KR100992557B1 - Preparation Method of Ion Selective Fibrous Nano-form using Hyperbranched Polystyrene with Reactive Acrylic Resin - Google Patents

Preparation Method of Ion Selective Fibrous Nano-form using Hyperbranched Polystyrene with Reactive Acrylic Resin Download PDF

Info

Publication number
KR100992557B1
KR100992557B1 KR1020080085583A KR20080085583A KR100992557B1 KR 100992557 B1 KR100992557 B1 KR 100992557B1 KR 1020080085583 A KR1020080085583 A KR 1020080085583A KR 20080085583 A KR20080085583 A KR 20080085583A KR 100992557 B1 KR100992557 B1 KR 100992557B1
Authority
KR
South Korea
Prior art keywords
ion exchange
ion
polystyrene
nano
solution
Prior art date
Application number
KR1020080085583A
Other languages
Korean (ko)
Other versions
KR20100026546A (en
Inventor
황택성
박승욱
최은정
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020080085583A priority Critical patent/KR100992557B1/en
Publication of KR20100026546A publication Critical patent/KR20100026546A/en
Application granted granted Critical
Publication of KR100992557B1 publication Critical patent/KR100992557B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/20Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain
    • D01F6/22Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain from polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/0023Electro-spinning characterised by the initial state of the material the material being a polymer melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/001Treatment with visible light, infrared or ultraviolet, X-rays
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2507/00Sport; Military
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonwoven Fabrics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 하이퍼브랜치 폴리스틸렌(hyperbranched polystyrene)(이하 HPS라 칭함)을 합성하여 Polystyrene-co-Acylic acid(이하 PSAA라 칭함)와 블랜딩(blending)한 후 설폰산 기를 도입하여 전기방사에 의한 나노섬유 구조체를 제조하고 이를 관능화하여 고도 선택성 이온교환 나노섬유 구조체를 제조하는 방법으로, 더욱 상세하게는 고분기 반응성 수지 용액을 선 설폰화하여 이온교환 용액 제조한다. 기능성 나노 이온교환체는 이를 전기방사법을 이용하여 이온교환 나노전구체를 제조한 후 UV 조사방법으로 광가교 시킨 것으로, 기존 이온교환섬유에 비해 다량의 관능기를 도입시킬 수 있어 이온교환 능력이 우수하고 이온 선택성이 뛰어난 나노 이온교환섬유를 제조하는 방법이다.The present invention synthesizes hyperbranched polystyrene (hereinafter referred to as HPS), blends with polystyrene- co- Acylic acid (hereinafter referred to as PSAA), and then introduces sulfonic acid groups to introduce nanofiber structures by electrospinning. And by functionalizing it to prepare a highly selective ion exchange nanofiber structure, and more specifically, the high-branch reactive resin solution is presulfonated to prepare an ion exchange solution. The functional nano ion exchanger was prepared by ionizing nanoprecursor using electrospinning method and photocrosslinked by UV irradiation method. It is able to introduce a large amount of functional groups compared to conventional ion exchange fiber, and has excellent ion exchange ability and ion It is a method for producing nano ion exchange fibers having excellent selectivity.

더욱 상세하게는 이온교환 방사 용액의 원료물질로서 스티렌 모노머(styrene monomer)와 리빙 라디칼 중합을 이용한 하이퍼브랜치 폴리스티렌을 합성하여 이를 PSAA 라디칼 공중합체와 용액 상태에서 브랜딩한 후, 설폰산 그룹(-SO3 -)을 도입 하는 것이다. 이들 이온교환 용액을 전기방사를 통해 나노크기의 초극세 섬유를 얻게 되고 이를 자외선 조사를 통해 반응성 수지를 광가교시키는 방법이다.More specifically, styrene monomer as a raw material of the ion exchange spinning solution and hyperbranched polystyrene using living radical polymerization were synthesized and branded in a solution state with a PSAA radical copolymer, followed by sulfonic acid group (-SO 3 - ) Is introduced. These ion exchange solutions are electrospun to obtain nano-sized ultra-fine fibers, which are used to photocrosslink reactive resins through UV irradiation.

본 발명에 의한 나노이온교환섬유를 이용하여 극미량 유가금속의 회수 및 고감지형 센서, 촉매, 약물전달 등 의료용 소재로 활용하기 위한 고효율의 선택성이 매우 뛰어난 이온교환 나노섬유 및 이들의 응용기술을 개발을 목적으로 한다.     Development of ion-exchange nanofibers with excellent efficiency and selectivity for their application to medical materials such as recovery of trace trace metals and high-sensitivity sensors, catalysts, and drug delivery using nano-ion-exchange fibers according to the present invention The purpose.

고분기 폴리스틸렌, 반응형 아크릴산 수지, 이온선택, 나노섬유 구조체 High branch polystyrene, reactive acrylic acid resin, ion selection, nanofiber structure

Description

고분기 폴리스틸렌과 반응형 아크릴산 수지를 이용한 이온선택성 나노섬유 구조체 제조방법 {Preparation Method of Ion Selective Fibrous Nano-form using Hyperbranched Polystyrene with Reactive Acrylic Resin}Preparation Method of Ion Selective Fibrous Nano-form using Hyperbranched Polystyrene with Reactive Acrylic Resin

본 발명은 하이퍼브랜치 폴리스틸렌(hyperbranched polystyrene)(이하 HPS라 칭함)을 합성하여 Polystyrene-co-Acylic acid(이하 PSAA라 칭함)와 블랜딩(blending)한 후 설폰산 기를 도입하여 전기방사에 의한 나노섬유 구조체를 제조하고 이를 관능화하여 고도 선택성 이온교환 나노섬유 구조체를 제조하는 방법으로, 더욱 상세하게는 고분기 반응성 수지 용액을 선 설폰화하여 이온교환 용액 제조한다. 기능성 나노 이온교환체는 이를 전기방사법을 이용하여 이온교환 나노전구체를 제조한 후 UV 조사방법으로 광가교 시킨 것으로, 기존 이온교환섬유에 비해 다량의 관능기를 도입시킬 수 있어 이온교환 능력이 우수하고 이온 선택성이 뛰어난 나노 이온교환섬유를 제조하는 방법이다. The present invention synthesizes hyperbranched polystyrene (hereinafter referred to as HPS), blends with polystyrene- co- Acylic acid (hereinafter referred to as PSAA), and then introduces sulfonic acid groups to introduce nanofiber structures by electrospinning. And by functionalizing it to prepare a highly selective ion exchange nanofiber structure, and more specifically, the high-branch reactive resin solution is presulfonated to prepare an ion exchange solution. The functional nano ion exchanger was prepared by ionizing nanoprecursor using electrospinning method and photocrosslinked by UV irradiation method. It is able to introduce a large amount of functional groups compared to conventional ion exchange fiber, and has excellent ion exchange ability and ion It is a method for producing nano ion exchange fibers having excellent selectivity.

기존 이온교환 섬유는 폴리올레핀(polyolefin) 부직포에 방사선 또는 전자빔을 처리하고 그라프팅 중합과 기능화에 의해 제조되는 기능성 이온교환필터 메디아로써, 반도체 클린룸, 화학 산업, 민수산업분야의 대기 또는 수질상의 유해 가스 제거에 탁월한 성능을 갖고 있다. 그러나 이온교환 섬유는 부피가 커서 충진 밀도가 낮으며, 가격이 비싸고 수처리 적용 시 수지에 비해 차압이 높아 사용에 한계가 있다. Conventional ion exchange fiber is a functional ion exchange filter media manufactured by treating radiation or electron beam to polyolefin nonwoven fabric and grafting polymerization and functionalization, and harmful gases in air or water in semiconductor clean room, chemical industry and civil industry. Excellent removal performance. However, ion-exchange fibers have a large volume, low packing density, high cost, and high pressure differentials compared to resins in water treatment applications.

또한 지금까지 제조된 나노 섬유는 주로 필터용 소재, Coated fabric 소재, 와이퍼소재, 극한환경 방호소재, 탄소섬유소재, 에너지 저장용 소재, 의료용 소재 등 다양하게 활용되고 있으며 이들은 모두 나노섬유의 고유특성인 단위부피당 큰 표면적과, 매우 작은 기공만 이용하였을 뿐 표면개질을 통한 기능화 나노섬유에 대한 연구는 잘 이루어지지 않고 있는 실정이다. In addition, the nanofibers manufactured so far are mainly used for various purposes such as filter materials, coated fabric materials, wiper materials, extreme environmental protection materials, carbon fiber materials, energy storage materials, and medical materials. Research on functionalized nanofibers through surface modification has been poorly performed using only large surface area and very small pores per unit volume.

따라서 이러한 기존의 이온교환섬유의 단점을 개선하기 위한 새로운 연구가 필요하다. 특히 지금까지 이온교환 섬유의 응용분야에 따라 의료용, 군수 산업 분야 반도체 디스플레이어 분야 등의 첨단 분야에서는 센서와 촉매 및 기존 나노섬유보다 월등히 뛰어난 감응성과 선택성 등이 요구된다. 따라서 이를 개선한 고 기능성 이온교환섬유 제조가 절실히 요구되고 있는 실정이다.  Therefore, new research is needed to improve the disadvantages of the existing ion exchange fibers. In particular, according to the field of application of ion exchange fibers, advanced fields such as medical and military industries, semiconductor display fields, etc., require much higher sensitivity and selectivity than sensors, catalysts and existing nanofibers. Therefore, there is an urgent need for the production of highly functional ion exchange fibers that have improved this.

이에 본 발명에서는 기존 이온교환섬유의 단점을 개선하고자 다량의 관능기 도입이 가능한 하이퍼 브랜치(고분기) 고분자 중합체를 합성하고 기계적물성 증가를 위하여 아크릴산계 수지 공중합체를 블랜딩(blending)하여 조성물을 제조하고, 이 조성물을 설폰화하여 전기방사 방법으로 나노 이온교환 섬유를 제조하는 방법을 제공한다.  Therefore, in the present invention, to improve the disadvantages of the existing ion exchange fibers, the synthesis of a hyper-branched (high-branched) polymer polymer capable of introducing a large amount of functional groups, and to produce a composition by blending the acrylic acid resin copolymer to increase the mechanical properties In addition, the present invention provides a method for producing nano-ion exchange fibers by sulfonating the composition by electrospinning.

더욱 상세히는 HPS(high branched polystyrene)의 합성을 통해 고분기성 구조를 가진 폴리스티렌의 분자구조를 불규칙적 혹은 규칙적으로 방향족 가지 구조를 조절함으로써, 고분자 주 사슬에 관능화가 가능한 자유 용적을 크게 하는 것을 특징으로 한다. 또한 이를 설폰화 한 이온교환 용액은 고분기성 방향족 고리에 설폰산기가 치환된 다관능인 것을 특징으로 한다. 하이퍼브랜치의 분자량 분포도는 기존 라디칼 중합에 비해 1.2∼1.7사이의 낮은 분포를 나타내고, 상기와 같이 제조 된 나노 이온교환 섬유는 높은 이온선택성과 이온교환능을 지닌다. More specifically, it is characterized by increasing the free volume that can be functionalized in the polymer main chain by controlling the aromatic branch structure irregularly or regularly in the molecular structure of the highly branched polystyrene through the synthesis of high branched polystyrene (HPS). . In addition, the ion-exchange solution sulfonated is characterized in that the polyfunctional in which the sulfonic acid group is substituted in the highly branched aromatic ring. The molecular weight distribution of the hyperbranches shows a low distribution between 1.2 and 1.7 compared to the conventional radical polymerization, and the nano ion exchange fibers prepared as described above have high ion selectivity and ion exchange capacity.

본 발명에 의해 제조된 기능성 나노이온교환 섬유는 기존 이온교환 수지가 가지고 있는 단점을 보완하여 충진용으로는 부피가 작아 높은 충진밀도를 가지며 하이퍼브랜치 된 고분자를 통해 다관능기를 도입하여 이온선택성과 이온교환 능력을 향상 시킬 수 있다. 이온교환 나노섬유는 선 관능화한 고분자 용액을 전기방사하여 얻게 되므로 후에 별도의 술폰화 과정을 생략 할 수 있다.  Functional nano-ion exchange fiber produced by the present invention to compensate for the disadvantages of the existing ion exchange resin has a high filling density, small filling volume for filling and introducing multi-functional group through the hyperbranched polymer ion ion and ion Can improve exchange ability. Ion-exchange nanofibers are obtained by electrospinning the pre-functionalized polymer solution, so that a separate sulfonation process can be omitted later.

더욱 상세하게, 본 발명은 하이퍼브랜치 폴리스틸렌(hyperbranched polystyrene)(이하 HPS라 칭함)을 합성하여 Polystyrene-co-Acylic acid(이하 PSAA라 칭함)와 블랜딩(blending)한 후 설폰산 기를 도입하여 전기방사에 의한 나노섬유 구조체를 제조하고 이를 관능화하여 고도 선택성 이온교환 나노섬유 구조체를 제조하는 방법으로, 더욱 상세하게는 고분기 반응성 수지 용액을 선 설폰화하여 이온교환 용액 제조한다. 기능성 나노 이온교환체는 이를 전기방사법을 이용하여 이온교환 나노전구체를 제조한 후 UV 조사방법으로 광가교 시킨 것으로, 기존 이온교환섬유에 비해 다량의 관능기를 도입시킬 수 있어 이온교환 능력이 우수하고 이온 선택성이 뛰어난 나노 이온교환섬유를 제조하는 방법이다. More specifically, the present invention synthesizes hyperbranched polystyrene (hereinafter referred to as HPS), blends with polystyrene- co- Acylic acid (hereinafter referred to as PSAA), and introduces sulfonic acid groups to electrospinning. By preparing a nanofiber structure and functionalizing it to produce a highly selective ion exchange nanofiber structure, more specifically, a high-branch reactive resin solution is pre-sulfated to prepare an ion exchange solution. The functional nano ion exchanger was prepared by ionizing nanoprecursor using electrospinning method and photocrosslinked by UV irradiation method. It is able to introduce a large amount of functional groups compared to conventional ion exchange fiber, and has excellent ion exchange ability and ion It is a method for producing nano ion exchange fibers having excellent selectivity.

설폰산 그룹이 고분기 가지에 치환되어 제조된 다관능성 이온교환 용액은 블랜딩된 상기 조성물의 -COOH 의 라디칼기는 광가교형 특징을 가지고 있어 가교가 일어남과 동시에 자외선 조사 시에 발생한 40∼60℃의 열로 인하여 미반응 된 클로로설폰산이 반응하여 이온교환용량과 선택성을 동시에 향상시키는 것을 특징으로 한다.     The polyfunctional ion exchange solution prepared by substituting a sulfonic acid group on a branched branch has a photocrosslinking characteristic of the radical group of -COOH of the blended composition. Unreacted chlorosulfonic acid reacts with heat to improve ion exchange capacity and selectivity at the same time.

또한 PS계통의 나노섬유의 취성문제는 저분자량의 HPS가 방사후 취성을 생기는 것을 보완해 주며 광가교를 통해 가교도를 조절하여 제조하는 방법이다.     In addition, the brittleness problem of PS-based nanofibers compensates for low molecular weight HPS generation after spinning and is a method of controlling the degree of crosslinking through optical crosslinking.

따라서 본 발명에서는 하이퍼브랜치 고분자와 라디칼 공중합체 블랜딩 조성물에 설폰산기를 도입하여 이를 이용한 고도 선택성 나노이온교환 섬유를 제조하는 방법을 제공하고자 한다.     Therefore, the present invention is to provide a method for producing a highly selective nano-ion exchange fiber using the sulfonic acid group introduced into the hyperbranched polymer and radical copolymer blending composition.

상기와 같은 발명의 목적을 달성하기 위한 본 발명은, The present invention for achieving the object of the above invention,

기능성 나노 이온교환섬유의 제조는 스티렌 모노머와 소량의 디비닐벤젠을 이용하여 고분기 고분자를 합성 한 후, 아크릴산 수지 공중합체, 예를 들면 스티렌-아크리산 공중합체 등, 를 MIBK 용매에 녹여 블렌딩하여 조성물을 제조한다. 이어서 양이온 교환기인 설폰산 기를 도입하기위해 용액에 클로로설폰산 혹은 황산을 용매 첨가하여 다관능성 양이온교환 용액을 제조하는 방법을 제공한다.Functional nano ion exchange fibers are prepared by synthesizing a high branched polymer using a styrene monomer and a small amount of divinylbenzene, and then blending an acrylic resin copolymer, such as styrene-acrylic acid copolymer, in a MIBK solvent. Prepare the composition. A method of preparing a multifunctional cation exchange solution is then provided by solvent addition of chlorosulfonic acid or sulfuric acid to the solution to introduce a sulfonic acid group, which is a cation exchanger.

이온교환 용액의 제조과정은 클로로술폰산을 첨가한 경우 상온(25℃)에서 수분에서 20분 이내에 이루어지는 것이 바람직하며, 황산을 사용하는 경우 60 ℃에서 30∼40분 수행하는 것이 이온교환 성능을 향상시키는데 바람직하다. 이 이온교환 용액은 전기방사를 통해 1100 ∼1600nm정도의 직경을 지닌 이온교환섬유가 제조된다. The preparation of the ion exchange solution is preferably performed within 20 minutes of water at room temperature (25 ° C.) when chlorosulfonic acid is added, and 30 to 40 minutes at 60 ° C. when sulfuric acid is used to improve ion exchange performance. desirable. This ion exchange solution is made of ion exchange fibers having a diameter of about 1100 ~ 1600nm by electrospinning.

나노섬유의 가교는 UV조사를 통해 상기 조성물 중 라디칼 공중합체의(-COOH)에 의해 광가교됨과 동시에 발생한 열로 인하여 미반응 클로로설폰산의 산가교와 관능화가 동시에 이루어짐을 특징으로 한다. Crosslinking of the nanofibers is characterized by simultaneous crosslinking and functionalization of the unreacted chlorosulfonic acid due to heat generated at the same time as the photocrosslinked by the radical copolymer (-COOH) of the composition through UV irradiation.

본 발명에 의한 고분기성 조성물을 이용한 나노 이온교환 섬유 다관능성으로 인해 촉매 및 약물전달 분야에 있어 고도의 기능성을 요하는 분야에 적합하며 응용범위에서 첨단 바이오 응용소재, 군수산업, 극한 방호소재 및 반도체 디스플레이산업 등 응용분야가 다양할 것으로 기대하며, 이온교환량이 매우 큰 새로운 이온교환 수지를 제조하였다..Nano-ion exchange fiber multi-functionality using the highly divergent composition according to the present invention is suitable for the field requiring high functionality in the field of catalysts and drug delivery, advanced bio-application materials, military industry, extreme protection materials and semiconductors in the application range It is expected that various applications such as the display industry will be made, and new ion exchange resins having a large ion exchange amount were prepared.

이하 각 과정에 따라 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail according to each process.

본 발명은 하이퍼브랜치 폴리스틸렌과 아크릴산 수지 공중합체를 블랜딩하여 이온교환 나노섬유의 제조방법에 관한 것으로 하이퍼브랜치 폴리스틸렌 합성과정, 술폰화과정, 이들의 용액을 이용하여 전기방사법을 통한 이온교환 나노섬유의 제조과정, UV 광가교 과정으로 나눌 수 있다.The present invention relates to a method for preparing ion-exchange nanofibers by blending hyperbranched polystyrene and acrylic acid resin copolymers. The production of ion-exchange nanofibers by electrospinning using hyperbranched polystyrene synthesis, sulfonation, and solutions thereof Process, UV light cross-linking process.

(1) 하이퍼브랜치 고분자 수지 합성 과정(1) Hyperbranched Polymer Resin Synthesis Process

하이퍼브랜치 고분자의 합성은 리빙 라디칼 중합방법 중 원자전이 라디칼중합(Atom transfer radical polymerization)(이하 ATRP라 칭함) 방법을 이용하였다. 스틸렌 단량체와 디비닐벤젠(이하 DVB라 칭함), 촉매성분으로 전이금속인 브롬화 구리(CuBr) 등의 루이스산을 이용하고, 반응촉진제로서 바이피리딘을 교반기, 냉각기, 질소주입구가 부착된 온도조절이 가능한 3구 플라스크 반응기에 넣고 균일하게 혼합 후, 혼합용액에 개시제인 1-브로모에틸벤젠(이하 BEB라 칭함)를 첨가하여 질소 분위기 하에서 반응온도를 60~100℃, 좋게는 80도씨 정도의 온도에서 일정하게 유지하면서 24 ∼ 48시간 동안 교반하면서 ATRP법을 이용하여 반응시켰다. 얻어진 혼합물을 염기성 알루미나 컬럼으로 촉매를 제거하고, 메탄올로 재침전시킴으로써, 백색의 분말을 얻었다. 도면1과 도면 2는 하이퍼브랜치 고분자의 합성메커니즘과 구조를 나타내었다. Synthesis of hyperbranched polymers was carried out using Atom transfer radical polymerization (hereinafter referred to as ATRP) method among living radical polymerization methods. A Lewis acid such as styrene monomer, divinylbenzene (hereinafter referred to as DVB), and a transition metal copper bromide (CuBr) is used as a catalyst component, and bipyridine is used as a reaction accelerator. Put the mixture into a three-necked flask reactor as possible and mix it uniformly, and then add 1-bromoethylbenzene (hereinafter referred to as BEB) as an initiator to the mixed solution, and react the reaction temperature under a nitrogen atmosphere of 60 to 100 ° C, preferably about 80 ° C. The reaction was carried out using the ATRP method while stirring at a constant temperature for 24 to 48 hours. The obtained mixture was removed with a basic alumina column and the catalyst was reprecipitated with methanol to obtain a white powder. 1 and 2 show the synthesis mechanism and structure of the hyperbranched polymer.

(2) 술폰화과정(2) sulfonation process

양이온 교환 용액은 합성한 상기의 HPS와 아크릴산 공중합체, 예를 들면 폴리스티렌아크릴산 공중합체를 1:1∼2:1 바람직하게는 1.5:1 중량%로 MIBK(Methyl isobutyl ketone) 등의 유기 용매에서 용액 블랜딩을 하고 점도를 600∼800CP정도로 조절한다. 상기 조성물을 용액에 클로로설폰산(Chlorosulfonic acid)를 용매에 대해 5∼20 vol%로 바람직하게는 10vol%로 넣은 후 질소분위기 하에서 반응온도 20℃∼40℃, 10분∼30분 동안 교반을 통해 술폰화 반응을 진행한다. 술폰화제의 농도를 변화시켜 술폰화 양이온교환 용액을 제조한다.(도3)     The cation exchange solution is a solution of the above-described HPS and acrylic acid copolymer, for example, polystyrene acrylic acid copolymer, in a organic solvent such as methyl isobutyl ketone (MIBK) in a ratio of 1: 1 to 2: 1, preferably 1.5: 1 by weight. Blend and adjust the viscosity to 600-800 CP. Chlorosulfonic acid (Chlorosulfonic acid) is added to the solution in a solution of 5 to 20 vol%, preferably 10 vol%, and then stirred at a reaction temperature of 20 ° C to 40 ° C for 10 minutes to 30 minutes under a nitrogen atmosphere. Proceed with the sulfonation reaction. The sulfonated cation exchange solution was prepared by varying the concentration of sulfonating agent (FIG. 3).

(3) 이온교환 용액 전기방사 과정(3) Ion exchange solution electrospinning process

상기와 같이 관능화 된 고분자를 전기방사법을 이용하여 하이퍼브랜치 이온교환 나노섬유를 제조하였다. 상기 선 관능화 된 이온교환용액을 30cc 주사기에 주입하여 주사기 노즐과 집속 롤러 사이의 거리를 15cm로 고정하고 고분자용액 공급 유속을 0.1ml/h로 전압을 10∼14 kV로 바람직하게는 12KV로 하여 하이퍼 브랜치 이온교환 나노섬유를 제조 하였다. 집속 롤러는 길이가 20 cm에 원주가 25 cm인 스테인레스 소재의 원형드럼을 사용하였으며, 회전속도와 왕복속도는 각각 30 cm/min, 2 m/min으로 고정하였다. 이와 같은 방법으로 제조된 이온교환 섬유의 직경은 1100∼1600nm정도로 제조되었다.   The hyperbranched ion exchange nanofibers were prepared using the functionalized polymer as described above using electrospinning. The pre-functionalized ion exchange solution was injected into a 30cc syringe to fix the distance between the syringe nozzle and the focusing roller at 15 cm, the polymer solution supply flow rate was 0.1 ml / h, and the voltage was 10-14 kV, preferably 12 KV. Hyper branch ion exchange nanofibers were prepared. The focusing roller used a stainless steel circular drum with a length of 20 cm and a circumference of 25 cm, and the rotational speed and the reciprocating speed were fixed at 30 cm / min and 2 m / min, respectively. The diameter of the ion exchange fiber prepared in this manner was prepared to about 1100 ~ 1600nm.

(4) UV 광가교과정(4) UV light crosslinking process

상기 제조된 나노섬유를 UV조사 노출시켜 가교를 형성하였다. 라디칼 공중합체인 PSAA가 가교될 수 있는 270nm∼300nm 사이의 파장을 조사하여 가교가 이뤄졌으며 조사량은 UV intensity 500W 로 20분내외가 바람직하다. The prepared nanofibers were exposed to UV radiation to form crosslinks. The radical copolymer PSAA was crosslinked by irradiating a wavelength between 270nm and 300nm which can be crosslinked, and the irradiation amount is preferably about 20 minutes at a UV intensity of 500W.

도면3에는 고기능성 나노이온교환섬유 제조의 전체적인 모식도를 나타내었다.Figure 3 shows the overall schematic diagram of the production of high functional nano-ion exchange fiber.

실시예Example

본 발명은 고분기 반응형 수지를 이용한 이온선택성 기능성 나노구조체 제조 이온교환막의 제조에 관한 것으로 다음과 같은 실시예를 제시하고자 한다. The present invention relates to the preparation of ion-selective functional nanostructures prepared ion-exchange membranes using high-branch reactive resins.

실시예 1Example 1

하이퍼 브랜치 고분자 합성을 위해 스틸렌 10.52g (100 mmol), 디비닐벤젠 1.627g (10 mmol) (이하 DVB라 약칭한다), 전이금속인 브롬화 구리(Cubr) (I) 0.146g (1mmol), 바이피리딘 0.237g (1.5mmol)을 혼합용액을 제조한 후 BEB로 ATRP법 반응을 개시한다. 반응온도를 80℃로 일정하게 유지하면서 24(실시예 1-1), 32(실시예 1-2), 40(실시예 1-3), 48(실시예 1-4)시간 동안 반응하였다. 10.52 g (100 mmol) of styrene, 1.627 g (10 mmol) of divinylbenzene (hereinafter abbreviated as DVB) for the production of hyperbranched polymers, Cubr (I) 0.146 g (1 mmol), bipyridine 0.237 g (1.5 mmol) of the mixed solution was prepared and the ATRP method was initiated with BEB. The reaction temperature was maintained at 80 ° C. for 24 (Example 1-1), 32 (Example 1-2), 40 (Example 1-3), and 48 (Example 1-4) hours.

반응된 용액을 건조 세척하여 중합체를 얻어 HPS:PSAA(스틸렌 : 95 중량%, 아크릴산 : 5 중량 %), 1.5 : 1 중량%로 하여 MIBK용매에 1:1 중량%(약 800cp)로 혼합한 후 클로로설폰산 10 vol%로 설폰화 한 후(설폰화 조건 : 온도 : 10∼30℃, 반응시간 : 10∼20분) 위의 조건에 따라 전기방사(12kv)한 후 UV 광가교화(광가교시간 : 15∼30분, 자외선강도 : 500 W, 섬유 평균직경 : 1,100∼1,600nm)하였다. 한편 나노섬유를 제조후 황산 40 vol% 용액에 침지시켜 60분 이내로 안정화 시키고, 탈이온수로 여러번 반복세척하여 60℃ 진공오븐에서 5-10시간 건조시켜 이온교환 나노섬유 구조체를 제조하였다. The reacted solution was dried and washed to obtain a polymer such that HPS: PSAA (styrene: 95 wt%, acrylic acid: 5 wt%) and 1.5: 1 wt% were mixed in a MIBK solvent at 1: 1 wt% (about 800 cps). After sulfonation with 10 vol% of chlorosulfonic acid (sulfonation conditions: temperature: 10-30 ° C, reaction time: 10-20 minutes) and UV photocrosslinking after electrospinning (12kv) according to the above conditions. : 15 to 30 minutes, UV intensity: 500 W, fiber average diameter: 1,100 to 1600 nm. Meanwhile, the nanofibers were prepared and immersed in a 40 vol% sulfuric acid solution, stabilized within 60 minutes, washed repeatedly with deionized water several times, and dried in a vacuum oven at 60 ° C. for 5-10 hours to prepare an ion exchange nanofiber structure.

실시예 2 : 합성 된 하이퍼 브랜치 고분자 (분자량 분포도 : 1.13, MW : 14,410)을 각각 HPS:PSAA를 1:1(실시예 2-1), 1.5:1(실시예 2-2_ 2:1(실시예 2-3)로 블랜딩하여 실시예 1과 같은 조건에 의해 설폰화하여 전기방사하였다.Example 2 Synthesized Hyperbranched Polymer (Molecular Weight Distribution: 1.13, MW: 14,410), respectively, HPS: PSAA 1: 1 (Example 2-1), 1.5: 1 (Example 2-2_ 2: 1 (Example) Example 2-3) was blended and sulfonated under the same conditions as in Example 1 to be electrospun.

실시예 3 : 합성 된 하이퍼 브랜치 (PDI:1.13, MW:14,410)을 각각 HPS:PSAA 1.5:1로 블랜딩하여 클로로설폰산을 제조된 용액 대비 5(실시예 3-1), 10(실시예 3-2), 15(실시예 3-3), 20 vol%(실시예 3-4)로 첨가하여 실시예 1과 같은 조건에 의해 설폰화하여 전기방사 하였다.Example 3 5 (Example 3-1) and 10 (Example 3) of the prepared hyperbranches (PDI: 1.13, MW: 14,410) respectively by blending HPS: PSAA 1.5: 1 to prepare chlorosulfonic acid -2), 15 (Example 3-3) and 20 vol% (Example 3-4) were added and sulfonated under the same conditions as in Example 1 to be electrospun.

3. 특성분석3. Characterization

(1) 이온교환섬유 구조 및 분자량 분석 (1) Ion exchange fiber structure and molecular weight analysis

상기와 같이 합성된 하이퍼브랜치 폴리스틸렌의 분자량을 겔 크로마토그래피를 통해 측정하고 전기방사 법에 의해 얻어진 이온교환 나노섬유를 후리에 전환 적외선 분광기를 이용하여 분석하였다.The molecular weight of the hyperbranched polystyrene synthesized as described above was measured by gel chromatography, and ion exchange nanofibers obtained by electrospinning were analyzed using a Fourier transform infrared spectrometer.

(1) 구조 및 분자량 분석 (1) structure and molecular weight analysis

합성된 하이퍼브랜치 고분자의 전환율은 식 (1)을 이용하여 계산하였다.The conversion rate of the synthesized hyperbranched polymer was calculated using Equation (1).

Figure 112008061949988-pat00001
(1)
Figure 112008061949988-pat00001
(One)

(2) 이온교환용량의 측정(2) Measurement of ion exchange capacity

이온교환용량을 측정하기 위하여 1 N NaOH 수용액과 1N HCl 수용액을 이용 산염기 적정에 의하여 이온교환용량을 식 (2)에 의해 결정하였다. In order to measure the ion exchange capacity, the ion exchange capacity was determined by equation (2) by acid salt titration using 1N NaOH aqueous solution and 1N HCl aqueous solution.

Figure 112008061949988-pat00002
(2)
Figure 112008061949988-pat00002
(2)

(3) 함수율 측정(3) moisture content measurement

이온교환 나노섬유를 일정크기(3ㅧ3 cm)로 절단한 후 0.1 M NaCl 용액에 침적시켜 충분히 팽윤시킨 다음 이온교환막 표면의 free water를 제거한 후 칭량하고, 이것을 60℃ 진공오븐에서 24 시간 건조시켜 냉각시킨 후 식 (3)에 의해 함수율을 구하였다.The ion exchange nanofibers were cut to a certain size (3 ㅧ 3 cm) and then immersed in a 0.1 M NaCl solution to swell sufficiently, then free water on the surface of the ion exchange membrane was removed and weighed, and dried in a vacuum oven at 60 ° C for 24 hours. After cooling, moisture content was determined by equation (3).

Figure 112008061949988-pat00003
(3)
Figure 112008061949988-pat00003
(3)


실시예  Example
반응시간(h)Response time (h) 전환율(%)% Conversion Mw
(g/mol)
Mw
(g / mol)
Mw/Mn
(PDI)
Mw / Mn
(PDI)
함수율 Water content
(%)(%)
이온교환용량Ion exchange capacity
(meq/ g)(meq / g)
1-11-1 2424 34.634.6 14,41014,410 1.131.13 21.8021.80 4.654.65 1-21-2 3232 42.242.2 24,71024,710 1.141.14 20.8620.86 4.574.57 1-31-3 4040 49.149.1 23,88023,880 1.181.18 19.5719.57 4.124.12 1-41-4 4848 69.869.8 30,82030,820 1.481.48 17.8217.82 3.893.89

실시예 1의 조건대로 합성한 나노 이온교환 섬유를 하이퍼브랜치 고분자의 분자량과 분자량 분포도(PDI)에 따른 실시예 1-1∼1-4까지 함수율과 이온교환용량을 나타내었다. 하이퍼브랜치 고분자 합성시 반응시간에 따른 고분자량이 형성되었으며 PDI는 증가하였다. The nano ion exchange fibers synthesized under the conditions of Example 1 exhibited moisture content and ion exchange capacity from Examples 1-1 to 1-4 according to the molecular weight and molecular weight distribution (PDI) of the hyperbranched polymer. When the hyperbranched polymer was synthesized, the high molecular weight was formed according to the reaction time and the PDI increased.

이온교환능력은 분자량 분포가 1.13으로 낮을 때 가장 크게 나타났으며 또한 분자량이 낮을수록 자외선 조사시 가교도 조절이 수월하고 분자량 분포도가 좁은 고분기성 고분자일수록 이온교환능에 유리함을 나타내었다. 도 4에서는 실시예 1-1의 방사된 섬유의 모폴로지를 관찰한 SEM이미지를 나타내었다.The ion exchange capacity was the highest when the molecular weight distribution was low as 1.13. Also, the lower the molecular weight, the easier the control of the degree of crosslinking during UV irradiation, and the higher the branched polymer having the narrower molecular weight distribution, the more favorable the ion exchange capacity. 4 shows the SEM image of the morphology of the spun fiber of Example 1-1.

실시예  Example
Mw(g/mol)Mw (g / mol) Mw/Mn
(PDI)
Mw / Mn
(PDI)
HPS/PSAA
(vol%)
HPS / PSAA
(vol%)
함수율 (%) Water content (%) 이온교환용량Ion exchange capacity
(meq/ g)(meq / g)
2-12-1 14,41014,410 1.131.13 1:11: 1 19.7719.77 4.354.35 2-22-2 1.5:11.5: 1 21.8021.80 4.654.65 2-32-3 2:12: 1 22.5022.50 4.724.72

상기 표 2에서는 실시예 2의 조건에 따라 합성한 조합물 블렌딩시에 HPS와 PSAA의 배합비율에 따른 실시예를 2-1 ∼ 2-3에 나타내었다. 높은 분기도를 가진 HPS의 함량이 증가함에 따라 상대적인 함수율과 이온교환용량이 증가함을 나타냈다. 이온교환 용액 제조 시 술폰화제에 의한 방사에 적당한 점도(600∼800cp)와 섬유의 광가교시 가교도에 영향을 주지 않는 범위인 두 [HPS]/ [PSAA] 1.5:1 부피비 정도 비율이 이상적이다.Table 2 shows Examples 2-1 to 2-3 according to the blending ratio of HPS and PSAA during the blending of compounds synthesized according to the conditions of Example 2. Relative water content and ion exchange capacity increased with increasing HPS content. Ideally, the ratio of [HPS] / [PSAA] 1.5: 1 volume ratio, which is suitable for spinning with sulfonating agent and does not affect the degree of crosslinking during fiber crosslinking, is ideal for preparing an ion exchange solution.


실시예  Example
Mw(g/mol)Mw (g / mol) Mw/Mn
(PDI)
Mw / Mn
(PDI)
클로로설폰산
(vol%)
Chlorosulfonic acid
(vol%)
함수율 (%) Water content (%) 이온교환용량Ion exchange capacity
(meq/ g)(meq / g)
2-12-1 14,41014,410 1.131.13 55 18.9718.97 4.104.10 2-22-2 1010 21.8021.80 4.654.65 2-32-3 1515 22.8122.81 4.724.72 2020 23.1023.10 4.624.62

실시예 3에 다른 2-1∼2-3은 조합물을 포함하는 용액을 클로로설폰산의 농도에 따라 설폰화하여 위와 동일 조건에 의해 전기방사 UV가교화 하였다. 클로로설폰산의 농도는 이온교환용량을 늘리는데 영향을 주나 클로로설폰산의 농도는 방사용액의 점도와 깊은 연관성이 있기 때문에 20%이상의 높은 농도에서는 술폰화도가 높아짐에 따라 섬유의 수축과 방향족 고리끼리 연결해주는(R-SO2-R) 산 가교반응이 동시에 일어남에 따라 전기방사하여 섬유를 제조하기에 적합하지 않다. 2-1 to 2-3 different from Example 3 were sulfonated according to the concentration of chlorosulfonic acid, and the electrospun UV crosslinked under the same conditions as above. The concentration of chlorosulfonic acid affects the ion exchange capacity, but the concentration of chlorosulfonic acid is closely related to the viscosity of the spinning solution. As the acid crosslinking reaction (R-SO2-R) occurs simultaneously, it is not suitable for producing fibers by electrospinning.

도 1은 하이퍼브랜치 폴리스티렌 합성 메커니즘 1 is a hyperbranched polystyrene synthesis mechanism

도 2는 술폰화 된 하이퍼브랜치의 FT-IR 스펙트럼Figure 2 shows the FT-IR spectrum of sulfonated hyperbranches

도 3은 나노 이온교환 섬유 구조체의 제조 모식도 Figure 3 is a schematic diagram of the production of nano ion exchange fiber structure

도 4는 나노이온교환 구조체의 SEM 사진Figure 4 is a SEM photograph of the nanoion exchange structure

Claims (5)

(a) 고분기성(high beanched) 폴리스티렌(HPS)을 제조하는 단계;(a) preparing high beanched polystyrene (HPS); (b) 상기 HPS를 아크릴산 공중합체와 블랜딩하는 단계;(b) blending the HPS with an acrylic acid copolymer; (c) 상기 블랜딩 수지를 술폰산화하는 단계;(c) sulfonating the blending resin; (d) 상기 술폰산화 블랜딩 수지를 방사하여 섬유를 제조 하는 단계;(d) spinning the sulfonated blending resin to prepare fibers; (e) 상기 방사된 섬유를 광가교하는 단계;(e) photocrosslinking the spun fibers; 를 포함하는 이온교환섬유의 제조방법. Method for producing an ion exchange fiber comprising a. 제 1 항에 있어서,The method of claim 1, 상기 술폰산화 단계는 클로로설폰산에 의해 이루어지는 이온교환 섬유의 제조 방법The sulfonation step is a method for producing an ion exchange fiber made of chlorosulfonic acid 제 2 항에 있어서,The method of claim 2, 상기 술폰산화된 블랜딩수지는 전기방사하여 제조하는 이온교환 섬유의 제조 방법The sulfonated blending resin is a method of producing an ion exchange fiber prepared by electrospinning 제 3항에 있어서,   The method of claim 3, wherein 상기 아크릴산공중합체는 스티렌과 아크릴산의 공중합체인 것을 특징으로 하는 이온교환 섬유의 제조방법.    The acrylic acid copolymer is a method of producing an ion exchange fiber, characterized in that the copolymer of styrene and acrylic acid. 제 1항 내지 제 4항에서 선택되는 어느 한 항에 있어서,   The method according to any one of claims 1 to 4, 고분기형 폴리스티렌은 분자량분포가 1.2~1.7인 것을 특징으로 하는 이온교환 섬유의 제조방법.    The high branched polystyrene has a molecular weight distribution of 1.2 to 1.7.
KR1020080085583A 2008-08-30 2008-08-30 Preparation Method of Ion Selective Fibrous Nano-form using Hyperbranched Polystyrene with Reactive Acrylic Resin KR100992557B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080085583A KR100992557B1 (en) 2008-08-30 2008-08-30 Preparation Method of Ion Selective Fibrous Nano-form using Hyperbranched Polystyrene with Reactive Acrylic Resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080085583A KR100992557B1 (en) 2008-08-30 2008-08-30 Preparation Method of Ion Selective Fibrous Nano-form using Hyperbranched Polystyrene with Reactive Acrylic Resin

Publications (2)

Publication Number Publication Date
KR20100026546A KR20100026546A (en) 2010-03-10
KR100992557B1 true KR100992557B1 (en) 2010-11-08

Family

ID=42177864

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080085583A KR100992557B1 (en) 2008-08-30 2008-08-30 Preparation Method of Ion Selective Fibrous Nano-form using Hyperbranched Polystyrene with Reactive Acrylic Resin

Country Status (1)

Country Link
KR (1) KR100992557B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101408059B1 (en) * 2012-07-05 2014-07-02 한양대학교 에리카산학협력단 anisotropic nanofiber structures for stimuli―responsive mechanical actuation and method for preparing thereof
CN104499281B (en) * 2015-01-14 2018-04-03 深圳前海中盛环保科技有限公司 A kind of method for preparing strong acidic ion-exchange fiber
KR102225081B1 (en) * 2019-09-10 2021-03-09 충북대학교 산학협력단 Hybrid nanofibers, and manufacturing method therefor
KR20230041959A (en) * 2020-05-11 2023-03-27 디디피 스페셜티 일렉트로닉 머티리얼즈 유에스, 엘엘씨 Sulfonated polystyrene nonwoven fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180123A (en) 1996-10-31 1998-07-07 Sony Corp Ion exchange resin and preparation thereof
WO2008034198A1 (en) 2006-09-21 2008-03-27 Clean Teq Pty Ltd An ion exchange resin and a process for the use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180123A (en) 1996-10-31 1998-07-07 Sony Corp Ion exchange resin and preparation thereof
WO2008034198A1 (en) 2006-09-21 2008-03-27 Clean Teq Pty Ltd An ion exchange resin and a process for the use thereof

Also Published As

Publication number Publication date
KR20100026546A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
Vilela et al. Exploiting poly (ionic liquids) and nanocellulose for the development of bio-based anion-exchange membranes
Wang et al. Proton-conducting amino acid-modified chitosan nanofibers for nanocomposite proton exchange membranes
KR100992557B1 (en) Preparation Method of Ion Selective Fibrous Nano-form using Hyperbranched Polystyrene with Reactive Acrylic Resin
Tang et al. High-temperature proton exchange membranes from ionic liquid absorbed/doped superabsorbents
Zhang et al. Bis-imidazolium functionalized self-crosslinking block polynorbornene anion exchange membrane
KR102702634B1 (en) Novel polyfluorene-based crosslinked block copolymer and preparation method thereof, anion exchange membrane for alkaline fuel cell using the same
Kim et al. High-performance self-cross-linked PGP–POEM comb copolymer membranes for CO2 capture
Zhou et al. A well-defined amphiphilic polymer co-network from precise control of the end-functional groups of linear RAFT polymers
Wei et al. Sulfonated nanocrystal cellulose/sulfophenylated poly (ether ether ketone ketone) composites for proton exchange membranes
CN107619046A (en) Polybenzimidazoles and its derivative functional graphene oxide
JP2013538878A (en) Fluorine-containing ionomer complex having ion exchange function, preparation method and use thereof
JP2010232121A (en) Electrolyte composite membrane, membrane-electrode assembly, and solid polymer fuel cell
Jia et al. Facile preparation of poly (2, 6-dimethyl-1, 4-phenylene oxide)-based anion exchange membranes with improved alkaline stability
Huo et al. Construction and water absorption capacity of a 3D network‐structure starch‐g‐poly (sodium acrylate)/PVP Semi‐Interpenetrating‐Network superabsorbent resin
Huang et al. Ultrafast formation of ANFs with kinetic advantage and new insight into the mechanism
CN103709379B (en) aromatic sulfonated polyketone and preparation method thereof
CN113214468B (en) Polyvinyl chloride plasticizing antistatic agent and preparation method thereof
Kim et al. Phytic acid-enhanced electrospun PCL-polypyrrole nanofibrous mat: preparation, characterization, and mechanism
Baştürk et al. Dual-crosslinked thiol-ene/sol gel hybrid electrospun nanowires: preparation and characterization
Ono et al. Synthesis and properties of partially fluorinated poly (arylene ether) block copolymers containing ammonium groups as anion conductive membranes
CN110201552A (en) With micropore/meso-hole structure nano-porous fiber film and preparation method thereof
CN105754354A (en) Method for improving water resistance and compliance of polyvinyl alcohol film with poly(p-dioxanone) and polycaprolactone-polyethylene glycol
Lee et al. Proton conducting crosslinked membranes by polymer blending of triblock copolymer and poly (vinyl alcohol)
Yao et al. Photo-crosslinked nanofibrous membranes as advanced low-temperature regenerative desiccant
KR102307778B1 (en) Conductive crosslinked membranes and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131031

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161025

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171025

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181030

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191031

Year of fee payment: 10