KR100986388B1 - Method for testing performance of electrodeposition paint and varnish - Google Patents

Method for testing performance of electrodeposition paint and varnish Download PDF

Info

Publication number
KR100986388B1
KR100986388B1 KR1020080076711A KR20080076711A KR100986388B1 KR 100986388 B1 KR100986388 B1 KR 100986388B1 KR 1020080076711 A KR1020080076711 A KR 1020080076711A KR 20080076711 A KR20080076711 A KR 20080076711A KR 100986388 B1 KR100986388 B1 KR 100986388B1
Authority
KR
South Korea
Prior art keywords
electrodeposition
box
paint
electrodeposited
electrodeposition paint
Prior art date
Application number
KR1020080076711A
Other languages
Korean (ko)
Other versions
KR20100017025A (en
Inventor
정은영
Original Assignee
기아자동차주식회사
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사, 현대자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR1020080076711A priority Critical patent/KR100986388B1/en
Publication of KR20100017025A publication Critical patent/KR20100017025A/en
Application granted granted Critical
Publication of KR100986388B1 publication Critical patent/KR100986388B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/32Paints; Inks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

본 발명은 1-박스 평가후 얻은 전착의 도장성능 인자들을 전산 해석 프로그램에 입력하여, 4-박스 평가를 가상의 전산 프로그램 상에서 실제와 같이 실행할 수 있도록 함으로써, 4-박스내의 각 시험판에 형성되는 홀의 크기, 전착시 온도, 각 시험판들의 간극 변화에 전착 도료의 민감성을 실제와 같이 평가하고 이를 실제 자동차 평가에 응용할 수 있는 전착도료의 전착성능 평가 방법을 제공하고자 한 것이다.The present invention inputs the coating performance factors of electrodeposition obtained after 1-box evaluation into a computer analysis program, thereby enabling 4-box evaluation to be performed on a virtual computer program in a practical manner, whereby The purpose of this study is to evaluate the electrodeposition paint's sensitivity to the size, temperature during electrodeposition, and gap change of each test plate in a realistic manner, and to provide a method for evaluating electrodeposition performance of electrodeposition paint that can be applied to actual automobile evaluation.

전착도료, 성능 평가, 전산 해석 프로그램, 4-박스, 1-박스 Electrodeposition paint, performance evaluation, computer analysis program, 4-box, 1-box

Description

전착도료의 전착성능 평가 방법{Method for testing performance of electrodeposition paint and varnish} Method for evaluating electrodeposition performance of electrodeposition paint {Method for testing performance of electrodeposition paint and varnish}

본 발명은 전착도료의 전착성능 평가 방법에 관한 것으로서, 더욱 상세하게는 1-박스 평가를 우선 실시한 후, 전착도료의 점도, 전착액의 농도, 제타포텐셜(ZETAPOTENTIAL), 전도도, MEQ, 유전상수 등의 인자들을 얻고, 이들 인자들을 기반으로 컴퓨터로 모사할 수 있는 부프로그램을 범용의 유동 전산해석 프로그램인 FLOW-3D와 연동하도록 만들어, 이를 이용하여 전착도료의 전착성능을 평가할 수 있도록 한 전착도료의 전착성능 평가 방법에 관한 것이다.The present invention relates to a method for evaluating electrodeposition performance of electrodeposition paints, and more particularly, 1-box evaluation is performed first, and then, the viscosity of electrodeposition paint, concentration of electrodeposition solution, zeta potential, conductivity, MEQ, dielectric constant, etc. It is possible to obtain the parameters of the electrodeposited paints by using the FLOW-3D, which is a general-purpose flow computational program, by using a computer-based sub-program that can be used to evaluate the electrodeposition performance of electrodeposition paints. It relates to an electrodeposition performance evaluation method.

일반적으로, 자동차용 차체는 부품 조립라인에 들어가기 전에 도장라인을 거치게 되며, 차체에 대한 도장은 표면처리공정을 비롯하여 여러번의 도장처리공정으로 이루어진다.In general, the vehicle body is subjected to a painting line before entering the assembly line, the painting of the vehicle body is made of a number of painting treatment processes, including the surface treatment process.

대개, 차체의 표면은 표면처리공정에서 도료의 흡착이 잘 되도록 화성피막처리되고, 이 화성피막처리를 마친 차체는 도장처리공정의 초기 단계인 전착도장공정 을 거치게 된다. Usually, the surface of the car body is chemically coated to improve the adsorption of paint in the surface treatment process, and the car body after the chemical conversion is subjected to the electrodeposition coating process, which is the initial stage of the coating process.

상기 전착도장공정은 전착용 도료속에 차체를 담그어서 차체를 플러스로 하고, 또 하나의 전극을 마이너스로 하여, 직류전류를 통함으로써, 차체에 전기화학적으로 도막이 형성되도록 하는 공정이다.The electrodeposition coating process is a process of forming a coating film electrochemically on a vehicle body by immersing the vehicle body in the electrodeposition paint to make the vehicle body positive, and another electrode to be negative, and through a direct current.

이러한 실질적인 전착도장공정을 진행하기 전에, 전착도료의 전착 성능을 미리 측정하여 평가하고 있으며, 그 종래의 전착도료 평가 방법을 다음과 같이 진행된다.Before proceeding with the actual electrodeposition coating process, the electrodeposition performance of the electrodeposition coating is measured and evaluated in advance, and the conventional electrodeposition coating evaluation method proceeds as follows.

첨부한 도 3a 내지 도 3c에 도시된 바와 같이, 자동차 차체와 같은 소재로 만든 폭 7cm× 높이 15cm의 사각판형의 시험판(10) 4장을 구비하고, 그 중 3장은 아래로부터 10cm 떨어진 중앙에 지름 0.8cmm의 구멍(12)을 형성한다.3A to 3C, four test plates 10 of a rectangular plate shape having a width of 7 cm x 15 cm are made of the same material as the vehicle body, and three of them have a diameter of 10 cm from the bottom. A hole 12 of 0.8 cmm is formed.

이어서, 4장의 시험판(10)을 1cm의 간격으로 병립한 다음, 각 시험판(10)의 측면 및 저면을 감싸는 형태인 "U"자 모양의 전기절연판(14)에 조립하는 바, 4장의 시험판(10)과 전기절연판(14)이 조립된 것을 4-박스(Box)라 한다.Subsequently, the four test plates 10 are parallel to each other at an interval of 1 cm, and then assembled to the "U" shaped electrical insulating plate 14 which surrounds the side and bottom of each test plate 10. 10) and the electrical insulating plate 14 are assembled into a 4-box.

이때, 상기 4-박스의 시험판(10)과 같은 크기의 극판(16)을 구비하여, 도 3b에 도시된 바와 같이 상기 극판(16)의 상단에 양극의 전극을 연결하고, 4-박스의 각 시험판(10) 상단에는 음극의 전극을 연결한 후, 서로 15cm 간격으로 이격시키면서 전착도료와 물이 혼합된 전착액이 담긴 전착조(18)내에 9cm의 깊이로 담근 다음, 극판(16)으로부터 각 시험판(10)으로 통전이 이루어지게 한다.At this time, the electrode plate 16 having the same size as the test plate 10 of the 4-box, as shown in Figure 3b, and connects the electrode of the positive electrode to the top of the pole plate 16, each of the four-box The electrode of the negative electrode was connected to the upper end of the test plate 10, and then immersed at a depth of 9 cm in the electrodeposition tank 18 containing the electrodeposition liquid mixed with the electrodeposition paint and water while being spaced at intervals of 15 cm from each other, and then from each of the electrode plates 16. The power is made to the test plate 10.

이후, 일정시간이 지난 후, 상기 4-박스의 각 시험판 전착된 도료의 두께로부터 전착도료의 전착성능을 평가하게 된다.Thereafter, after a predetermined time, the electrodeposition performance of the electrodeposition paint is evaluated from the thickness of each test plate electrodeposited paint of the 4-box.

이러한 종래의 전착성능 평가 공정은 자동차 전착도장라인에서의 도장과정을 소규모로 축소시킨 것으로서, 도 3b 및 도 3c에 도시된 바와 같이 전극 방향으로 볼 때 순서대로 첫 시험판(10)의 앞뒤면을 A/B면, 두 번째 시험판(10)의 앞뒤면을 C/D면, 세 번째 및 네 번째 시험판(10)의 앞뒤면을 각각 E/F면, G/H면이라 하면, 자동차 차체의 외판, 내판1, 내판2, 구조물 등을 차례로 대신하게 된다.The conventional electrodeposition performance evaluation process is to reduce the coating process in the automotive electrodeposition coating line on a small scale, as shown in Figure 3b and 3c in order to see the front and back of the first test plate 10 in the direction of the electrode A If / B side, the front and rear surfaces of the second test plate 10 is the C / D surface, and the front and rear surfaces of the third and fourth test plate 10 are the E / F surface, G / H surface, the outer plate of the car body, Inner plate 1, inner plate 2, and the structure will be replaced in turn.

즉, G면 도장두께가 높아지면 실제 라인내에서도 내부차체 구조물의 전착 도장도 동일한 경향을 나타낸다.That is, when the G surface coating thickness is increased, the electrodeposition coating of the internal vehicle structure also shows the same tendency in the actual line.

그러나, 종래의 4-박스를 이용한 전착도료의 전착성능 평가 공정은 실제 라인에서 사용되는 전착액으로 전착 도장을 하여 내부 전착 도장성을 평가하는 공정으로서, 차체 구조의 변경에 따른 전착액의 도장성능을 평가하는데 어려움이 있다.However, the conventional electrodeposition performance evaluation process of electrodeposition paint using 4-box is a process of evaluating internal electrodeposition paintability by electrodeposition coating with electrodeposition liquid used in actual line, and coating performance of electrodeposition liquid according to the change of vehicle body structure. Have difficulty evaluating

즉, 차체는 굴곡면, 홀, 여러가지 복잡한 형상으로 되어 있지만 종래의 전착도료 평가 방법에서는 평평한 시험판을 사용함에 따라, 정확한 전착도료의 전착성능을 평가하는데 한계가 있다.That is, the vehicle body has a curved surface, a hole, and various complicated shapes. However, in the conventional electrodeposition paint evaluation method, a flat test plate is used, and thus, there is a limit in evaluating the electrodeposition performance of the electrodeposition paint.

특히, 시험판의 전착 홀 크기 변화, 전착도료 성능 평가시 온도, 각 시험판들의 간극 변화에 대한 평가시, 그 시간과 공수의 소모가 너무 많은 단점이 있다.In particular, the change in electrodeposition hole size of the test plate, the temperature when evaluating the electrodeposition coating performance, the evaluation of the gap change of each test plate, there is a drawback of too much time and labor consumption.

본 발명은 상기와 같은 문제점을 1-박스 평가 및 전산 해석프로그램 활용 공정을 이용하여 해결하고자 한 것으로서, 1-박스 평가후 얻은 전착의 도장성능 인자 들을 전산 해석 프로그램에 입력하여, 4-박스 평가를 가상의 전산 프로그램 상에서 실제와 같이 실행할 수 있도록 함으로써, 4-박스내의 각 시험판에 형성되는 홀의 크기, 전착시 온도, 각 시험판들의 간극 변화에 전착 도료의 민감성을 실제와 같이 평가하고 이를 실제 자동차 평가에 응용할 수 있는 전착도료의 전착성능 평가 방법을 제공하는데 그 목적이 있다.The present invention is to solve the above problems by using the 1-box evaluation and computational analysis program utilization process, by inputting the coating performance parameters of the electrodeposition obtained after 1-box evaluation to the computational analysis program, 4-box evaluation By allowing it to run as if on a virtual computer program, the size of the hole formed in each test plate in the 4-box, the temperature at the electrodeposition, and the sensitivity of the electrodeposition paint to the change in the gap of each test plate were evaluated in a realistic manner, and this was used for the actual automotive evaluation. The purpose of the present invention is to provide a method for evaluating electrodeposition performance of electrodeposition paints.

상기한 목적을 달성하기 위한 본 발명은 1-박스 평가를 실험실에서 행한 후, 전착도료와 전착액의 특성값으로서, 시험판에 생성된 전착막의 전기비저항, 전착액의 전기비저항, 전착도료 입자의 전기이동도, 전착액의 농도, 전착막의 밀도를 측정하여 얻는 단계와; 상기 전착도료와 전착액의 특성값들을 범용의 유동 전산해석 프로그램에 입력하여,

Figure 112008056342237-pat00001
에 의거 전극간 거리, 통전전압, 통전시간의 변화에 대한 전착막의 두께가 산출되는 단계; 를 포함하는 것을 특징으로 하는 전착도료의 전착성능 평가 방법을 제공한다.In order to achieve the above object, the present invention, after the 1-box evaluation in the laboratory, as a characteristic value of the electrodeposition paint and the electrodeposition liquid, the electrical resistivity of the electrodeposited film produced on the test plate, the electrical resistivity of the electrodeposition liquid, the electrodeposition of the electrodeposition paint particles Measuring the mobility, the concentration of the electrodeposition liquid, and the density of the electrodeposition membrane; By inputting the characteristic values of the electrodeposition paint and the electrodeposition liquid into a universal flow computational analysis program,
Figure 112008056342237-pat00001
Calculating the thickness of the electrodeposited film with respect to the change in the distance between the electrodes, the energizing voltage, and the energizing time based on the step; It provides an electrodeposition performance evaluation method of the electrodeposition paint, characterized in that it comprises a.

또한, 본 발명은 상기 범용의 유동 전산해석 프로그램인 FLOW-3D를 사용하여, 여러 개의 격자로 이루어진 전산해석 모델인 가상의 시험판을 4-박스 구조로 구축하는 단계와; 4-박스 구조로 구축된 모델내의 4개의 가상 시험판들에 해당하는 격자들과, 인접하는 격자에 작용하는 통전전압, 격자의 거리, 통전시간의 인자 를 입력하여,

Figure 112008056342237-pat00002
에 의거 각 가상의 시험판에 전착된 전착막의 두께가 구해지는 단계; 를 더 포함하는 것을 특징으로 한다.In addition, the present invention comprises the steps of constructing a virtual test plate of a computational analysis model consisting of a plurality of grids in a four-box structure using the FLOW-3D, the general-purpose flow computational analysis program; By inputting the grids corresponding to the four virtual test plates in the four-box structure, the energizing voltage acting on the adjacent grids, the distance of the grids, and the energization time,
Figure 112008056342237-pat00002
Obtaining a thickness of the electrodeposited film deposited on each of the virtual test plates according to the method; It characterized in that it further comprises.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.Through the above problem solving means, the present invention provides the following effects.

전착현상을 컴퓨터로 모사할 수 있는 부프로그램인 범용의 유동 전산해석 프로그램인 FLOW-3D와 연동하도록 만든 후, 이미 실험된 1-박스 또는 4-Box 실험 자료를 바탕으로 한 전착도료 특성을 입력자료로 사용하여, 추가적인 4-Box 실험없이 통전전압, 통전시간, 전극간 거리 변화 등 변화된 상황에 맞는 전착성능을 평가할 수 있다.After making it work with FLOW-3D, a general-purpose flow computational analysis program, which is a subprogram that can simulate the electrodeposition phenomenon, input the electrodeposition paint characteristics based on the 1-box or 4-box experiment data that has been tested. It can be used to evaluate the electrodeposition performance according to the changed situation such as energization voltage, energization time, and distance change between electrodes without additional 4-Box experiment.

또한, 4-박스의 시험판 구멍 크기, 구멍 위치의 변화 등과 같이 형상에 변화를 주면서 실제 라인의 자동차 차체 전착성능을 예측 평가할 수 있다.In addition, it is possible to predict and evaluate the vehicle body electrodeposition performance of the actual line while changing the shape such as the four-box test plate hole size, hole position change, and the like.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 1-박스 또는 4-박스 평가를 실험실에서 한 번 행한 후, 전착액 농도, 비저항, 전기이동도, 전기 비저항을 측정하여 전착 현상을 규정한다.First, the 1-box or 4-box evaluation is performed once in a laboratory, and then the electrodeposition phenomenon is defined by measuring the electrodeposition liquid concentration, specific resistance, mobility, and electrical resistivity.

즉, 도 1에 도시된 단순 평판 전착 개념도와 같이, 한 장의 시험판을 전기절 연판에 조립한 후, 극판에 양극을 연결하고, 시험판에 음극을 연결하여, 전착액이 담긴 전착조내에 담근 다음, 극판으로부터 각 시험판으로 통전이 이루어지게 한다.That is, as shown in the simple flat electrode electrodeposition concept shown in FIG. 1, after assembling one test plate to the electrical insulation plate, the anode is connected to the electrode plate, the cathode is connected to the test plate, and then immersed in the electrodeposition tank containing the electrodeposition liquid, Allow energization from the pole plate to each test plate.

여러번 조건을 달리하여 시험을 하여, 전착액 농도, 비저항, 전기이동도, 전기 비저항 등을 측정하여 전착 현상을 규정하며, 이러한 전착 현상은 아래의 수학식1의 미분방정식인 Hamaker식으로 표현될 수 있다.The test is performed several times under different conditions to define electrodeposition phenomena by measuring electrodeposition concentration, specific resistance, electrophoretic mobility, and electrical resistivity, and this electrodeposition phenomenon can be expressed by the differential equation, Hamaker's equation. have.

Figure 112008056342237-pat00003
Figure 112008056342237-pat00003

도 1과 같이 가장 단순한 두 평판이 전착액에 담겨진 경우에 대해 수학식1을 적용하면 아래의 수학식2와 같은 대수식을 얻을 수 있다.As shown in FIG. 1, when Equation 1 is applied to the case where the two simplest plates are contained in the electrodeposition liquid, an algebraic expression as in Equation 2 below may be obtained.

Figure 112008056342237-pat00004
Figure 112008056342237-pat00004

위의 수학식 2에서, ρdep, ρsus, μ, C, ε는 각각 통전판 즉, 시험판에 전착되어 생긴 전착막의 전기비저항, 전착액의 전기비저항, 전착도료 입자의 전기이동도, 전착액의 농도, 전착막의 밀도를 나타나는 기호이고, 이는 전착도료 및 전착액의 특성을 나타내는 값들로서 전착도료 및 전착액이 정해지면 변하지 않는 값이다.In Equation 2 above, ρ dep , ρ sus , μ, C, ε are the electrical resistivity of the electrodeposited film formed by electrodeposition, that is, the test plate, the electrical resistivity of the electrodeposition liquid, the electrophoretic mobility of the electrodeposited coating particles, and the electrodeposition liquid, respectively. Is a sign indicating the density of the electrodeposition film and the density of the electrodeposition film, which is a value indicating the characteristics of the electrodeposition paint and the electrodeposition liquid, which does not change when the electrodeposition paint and the electrodeposition solution are determined.

또한, 전착도료와 전착액의 특성을 나타내는 기호 이외에, 수학식2에 나타난 기호들중 y, d, V, t는 각각 전착막 두께, 전극간 거리, 통전전압, 통전시간을 나 타낸다.In addition to the symbols indicating the characteristics of the electrodeposition paint and the electrodeposition liquid, y, d, V, and t in the symbols shown in Equation 2 represent electrodeposition film thickness, electrode distance, conduction voltage, and conduction time, respectively.

상기 수학식 2에서, 전착도료 및 전착액이 정해지면 그 특성을 나타내는 값은 변하지 않으므로, 전착막의 두께는 전극간 거리, 통전전압, 통전시간의 함수로서 나타낼 수 있다.In Equation 2, when the electrodeposition paint and the electrodeposition solution are determined, the value representing the characteristic does not change, and thus the thickness of the electrodeposition film may be expressed as a function of the distance between electrodes, the conduction voltage, and the conduction time.

따라서, 전착도료와 전착액의 특성을 1-박스 또는 4-박스 실험을 통하여 얻고, 이들 특성값들을 수학식2에 대입하면, 전극간 거리, 통전전압, 통전시간의 변화에 대한 전착막의 두께를, 추가적인 1-박스 또는 4-Box 실험을 더 수행하지 않고도 하기와 같은 4-박스 전산 해석을 통해 얻을 수 있다.Therefore, the characteristics of the electrodeposition paint and the electrodeposition liquid are obtained through 1-box or 4-box experiments, and these values are substituted in Equation 2, and the thickness of the electrodeposited film with respect to the change of the distance between electrodes, current carrying voltage, and current carrying time is obtained. This can be achieved through the four-box computational analysis shown below, without additional additional 1-box or 4-box experiments.

전술한 바와 같이 4-박스 실험을 위한 구성은 도 1에 나타낸 단순한 평판 시험판의 구성과 다르므로 수학식2를 바로 적용할 수 없으며, 이에 전산해석 프로그램을 이용하여 4-박스 실험 구성을 단순한 평판의 구성으로 변형하여 적용할 수 있다. As described above, since the configuration for the four-box experiment is different from the configuration of the simple plate test plate shown in FIG. 1, Equation 2 cannot be directly applied to the four-box experiment. It can be applied by modifying the configuration.

이때, 전산해석 방법은 범용의 유동 전산해석 프로그램인 FLOW-3D를 사용하여 수행된다.At this time, the computational analysis method is performed using FLOW-3D which is a general-purpose flow computational analysis program.

본 발명에 따른 전산해석 방법은 해석하고자 하는 복잡한 형상을 격자라고 하는 여러 개의 작은 단순 형상으로 구분하고, 각각의 격자에 대해 단순한 형상에 적용하여 얻어진 수학식2와 각 격자의 연결관계 및 경계조건을 적용하여 복잡한 형상에 대한 값을 구하는 방법이다.The computational analysis method according to the present invention divides the complex shape to be analyzed into a plurality of small simple shapes called lattice, and calculates the relations and boundary conditions between Equation 2 and each lattice obtained by applying the simple shapes to each lattice. It is a method to find a value for complex shape by applying.

이에, 범용의 유동 전산해석 프로그램인 FLOW-3D를 사용하여, 여러 개의 격자로 이루어진 전산해석 모델을 첨부한 도 2와 같이 구축하고, 이 전산해석 모델에 전산해석 방법 즉, 수학식2와 각 격자의 연결관계 및 경계조건을 적용하여, 4-박스를 구성하는 사각형 판에 해당하는 격자들과 인접하는 격자들에 작용하는 통전전압을 계산한다.Therefore, by using FLOW-3D, a general-purpose flow computational analysis program, a computational model composed of several grids is attached as shown in FIG. 2, and the computational analysis method, that is, Equation 2 and each grid, is constructed as shown in FIG. By applying the connection relationship and boundary condition of, calculate the conduction voltage acting on the grids and the adjacent grids corresponding to the square plate constituting the 4-box.

즉, 단순한 형상인 격자에 대해, 수학식2를 적용할 수 있으므로, 4-박스를 구성하는 4개의 사각형 가상 시험판들에 해당하는 격자들에 대해 상기의 전산해석 방법을 이용하여 계산한 격자에 작용하는 통전전압, 격자의 거리, 통전시간의 인자를 입력하고, 수학식2에 대입하면 각 가상의 시험판에 전착된 전착막의 두께를 구할 수 있다.That is, since the equation (2) can be applied to the grid having a simple shape, the grid is calculated by using the computational analysis method for the grids corresponding to the four rectangular virtual test plates constituting the 4-box. By inputting the energization voltage, the distance of the lattice, and the energization time, and substituting the equation (2), the thickness of the electrodeposited electrode deposited on each virtual test plate can be obtained.

이와 같이, 전착현상을 컴퓨터로 모사할 수 있는 부프로그램인 범용의 유동 전산해석 프로그램인 FLOW-3D와 연동하도록 만든 후, 이미 실험된 4-Box 실험 자료를 바탕으로 한 전착도료 특성을 입력자료로 사용하여, 추가적인 4-Box 실험없이 통전전압, 통전시간, 전극간 거리 변화 등 변화된 상황에 맞는 전착성능을 평가할 수 있다.In this way, it is made to interlock with FLOW-3D, a general-purpose flow computational analysis program that is a subprogram that can simulate the electrodeposition phenomenon by computer, and then, as input data, the electrodeposition paint characteristics based on the 4-Box experimental data that have been tested as input data. Using this method, the electrodeposition performance can be evaluated for the changed situation such as the energization voltage, energization time, and distance change between electrodes without additional 4-Box experiment.

특히, 4-박스의 구성이 변경된 다양한 형상, 예를 들면 사각형 시험판의 구멍 크기, 구멍 위치의 변화 등과 같이 형상에 변화를 주면서 실제 라인의 자동차 차체 전착성능을 예측 평가할 수 있다.In particular, it is possible to predict and evaluate the vehicle body electrodeposition performance of the actual line while changing the shape of the four-box configuration, such as the shape of the rectangular test plate, the change in the hole size, the position of the hole, and the like.

도 1은 단순 평판 전착 개념도,1 is a simple plate electrodeposition conceptual diagram,

도 2는 전산해석 프로그램을 이용한 4-박스 실험 전산해석 모델,2 is a 4-box experimental computational model using a computational analysis program,

도 3a 내지 도 3c는 종래의 전착도료의 전착성능 평가 방법을 설명하는 개략도.3A to 3C are schematic views illustrating a method for evaluating electrodeposition performance of a conventional electrodeposition paint.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 시험판 12 : 구멍10: trial 12: hole

14 : 전기절연판 16 : 극판14 electrical insulation plate 16 pole plate

18 : 전착조18: electrodeposition tank

Claims (2)

1-박스 평가를 실험실에서 행한 후, 전착도료와 전착액의 특성값으로서, 시험판에 생성된 전착막의 전기비저항, 전착액의 전기비저항, 전착도료 입자의 전기이동도, 전착액의 농도, 전착막의 밀도를 측정하여 얻는 단계와;After 1-box evaluation in the laboratory, as the characteristic values of the electrodeposition paint and electrodeposition liquid, the electrical resistivity of the electrodeposited film formed on the test plate, the electrical resistivity of the electrodeposited liquid, the electrophoretic mobility of the electrodeposited paint particles, the concentration of the electrodeposited liquid, Measuring and obtaining the density; 상기 전착도료와 전착액의 특성값들을 범용의 유동 전산해석 프로그램에 입력하여,
Figure 112008056342237-pat00005
에 의거 전극간 거리, 통전전압, 통전시간의 변화에 대한 전착막의 두께가 산출되는 단계;
By inputting the characteristic values of the electrodeposition paint and the electrodeposition liquid into a universal flow computational analysis program,
Figure 112008056342237-pat00005
Calculating the thickness of the electrodeposited film with respect to the change in the distance between the electrodes, the energizing voltage, and the energizing time based on the step;
를 포함하는 것을 특징으로 하는 전착도료의 전착성능 평가 방법.Electrodeposition performance evaluation method of the electrodeposition paint, characterized in that it comprises a.
청구항 1에 있어서, The method according to claim 1, 상기 범용의 유동 전산해석 프로그램인 FLOW-3D를 사용하여, 여러 개의 격자로 이루어진 전산해석 모델인 가상의 시험판을 4-박스 구조로 구축하는 단계와; Using a general-purpose flow computational program FLOW-3D, constructing a virtual test plate, which is a computational model composed of a plurality of grids, into a four-box structure; 4-박스 구조로 구축된 모델내의 4개의 가상 시험판들에 해당하는 격자들과, 인접하는 격자에 작용하는 통전전압, 격자의 거리, 통전시간의 인자를 입력하여,
Figure 112008056342237-pat00006
에 의거 각 가상의 시험판에 전착된 전착막의 두께가 구해지는 단계;
By inputting the grids corresponding to the four virtual test plates in the model constructed with the 4-box structure, the energization voltage acting on the adjacent grids, the distance of the grids, and the energization time,
Figure 112008056342237-pat00006
Obtaining a thickness of the electrodeposited film deposited on each of the virtual test plates according to the method;
를 더 포함하는 것을 특징으로 하는 전착도료의 전착성능 평가 방법.Electrodeposition performance evaluation method of the electrodeposition paint, characterized in that it further comprises.
KR1020080076711A 2008-08-05 2008-08-05 Method for testing performance of electrodeposition paint and varnish KR100986388B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080076711A KR100986388B1 (en) 2008-08-05 2008-08-05 Method for testing performance of electrodeposition paint and varnish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080076711A KR100986388B1 (en) 2008-08-05 2008-08-05 Method for testing performance of electrodeposition paint and varnish

Publications (2)

Publication Number Publication Date
KR20100017025A KR20100017025A (en) 2010-02-16
KR100986388B1 true KR100986388B1 (en) 2010-10-08

Family

ID=42088810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080076711A KR100986388B1 (en) 2008-08-05 2008-08-05 Method for testing performance of electrodeposition paint and varnish

Country Status (1)

Country Link
KR (1) KR100986388B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435273B1 (en) * 2012-09-27 2014-09-25 현대제철 주식회사 Jig for testing vehicle inner painting layer
KR101459874B1 (en) * 2013-02-05 2014-11-07 현대자동차주식회사 Method for testing performance of Electrophoretic Painting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287043A (en) 1979-09-07 1981-09-01 Siemens Aktiengesellschaft Apparatus for electrodepositing a metallic layer of predetermined thickness
KR890001710A (en) * 1987-07-31 1989-03-28 리챠드 지·워터맨 Reinforced Plastic Composite / Wood Products Laminated Structures
JP2002327294A (en) 2001-04-26 2002-11-15 C Uyemura & Co Ltd Method for calculating thickness of electrodeposited film
JP2003013288A (en) 2001-06-27 2003-01-15 Toyota Motor Corp Apparatus and method for predicting film thickness in electrodeposition coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287043A (en) 1979-09-07 1981-09-01 Siemens Aktiengesellschaft Apparatus for electrodepositing a metallic layer of predetermined thickness
KR890001710A (en) * 1987-07-31 1989-03-28 리챠드 지·워터맨 Reinforced Plastic Composite / Wood Products Laminated Structures
JP2002327294A (en) 2001-04-26 2002-11-15 C Uyemura & Co Ltd Method for calculating thickness of electrodeposited film
JP2003013288A (en) 2001-06-27 2003-01-15 Toyota Motor Corp Apparatus and method for predicting film thickness in electrodeposition coating

Also Published As

Publication number Publication date
KR20100017025A (en) 2010-02-16

Similar Documents

Publication Publication Date Title
US4806849A (en) Method and apparatus for diagnosing degradation of coating film on metal material
EP0893684B1 (en) Method of analyzing corrosion and corrosion prevention
Tichter et al. Theory of cyclic voltammetry in random arrays of cylindrical microelectrodes applied to carbon felt electrodes for vanadium redox flow batteries
JP4384825B2 (en) Method for calculating film thickness of electrodeposition coating
KR100986388B1 (en) Method for testing performance of electrodeposition paint and varnish
Adesokan et al. Experimentation and numerical modeling of cyclic voltammetry for electrochemical micro-sized sensors under the influence of electrolyte flow
Ramón et al. Characterization of electrochemical systems using potential step voltammetry. Part I: Modeling by means of equivalent circuits
KR20200002857A (en) Apparatus and method for non-destructive measurement of hydrogen diffusivity
Kim et al. In Situ Real-Time Dendritic Growth Determination of Electrodeposits on Ultramicroelectrodes
Pohjoranta et al. A copper electrolysis cell model including effects of the ohmic potential loss in the cell
US5425870A (en) Multipurpose electrolytic meter
US20180231487A1 (en) Electroanalytical imaging methods and devices involving a substrate with an array of electrodes
Menon et al. Simulation techniques for predicting current and voltage distribution across electrode surface and electrolyte
Ohara et al. Numerical analysis of film thickness of electrodeposited paint coating for whole automotive body using virtual surface
CN111381114B (en) Method and system for conducting medium by using mixed field equivalent infinite boundary
Marlar Investigation of Electrocoating Mechanisms
Cossettini et al. Modeling and simulation of small CCMV virus detection by means of high frequency impedance spectroscopy at nanoelectrodes
Druesne et al. Simulating electrochemical plating for corrosion protection
Aoki et al. Estimation of charge transfer kinetic parameters from irreversible cyclic voltammograms at carbon fiber electrodes
Kazem-Ghamsari et al. The Influence of Geometry on Continuous and Split Bipolar Electrochemistry Applied to Corrosion Studies
Amaya et al. Obtaining corrosion rates by bayesian estimation: numerical simulation coupled with data
CN113722952B (en) Electric field distribution optimization method and device for hydrogen production by solid polymer electrolyte water electrolysis
Solsona et al. Gradient capacitance for solid particle position detection in electrolyte
Nilsson A General Theory of Electrochemistry
DE102007006335A1 (en) Motor vehicle`s component e.g. metal structure, corrodibility predicting method, involves providing data that characterizes geometries of component of motor vehicle and reservoir, respectively

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130927

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140929

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee