KR100980875B1 - Exhaust post processing apparatus of diesel engine and regeneration method thereof - Google Patents

Exhaust post processing apparatus of diesel engine and regeneration method thereof Download PDF

Info

Publication number
KR100980875B1
KR100980875B1 KR1020080044697A KR20080044697A KR100980875B1 KR 100980875 B1 KR100980875 B1 KR 100980875B1 KR 1020080044697 A KR1020080044697 A KR 1020080044697A KR 20080044697 A KR20080044697 A KR 20080044697A KR 100980875 B1 KR100980875 B1 KR 100980875B1
Authority
KR
South Korea
Prior art keywords
scr catalyst
cpf
regeneration
soot
nox
Prior art date
Application number
KR1020080044697A
Other languages
Korean (ko)
Other versions
KR20090118733A (en
Inventor
정진우
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020080044697A priority Critical patent/KR100980875B1/en
Publication of KR20090118733A publication Critical patent/KR20090118733A/en
Application granted granted Critical
Publication of KR100980875B1 publication Critical patent/KR100980875B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

본 발명은 디젤 차량의 후처리 장치로, 배기가스에 포함된 NOx의 안정적인 제거를 위해 CPF의 재생 판단 기준에 SCR촉매의 성능 저하 인자를 재생 지시 인자로 포함하는 것이다. The present invention is a post-treatment apparatus of a diesel vehicle, and includes a performance degrading factor of the SCR catalyst as a regeneration indicator in the CPF regeneration criterion for stable removal of NOx contained in exhaust gas.

본 발명은 차량의 제반적인 운전 상태정보와 SCR촉매 전단온도, NOx정화효율을 검출하는 과정, 탄화수소(HC)/그을음(soot)의 영향에 의해 SCR촉매의 피독 여부를 판단하는 과정, SCR촉매의 피독이면 SCR 재생을 위한 CPF 재생을 실행하는 과정을 포함한다.The present invention is a process of detecting the overall driving state information of the vehicle, SCR catalyst shear temperature, NOx purification efficiency, the process of determining the poisoning of the SCR catalyst under the influence of hydrocarbon (HC) / soot, SCR catalyst If poisoning, the process includes performing CPF regeneration for SCR regeneration.

후처리 장치, 탄화수소(HC), 그을음(soot), SCR촉매, CPF Aftertreatment unit, hydrocarbon (HC), soot, SCR catalyst, CPF

Description

디젤 차량의 후처리 장치 및 재생방법{EXHAUST POST PROCESSING APPARATUS OF DIESEL ENGINE AND REGENERATION METHOD THEREOF}Post-processing device and regeneration method of diesel vehicle {EXHAUST POST PROCESSING APPARATUS OF DIESEL ENGINE AND REGENERATION METHOD THEREOF}

본 발명은 디젤 차량의 후처리 장치에 관한 것으로, 더 상세하게는 배기가스에 포함된 NOx의 안정적인 제거를 위해 CPF(Catalyzed Particulate Filter)의 재생 판단 기준에 SCR(Selective Catalytic Reduction)촉매의 성능 저하 인자를 재생 지시 인자로 포함하는 디젤 차량의 후처리 장치 및 재생방법에 관한 것이다. The present invention relates to a post-treatment apparatus for a diesel vehicle, and more particularly, to deterioration of the performance of a selective catalytic reduction (SCR) catalyst in accordance with a criterion for regeneration of a catalyzed particulate filter (CPF) for stable removal of NOx contained in exhaust gas. It relates to a post-processing device and a regeneration method of a diesel vehicle comprising a as a regeneration instruction factor.

저압축비의 기술이 적용되는 디젤 엔진은 통상의 압축방식이 적용되는 엔진에 비하여 NOx의 발생이 30% 이상 저감되나 CO, THC의 발생은 2 ~ 3배 증가한다.Diesel engines with low compression ratio technology reduce NOx by more than 30% compared to engines with conventional compression methods, but CO and THC emissions are increased by two to three times.

디젤 엔진이 적용되는 차량에는 북미디젤 Tier2 BIN5 규제나 유로 6의 배기가스 규제에 따라 배기가스에 포함된 NOx, CO, THC, 그을음(soot), 입자상 물질(Particulate Matters) 등의 유해물질을 제거시키는 후처리 장치가 장착된다.Vehicles with diesel engines can remove harmful substances such as NOx, CO, THC, soot, and particulate matter contained in the exhaust according to North American diesel Tier 2 BIN5 regulation or Euro 6 emission regulations. The aftertreatment device is mounted.

후처리 장치는 배기 파이프의 최상류측에 배치되어 NMHC 변환의 주기능을 실행하는 DOC(Diesel Oxidation Catalyst1), DOC의 하류측에 배치되어 그을음(soot) 및 입자상 물질(PM)을 포집하는 CPF, 우레아를 분사하는 DM(Urea Dosing Module), CPF의 하류측에 배치되는 SCR촉매로 구성된다.The post-treatment device is disposed on the upstream side of the exhaust pipe to carry out the main function of NMHC conversion, DOC (Diesel Oxidation Catalyst 1), and on the downstream side of the DOC, to collect soot and particulate matter (PM), urea It is composed of DM (Urea Dosing Module) for spraying, and SCR catalyst disposed on the downstream side of CPF.

상기 DOC는 배기가스에 포함된 유해한 물질인 CO, HC, NO를 세라믹 담체에 코팅된 백금계 촉매와의 반응을 통해 산화시켜 CO2, H2O로 정화함과 동시에 화학식1의 반응으로 NO2의 농도를 증가시킨다.The DOC oxidizes CO, HC, and NO, which are harmful substances contained in the exhaust gas, through a reaction with a platinum-based catalyst coated on a ceramic carrier to purify CO 2 and H 2 O, and simultaneously reduce the concentration of NO 2 by the reaction of Formula 1. Increase.

NO + 1/2 O2 → NO2 NO + 1/2 O 2 → NO 2

상기 CPF는 배기가스에 포함된 그을음(soot)과 입자상 물질(PM)을 물리적으로 포집하며, 상기 DOC에서 배출되는 NO2와 화학식2의 반응으로 CPF를 자연 재생시킨다.The CPF physically collects soot and particulate matter (PM) contained in the exhaust gas, and naturally regenerates the CPF by reaction of NO 2 discharged from the DOC with Chemical Formula 2.

C + 2NO2 → CO2 + 2NOC + 2NO 2 → CO 2 + 2NO

상기 SCR촉매는 DM을 통해 분사되는 우레아(Urea) 수용액의 분해로 산출되는 암모니아(NH3)와 NO2의 화학식3의 반응으로 NOx를 정화한다.The SCR catalyst purifies NOx by the reaction of ammonia (NH3) and NO 2 produced by decomposition of an aqueous urea (Urea) solution injected through DM.

NO + NO2 + 2NH3 → 2N2 + 3H2ONO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O

4NO + O2 + 4NH3 → 4N2 + 6H2O4NO + O 2 + 4NH 3 → 4N 2 + 6H 2 O

6NO2 + 8NH3 → 7N2 + 12H2O6NO 2 + 8NH 3 → 7N 2 + 12H 2 O

상기한 구성의 후처리 장치는 SCR촉매 전단의 NO2농도(NO2/NOx 농도율 = 20~90%)가 SCR촉매의 성능을 좌우한다. In the post-treatment device of the above-described configuration, the NO 2 concentration (NO 2 / NO x concentration ratio = 20 to 90%) of the front end of the SCR catalyst determines the performance of the SCR catalyst.

CPF내에 흡장되는 그을음(Soot) 및 입자상 물질(PM)이 증가함에 따라 NO2의 반응에 의한 자연재생에서 NO2/NOx의 농도율이 급격히 떨어지며, 이에 따라 SCR촉매의 성능은 크게 감소한다. As the soot (Soot) and particulate matter (PM) is increased to be occluded in the CPF concentration ratio of NO 2 / NOx in the natural regeneration by the reaction of NO 2 it falls rapidly, so that performance of the SCR catalyst are substantially reduced.

따라서, CPF의 전후단에 설치된 차압센서를 통해 검출되는 그을음(soot) 및 입자상 물질(PM)의 흡장량과 주행거리, 운전시간 등의 정보를 종합하여 재생시기를 결정하며, 주분사의 지각 혹은 후분사를 통해 CPF의 재생을 실행한다.Therefore, the regeneration timing is determined by integrating information such as the soot and particulate matter (PM) occlusion, driving distance, and driving time detected by the differential pressure sensor installed at the front and rear ends of the CPF. Perform post-injection regeneration of the CPF.

또한, 후처리장치에서 SCR촉매의 가역적인 성능 저하요인으로 탄화수소(HC) 또는 황(S)에 의한 피독과 CPF내 그을음(Soot) 및 입자상 물질(PM)의 퇴적에 의한 영향으로 NO2/NOx의 농도 감소이다.In addition, NO 2 / NOx is affected by the poisoning caused by hydrocarbon (HC) or sulfur (S) and the soot and particulate matter (PM) deposition in CPF. The concentration is reduced.

그러나, 종래의 디젤 차량에서 CPF의 재생을 결정함에 그을음(soot) 및 입자상 물질(PM)의 퇴적 정보만을 적용하고 있어 SCR촉매의 성능이 안정적으로 유지되지 못하는 문제점이 발생한다. However, in determining the regeneration of the CPF in the conventional diesel vehicle, only the soot and particulate matter (PM) deposition information is applied, which causes a problem that the performance of the SCR catalyst cannot be stably maintained.

본 발명은 상기한 문제점을 해결하기 위하여 발명한 것으로, 그 목적은 SCR촉매의 성능 저하 인자인 탄화수소(HC)의 피독과 CPF에 포집되는 그을음(soot) 및 입자상 물질(PM)의 흡장량에 따라 CPF의 재생을 제어하여 SCR촉매의 성능을 안정적으로 유지시키는데 있다.The present invention has been invented to solve the above problems, the object of which is the poisoning of hydrocarbon (HC) which is a performance deterioration factor of the SCR catalyst and the amount of soot and particulate matter (PM) trapped in the CPF By controlling the regeneration of CPF, the performance of SCR catalyst is maintained stably.

상기한 목적을 실현하기 위한 본 발명의 특징에 따른 DOC와 CPF, DM 및 SCR촉매로 구성되는 디젤 차량의 후처리장치는, 탄화수소(HC)에 의한 피독 및 그을음(soot)의 퇴적이 SCR촉매의 정화 성능 저하에 영향을 미치는지 판단하여 SCR촉매 재생을 위한 CPF재생을 제어하는 제어부를 포함한다.The after-treatment apparatus of a diesel vehicle composed of DOC, CPF, DM, and SCR catalysts according to the characteristics of the present invention for realizing the above object is characterized in that the deposition of poisoning and soot by hydrocarbon (HC) And controlling the CPF regeneration for regenerating the SCR catalyst by determining whether the deterioration of the purification performance is affected.

또한, 본 발명의 다른 특징에 따른 디젤 차량의 후처리 장치 재생방법은, 차량의 제반적인 운전 상태정보와 SCR촉매 전단온도, NOx정화효율을 검출하는 과정; 탄화수소(HC)/그을음(soot)의 영향에 의해 SCR촉매의 피독 여부를 판단하는 과정; SCR촉매의 피독이면 SCR 재생을 위한 CPF 재생을 실행하는 과정을 포함한다.In addition, a method for regenerating a post-processing apparatus for a diesel vehicle according to another aspect of the present invention includes: detecting general driving state information, SCR catalyst front end temperature, and NOx purification efficiency of a vehicle; Determining whether the SCR catalyst is poisoned by the influence of hydrocarbon (HC) / soot; If poisoning of the SCR catalyst, a process of performing CPF regeneration for SCR regeneration is included.

전술한 구성에 의하여 본 발명은 디젤 차량의 후처리장치에서 SCR촉매의 성능을 저하시키는 인자로 CPF의 재생을 제어함으로써, SCR촉매의 성능을 안정되게 유지하는 효과를 기대할 수 있다.According to the above-described configuration, the present invention can be expected to have an effect of stably maintaining the performance of the SCR catalyst by controlling the regeneration of the CPF as a factor for reducing the performance of the SCR catalyst in the after-treatment apparatus of a diesel vehicle.

아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.

본 발명은 여러 가지 상이한 형태로 구현될 수 있으므로 여기에서 설명하는 실시예에 한정되지 않으며, 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.Since the present invention can be implemented in various different forms, the present invention is not limited to the exemplary embodiments described herein, and parts not related to the description are omitted in the drawings in order to clearly describe the present invention.

도 1은 본 발명의 실시예에 따른 디젤 차량의 후처리 장치의 개략적인 구성을 도시한 도면이다.1 is a view showing a schematic configuration of a post-treatment apparatus of a diesel vehicle according to an embodiment of the present invention.

본 발명에 따른 디젤 차량의 후처리 장치는 배기 파이프의 최상류측에 배치되어 배기가스에 포함된 CO, HC, NO를 산화시켜 NMHC 변환의 주기능을 실행하는 DOC(100), DOC(100)의 하류측에 배치되어 그을음(soot) 및 입자상 물질(PM)을 포집하는 CPF(200), NOx의 정화율에 따라 우레아를 분사하는 DM(300), CPF(200)의 하류측에 배치되어 NOx를 정화시키는 SCR촉매(400), 후처리 장치의 배기가스 정화와 재생의 제반 동작을 제어하는 제어부(500)를 포함한다.The after-treatment apparatus of a diesel vehicle according to the present invention is disposed on the most upstream side of the exhaust pipe to oxidize CO, HC, and NO contained in the exhaust gas to perform main functions of NMHC conversion. CPF 200 disposed downstream and collecting soot and particulate matter (PM), DM 300 spraying urea according to the purification rate of NOx, downstream downstream of CPF 200 to NOx SCR catalyst 400 to purify, the control unit 500 for controlling the overall operation of the exhaust gas purification and regeneration of the after-treatment device.

상기 DOC(100)의 양단에는 배기가스의 온도를 검출하는 제1,제2온도센서(110)(120)가 배치되어 DCO(100)의 활성화 상태 정보를 제어부(500)에 제공한다.First and second temperature sensors 110 and 120 for detecting the temperature of the exhaust gas are disposed at both ends of the DOC 100 to provide the controller 500 with activation state information of the DCO 100.

상기 CPF(200)의 양단에는 제1,제2차압센서(210)(220)와 제3,제4온도센서(230)(240)가 배치되어 제어부(500)에 연결되며, 제어부(500)는 CPF(200)양단간의 온도 및 차압으로부터 포집된 흡장량을 추정한다.First and second differential pressure sensors 210 and 220 and third and fourth temperature sensors 230 and 240 are disposed at both ends of the CPF 200, respectively, and are connected to the control unit 500. Estimate the amount of occlusion collected from the temperature and the differential pressure between the CPF (200).

또한 상기 CPF(200)의 후단에는 제1NOx센서(250)가 배치되어 제어부(500)에 연결된다.In addition, a first NOx sensor 250 is disposed at the rear end of the CPF 200 and connected to the control unit 500.

상기 SCR촉매(400)의 전단에는 배기가스의 온도를 검출하는 온도센서(410)가 배치되어 SCR촉매(400)에 유입되는 배기가스의 온도를 제어부(500)에 제공한다.A temperature sensor 410 for detecting the temperature of the exhaust gas is disposed at the front of the SCR catalyst 400 to provide the controller 500 with the temperature of the exhaust gas flowing into the SCR catalyst 400.

또한, 상기 SCR촉매(400)의 후단에는 2NOx센서(430)가 배치되어 제어부(500)에 연결되며, 제어부(500)는 제1NOx센서(250) 및 제2NOx센서(250)(430)의 신호를 분석하여 SCR(400)의 NOx 정화효율을 판단하고, NOx의 정화효율에 따라 DM(300)을 통해 우레아의 분사를 제어한다.In addition, a 2NOx sensor 430 is disposed at the rear end of the SCR catalyst 400 and connected to the control unit 500, and the control unit 500 receives signals of the first NOx sensor 250 and the second NOx sensor 250 and 430. Determining the NOx purification efficiency of the SCR 400 by analyzing the, and controls the injection of urea through the DM 300 according to the purification efficiency of the NOx.

전술한 바와 같은 기능을 포함하여 구성되는 본 발명에서 CPF의 재생을 실행하는 동작에 대하여 도 2를 참조하여 설명하면 다음과 같다.Referring to FIG. 2, the operation of executing the reproduction of the CPF in the present invention including the above-described functions will be described.

먼저, 다양한 조건으로 SCR촉매(400)의 특성을 측정한 바, 다음과 같은 결과가 확인되었다.First, the characteristics of the SCR catalyst 400 were measured under various conditions, and the following results were confirmed.

도 3에 도시된 바와 같이, 배기가스 중에 탄화수소(HC)가 존재하는 조건에서 배기가스의 온도가 340℃ 이상이면 SCR촉매(400)는 NOx의 정화 성능에 영향이 없음이 확인되었다.As shown in FIG. 3, when the temperature of the exhaust gas is 340 ° C. or higher under the condition that hydrocarbons HC exist in the exhaust gas, the SCR catalyst 400 has no effect on the purification performance of NOx.

또한, 탄화수소(HC)를 SCR촉매(400)에 피독시킨후 SCR촉매(400)의 온도에 따른 탄화수소(HC)의 탈착에 필요한 시간을 확인한 결과 도 4에 도시된 바와 같이 300℃ 이상에서 이루어짐을 알 수 있다.In addition, after poisoning the hydrocarbon (HC) to the SCR catalyst 400 and confirming the time required for the desorption of the hydrocarbon (HC) according to the temperature of the SCR catalyst 400, as shown in FIG. Able to know.

따라서, 탄화수소(HC)에 의한 SCR촉매(400)의 성능 저하는 300℃ 이하의 영역에서 발생됨을 알 수 있다.Therefore, it can be seen that the degradation of the performance of the SCR catalyst 400 by the hydrocarbon (HC) occurs in the region below 300 ° C.

그리고, 황(S) 피독은 장기간 운행시 점진적으로 일어나며, SCR촉매(400)의 온도를 350℃ 이상 유지하는 경우 영향이 적게 나타나고 400℃ 이상에선 SCR 성능이 회복되므로, CPF(200)의 강제 재생이 실행될 때마다 황(S) 피독의 영향은 없어짐이 확인되었다.In addition, sulfur poisoning occurs gradually over a long period of time, and when the temperature of the SCR catalyst 400 is maintained at 350 ° C. or higher, the effect of the sulfur appears to be less and SCR performance is restored at 400 ° C. or higher, thereby forcibly regenerating the CPF 200. Each time this was carried out, the effect of sulfur (S) poisoning was confirmed to disappear.

본 발명에 따른 후처리 장치는 상기한 SCR 촉매(400)의 특성을 적용하여 탄화수소(HC)의 피독과 CPF(200)내 그을음(Soot) 및 입자상 물질(PM)의 흡장량에 따라 재생 동작을 실행하는 것으로 이에 대한 동작은 다음과 같다.The post-treatment apparatus according to the present invention applies the characteristics of the SCR catalyst 400 described above to perform the regeneration operation according to the poisoning of the hydrocarbon (HC) and the storage of soot and particulate matter (PM) in the CPF 200. It is executed as follows.

본 발명에 따른 디젤 차량의 운행이 개시되면 제어부(500)는 공기량, 엔진 회전수(RPM), TPS의 변위, 냉각수온, 연료량, 분사시기, 부스트 압력, 배기가스 온도, 제1,2차압센서(210)(220)의 정보로부터 CPF(200) 양단간의 차압 등 제반적인 차량 상태정보를 검출한다(S101).When the operation of the diesel vehicle according to the present invention is started, the control unit 500 controls the air amount, the engine speed (RPM), the displacement of the TPS, the coolant temperature, the fuel amount, the injection timing, the boost pressure, the exhaust gas temperature, and the first and second differential pressure sensors. General vehicle state information such as differential pressure between the both ends of the CPF 200 is detected from the information of the 210 and 220 (S101).

그리고, SCR촉매(400)의 전단에 배치되는 온도센서(410)로부터 SCR촉매(400)에 유입되는 배기가스의 온도를 검출하고(S102), CPF(200)의 후단에 배치되는 제1NOx센서(250)와 SCR(400)의 후단에 배치되는 제2NOx센서(430)의 정보를 분석하여 SCR촉매(400)의 NOx 정화효율을 검출하며(S103), 도시되지 않은 적산계로부터 주행거리를 검출한다(S104).Then, the temperature of the exhaust gas flowing into the SCR catalyst 400 is detected from the temperature sensor 410 disposed in front of the SCR catalyst 400 (S102), and the first NOx sensor disposed at the rear end of the CPF 200 ( 250 and the information of the second NOx sensor 430 disposed at the rear end of the SCR 400 are analyzed to detect the NOx purification efficiency of the SCR catalyst 400 (S103), and the travel distance is detected from the totalizer (not shown) ( S104).

상기 탄화수소(HC)의 피독에 의한 SCR촉매(400)의 성능 저하 여부를 감지하기 위하여, 예를 들어 50Km마다 SCR촉매(400)의 전단 온도를 측정하여 300℃ 이상에서 8분 이상 혹은 350℃ 이상에서 4분 이상, 400℃ 이상에서 1.6분 이상 또는 450℃ 이상에서 1분 이상 노출되는지를 검출한다.In order to detect the degradation of the performance of the SCR catalyst 400 by poisoning of the hydrocarbon (HC), for example, by measuring the shear temperature of the SCR catalyst 400 every 50 km or more at 300 ℃ or more 8 minutes or more or 350 ℃ or more At 4 minutes, at least 400 minutes, at least 1.6 minutes, or at least 450 minutes.

상기에서 설정된 온도 조건으로 설정시간 이상 노출되면 탄화수소(HC)의 피독 영향이 없는 것으로 하고, 상기 온도조건 및 시간조건을 만족하지 않는 경우 탄화수소(HC)에 의한 피독이 SCR촉매(400)의 NOx 정화 성능에 영향을 미치는 것으로 판단한다.When exposed to the temperature conditions set above the set time is not affected by the poisoning of hydrocarbons (HC), if the temperature conditions and time conditions are not satisfied poisoning by hydrocarbons (HC) purifying NOx of the SCR catalyst 400 I think it affects performance.

또한, 그을음(soot)의 퇴적에 의한 SCR촉매(400)의 성능 저하 여부를 감지하기 위하여, 예를 들어 주행 거리 50km 마다 그 동안 SCR촉매(400)의 전단 온도를 측정하여 350℃ 이상에서 15분 이상 혹은 400℃ 이상에서 10분 이상 또는 450℃ 이 상에서 5분 이상 노출되는지를 검출한다.In addition, in order to detect the degradation of the performance of the SCR catalyst 400 due to the deposition of soot (soot), for example, by measuring the shear temperature of the SCR catalyst 400 during every 50 km for 15 minutes at 350 ℃ or more It detects whether it exposes more than 10 minutes at 400 degreeC or more and 5 minutes or more at 450 degreeC or more.

상기에서 설정된 온도조건에서 설정시간 이상으로 노출되면 그을음(Soot)에 의한 영향이 NOx 정화에 영향을 미치지 않는 것으로 판정하고, 상기한 온도조건 및 시간조건 이상으로 노출되지 않으면 NOx의 정화 성능에 영향이 있다고 판단한다.It is determined that the soot does not affect the NOx purification when exposed to the temperature set in the above setting time or more, and when it is not exposed above the above temperature and time conditions, the NOx purification performance is not affected. I judge it.

탄화수소(HC)의 피독 혹은 그을음(soot)에 의해 NOx의 정화 성능에 영향이 있다고 판단되면 제1NOx센서(250)와 제2NOx센서(430)의 신호로부터 NOx정화효율을 분석하여 성능 저하 여부를 판단한다.If it is determined that the purification performance of NOx is affected by poisoning or soot of hydrocarbons (HC), the NOx purification efficiency is analyzed from the signals of the first NOx sensor 250 and the second NOx sensor 430 to determine whether the performance is deteriorated. do.

NOx 정화 성능의 저하 발생 판정은 정상적인 성능에 비하여 10% 정도의 성능 저하가 검출되면, 탄화수소(HC) 혹은 그을음(soot)의 영향으로 판단한다.The determination of the occurrence of degradation of the NOx purification performance is determined by the influence of hydrocarbon (HC) or soot when a degradation of about 10% is detected compared to the normal performance.

상기의 온도 측정조건은 엔진 운전조건 즉, 온도, 유량, 배기가스 조성 등에 따라 재설정될 수 있다.The temperature measurement conditions may be reset according to engine operating conditions, that is, temperature, flow rate, exhaust gas composition, and the like.

상기한 정보를 분석하여 SCR촉매(400)의 성능 저하 요소인 탄화수소(HC) 혹은 그을음(soot)의 영향에 의한 CPF(200)의 재생 시점인지 판단한다(S105).The information is analyzed to determine whether the CPF 200 is regenerated due to the influence of hydrocarbon (HC) or soot (Soot), which is a performance deterioration factor of the SCR catalyst 400 (S105).

상기 CPF(200)의 재생 시점을 판단할 때, 탄화수소(HC)의 피독 여부를 먼저 판단한 다음 그을음(Soot)에 의한 영향을 판단한다.When determining the regeneration time of the CPF 200, it is first determined whether the hydrocarbon (HC) is poisoned, and then the influence of soot (Soot).

상기 탄화수소(HC)의 피독에 의한 SCR촉매(400)의 성능 저하가 예측되면 제1NOx센서(250) 및 제2NOx센서(430)의 정보를 이용하여 NOx 정화효율을 측정하고 설정된 기준값, 10% 이상 성능 저하가 판정되면 탄화수소(HC)의 피독 영향으로 SCR촉매(400)의 성능 저하가 발생한 것으로 판정한다.When the degradation of the SCR catalyst 400 due to poisoning of the hydrocarbon (HC) is predicted, the NOx purification efficiency is measured using the information of the first NOx sensor 250 and the second NOx sensor 430, and the set reference value is 10% or more. When it is determined that the performance is deteriorated, it is determined that the deterioration of the performance of the SCR catalyst 400 is caused by the poisoning effect of the hydrocarbon HC.

또한, 제1NOx센서(250) 및 제2NOx센서(430)의 정보를 통해 NOx의 정화효율을 산출한 다음 그을음(soot)의 영향에 의해 SCR촉매(400)의 성능 저하가 발생되었는지를 판정한다.In addition, the purification efficiency of the NOx is calculated through the information of the first NOx sensor 250 and the second NOx sensor 430, and then it is determined whether the performance degradation of the SCR catalyst 400 is caused by the influence of soot.

상기 S105에서 탄화수소(HC) 혹은 그을음(soot)의 영향에 의해 SCR촉매(400)의 성능 저하가 발생된 것으로 판정되면 현재의 운전영역을 판단하여(S106) 운전영역에 따라 SCR촉매(400) 재생을 위한 CPF(200) 재생을 실행한다(S107).If it is determined that the performance degradation of the SCR catalyst 400 is caused by the influence of hydrocarbon (HC) or soot in S105, the current operating area is determined (S106) and the SCR catalyst 400 is regenerated according to the operating area. The reproduction of the CPF 200 is executed (S107).

상기에서 판단되는 운전영역이 저속 저부하이면 후분사 제어와 부스트 압력을 증가를 통해 배기가스의 온도를 상승시키고, 중속 저중부하 혹은 중속 고부하이면 주분사의 지각 및 후분사 제어를 통해 배기가스 온도를 상승 제어한다.If the operation range determined above is a low speed low load, the temperature of the exhaust gas is increased by increasing the post injection control and the boost pressure. Rise control.

탄화수소(HC)의 영향에 의한 CPF(200)의 재생 모드는 강제 재생 모드에 서브 루프(Sub-Loop)로 구성되며, SCR촉매(400)의 전단 온도를 기준으로 300℃ 이상에서 10분 이하로 수행한다. The regeneration mode of the CPF 200 under the influence of the hydrocarbon (HC) is composed of a sub-loop in the forced regeneration mode, and less than 10 minutes at 300 ° C or more based on the shear temperature of the SCR catalyst 400. To perform.

예를 들면, SCR촉매(400)의 전단 온도가 400℃이면 1분 정도 유지한다.For example, if the shear temperature of the SCR catalyst 400 is 400 ° C., it is maintained for about 1 minute.

그리고, 그을음(Soot)의 영향에 의한 CPF(200)의 재생 모드는 기존 강제 재생 모드에 서브 루프로 구성되며, 1단계 재생 루프와 연계된다.In addition, the regeneration mode of the CPF 200 under the influence of soot is configured as a sub loop in the existing forced regeneration mode, and is associated with the first stage regeneration loop.

재생 운전조건은 SCR촉매(400)의 전단 온도 기준으로 350℃ 이상에서 유지시간 30분 이하로 수행한다. Regeneration operation conditions are carried out at a holding time of 30 minutes or less at 350 ℃ or more based on the shear temperature of the SCR catalyst 400.

예를 들면 SCR촉매(400)의 전단온도가 450℃이면 10분을 유지한다.For example, if the shear temperature of the SCR catalyst 400 is 450 ° C., 10 minutes is maintained.

상기한 CPF(200)의 재생 동작이 완료되었는지를 판단하여(S108), 재생 동작의 완료가 검출되면 CPF(200)의 재생 동작을 종료한 다음 정상적인 연소로 제어한다(S109).It is determined whether the regeneration operation of the CPF 200 is completed (S108). When the completion of the regeneration operation is detected, the regeneration operation of the CPF 200 is terminated and then normal combustion is controlled (S109).

또한, 상기 S105의 판단에서 탄화수소(HC) 혹은 그을음(soot)의 영향에 의한 CPF(200)의 재생조건이 아니면 CPF(200)의 강제 재생시점인지 판단한다(S110).In addition, in the determination of S105, if it is not the regeneration condition of the CPF 200 due to the influence of hydrocarbon (HC) or soot (soot), it is determined whether the time of forced regeneration of the CPF (200) (S110).

상기 CPF(200)의 강제 재생시점의 판단은 설정된 일정거리, 예를 들어 매 100km마다 제1NOx센서(250) 및 제2NOx센서(430)의 정보를 분석하여 SCR촉매(400)의 NOx 정화효율을 측정하고 판단한다.The determination of the forced regeneration time of the CPF 200 may analyze the information of the first NOx sensor 250 and the second NOx sensor 430 at predetermined set distances, for example, every 100 km to determine the NOx purification efficiency of the SCR catalyst 400. Measure and judge

상기 S110의 판단에서 CPF(200)의 강제 재생시점이 아니면 상기 S105의 과정으로 리턴하고, CPF(200)의 강제 재생시점이면 현재의 운전영역을 판정하여(S111) 운전영역에 따라 CPF(200)를 강제 재생시킨다(S112).If it is determined in S110 that the CPF 200 is not at the forced regeneration time, the process returns to S105. If the CPF is at the forced regeneration time, the current operation area is determined at step S111 (S111). Force playback (S112).

예를 들어, 저속저부하의 운전영역이면 주분사 및 후분사 제어와 흡기량을 조정하고, 고속저부하의 운전영역이면 주분사 및 후분사 제어와 부스터 압력의 저감 제어를 통해 배기가스의 온도를 SCR촉매(400)의 전단을 기준으로 300℃ 이상에서 10분 이하로 유지하고, SCR촉매(400)의 전단 온도를 기준으로 400℃ 이상에서 1분을 유지한다. For example, in the low speed low load operation area, the main injection and post injection control and the intake air volume are adjusted. In the high speed low load operation area, the main injection and post injection control and the booster pressure reduction control are used to control the temperature of the exhaust gas. Based on the front end of the catalyst 400 is maintained at less than 10 minutes at 300 ℃ or more, and maintained for 1 minute at 400 ℃ or more based on the shear temperature of the SCR catalyst 400.

상기한 동작에 의해 CPF(200)의 재생이 완료되었는지를 판단하며(S108), 재생완료가 판단되면 CPF(200)의 강제 재생동작을 종료한 다음 정상 연소를 제어한다(S109).It is determined whether the regeneration of the CPF 200 is completed by the above operation (S108). When it is determined that the regeneration is completed, the forced regeneration operation of the CPF 200 is terminated, and then normal combustion is controlled (S109).

상기에서 SCR촉매(400)의 성능저하 감지는 후처리계의 성능에 준하여 조절할 수 있다.Degradation detection of the SCR catalyst 400 in the above can be adjusted according to the performance of the post-processing system.

즉, 후처리계 성능과 규제치의 차이에 준하여 재생을 위한 SCR촉매의 성능저하 기준을 설정한다.  That is, the performance deterioration criteria of the SCR catalyst for regeneration are set according to the difference between the performance of the aftertreatment system and the regulation value.

예를 들면 NOx 규제치가 0.05g/mile인 경우 SCR촉매의 성능에 의해 0.04g/mile가 기준 성능인 경우 25% 질소산화물 저감 성능저하 범위에서 조절한다.For example, if the NOx regulation value is 0.05g / mile, the performance of the SCR catalyst is adjusted in the range of 25% reduction of NOx reduction when 0.04g / mile is the reference performance.

또한, NOx 규제치가 0.05g/mile인 경우 SCR촉매의 성능에 의해 0.03g/mile가 기준 성능인 경우 67% 질소산화물 저감 성능저하 범위에서 조절한다.In addition, when the NOx regulation value is 0.05g / mile, the performance of the SCR catalyst is adjusted in the range of 67% NOx reduction reduction when 0.03g / mile is the reference performance.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 포함된다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It is included in the scope of rights.

도 1은 본 발명의 실시예에 따른 디젤 차량의 후처리장치를 개략적으로 도시한 도면이다.1 is a view schematically showing a post-treatment apparatus of a diesel vehicle according to an embodiment of the present invention.

도 2는 본 발명의 실시예에 따른 디젤 차량에서 후처리장치의 재생 절차를 도시한 도면이다.2 is a view showing a regeneration procedure of the after-treatment apparatus in a diesel vehicle according to an embodiment of the present invention.

도 3은 본 발명의 실시예에 따른 디젤 차량에서 배기가스의 온도와 NOx 정화 성능 관계를 도시한 그래프이다.3 is a graph illustrating a relationship between exhaust gas temperature and NOx purification performance in a diesel vehicle according to an exemplary embodiment of the present invention.

도 4는 본 발명의 실시예에 따른 디젤 차량에서 배기가스의 온도와 HC 피독 관계를 도시한 그래프이다. 4 is a graph showing the relationship between the temperature of the exhaust gas and HC poisoning in the diesel vehicle according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100 : DOC 200 : CPF100: DOC 200: CPF

300 : DM 400 : SCR300: DM 400: SCR

410 : 온도센서 410 temperature sensor

Claims (12)

CPF 및 SCR촉매로 구성되는 디젤 차량의 후처리장치에 있어서,In the after-treatment device of a diesel vehicle composed of a CPF and SCR catalyst, 설정된 주행거리 간격으로 SCR촉매 전단의 온도와 온도 노출시간을 판단하여 탄화수소(HC)에 의한 피독 및 그을음(soot)의 퇴적에 의한 SCR촉매의 정화 성능 저하 여부를 판단하고, 제1,2NOx센서의 정보로부터 NOx의 정화효율을 판단하여 SCR촉매 재생을 위한 CPF재생을 제어하는 제어부를 포함하는 디젤 차량의 후처리 장치.By determining the temperature and temperature exposure time of the front end of the SCR catalyst at set mileage intervals, it is determined whether the purification performance of the SCR catalyst is degraded by poisoning and soot deposition by hydrocarbon (HC), and the first and second NOx sensors And a control unit for controlling CPF regeneration for SCR catalyst regeneration by determining NOx purification efficiency from the information. 삭제delete 삭제delete 삭제delete 제1항에 있어서,The method of claim 1, 상기 제어부는 탄화수소(HC)의 피독에 의한 SCR촉매의 정화 성능을 1차로 판정하고, 그을음(soot)의 영향에 의한 SCR촉매의 정화 성능을 2차로 판정한 다음 운전조건을 적용하여 SCR촉매 재생을 위한 CPF재생을 제어하는 디젤 차량의 후처리 장치. The controller determines the purification performance of the SCR catalyst due to poisoning of the hydrocarbon (HC) as the primary, and determines the purification performance of the SCR catalyst under the influence of soot as secondary, and then applies the operating conditions to perform the SCR catalyst regeneration. After-treatment device of a diesel vehicle for controlling CPF regeneration. 제1항에 있어서,The method of claim 1, 상기 제어부는 탄화수소(HC) 및 그을음(soot)이 SCR촉매의 정화 성능에 영향을 미치지 않으면 설정된 주행거리 간격으로 NOx의 정화효율을 측정하여 CPF의 강제 재생을 제어하는 디젤 차량의 후처리 장치.And the control unit controls the forced regeneration of the CPF by measuring the purification efficiency of NOx at a set mileage interval when hydrocarbons and soot do not affect the purification performance of the SCR catalyst. SCR촉매의 전단온도와 노출시간을 설정된 주행거리 간격으로 분석하여 탄화수소(HC)/그을음(soot)의 영향에 의해 SCR촉매의 피독 여부를 판단하는 과정;Analyzing the shear temperature and exposure time of the SCR catalyst at a set mileage interval to determine whether the SCR catalyst is poisoned by the influence of hydrocarbon (HC) / soot; SCR촉매가 탄화수소(HC)/그을음(soot)에 피독되지 않은 상태이면 설정된 주행거리 간격으로 제1,2NOx센서의 정보를 분석하여 SCR촉매의 NOx 정화효율을 판단하고, CPF 강제 재생시점을 판단하여 CPF를 강제 재생시키는 과정;If the SCR catalyst is not poisoned with hydrocarbon (HC) / soot, the information of the first and second NOx sensors is analyzed at set mileage intervals to determine the NOx purification efficiency of the SCR catalyst, and to determine the time of forced CPF regeneration. Forcibly regenerating the CPF; SCR촉매가 탄화수소(HC)/그을음(soot)에 의한 피독이면 SCR 재생을 위한 CPF 재생을 실행하는 과정을 포함하는 디젤 차량의 후처리 장치 재생방법. And regenerating CPF for SCR regeneration if the SCR catalyst is poisoned by hydrocarbon (HC) / soot. 삭제delete 삭제delete 삭제delete 제7항에 있어서,The method of claim 7, wherein 상기 탄화수소(HC)/그을음(soot)의 피독을 판단하기 위한 주행거리는 50Km간격으로 설정되는 디젤 차량의 후처리 장치 재생방법.And a mileage for determining poisoning of the hydrocarbon (HC) / soot is set at a distance of 50 km. 제7항에 있어서,The method of claim 7, wherein 상기 CPF강제 재생시점을 판단하기 위해 NOx의 정화효율을 측정하는 주행거리는 100Km 간격으로 설정되는 디젤 차량의 후처리 장치 재생방법.And a mileage for measuring the purification efficiency of NOx is set at 100 km intervals to determine the CPF forced regeneration time point.
KR1020080044697A 2008-05-14 2008-05-14 Exhaust post processing apparatus of diesel engine and regeneration method thereof KR100980875B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080044697A KR100980875B1 (en) 2008-05-14 2008-05-14 Exhaust post processing apparatus of diesel engine and regeneration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080044697A KR100980875B1 (en) 2008-05-14 2008-05-14 Exhaust post processing apparatus of diesel engine and regeneration method thereof

Publications (2)

Publication Number Publication Date
KR20090118733A KR20090118733A (en) 2009-11-18
KR100980875B1 true KR100980875B1 (en) 2010-09-10

Family

ID=41602669

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080044697A KR100980875B1 (en) 2008-05-14 2008-05-14 Exhaust post processing apparatus of diesel engine and regeneration method thereof

Country Status (1)

Country Link
KR (1) KR100980875B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145627B1 (en) 2009-12-02 2012-05-15 기아자동차주식회사 Fuel pump lubrication apparatus of gdi engine
US9528413B2 (en) * 2010-07-30 2016-12-27 Ford Global Technologies, Llc Synergistic SCR/DOC configurations for lowering diesel emissions
EP2921665B1 (en) * 2012-11-16 2017-08-09 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal-combustion engine
US9291084B2 (en) * 2013-08-15 2016-03-22 GM Global Technology Operations LLC Vehicle and a method of updating efficiency of a selective catalytic reduction filter of an exhaust treatment system of the vehicle
JP6731893B2 (en) * 2017-07-31 2020-07-29 ヤンマーパワーテクノロジー株式会社 Work vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6823663B2 (en) 2002-11-21 2004-11-30 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
JP2005320880A (en) 2004-05-07 2005-11-17 Nissan Diesel Motor Co Ltd Exhaust emission control device
KR20050118762A (en) * 2004-06-15 2005-12-20 현대자동차주식회사 Exhaust gas purifying system using diesel reformer
JP2006342737A (en) * 2005-06-09 2006-12-21 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6823663B2 (en) 2002-11-21 2004-11-30 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
JP2005320880A (en) 2004-05-07 2005-11-17 Nissan Diesel Motor Co Ltd Exhaust emission control device
KR20050118762A (en) * 2004-06-15 2005-12-20 현대자동차주식회사 Exhaust gas purifying system using diesel reformer
JP2006342737A (en) * 2005-06-09 2006-12-21 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device

Also Published As

Publication number Publication date
KR20090118733A (en) 2009-11-18

Similar Documents

Publication Publication Date Title
EP2126306B1 (en) On-board-diagnosis method for an exhaust aftertreatment system and on-board-diagnosis system for an exhaust aftertreatment system
US8225595B2 (en) Apparatus, system, and method for estimating an NOx conversion efficiency of a selective catalytic reduction catalyst
US7950224B2 (en) Method for controlling exhaust gas purification system
EP2998533B1 (en) METHOD FOR DETERMINING DEGRADATION OF NOx STORAGE REDUCTION CATALYST IN EXHAUST GAS AFTERTREATMENT DEVICE
US8910466B2 (en) Exhaust aftertreatment system with diagnostic delay
KR101048144B1 (en) Exhaust system
KR101637758B1 (en) A fault diagnosis method of scr system and an apparatus thereof
WO2017023766A1 (en) Sensor configuration for aftertreatment system including scr on filter
US10436089B2 (en) Radio frequency sensor in an exhaust aftertreatment system
KR101158816B1 (en) Exhaust Device Of Diesel Vehicle
KR101316856B1 (en) System for control urea injection quantity of vehicle and method thereof
EP3110531B1 (en) Exhaust throttle control for aftertreatment system thermal management
KR100980875B1 (en) Exhaust post processing apparatus of diesel engine and regeneration method thereof
US9228468B2 (en) Targeted regeneration of a catalyst in an aftertreatment system
KR20140062899A (en) Exhaust gas purification system of vehicle
KR100992816B1 (en) System for correction a stored ammonia quantity of emission reduce line on diesel vehicle and method thereof
JP5720119B2 (en) Exhaust gas purification device for internal combustion engine
KR100907067B1 (en) System for emission reduce line of diesel vehicle and method of monitoring thereof
JP6149686B2 (en) HC catalyst poisoning detection system for SCR catalyst and HC catalyst poisoning detection method for SCR catalyst
KR102563490B1 (en) Regeneration control method for improving durability of exhaust gas purification system
KR100901937B1 (en) Method for diagnosing function of reduction non-methanic hydrocarbon in selective catalytic reduction system
KR101063487B1 (en) After-treatment system diagnostic device and method of diesel vehicle
KR101509750B1 (en) Determining Apparatus of Selective Catalytic Reduction Catalyst Aging and Method thereof
JP2016003615A (en) Method and device for detecting thermal deterioration of oxidation catalyst
CN114458429A (en) Calibration method for enhancing passive regeneration of particle catcher, calibration module and readable storage medium

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150831

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180829

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190827

Year of fee payment: 10