, the tensile speed was 300 mm / min, the ultra-load was fineness × 1 / 30g.

·탄성률(g/d)Elastic modulus (g / d)

상기의 강도 측정 조건으로 샘플사의 응력-변형 곡선을 구한 다음, 상기 응력-변형율 곡선상의 기울기로부터 계산한다.The stress-strain curve of the sample yarn is obtained under the above-described strength measurement conditions, and then calculated from the slope on the stress-strain curve.

·고유 점도Unique viscosity

98% 황산 25.0ml에 시료(중합체 또는 필라멘트) 0.1250g을 녹여 시료용액을 제조한다. 다음으로 30℃ 항온 수조에서 모세관 점도계 (Cannon Fenske Viscometer : Type 300)로 상기 시료용액의 유동시간(낙류초수)과 용매(황산 용액)의 유동시간을 각각 측정한 후 시료용액의 유동시간(낙류초수)를 용매(황산용액)의 유동시간(낙류초수)로 나누어 상대점도(ηrel)를 구한다.A sample solution is prepared by dissolving 0.1250 g of a sample (polymer or filament) in 25.0 ml of 98% sulfuric acid. Next, the flow time of the sample solution was measured with a capillary viscometer (Cannon Fenske Viscometer: Type 300) in a 30 ° C. constant temperature water bath, and the flow time of the sample solution was then measured. ) Is divided by the flow time of the solvent (sulfuric acid solution) (the number of falling seconds) to determine the relative viscosity (ηrel).

다음으로, 상대점도(ηrel)를 시료용액의 농도로 나누어 고유 점도를 계산한다.Next, the intrinsic viscosity is calculated by dividing the relative viscosity ηrel by the concentration of the sample solution.

본 발명은 방사원액 제조시 전방향족 폴리아미드 중합체의 고유점도 저하를 효과적으로 방지할 수 있다.The present invention can effectively prevent the decrease in intrinsic viscosity of the wholly aromatic polyamide polymer in the production of spinning stock solution.

이로 인해, 본 발명으로 제조된 전방향족 폴리아미드 필라멘트는 강도 및 탄성률이 크게 향상된다.For this reason, the wholly aromatic polyamide filament produced by the present invention greatly improves the strength and elastic modulus.

또한, 본 발명은 전방향족 폴리아미드 중합체의 평균입경을 작게하므로서 균일한 방사원액을 제조할 수 있어서, 방사성도 개선된다.In addition, the present invention can produce a uniform spinning stock solution while reducing the average particle diameter of the wholly aromatic polyamide polymer, thereby improving the radioactivity.

Claims (3)

방향족 디아민과 방향족 디에시드클로라이드를 N-메틸-2-피롤리돈을 포함하는 중합용매 중에서 중합시켜 전방향족 폴리아미드 중합체를 제조하는 공정과 상기 중합체를 농황산 용매에 용해시켜 방사원액을 제조하는 공정과 상기 방사원액을 방사 구금으로부터 방사하여 방사된 방사물을 비응고성 유체층을 통해 응고액 욕조내로 통과시켜 필라멘트를 형성하는 공정과 상기 필라멘트를 수세, 건조 및 열처리하는 공정들을 거쳐 전방향족 폴리아미드 필라멘트를 제조함에 있어서, 전방향족 폴리아미드 중합체를 농황산 용매에 용해시켜 방사원액을 제조할 때 냉동 분말 황산과 전방향족 폴리아미드 중합체를 -20~0℃의 온도에서 혼합한 다음, 80~95℃의 온도에서 농황산 용매에 전방향족 폴리아미드 중합체를 용해시킨 후 탈포하여 방사원액을 제조하는 것을 특징으로 하는 전방향족 폴리아미드 필라멘트의 제조방법.Preparing a wholly aromatic polyamide polymer by polymerizing an aromatic diamine and an aromatic dieside chloride in a polymerization solvent containing N-methyl-2-pyrrolidone; and dissolving the polymer in a concentrated sulfuric acid solvent to prepare a spinning stock solution. Spinning the spinning stock solution from the spinneret and passing the spinning material through a non-coagulating fluid layer into a coagulation bath to form a filament; and washing the filament with water, drying and heat treatment to form a wholly aromatic polyamide filament. In the preparation, when preparing the spinning stock solution by dissolving the wholly aromatic polyamide polymer in a concentrated sulfuric acid solvent, frozen powdered sulfuric acid and the wholly aromatic polyamide polymer were mixed at a temperature of -20 to 0 ° C, and then at a temperature of 80 to 95 ° C. Dissolving the wholly aromatic polyamide polymer in concentrated sulfuric acid solvent and then defoaming to prepare a spinning stock solution Method for producing a wholly aromatic polyamide filament, characterized in that. 1항에 있어서, 농황산 용매내 황산농도가 97%~100%인 것을 특징으로 하는 전방향족 폴리아미드 필라멘트의 제조방법.The method for producing a wholly aromatic polyamide filament according to claim 1, wherein the sulfuric acid concentration in the concentrated sulfuric acid solvent is 97% to 100%. 1항에 있어서, 냉동 분말 황산과 혼합되는 전방향족 폴리아미드 중합체의 평균입경이 1~50㎛인 것을 특징으로 하는 전방향족 폴리아미드 필라멘트의 제조방법.The method for producing a wholly aromatic polyamide filament according to claim 1, wherein an average particle diameter of the wholly aromatic polyamide polymer mixed with the frozen powder sulfuric acid is 1 to 50 µm.
KR1020050060580A 2005-07-06 2005-07-06 Method of manufacturing aromatic polyamide filament KR101002298B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050060580A KR101002298B1 (en) 2005-07-06 2005-07-06 Method of manufacturing aromatic polyamide filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050060580A KR101002298B1 (en) 2005-07-06 2005-07-06 Method of manufacturing aromatic polyamide filament

Publications (2)

Publication Number Publication Date
KR20070005312A KR20070005312A (en) 2007-01-10
KR101002298B1 true KR101002298B1 (en) 2010-12-20

Family

ID=37870985

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050060580A KR101002298B1 (en) 2005-07-06 2005-07-06 Method of manufacturing aromatic polyamide filament

Country Status (1)

Country Link
KR (1) KR101002298B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101277157B1 (en) * 2008-04-30 2013-06-20 코오롱인더스트리 주식회사 Method of manufacturing aramid raw cord

Also Published As

Publication number Publication date
KR20070005312A (en) 2007-01-10

Similar Documents

Publication Publication Date Title
JP5340246B2 (en) Fully aromatic polyamide filament
JP5340331B2 (en) Fully aromatic polyamide filament
JP5340247B2 (en) Fully aromatic polyamide filament
KR101002298B1 (en) Method of manufacturing aromatic polyamide filament
KR101002296B1 (en) Method of manufacturing aromatic polyamide filament
KR101881827B1 (en) Apparatus For Producing Aramid Fibers Composed Of Multi-stage Coagulation Baths And Aramid Fibers
KR20080022832A (en) Aromatic polyamide filament and method of manufacturing the same
KR100993871B1 (en) Method of manufacturing aromatic polyamide filament
KR101587048B1 (en) Method of manufacturing copolymerized aramid fiber and copolymerized aramid fiber thereby
KR20120075924A (en) Process for preparing aromatic polyamide filament
KR101225585B1 (en) Process for preparing aromatic polyamide filament
KR100749968B1 (en) Aromatic polyamide filament and method of manufacturing the same
JP7315378B2 (en) Meta-type wholly aromatic polyamide fiber and method for producing the same
KR101337053B1 (en) Method for Manufacturing Wholly Aromatic Polyamide Polymer and Method for Manufacturing Aramide Fiber using The Same
KR20120075926A (en) Process for preparing aromatic polyamide filament
KR101570057B1 (en) Method of manufacturing copolymerized para-aramid fiber
KR20230139716A (en) Composite fiber and preparation method thereof
KR100993870B1 (en) Aromatic polyamide filament and method of manufacturing the same
KR20100077785A (en) Method of manufacturing aromatic polyamide filament and a aromatic polyamide filament by the same
KR20120073959A (en) Process for preparing aromatic polyamide filament
JPH0411648B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131122

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151116

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191203

Year of fee payment: 10