KR100980654B1 - Manufacturing method of the catalyst - Google Patents

Manufacturing method of the catalyst Download PDF

Info

Publication number
KR100980654B1
KR100980654B1 KR1020080088441A KR20080088441A KR100980654B1 KR 100980654 B1 KR100980654 B1 KR 100980654B1 KR 1020080088441 A KR1020080088441 A KR 1020080088441A KR 20080088441 A KR20080088441 A KR 20080088441A KR 100980654 B1 KR100980654 B1 KR 100980654B1
Authority
KR
South Korea
Prior art keywords
catalyst
mineral
weight
carbon nanotubes
producing
Prior art date
Application number
KR1020080088441A
Other languages
Korean (ko)
Other versions
KR20100029605A (en
Inventor
이상훈
오운수
Original Assignee
(주) 나노허브
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 나노허브 filed Critical (주) 나노허브
Priority to KR1020080088441A priority Critical patent/KR100980654B1/en
Publication of KR20100029605A publication Critical patent/KR20100029605A/en
Application granted granted Critical
Publication of KR100980654B1 publication Critical patent/KR100980654B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/14Silica and magnesia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 탄소나노튜브용 촉매와 그 제조방법에 관한 것으로서, 본 발명에 따른 탄소나노튜브용 촉매는 철 산화물 30중량% 내지 70 중량%, 황 0.01중량% 내지 0.3중량%, 및 잔부로 이루어지며, 상기 잔부는 실리카, 마그네시아 및 알루미나를 포함하는 담체성분을 포함하며, 상기 담체성분에서 실리카, 마그네시아 및 알루미나의 합계 함량은 80중량% 내지 100중량%인 것을 특징으로 한다. 이에 의해 고순도 탄소나노튜브를 저렴하게 대량 합성할 수 있는 탄소나노튜브용 촉매가 제공된다.The present invention relates to a catalyst for carbon nanotubes and a method for producing the same, wherein the catalyst for carbon nanotubes according to the present invention is composed of 30% by weight to 70% by weight of iron oxide, 0.01% to 0.3% by weight of sulfur, and the balance thereof. The balance includes a carrier component including silica, magnesia and alumina, and the total content of silica, magnesia and alumina in the carrier component is 80% by weight to 100% by weight. As a result, a catalyst for carbon nanotubes capable of inexpensively mass-producing high purity carbon nanotubes is provided.

Description

탄소나노튜브 제조용 촉매의 제조방법{MANUFACTURING METHOD OF THE CATALYST}MANUFACTURING METHOD OF THE CATALYST}

본 발명은 기상합성법에 의한 탄소나노튜브 제조용 촉매 및 그 제조방법에 관한 것이다.The present invention relates to a catalyst for producing carbon nanotubes by a gas phase synthesis method and a method for producing the same.

탄소나노튜브는 하나의 탄소원자가 3개의 다른 탄소원자와 결합되어 육각형 벌집모양의 구조를 하고 있는 흑연의 또 다른 형태이다. 탄소나노튜브는 전기적 특성이 우수하고 기계적 강도가 크며 화학적으로 안정한 소재이므로 기계 및 전자정보산업에서 다양하게 응용될 수 있다.Carbon nanotubes are another form of graphite in which one carbon atom is bonded to three other carbon atoms to form a hexagonal honeycomb structure. Carbon nanotubes have excellent electrical properties, high mechanical strength, and chemically stable materials, so they can be used in a variety of applications in the mechanical and electronic information industries.

대한민국특허 제2004-0017643호는 탄소나노튜브를 제조하기 위해서 촉매를 제조하는 방법을 제시하고 있으나, 공침, 건조, 분쇄, 하소, 소결 등의 복잡한 공정이 필요하고 제조 중 산성비를 유발하는 대기오염 물질인 질소 산화물이 발생하여 시간과 비용이 많이 드는 단점이 있다.Korean Patent No. 2004-0017643 discloses a method for preparing a catalyst to prepare carbon nanotubes, but it requires complex processes such as coprecipitation, drying, pulverization, calcination and sintering, and causes air pollution during production. Phosphorus nitrogen oxides are generated, which is disadvantageous in terms of time and cost.

따라서 본 발명의 목적은 환경친화적이며 제조비용이 저렴한 탄소나노튜브용 촉매 및 그 제조방법을 제공하는 것이다. Accordingly, an object of the present invention is to provide a catalyst for carbon nanotubes and a method for producing the same, which are environmentally friendly and low in manufacturing cost.

상기 본 발명의 과제는 탄소나노튜브 제조용 촉매에 있어서, 철 산화물 30중량% 내지 70 중량%, 황 0.01중량% 내지 0.3중량%, 및 잔부로 이루어지며, 상기 잔부는 실리카, 마그네시아 및 알루미나를 포함하는 담체성분을 포함하며, 상기 담체성분에서 실리카, 마그네시아 및 알루미나의 합계 함량은 80중량% 내지 100중량%인 것에 의해 해결된다.The object of the present invention is a catalyst for producing carbon nanotubes, consisting of 30% to 70% by weight of iron oxide, 0.01% to 0.3% by weight of sulfur, and the balance, the balance comprises silica, magnesia and alumina And a carrier component, wherein the total content of silica, magnesia and alumina in the carrier component is solved by 80 to 100% by weight.

상기 탄소나노튜브 제조용 촉매에서 상기 실리카는 5중량% 내지 30중량%, 상기 마그네시아는 5중량% 내지 30중량%, 상기 알루미나는 1중량% 내지 40중량%일 수 있다.In the catalyst for preparing carbon nanotubes, the silica may be 5 wt% to 30 wt%, the magnesia may be 5 wt% to 30 wt%, and the alumina may be 1 wt% to 40 wt%.

상기 탄소나노튜브 제조용 촉매는 평균 직경이 10 내지 50 ㎛인 분말일 수 있다.The carbon nanotube production catalyst may be a powder having an average diameter of 10 to 50 ㎛.

상기 본 발명의 과제는 기상합성법에 의한 탄소나노튜브 제조용 촉매의 제조방법에 있어서, 철 산화물 30중량% 내지 70 중량%, 황 0.01중량% 내지 0.3중량%, 및 잔부를 포함하며, 상기 잔부는 실리카, 마그네시아 및 알루미나를 포함하는 담체성분을 포함하며, 상기 담체성분에서 상기 실리카, 마그네시아 및 알루미나의 합계 함량은 80중량% 내지 100중량%인 광물을 마련하는 단계와; 상기 광물을 분쇄하는 단계를 포함하는 것에 의해 해결될 수 있다.The object of the present invention is a method for producing a catalyst for producing carbon nanotubes by a gas phase synthesis method, 30% to 70% by weight of iron oxide, 0.01% to 0.3% by weight of sulfur, and the balance, the balance is silica And a carrier component comprising magnesia and alumina, wherein the total content of silica, magnesia and alumina in the carrier component is 80% to 100% by weight; It can be solved by including grinding the mineral.

상기 광물에서 상기 실리카는 5중량% 내지 30중량%, 상기 마그네시아는 5중량% 내지 30중량%, 상기 알루미나는 1중량% 내지 40중량%일 수 있다.In the mineral, the silica may be 5% to 30% by weight, the magnesia may be 5% to 30% by weight, and the alumina may be 1% to 40% by weight.

상기 광물을 밀링하는 단계와; 상기 밀링된 광물을 건조시키는 단계를 더 포 함하며, 상기 광물의 분쇄는 상기 건조된 광물을 대상으로 수행될 수 있다.Milling the mineral; The method may further include drying the milled mineral, and the grinding of the mineral may be performed on the dried mineral.

상기 분쇄된 광물을 소성하는 단계와; 상기 소성된 광물을 재분쇄하는 단계를 더 포함할 수 있다.Firing the pulverized mineral; The method may further include milling the calcined mineral.

상기 재분쇄는 상기 소성된 광물의 평균 직경이 10 ㎛ 내지 50 ㎛이 되도록 수행될 수 있다.The regrinding may be performed such that the average diameter of the calcined mineral is 10 μm to 50 μm.

상기 소성은 산화성 분위기에서 700℃ 내지 1500℃에서 1시간 내지 8시간 동안 수행될 수 있다. The firing may be performed at 700 ° C. to 1500 ° C. for 1 hour to 8 hours in an oxidizing atmosphere.

본 발명에 따르면 천연 광물을 이용하여 촉매를 제조하기 때문에 대량생산에 적합하고, 제조원가가 낮으며, 촉매 제조시 질소 및 황 산화물 등의 공해물질이 전혀 발생하지 않는 환경친화적인 탄소나노튜브 제조 촉매 및 그 제조방법이 제공된다.According to the present invention, since the catalyst is manufactured using natural minerals, it is suitable for mass production, has low manufacturing cost, and is an environmentally friendly carbon nanotube production catalyst which does not generate any pollutants such as nitrogen and sulfur oxides during catalyst production. The manufacturing method is provided.

본 발명에 따른 탄소나노튜브 제조용 촉매는 천연 광물로부터 얻어지며 철 산화물, 황 성분 및 잔부 성분으로 이루어져 있다. 잔부성분은 담체성분이 대부분이며, 담체성분은 실리카, 마그네시아 및 알루미나를 포함한다. 실리카, 마그네시아 및 알루미나의 합계함량은 담체성분의 80중량% 내지 100중량%일 수 있다.The catalyst for producing carbon nanotubes according to the present invention is obtained from natural minerals and consists of iron oxides, sulfur and residual components. The balance component is mostly a carrier component, and the carrier component includes silica, magnesia and alumina. The total content of silica, magnesia and alumina may be 80% to 100% by weight of the carrier component.

촉매를 광물로부터 얻기 때문에 잔부성분은 미량이지만 다른 성분, 예를 들어, 산화칼슘, 망간, 인, 산화티타늄, 구리, 아연, 산화칼륨, 산화나트륨, 바나듐 등을 포함할 수 있다. 이들은 각 성분별로 촉매 전체에 대하여 0.001중량% 내지 1 중량% 포함될 수 있다.Since the catalyst is obtained from the mineral, the residual component is a trace but may include other components such as calcium oxide, manganese, phosphorus, titanium oxide, copper, zinc, potassium oxide, sodium oxide, vanadium and the like. These may be included in 0.001% by weight to 1% by weight based on the entire catalyst for each component.

철 산화물 성분은 수소로 환원시키면 금속 촉매가 되며, 30중량% 내지 80중량% 포함된다. 철산화물의 사용량이 30 중량%보다 작거나 80중량%보다 많으면 완성된 촉매의 활성이 떨어진다. 철 산화물은 산화물 상태가 다른 여러 종류를 포함하는데, 이중 산화제2철이 전체 촉매에서 50중량% 내지 60중량% 포함되어 있는 경우가 촉매활성이 높다.When the iron oxide component is reduced to hydrogen, it becomes a metal catalyst, and contains 30 wt% to 80 wt%. If the amount of iron oxide used is less than 30% by weight or more than 80% by weight, the activity of the finished catalyst is inferior. Iron oxides include several kinds of oxides different from each other. In the case where ferric oxide is contained in an amount of 50 wt% to 60 wt% in the total catalyst, catalytic activity is high.

황은 촉매의 활성을 촉진하는 조촉매 역할을 한다. 황의 함량이 0.01 중량% 보다 낮으면 촉매활성에 기여하는 역할이 없으며 0.3 중량% 보다 높으면 이산화황이 발생하여 촉매표면에 부착하여 촉매의 활성을 저하시킨다.Sulfur acts as a promoter to promote the activity of the catalyst. If the sulfur content is lower than 0.01% by weight, there is no role in contributing to catalytic activity. If the sulfur content is higher than 0.3% by weight, sulfur dioxide is generated and adheres to the surface of the catalyst, thereby lowering the activity of the catalyst.

실리카, 알루미나 및 마그네시아는 촉매담체 역할을 한다. 이들의 함량은 담체성분 중에서 80중량% 내지 100중량%일 수 있다. 즉 본 발명에 따른 촉매의 담체성분은 주로 실리카, 알루미나 및 마그네시아로 이루어진다.Silica, alumina and magnesia serve as catalyst carriers. Their content may be 80% to 100% by weight in the carrier component. That is, the carrier component of the catalyst according to the present invention mainly consists of silica, alumina and magnesia.

촉매 전체에서 실리카는 5중량% 내지 30중량%, 마그네시아는 5중량% 내지 30중량%, 알루미나는 1중량% 내지 40중량% 사용될 수 있다.5 wt% to 30 wt% of silica, 5 wt% to 30 wt% of magnesia, and 1 wt% to 40 wt% of alumina may be used throughout the catalyst.

이하에서는 본 발명에 따른 탄소나노튜브의 촉매제조 방법을 도 1을 참조하여 설명한다.Hereinafter, a method for preparing a carbon nanotube catalyst according to the present invention will be described with reference to FIG. 1.

도 1은 본 발명의 일실시예에 따른 탄소나노튜브의 촉매제조 방법을 설명하기 위한 순서도이다.1 is a flowchart illustrating a method for producing a catalyst of carbon nanotubes according to an embodiment of the present invention.

먼저 원하는 조성을 가진 광물을 마련한다(S100). 광물은 철 산화물 30중량% 내지 70 중량%, 황 0.01중량% 내지 0.3중량% 및 잔부를 포함하며, 잔부는 실리카, 마그네시아 및 알루미나를 포함하는 담체성분을 포함하며, 담체성분에서 실리카, 마그네시아 및 알루미나는 80중량% 내지 100중량%이다.First prepare a mineral having a desired composition (S100). The mineral comprises 30% to 70% by weight of iron oxide, 0.01% to 0.3% by weight of sulfur and the balance, the balance comprising a carrier component comprising silica, magnesia and alumina, and in the carrier component silica, magnesia and alumina Is 80% by weight to 100% by weight.

다음으로 준비된 광물을 혼합 및 분쇄한다(S200).Next, the prepared minerals are mixed and crushed (S200).

이 과정을 자세히 보면 볼밀을 이용하여 습식으로 24시간 내지 48시간 광물을 밀링한다. 밀링에 의해 광물은 평균입경은 10㎛ 내지 50 ㎛이하의 분말이 된다. 입경이 작을수록 이후의 소성온도를 낮출 수 있으며 전이금속과 담체의 계면적이 커져 촉매활성을 높일 수 있다. 광물 분말을 12 내지 24시간 전기오븐에 건조하고, 건조된 광물 분말을 다시 건식 볼밀링으로 분쇄한다.In detail, this process uses a ball mill to wet the mineral from 24 to 48 hours. By milling, the mineral becomes a powder having an average particle diameter of 10 µm to 50 µm or less. The smaller the particle diameter, the lower the subsequent firing temperature and the higher the interfacial area between the transition metal and the carrier, thereby increasing the catalytic activity. The mineral powder is dried in an electric oven for 12 to 24 hours, and the dried mineral powder is ground again by dry ball milling.

다음으로 상기 분쇄된 광물 분말을 소성한다 (S300).Next, the pulverized mineral powder is fired (S300).

소성은 산화성분위기에서 700℃ 내지 1500℃의 온도에서 1시간 내지 8시간 동안 이루어진다. 소성온도는 분말의 입자의 직경과 관계가 있으며 입경이 작을수록 소성온도는 낮아진다. 1500℃이상이 되면 철산화물과 같은 저융점 물질이 용융하여 매우 치밀한 조직이 되어 파쇄하기 어려운 상태가 되며, 700℃이하이면 담체 성분과 철산화물의 균질화가 부족해진다. Firing is carried out for 1 hour to 8 hours at a temperature of 700 ℃ to 1500 ℃ in the oxidative atmosphere. The firing temperature is related to the diameter of the particles of the powder, and the smaller the particle diameter, the lower the firing temperature. When the temperature is 1500 ° C or higher, low melting point materials such as iron oxide are melted to form a very dense structure, which is difficult to fracture. When the temperature is lower than 700 ° C, homogenization of the carrier component and iron oxide is insufficient.

분말은 소성된 조직의 그레인이 되는데 탄소나노튜브는 그레인 바운더리에서 합성이 된다. 따라서 분말의 입경이 작을수록 그레인 바운더리가 넓어지기 때문에 탄소나노튜브의 생성을 위한 활성이 높아진다.The powder becomes grain of calcined tissue, and carbon nanotubes are synthesized in the grain boundary. Therefore, the smaller the particle size of the powder, the wider the grain boundary, the higher the activity for the production of carbon nanotubes.

촉매는 전이금속인 철과 담체의 경계에서의 적당한 접촉강도가 중요하다, 분쇄 후 소성함으로써 그레인 크기가 균질하게 되고 철 성분과 담체성분의 결합강도가 균질하게 되어 수율향상과 제품품질의 안정화를 가져올 수 있다.The catalyst has an important contact strength at the boundary between the transition metal iron and the carrier, and after pulverization, the grain size becomes homogeneous and the bonding strength between the iron component and the carrier component becomes homogeneous, resulting in improved yield and stabilization of product quality. Can be.

이후 소성된 분말을 기계적으로 재분쇄한다(S400).After the fired powder mechanically regrind (S400).

이때의 입경은 10㎛ 내지 50㎛인 것이 바람직하다. 입경이 10㎛이하이면 탄소나노튜브를 제조하기 위해서 반응기로 장입을 할 때 비산되어 날아가거나 반응기 벽에 부착하는 문제를 일으킬 수 있다. 또 입경이 50 ㎛이상이 되면 촉매의 활성을 저하하는 문제를 가진다.It is preferable that the particle diameter at this time is 10 micrometers-50 micrometers. If the particle diameter is 10 μm or less, it may cause a problem of flying off or sticking to the reactor wall when charging into the reactor to manufacture carbon nanotubes. In addition, when the particle diameter is 50 µm or more, there is a problem of lowering the activity of the catalyst.

이상 설명한 촉매의 제조방법에 따르면, 촉매 소스로 천연광물을 이용하고, 제조과정은 분쇄, 소성, 재분쇄 등으로 비교적 간단하다. 따라서 오염물질의 배출이 없으며 제조비용이 매우 저렴하고 또한 대량생산이 용이하다.According to the method for preparing a catalyst described above, natural minerals are used as a catalyst source, and the production process is relatively simple by pulverization, calcination, regrinding, and the like. Therefore, there is no emission of pollutants, manufacturing cost is very low, and mass production is easy.

이하, 실험 결과를 통해 본 발명을 상세히 설명한다. 실험은 실시예 1 및 실시예 2와 비교예 1 내지 비교예 7의 총 9가지 촉매에 대하여 수행되었다.Hereinafter, the present invention will be described in detail through experimental results. Experiments were carried out on a total of nine catalysts of Examples 1 and 2 and Comparative Examples 1-7.

실시예 1 및 실시예 2의 촉매는 산화제이철 기준 함량이 61.3중량%, 실리카 15.81 중량%, 알루미나 2.25 중량%, 마그네시아 17.37 중량%, 황 0.02 중량% 및 나머지성분 3.25 중량%의 조성을 가진 광물로부터 얻었다.The catalysts of Examples 1 and 2 were obtained from minerals having a composition of ferric oxide reference content of 61.3 wt%, silica 15.81 wt%, alumina 2.25 wt%, magnesia 17.37 wt%, sulfur 0.02 wt% and the remainder 3.25 wt%. .

실시예 1의 촉매는 소성과정을 거쳐 마련하였으며, 실시예 2의 촉매는 분쇄과정만 거치고 소성과정을 거치지 않았다. 밀링은 30시간, 건조는 20시간 수행하였으며, 소성은 1000℃에서 4시간 동안 수행하였다.The catalyst of Example 1 was prepared through a calcination process, and the catalyst of Example 2 went through only a pulverization process and did not undergo a calcination process. Milling was carried out for 30 hours, drying for 20 hours, and firing for 4 hours at 1000 ° C.

비교예 1 내지 비교예 4의 촉매는 광물에서 얻은 것으로, 실시예와 유사한 과정을 통해 제조하였다. (비교예 1은 저품위 철광석이며, 비교예 2 내지 4는 철함량이 높은 고품위 철광석이다. 구체적으로 보면, 비교예 2는 Hamersley Yandi 철광석이며, 비교예 3은 Hamersley 철광석이다.)The catalysts of Comparative Examples 1 to 4 were obtained from minerals, and were prepared by similar procedures as in Example. (Comparative Example 1 is a low-grade iron ore, Comparative Examples 2 to 4 are high-grade iron ores having a high iron content. Specifically, Comparative Example 2 is Hamersley Yandi iron ore, and Comparative Example 3 is Hamersley iron ore.)

비교예 1은 국내산 자철광계 광물이며, 비교예 2 내지 4는 철분 함량이 높은 광물이다. 구체적으로 보면, 비교예 2는 호주산 수산화철계 광물이며, 비교예 3은 호주산 적철광계 광물이다. Comparative Example 1 is a domestic magnetite mineral, and Comparative Examples 2 to 4 are minerals having a high iron content. Specifically, Comparative Example 2 is an Australian iron hydroxide mineral, and Comparative Example 3 is an Australian Hematite mineral.

비교예 5 내지 비교예 7의 촉매는 시약을 혼합하고 소성 및 분쇄하여 얻었다.The catalysts of Comparative Examples 5 to 7 were obtained by mixing, calcining and pulverizing the reagents.

표 1에 실시예 및 비교예를 위해 제조한 촉매의 조성, 소성온도 및 소스를 나타내었다.Table 1 shows the composition, firing temperature and source of the catalysts prepared for Examples and Comparative Examples.

<표 1>TABLE 1

Figure 112008063708275-pat00001
Figure 112008063708275-pat00001

이상과 같이 얻은 촉매를 이용하여 탄소나노튜브 합성실험을 수행하였다. Carbon nanotube synthesis experiment was performed using the catalyst obtained as described above.

합성실험에 사용한 반응기는 직경 60 mm의 쿼츠튜브이며, 합성시간은 40분, 합성가스로서 에틸렌가스와 수소가스를 1:10 의 비율로 사용하였다. 에틸렌의 유량은 분당 0.1 리터, 수소는 분당 1리터이었다. 반응온도는 650℃이며, 승온 및 냉각 은 아르곤 가스를 사용하였다. 촉매 투입량은 0.1g 이었으며, 촉매는 알루미나 보트에 촉매를 넓게 펴서 합성하였다.The reactor used for the synthesis experiment was a quartz tube with a diameter of 60 mm, the synthesis time was 40 minutes, and ethylene gas and hydrogen gas were used at a ratio of 1:10 as the synthesis gas. The flow rate of ethylene was 0.1 liters per minute and hydrogen was 1 liter per minute. The reaction temperature was 650 ° C, and argon gas was used for the temperature increase and cooling. The catalyst loading was 0.1 g, and the catalyst was synthesized by spreading the catalyst on alumina boats.

표 2에 각 촉매로부터 얻은 탄소나노튜브의 수율, 순도 및 주생성물질을 나타내었다. 수율은 투입촉매의 중량에 대한 탄소나노튜브의 중량비이다.Table 2 shows the yield, purity and main product of carbon nanotubes obtained from each catalyst. The yield is the weight ratio of carbon nanotubes to the weight of the charged catalyst.

그림 2 및 그림 3은 실시예 1의 촉매를 이용해 합성한 CNT의 SEM 및 TEM 이미지 사진이다. Figure 2 and Figure 3 are SEM and TEM image of CNT synthesized using the catalyst of Example 1.

<표 2>TABLE 2

Figure 112008063708275-pat00002
Figure 112008063708275-pat00002

실시예 1 및 실시예 2를 보면 높은 수율 및 높은 순도로 MWCNT(multiwall cabon nano tube)를 얻을 수 있음을 확인 할 수 있다. 단 소성을 거친 실시예 1의 경우 수율 및 순도가 실시예 2보다 높은데, 이는 소성에 의한 그레인 크기의 균질화 및 철 성분과 담체성분의 경합강도의 균질화를 통한 수율향상과 제품품질의 안정화를 보여주는 것이다.Looking at Example 1 and Example 2 it can be seen that MWCNT (multiwall cabon nano tube) can be obtained in high yield and high purity. The yield and purity of Example 1, which has undergone calcination, are higher than those of Example 2, which shows the improvement of yield and the stabilization of product quality through the homogenization of grain size by the calcination and the homogenization of the competing strengths of the iron component and the carrier component. .

비교예 1은 담체의 주성분이 산화티타늄인데, 이 경우에는 카본나노섬유가 생성되며, 수율 및 순도도 낮아졌다. 따라서 담체성분으로는 실리카, 마그네슘 및 알루미나가 주성분이 되어야 함을 알 수 있다. In Comparative Example 1, the main component of the carrier was titanium oxide, in which case carbon nanofibers were produced, and the yield and purity were also lowered. Therefore, it can be seen that the carrier component should be silica, magnesium and alumina as main components.

비교예 2 내지 비교예 4는 고순도 철광석으로 수율과 순도가 좋지 않았는데, 이는 산화철 성분의 함량이 지나치게 높기 때문이다. 또한 비교예 4의 경우에는 비교예 1과 마찬가지로 카본나노섬유가 생성되었다.Comparative Example 2 to Comparative Example 4 was a high purity iron ore was not good yield and purity, because the content of the iron oxide component is too high. In Comparative Example 4, carbon nanofibers were produced in the same manner as in Comparative Example 1.

비교예 5 내지 7은 황의 함량이 적어, 수율 및 순도가 좋지 않다. 특히 비교예 5 및 비교예 6은 한 가지 담체성분만을 포함하고 있는 점도 실시예와 상이하다.Comparative Examples 5 to 7 have a low sulfur content, so that the yield and purity are not good. In particular, Comparative Example 5 and Comparative Example 6 is different from the example of the viscosity containing only one carrier component.

도 1은 본 발명에 따른 촉매 제조방법을 나타낸 순서도이고,1 is a flowchart showing a method for preparing a catalyst according to the present invention,

도 2는 본 발명의 실시예 1에 따른 촉매를 이용해 제조한 탄소나노튜브의 SEM 이미지이고,FIG. 2 is an SEM image of carbon nanotubes prepared using a catalyst according to Example 1 of the present invention.

도 3은 본 발명의 실시예 2에 따른 촉매를 이용해 제조한 탄소나노튜브의 TEM 이미지이다.3 is a TEM image of a carbon nanotube prepared using a catalyst according to Example 2 of the present invention.

Claims (9)

삭제delete 삭제delete 삭제delete 기상합성법에 의한 탄소나노튜브 제조용 촉매의 제조방법에 있어서,In the method for producing a carbon nanotube catalyst by the gas phase synthesis method, 철 산화물 30중량% 내지 70 중량%, 황 0.01중량% 내지 0.3중량%, 및 잔부를 포함하며, 상기 잔부는 실리카, 마그네시아 및 알루미나를 포함하는 담체성분을 포함하며, 상기 담체성분에서 상기 실리카, 마그네시아 및 알루미나의 합계 함량은 80중량% 내지 100중량%인 광물을 마련하는 단계와;30 wt% to 70 wt% iron oxide, 0.01 wt% to 0.3 wt% sulfur, and the balance, the balance comprising a carrier component comprising silica, magnesia and alumina, wherein the silica, magnesia in the carrier component And preparing a mineral having a total content of alumina of 80% by weight to 100% by weight; 상기 광물을 분쇄하는 단계를 포함하는 탄소나노튜브용 촉매의 제조방법.Method for producing a catalyst for carbon nanotubes comprising the step of grinding the mineral. 제4항에 있어서,The method of claim 4, wherein 상기 광물에서 상기 실리카는 5중량% 내지 30중량%, 상기 마그네시아는 5중량% 내지 30중량%, 상기 알루미나는 1중량% 내지 40중량%인 것을 특징으로 하는 탄소나노튜브용 촉매의 제조방법.The silica in the mineral is 5% to 30% by weight, the magnesia is 5% to 30% by weight, the alumina is a method for producing a catalyst for carbon nanotubes, characterized in that 1% to 40% by weight. 제4항에 있어서,The method of claim 4, wherein 상기 광물을 밀링하는 단계와;Milling the mineral; 상기 밀링된 광물을 건조시키는 단계를 더 포함하며,Further drying the milled mineral, 상기 광물의 분쇄는 상기 건조된 광물을 대상으로 수행되는 것을 특징으로 하는 탄소나노튜브용 촉매의 제조방법.Crushing the mineral is a method for producing a catalyst for carbon nanotubes, characterized in that performed on the dried mineral. 제4항에 있어서,The method of claim 4, wherein 상기 분쇄된 광물을 소성하는 단계와;Firing the pulverized mineral; 상기 소성된 광물을 재분쇄하는 단계를 더 포함하는 것을 특징으로 하는 탄 소나노튜브용 촉매의 제조방법.The method for producing a catalyst for carbon nanotubes further comprising the step of regrinding the calcined mineral. 제7항에 있어서,The method of claim 7, wherein 상기 재분쇄는 상기 소성된 광물의 평균 직경이 10 ㎛ 내지 50 ㎛이 되도록 수행되는 것을 특징으로 하는 탄소나노튜브용 촉매의 제조방법.The regrinding is carried out so that the average diameter of the calcined mineral is 10 ㎛ to 50 ㎛. 제7항에 있어서,The method of claim 7, wherein 상기 소성은 산화성 분위기에서 700℃ 내지 1500℃에서 1시간 내지 8시간 동안 수행되는 것을 특징으로 하는 탄소나노튜브 촉매의 제조방법The firing is a method for producing a carbon nanotube catalyst, characterized in that carried out for 1 hour to 8 hours at 700 ℃ to 1500 ℃ in an oxidizing atmosphere
KR1020080088441A 2008-09-08 2008-09-08 Manufacturing method of the catalyst KR100980654B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080088441A KR100980654B1 (en) 2008-09-08 2008-09-08 Manufacturing method of the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080088441A KR100980654B1 (en) 2008-09-08 2008-09-08 Manufacturing method of the catalyst

Publications (2)

Publication Number Publication Date
KR20100029605A KR20100029605A (en) 2010-03-17
KR100980654B1 true KR100980654B1 (en) 2010-09-08

Family

ID=42179807

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080088441A KR100980654B1 (en) 2008-09-08 2008-09-08 Manufacturing method of the catalyst

Country Status (1)

Country Link
KR (1) KR100980654B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060091993A (en) * 2005-02-17 2006-08-22 (주)씨엔티 Carbon nano tubes mass fabrication device and mass fabrication method
JP2006281168A (en) * 2005-04-05 2006-10-19 Honjo Chemical Corp Catalyst for manufacturing double-layer carbon nanotube, and manufacturing method of double-layer carbon nanotube using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060091993A (en) * 2005-02-17 2006-08-22 (주)씨엔티 Carbon nano tubes mass fabrication device and mass fabrication method
JP2006281168A (en) * 2005-04-05 2006-10-19 Honjo Chemical Corp Catalyst for manufacturing double-layer carbon nanotube, and manufacturing method of double-layer carbon nanotube using the same

Also Published As

Publication number Publication date
KR20100029605A (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP5578784B2 (en) Alpha-aluminum oxide-based nanocrystal sintered body, method for producing the same, and use thereof
JP5565311B2 (en) Method for producing oxide
JP4984204B2 (en) Indium oxide powder and method for producing the same
CN110062747B (en) Potassium titanate powder, method for producing same, friction adjustment material, resin composition, friction material, and friction member
EP2493813B1 (en) Methods of making titanium diboride powders
CN105692622A (en) Preparation method of nanoscale silicon carbide particles and product of nanoscale silicon carbide particles
JP2004508461A (en) Ultra-coarse single crystal tungsten carbide, method for producing the same and hard alloy produced therefrom
CN103011870B (en) Forsterite refractory and production method thereof
JP2010132467A (en) Method for producing oxide
CN1293215C (en) Method for preparing composite powder of nano tungsten carbide-coblt through direct reducition and carbonization
JP4603626B2 (en) Method for producing reduced iron
JP5366193B2 (en) High performance composite material and manufacturing method thereof
CN114436263B (en) Preparation method of ultra-coarse uniform tungsten carbide powder
KR100540639B1 (en) Method of Making Catalyst for Carbon Nanotubes and Carbon Nanofibers and Catalyst for Carbon Nanotubes and Nanofibers thereof
KR100980654B1 (en) Manufacturing method of the catalyst
JP2023100873A (en) Sintered balls made of tungsten carbide
JP4378160B2 (en) Porous granular basic magnesium carbonate and method for producing the same
CN109180205A (en) A kind of chromite refractory material and preparation method thereof
JP2003027114A (en) Titanium carbonitride and production method therefor
CN101597777B (en) Method for directly preparing metal powder or alloy powder by using metal oxide
KR101132410B1 (en) Manufacturing method of nano silica using slag
CN113134620A (en) Preparation method of cobalt powder
Chavan et al. Nanocrystalline ceria from carbon free materials
Chen et al. Rapid preparation of manganese monoxide by microwave-enhanced selective carbothermal reduction
JP2001247377A (en) Silicon iron nitride powder, method for evaluation of the powder and use

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140228

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140829

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150827

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee