KR100980322B1 - Visible-light active oxide photocatalysts and synthesis methods thereof - Google Patents
Visible-light active oxide photocatalysts and synthesis methods thereof Download PDFInfo
- Publication number
- KR100980322B1 KR100980322B1 KR1020090007164A KR20090007164A KR100980322B1 KR 100980322 B1 KR100980322 B1 KR 100980322B1 KR 1020090007164 A KR1020090007164 A KR 1020090007164A KR 20090007164 A KR20090007164 A KR 20090007164A KR 100980322 B1 KR100980322 B1 KR 100980322B1
- Authority
- KR
- South Korea
- Prior art keywords
- visible light
- responsive photocatalyst
- oxide
- compound
- photocatalyst
- Prior art date
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 49
- 238000001308 synthesis method Methods 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 50
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 31
- 238000001354 calcination Methods 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 239000012300 argon atmosphere Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 239000012153 distilled water Substances 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000005119 centrifugation Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 239000010453 quartz Substances 0.000 claims description 4
- 238000010791 quenching Methods 0.000 claims description 4
- 239000011684 sodium molybdate Substances 0.000 claims description 4
- 235000015393 sodium molybdate Nutrition 0.000 claims description 4
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 claims description 4
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 claims description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 4
- 229910001887 tin oxide Inorganic materials 0.000 claims description 4
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 claims description 4
- 229910020599 Co 3 O 4 Inorganic materials 0.000 claims description 3
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 239000012298 atmosphere Substances 0.000 claims description 3
- UNTBPXHCXVWYOI-UHFFFAOYSA-O azanium;oxido(dioxo)vanadium Chemical compound [NH4+].[O-][V](=O)=O UNTBPXHCXVWYOI-UHFFFAOYSA-O 0.000 claims description 3
- 239000002270 dispersing agent Substances 0.000 claims description 3
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 3
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 claims description 3
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 230000000171 quenching effect Effects 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 238000003303 reheating Methods 0.000 claims description 2
- 238000003801 milling Methods 0.000 claims 1
- 238000000354 decomposition reaction Methods 0.000 abstract description 35
- 239000000126 substance Substances 0.000 abstract description 21
- 239000007788 liquid Substances 0.000 abstract description 6
- 230000004298 light response Effects 0.000 abstract description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 abstract description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052721 tungsten Inorganic materials 0.000 abstract description 2
- 239000010937 tungsten Substances 0.000 abstract description 2
- 239000012071 phase Substances 0.000 description 21
- 230000001699 photocatalysis Effects 0.000 description 17
- 239000000843 powder Substances 0.000 description 16
- 239000007791 liquid phase Substances 0.000 description 9
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 8
- 239000000975 dye Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000010532 solid phase synthesis reaction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 5
- 229940043267 rhodamine b Drugs 0.000 description 5
- 238000013032 photocatalytic reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003426 co-catalyst Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 208000008842 sick building syndrome Diseases 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910005855 NiOx Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910019899 RuO Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- XOBGMVXXJIHFNI-UHFFFAOYSA-N bismuth;oxotungsten Chemical compound [Bi].[W]=O XOBGMVXXJIHFNI-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011268 mixed slurry Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910006592 α-Sn Inorganic materials 0.000 description 1
- 229910006640 β-Sn Inorganic materials 0.000 description 1
- 229910006632 β—Sn Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/835—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
본 발명은 주석(Sn)과 텅스텐(W)을 포함하는 특정 조성의 복합 산화물로 이루어진 가시광 응답협 광촉매 화합물 및 그 제조 방법, 상기 광촉매 화합물을 포함하는 광촉매 조성물에 관한 것으로서, 실외에서 뿐만 아니라, 형광등과 같은 실내등에서도 감응할 수 있으며, 화학적으로 안정할 뿐만 아니라, 액상 혹은 기상 유해물질 분해에 효과적으로 적용할 수 있는 가시광 응답형 광촉매 화합물 및 이를 포함하는 조성물에 관한 것이다.The present invention relates to a visible light response narrow photocatalyst compound composed of a complex oxide having a specific composition including tin (Sn) and tungsten (W), a method for producing the same, and a photocatalyst composition including the photocatalyst compound, as well as a fluorescent lamp as well as outdoors. The present invention relates to a visible light-responsive photocatalyst compound and a composition containing the same, which can be sensitive to indoor light, and can be chemically stable and can be effectively applied to decomposition of liquid or gaseous harmful substances.
Description
본 발명은 주석(Sn)과 텅스텐(W)을 포함하는 특정 조성의 복합 산화물로 이루어진 광촉매 화합물 및 그 제조 방법, 상기 광촉매 화합물을 포함하는 광촉매 조성물에 관한 것으로서, 실외에서 뿐만 아니라, 형광등과 같은 실내등에서도 감응할 수 있으며, 화학적으로 안정할 뿐만 아니라, 액상 혹은 기상 유해물질 분해에 효과적으로 적용할 수 있는 가시광 응답형 광촉매 화합물, 그 제조방법 및 이를 포함하는 조성물에 관한 것이다.The present invention relates to a photocatalyst compound composed of a composite oxide having a specific composition including tin (Sn) and tungsten (W), a method for producing the same, and a photocatalyst composition comprising the photocatalytic compound, as well as outdoors, such as a fluorescent lamp. In addition, the present invention relates to a visible light-responsive photocatalyst compound that can be sensitive to, chemically stable, and can be effectively applied to decomposition of liquid or gaseous harmful substances, a method for preparing the same, and a composition comprising the same.
하루에 지구표면에 도달하는 태양광에너지의 양은 전세계 인류가 30년동안 사용할 수 있는 정도이다. 따라서 태양광중 대부분을 차지하는 가시광선을 효율적으로 이용하기위한 노력이 오래전부터 주목을 받아 왔다.The amount of solar energy reaching the Earth's surface in one day is enough for humankind to use for 30 years. Therefore, efforts to efficiently use visible light, which occupies most of the sunlight, have received attention for a long time.
한편, 20세기의 급격한 경제 성장이 초래한 부의 유산인 지구 환경문제가 난로 심각해지고 있다. 특히, 가정과 공장에서 배출되는 각종 유해물질(폐염료, 폐놀, 아세트알데히드 등)들로 인해 발생하는 여러 가지 문제점이 나타나고 있다. 이러한 유해물질들이 인류의 쾌적한 생활을 위협하고 있고, 따라서, 이러한 여러 가 지 유해물질의 발생억제뿐만 아니라 이미 생성된 유해물질을 효과적으로 제거하는 기술개발이 요구되고 있다. 유해물질을 제거하는 여러 방법 중 촉매를 사용하는 방식은 많이 알려져 있는 반영구적으로 유용한 방법이다. 특히 여타 다른 에너지를 가하지 않고 태양 빛으로만 오염 물질을 제거하는 광촉매를 이용한 분해 방식은 청정 에너지를 이용한 분해 방식으로 많은 연구가 있어왔다. 하지만 대부분의 연구는 태양광의 자외선만을 이용한 광촉매에 관한 것이었다. 이러한 자외선은 태양광의 4% 만을 차지하고 있으므로 자외선만을 이용한 광촉매는 태양광을 이용함에 있어 비효율적이라 할 수 있다. Meanwhile, the global environmental problem, a legacy of wealth caused by the rapid economic growth of the 20th century, is becoming more serious. In particular, various problems are generated due to various harmful substances (waste dyes, wastes, acetaldehyde, etc.) emitted from homes and factories. These harmful substances threaten the pleasant life of human beings, and therefore, there is a need for technology development that effectively removes harmful substances already generated as well as suppressing the generation of these various harmful substances. Among the various methods of removing harmful substances, the method of using a catalyst is a known and permanently useful method. In particular, a decomposition method using a photocatalyst that removes pollutants only by sunlight without applying other energy has been studied as a decomposition method using clean energy. Most research, however, has been about photocatalysts using only ultraviolet light from the sun. Since the ultraviolet light occupies only 4% of the sunlight, the photocatalyst using only the ultraviolet light is inefficient in using the sunlight.
한편, 광촉매라 함은 밴드 갭(band gap) 이상의 빛에너지(Energy)를 흡수하여, 전자(electron)와 정공(hole)를 생성하고, 이들이 광촉매 입자 표면으로 확산한 후, 각각 산화/환원 반응에 참여해서, 주위의 화학물질을 산화 또는 환원시킬 수 있는 물질을 의미한다. On the other hand, the photocatalyst absorbs light energy above the band gap, generates electrons and holes, diffuses them to the surface of the photocatalyst particles, and then reacts to the oxidation / reduction reaction, respectively. By participation, it means a substance capable of oxidizing or reducing the surrounding chemicals.
이러한 광촉매 반응에 의해 생성된 전자와 정공을 이용한 수중이나 대기중의 농약이나 악취 물질 등의 유기물의 분해나 광촉매를 도포한 고체 표면의 셀프 클리닝(self cleaning) 등의 응용예가 연구/제언 되어 있지만, 그 대부분은 이산화티탄(TiO2)을 이용한 것이다. 이산화티탄(TiO2)은 밴드 갭(band gap)이 3.2 eV 이기 때문에 400 nm 보다 짧은 자외선의 조사하에서만 활성을 나타낸다. 그 때문에 현재의 응용예로서는 옥외, 혹은 자외선 램프(UV lamp)에만 한정되어 있다. Examples of applications such as decomposition of organic matter such as pesticides and odorous substances in water and air using electrons and holes generated by such photocatalytic reactions, and self cleaning of solid surfaces coated with photocatalysts have been studied and suggested. Most of them use titanium dioxide (TiO 2 ). Titanium dioxide (TiO 2 ) is active only under irradiation with ultraviolet rays shorter than 400 nm because the band gap is 3.2 eV. For this reason, the present application is limited to outdoor or ultraviolet lamps only.
우수한 가시광 광촉매 연구, 개발의 방향은 크게 두가지로 나눌 수 있다. 한 가지는, 전이금속이나 N(질소)을 이용한 도핑을 통해 반도체 물질의 밴드갭을 줄이는 방법이다. 이들의 경우 도핑원소들이 밴드갭 내부에 새로운 에너지레벨을 만들어서 가시광을 일부 흡수할 수 있게하지만 이들 새로운 에너지레벨들이 생성된 전자/정공의 재결합을 촉진시키게 되어 가시광 조사시에 그 효율은 크지 않은 편이다. 따라서 많은 연구자들은 이러한 도핑방법을 이용하지 않고 단일 화합물로서 밴드갭이 작고 안정한 신조성의 산화물 반도체를 개발하는데 많은 노력을 기울이고 있다. 이러한 가시광 감응형 광촉매로 텅스텐트리옥사이드(WO3)와 비스무스 텅스텐옥사이드가 가장 잘 알려진 물질이다. 두 물질 모두 2.8 eV의 밴드갭 에너지를 가지 있고 가시광에 활성을 나타낸다. 하지만 제조방법에 따라 비표면적이 달라져서 밴드갭 에너지와 광촉매 활성이 크게 달라지게 된다. 그리고 중금속인 비스무스의 경우 그 유해성이 검증되지 않아서 실제 적용시 문제점을 야기시킬 수 있는 문제점이 있다. 뿐만아니라 두 물질 모두 가시광에 활성을 나타내지만 밴드갭 에너지가 여전히 크기 때문에 태양광중 가시광을 효과적으로 흡수 할 수 없다.The research and development of excellent visible light photocatalyst can be divided into two directions. One is to reduce the bandgap of the semiconductor material through doping with transition metals or N (nitrogen). In these cases, the doping elements create new energy levels inside the bandgap to absorb some of the visible light, but these new energy levels promote recombination of the generated electrons / holes, which is not very efficient when irradiated with visible light. . Therefore, many researchers are trying to develop a stable oxide semiconductor with a small band gap as a single compound without using this doping method. Tungsten trioxide (WO 3 ) and bismuth tungsten oxide are the best known materials for the visible light sensitive photocatalyst. Both materials have a bandgap energy of 2.8 eV and are active in visible light. However, the specific surface area varies according to the manufacturing method, and the band gap energy and photocatalytic activity are greatly changed. In the case of bismuth, which is a heavy metal, there is a problem that may cause problems in actual application because its harmfulness is not verified. In addition, both materials are active in visible light, but because the bandgap energy is still large, they cannot effectively absorb visible light in sunlight.
따라서 태양광의 46%를 이루고 있는 가시광에 감응하는 광촉매를 개발할 경우 태양광 하에서 고효율 광촉매를 제조할 수 있을 뿐만 아니라 태양광이 미치지 못하는 실내에서의 형광등에도 감응할 수 있게 되어 실외뿐만 아니라 실내에서도 광촉매를 이용할 수 있게 된다. Therefore, when developing a photocatalyst that is sensitive to visible light, which makes up 46% of sunlight, it is possible not only to manufacture high-efficiency photocatalysts under sunlight, but also to react to fluorescent lights in indoors where sunlight does not reach. It becomes available.
즉, 유해물질을 제거하는 방법 중 깨끗하고 무한한 태양광 에너지를 이용한 광촉매가 주목받고 있고, 지금까지 가장 효과적이라고 알려진 TiO2의 경우 태양광중 파장이 짧은 자외선만을 흡수하기 때문에, 태양광 중에서 가시광선을 흡수할 수 있는 새로운 가시광 응답형 광촉매 조성물 개발이 절실히 필요하다. In other words, the photocatalyst using clean and infinite solar energy is attracting attention as a method of removing harmful substances, and since TiO 2 , which is known to be the most effective until now, only absorbs ultraviolet rays having short wavelengths in sunlight, There is an urgent need to develop new visible light responsive photocatalytic compositions.
본 발명이 해결하고자 하는 첫 번째 과제는 실외에서 활성화 가능성이 매우 높을 뿐만 아니라, 형광등과 같은 실내등에서도 감응할 수 있어 실내에서도 휘발성 유기화합물이나 새집증후군을 발생시키는 유해 유기물을 분해할 수 있는 가시광 응답형 광촉매 화합물을 제공하고자 한다.The first problem to be solved by the present invention is not only very likely to be activated in the outdoors, but also can respond to indoor lights such as fluorescent lamps visible light response type that can decompose toxic organic compounds or toxic organic substances that cause sick house syndrome in the room It is intended to provide a photocatalytic compound.
또한 본 발명이 해결하고자 하는 두 번째 과제는 상기 가시광 응답형 광촉매 화합물의 제조방법을 제공하고자 한다.In addition, a second problem to be solved by the present invention is to provide a method for preparing the visible light-responsive photocatalytic compound.
또한 본 발명이 해결하고자 하는 세 번째 과제는 화학적으로 안정할 뿐만 아니라, 광촉매 반응 전후에 전혀 변화가 없으며, 액상 혹은 기상 유해물질 분해에 효과적으로 적용할 수 있는 가시광 응답형 광촉매 조성물을 제공하는 것이다.In addition, the third problem to be solved by the present invention is to provide a visible light responsive photocatalyst composition that is not only chemically stable, there is no change before and after the photocatalytic reaction, and can be effectively applied to decomposition of liquid or gaseous harmful substances.
상기 첫 번째 과제를 해결하기 위하여, 본 발명은 하기 식 (1)로 표현되는 가시광 응답형 광촉매 화합물을 제공한다: In order to solve the first problem, the present invention provides a visible light-responsive photocatalyst compound represented by the following formula (1):
(Sn1-xVx)(W1-yMoy)O4 ···(1)(Sn 1-x V x ) (W 1-y Mo y ) O 4 ... (1)
상기 식에서, x는 0 ≤ x ≤ 0.5, y는 0 ≤ y ≤ 0.5임.Wherein x is 0 ≦ x ≦ 0.5 and y is 0 ≦ y ≦ 0.5.
본 발명의 일실시예에 의하면, 상기 가시광 응답형 광촉매 화합물의 밴드갭은 2.6 eV 이하인 것이 특징이며, 그 크기는 0.01 ~ 20μm 범위인 것이 바람직하다.According to one embodiment of the invention, the bandgap of the visible light-responsive photocatalyst compound is characterized in that 2.6 eV or less, the size is preferably in the range of 0.01 ~ 20μm.
상기 두 번째 과제를 해결하기 위하여, 본 발명은 주석산화물(SnO)과 바나듐산화물(V2O5) 중에서 선택된 하나 이상과 텅스텐 산화물(WO3)과 몰리브데늄산화물(MoO3) 중에서 선택된 하나 이상의 산화물을 혼합하는 단계; 상기 혼합물을 진공 또는 아르곤(Ar) 분위기하에 500 ~ 900℃에서 하소한 후 냉각하는 단계: 및 선택적으로 상기 냉각된 혼합물을 분쇄하는 단계를 포함하는 것을 특징으로 하는 가시광 응답형 광촉매 화합물을 제조하는 방법을 제공한다.In order to solve the second problem, the present invention is one or more selected from tin oxide (SnO) and vanadium oxide (V 2 O 5 ) and one or more selected from tungsten oxide (WO 3 ) and molybdenum oxide (MoO 3 ) Mixing the oxides; Calcining the mixture at 500 to 900 ° C. under vacuum or argon (Ar) atmosphere and then cooling: and optionally pulverizing the cooled mixture to produce a visible light responsive photocatalyst compound. To provide.
본 발명의 일실시예에 의하면, 상기 제조 방법에 있어서, 상기 산화물을 혼합하는 단계는 분산제를 첨가하여 수행되는 것이 더욱 바람직하다. According to one embodiment of the invention, in the production method, the step of mixing the oxide is more preferably performed by adding a dispersant.
본 발명의 다른 일실시예에 의하면, 상기 하소 단계는 쿼츠 튜브 퍼니스에서 수행될 수 있으며, 냉각 단계는 분당 200 ~ 600℃ 범위의 급냉 또는 5 ~ 50℃ 범위의 로냉 방식으로 수행될 수 있다. According to another embodiment of the present invention, the calcination step may be carried out in a quartz tube furnace, the cooling step may be carried out in a quench in the range of 200 ~ 600 ℃ per minute or a furnace cooling in the range of 5 ~ 50 ℃.
또한 본 발명의 다른 일 실시예에 의하면 상기 냉각된 혼합물을 분쇄하는 단계 이후에 상기 분쇄된 생성물을 건조시키는 단계를 더 포함할 수 있다. In addition, according to another embodiment of the present invention may further comprise the step of drying the ground product after the step of grinding the cooled mixture.
본 발명에 따른 광촉매 화합물은 액상법으로 알려진 방법에 따라 제조될 수 있는데, 구체적으로 주석염화물(SnCl2)과 암모늄바나데이트(NH4VO3) 중에서 선택된 하나 이상의 화합물과 소디움 텅스테이트(Na2WO4)와 소디움 몰리브데이트(Na2MoO4) 중에서 선택된 하나 이상의 화합물을 칭량하여 증류수에 녹이는 단계; 용액의 pH를 조절하는 단계; 수열합성기를 이용하여 50 ~ 250℃의 온도에서 1~24시간 동안 가열한 후, 원심분리, 세척 및 건조하는 단계를 포함할 수 있다. The photocatalytic compound according to the present invention may be prepared according to a method known as a liquid phase method. Specifically, at least one compound selected from tin chloride (SnCl 2 ) and ammonium vanadate (NH 4 VO 3 ) and sodium tungstate (Na 2 WO 4) ) And sodium molybdate (Na 2 MoO 4 ) is weighed and dissolved in distilled water; Adjusting the pH of the solution; After heating for 1 to 24 hours at a temperature of 50 ~ 250 ℃ using a hydrothermal synthesizer, it may include the step of centrifugation, washing and drying.
본 발명의 일실시예에 의하면, 상기 pH는 1.0 ~ 7.0범위로 조절하는 것이 바람직하다. 또한 본 발명의 다른 일실시예에 의하면, 상기 건조 단계 이후에 진공 또는 아르곤 분위기에서 200 ~ 500℃로 재가열하는 단계를 더 포함할 수도 있다. According to one embodiment of the invention, the pH is preferably adjusted to 1.0 to 7.0 range. In addition, according to another embodiment of the present invention, after the drying step may further comprise the step of reheating to 200 ~ 500 ℃ in a vacuum or argon atmosphere.
상기 세 번째 과제를 해결하기 위하여, 본 발명은 상기 화학식 (1)의 가시광 응답형 광촉매 화합물; 및 RuO2, NiO, Pt, CuO, Co3O4 및 탄소 중에서 선택된 1종 이상의 화합물을 상기 광촉매 화합물에 대하여 0.1 ~ 5중량% 포함하는 것을 특징으로 하는 가시광 응답형 광촉매 조성물을 제공한다.In order to solve the third problem, the present invention is a visible light response photocatalyst compound of the formula (1); And at least one compound selected from RuO 2 , NiO, Pt, CuO, Co 3 O 4, and carbon, based on 0.1 wt% to 5 wt% of the photocatalytic compound.
본 발명은 가시광선에 활성화 가능하여 실외에서 활성화 가능성이 높고, 형광등과 같은 실내등에서도 감응할 수 있어 실내에서도 휘발성 유기화합물이나 새집증후군을 발생시키는 유해 유기물을 분해할 수 있으며, 화학적으로 안정할 뿐만 아니라, 광촉매 반응 전후에 전혀 변화가 없으며, 액상 혹은 기상 유해물질 분해에 효과적으로 적용할 수 있는 가시광 응답형 광촉매 화합물, 그 제조방법 및 상기 화합물을 포함하는 광촉매 조성물을 제공할 수 있다.The present invention is capable of activating in visible light, which is highly likely to be activated outdoors, and can be sensitive to indoor light such as fluorescent lamps, so that it can decompose volatile organic compounds or harmful organic substances that cause sick house syndrome in the room, and is not only chemically stable. It is possible to provide a visible light responsive photocatalytic compound, a method for preparing the same, and a photocatalyst composition containing the compound, which are not changed at all before and after the photocatalytic reaction and which can be effectively applied to decomposition of liquid or gaseous harmful substances.
본 발명에 따른 광촉매 화합물은 하기 식 (1)로 표현되는 것이 특징이다:The photocatalytic compound according to the invention is characterized by the following formula (1):
(Sn1-xVx)(W1-yMoy)O4 ···(1)(Sn 1-x V x ) (W 1-y Mo y ) O 4 ... (1)
상기 식에서, x는 0 ≤ x ≤ 0.5, y는 0 ≤ y ≤ 0.5임.Wherein x is 0 ≦ x ≦ 0.5 and y is 0 ≦ y ≦ 0.5.
본 발명의 일실시예에 의하면, 상기 가시광 응답형 광촉매 화합물의 밴드갭 은 2.6 eV 이하인 것이 특징이며, 그 크기는 0.01 ~ 20μm 범위인 것이 바람직하다.According to one embodiment of the invention, the bandgap of the visible light-responsive photocatalyst compound is characterized in that 2.6 eV or less, the size is preferably in the range of 0.01 ~ 20μm.
상기 식 (1)에서 바나듐(V) 및 몰리브데늄(Mo)은 식 (1)로 표현되는 화합물의 밴드갭을 조절하는 데 있어서 바람직하다. 상기 식 (1)의 화합물에서 기본 조성인 SnWO4는 합성온도에 따라 동질이상이 존재한다고 알려져있는데(W. Jeitschko and A. W. Sleight, Acta Cryst,B28, 1972, 3174), 상기 문헌에서 SnWO4의 동질이상과 결정구조가 보고된바 있으나 광학적 특성 및 광촉매거동에 관한 연구는 전혀 기재되어 있지 않으며, 본 발명에서 처음으로 제시하는 것이다. In the above formula (1), vanadium (V) and molybdenum (Mo) are preferable in controlling the band gap of the compound represented by the formula (1). The formula (1) a basic composition of SnWO 4 in the compound of is known that at least a homogeneous composite according to the present temperature of the homogeneous (W. Jeitschko and AW Sleight, Acta Cryst, B28, 1972, 3174), in supra SnWO 4 Although the above and crystal structure have been reported, studies on optical properties and photocatalytic behavior have not been described at all, and are presented for the first time in the present invention.
상기 식 (1)의 화합물의 경우 밴드갭이 2.6 eV 이하로서, 밴드갭이 3.2 eV인 이산화티탄(TiO2)과 2.8 eV인 텅스텐옥사이드(WO3)보다 훨씬 작은 밴드갭 에너지를 가지기 때문에 가시광 조사시 이들 입자의 원자가 밴드(valence band)에서 전도 밴드(conduction band)로의 전자 전이가 자외선 보다 에너지가 더 작은 가시광에서도 발생하게 되고, 이때 생성된 전자 및 정공 모두 산화/환원 반응에 참여함으로써 효과적인 분해반응을 일으킬 수 있다.In the case of the compound of formula (1), the bandgap is 2.6 eV or less, and the visible light irradiation has much smaller bandgap energy than titanium dioxide (TiO 2 ) having a band gap of 3.2 eV and tungsten oxide (WO 3 ) having 2.8 eV. The electron transition from the valence band to the conduction band of these particles occurs in visible light with less energy than ultraviolet light, where both the generated electrons and holes participate in oxidation / reduction reactions May cause
도 1은 SnWO4 두 동질이상의 광흡수특성 및 밴드갭 에너지를 나타낸다. 알파상(α)의 경우 1.90eV 베타상(β)의 경우 2.51eV로서, WO3(2.8eV) 보다 매우 작은 밴드갭 에너지를 나타냈다.1 shows light absorption characteristics and band gap energy of two or more homogeneous SnWO 4 . In the alpha phase (α), 1.90eV beta phase (β) was 2.51 eV, which showed a much smaller bandgap energy than WO 3 (2.8 eV).
한편 도 2는 이들 SnWO4를 사용했을 때, 유기염료(Rhodamine B)의 분해효율 을 나타낸 그래프로서, 상용의 WO3 사용했을때보다 월등히 그 분해효율이 높음을 보여준다.On the other hand, Figure 2 is a graph showing the decomposition efficiency of the organic dye (Rhodamine B) when using these SnWO 4 , shows that the decomposition efficiency is significantly higher than when using a commercial WO 3 .
상기 식 (1)로 표현되는 화합물을 제조하는 방법은 전통적인 고상법과 액상법을 이용할 수 있는데, 이에 한정되는 것은 아니다. 본 발명의 일실시예에 따른 상기 화합물의 제조 방법은 주석산화물(SnO, 99.9%)과 바나듐산화물(V2O5, 99.9%) 중에서 선택된 하나이상과 텅스텐 산화물(WO3)과 몰리브데늄산화물(MoO3) 중에서 선택된 하나이상의 산화물을 적정 몰비가 되도록 칭량하여 혼합하는 단계; 혼합된 화합물을 쿼츠(quartz) 튜브(tube) 퍼니스에서 아르곤(Ar) 분위기하에 500~900℃에서 하소하는 단계; 및 하소후 냉각속도를 분당 5 ~ 50℃, 바람직하게는 20℃, 또는 분당 200~600℃, 바람직하게는 500oC로 조절하는 단계와 10~24시간 분쇄하는 단계를 포함하는 것이 특징이며, 이때 하소온도와 냉각속도 조절을 함으로써 알파상 또는 베타상을 얻을 수도 있다.The method for preparing the compound represented by Formula (1) may be a conventional solid phase method and a liquid phase method, but is not limited thereto. Method for producing the compound according to an embodiment of the present invention is one or more selected from tin oxide (SnO, 99.9%) and vanadium oxide (V 2 O 5 , 99.9%) and tungsten oxide (WO 3 ) and molybdenum oxide Weighing and mixing one or more oxides selected from (MoO 3 ) to an appropriate molar ratio; Calcining the mixed compounds at 500-900 ° C. under an argon (Ar) atmosphere in a quartz tube furnace; And calcination after calcining at a cooling rate of 5 to 50 ° C. per minute, preferably at 20 ° C., or at 200 to 600 ° C. per minute, preferably at 500 ° C. and grinding for 10 to 24 hours. At this time, the alpha phase or the beta phase may be obtained by adjusting the calcination temperature and cooling rate.
보통 광촉매 분말의 크기 및 형상은 빛을 유효하게 이용하기 위해, 그리고 유해유기물의 흡착특성을 좋게 하기 위해 표면적이 크도록 설계하는 것이 바람직하다. 고상법에 의해서 제조된 가시광 응답형 광촉매 분말의 경우 대부분 그 크기가 크고 무정형으로 얻어지기 때문에 분쇄과정을 거쳐서 입경이 1㎛ 이하가 되도록 제조하는 것이 보통이다. 하지만 본 발명에서는 분쇄과정을 거치지 않은 무정형의 큰 분말을 사용하여도 가시광 조사시에 유해물질 분해효율이 매우 높고, 분쇄과정을 거쳐 그 크기를 더 작게 만들면 훨씬 바람직하다.Usually, the size and shape of the photocatalyst powder is preferably designed to have a large surface area in order to effectively use light and to improve adsorption characteristics of harmful organics. In the case of the visible light responsive photocatalyst powder produced by the solid phase method, since the size is large and amorphous, it is usually manufactured to have a particle size of 1 μm or less through the grinding process. However, in the present invention, even when the amorphous large powder is not subjected to the grinding process, the decomposition efficiency of harmful substances is very high during visible light irradiation, and it is much more preferable to make the size smaller through the grinding process.
또한 본 발명은 상기 식 (1)로 표현되는 화합물의 비표면적을 더 넓히기 위하여 액상법을 이용하여 100~500nm의 분말을 제조할 수도 있다.In addition, the present invention may produce a powder of 100 ~ 500nm by using a liquid phase method to further widen the specific surface area of the compound represented by the formula (1).
예컨대, 2가의 주석염화물(SnCl2, 99.0%)과 NH4VO3 중에서 선택된 하나이상의 화합물과 소디움 텅스테이트(Na2WO4)와 소디움 몰리브데이트(Na2MoO4) 중에서 선택된 하나이상의 화합물을 적정 몰비가 되도록 칭량하여 증류수에 녹이는 단계; 증류수에 녹인 후 용액의 pH를 조절하는 단계; pH가 조절된 용액을 50~250℃의 온도에서 가열하는 단계; 및 얻어진 슬러리를 원심분리한 후 건조하는 단계, 100~800oC, 진공 또는 아르곤 분위기에서 가열하는 단계를 포함하여 제조할 수도 있다.For example, at least one compound selected from divalent tin chloride (SnCl 2 , 99.0%) and NH 4 VO 3 and at least one compound selected from sodium tungstate (Na 2 WO 4 ) and sodium molybdate (Na 2 MoO 4 ) Weighing to a proper molar ratio and dissolving in distilled water; Dissolving in distilled water to adjust the pH of the solution; heating the pH adjusted solution at a temperature of 50-250 ° C .; And drying the obtained slurry after centrifugation, heating in 100-800 ° C., vacuum or argon atmosphere.
또한 본 발명에 따른 가시광 응답형 광촉매 조성물은 이상과 같이 제조될 수 있는 상기 식 1로 표현되는 광촉매 화합물에 CuO, Fe2O3, NiOx, Pt, Co3O4, RuO2 및 탄소 중에서 선택된 1종 이상의 공촉매(Co-Catalyst)를 담지할 수도 있다. 이 경우 너무 많은 양이 담지되면 오히려 비표면적을 감소시키고 흡수되는 빛의 양을 감소시켜서 활성을 떨어지는 점을 고려하여 공촉매는 상기 식 (1)의 화합물에 대하여 0.1 ~ 5중량% 포함하는 것이 바람직하다. In addition, the visible light-responsive photocatalyst composition according to the
이상에서 설명한 본 발명에 따른 광촉매 조성물은 다양한 유해물질분해에 적용할 수 있다. 예를 들면, 페놀, 염료 등의 액상분해의 경우, 상기 분말을 포함하는 수용액을 준비하고 이에 형광등, 할로겐램프, 제논램프, 태양광 등 다양한 가시광선을 포함하는 빛 에너지를 가함으로써 페놀, 염료 등의 액상분해에 적용할 수 있다. The photocatalyst composition according to the present invention described above can be applied to various harmful substance decomposition. For example, in the case of liquid phase decomposition such as phenol and dye, by preparing an aqueous solution containing the powder and adding light energy including various visible rays such as fluorescent lamp, halogen lamp, xenon lamp, solar light, etc. It can be applied to the liquid phase decomposition of.
또한 본 발명에 따른 광촉매 조성물은 상기 분말을 포함하는 수용액의 형태 이외에도 기판에 코팅하는 방법을 사용할 수도 있으며, 아세트알데히드, 악취물질 등과 같은 기상분해의 경우 분말형태, 기판에 코팅하는 방법, 반응용기에 코팅하는 방법 등에도 사용할 수도 있다.In addition, the photocatalyst composition according to the present invention may use a method of coating on a substrate in addition to the form of an aqueous solution containing the powder. In the case of gas phase decomposition, such as acetaldehyde, odorous substances, etc. It can also be used for the method of coating.
본 발명에 의해 제조된 가시광 응답형 광촉매 조성물의 경우, 화학적으로 안정할 뿐만 아니라, 광촉매반응 전후에 전혀 변화가 없으며 액상 혹은 기상 유해물질 분해에 효과적으로 적용할 수 있는 장점이 있다.In the case of the visible light-responsive photocatalyst composition prepared by the present invention, not only is it chemically stable, but also there is no change before and after the photocatalytic reaction, and there is an advantage that it can be effectively applied to decomposition of liquid or gaseous harmful substances.
이하, 본 발명의 실시예로 더욱 상세히 설명하나, 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.Hereinafter, examples of the present invention will be described in more detail, but the scope of the present invention is not limited to these examples.
실시예 1~23 및 비교예 1Examples 1 to 23 and Comparative Example 1
하기에 기재된 [표 1]은 고상법을 이용하여 진공 또는 아르곤 분위기하에서 600℃에서 제조된 알파상의 밴드갭, 입자크기 및 분해효율을, [표 2]는 고상법을 이용하여 800℃에서 공기 중 quenching법을 이용하여 제조된 베타상의 밴드갭, 입자크기 및 분해효율을 나타낸다.Table 1 below shows the bandgap, particle size and decomposition efficiency of the alpha phase prepared at 600 ° C. under vacuum or argon atmosphere using the solid phase method, and [Table 2] at 800 ° C. in air using the solid phase method. It shows the band gap, particle size and decomposition efficiency of the beta phase prepared by quenching method.
본 실시예에서는 표 1 또는 표 2의 조성비대로 조성물을 제조하였으며, 그 제조 공정과 제조된 가시광 응답형 광촉매 물질의 액상 및 기상분해 특성평가 결과를 설명하면 아래와 같다. In the present embodiment, the composition was prepared according to the composition ratio of Table 1 or Table 2, and the liquid crystal and gas phase decomposition characteristics evaluation results of the manufacturing process and the prepared visible light-responsive photocatalyst material will be described below.
(1) 고상법(1) solid state law
표 1의 알파상의 경우, 출발물질로 순도 99.9 %의 주석산화물(SnO)과 바나듐산화물(V2O5) 중에서 선택된 하나이상과 텅스텐 산화물(WO3)과 몰리브데늄산화물(MoO3) 중에서 선택된 하나이상의 산화물을 표 1의 조성비가 되도록 칭량하고, 이를 폴리에틸렌 병에 무수에탄올과 분말의 무게비가 1 : 1이 되도록 넣은 다음, 원활한 혼합을 위해 분산제를 1 중량부 첨가한다. 이렇게 준비된 시료를 지르코니아 볼과 함께 12~24시간 동안 습식혼합(wet mixing) 하였다. 혼합된 슬러리를 오븐에서 100℃로 가열하여 용매를 제거한 후, 1차분쇄하고 알루미나 도가니에 담아서 쿼츠튜브 퍼니스에서 진공 또는 아르곤 분위기(5~10 sccm)에서 600~650℃에서 2시간 동안 하소한 후 로냉(분당 ~20도)하였다. In the alpha phase of Table 1, at least one selected from tin oxide (SnO) and vanadium oxide (V 2 O 5 ) having a purity of 99.9% and selected from tungsten oxide (WO 3 ) and molybdenum oxide (MoO 3 ). One or more oxides are weighed to the composition ratios of Table 1, and the weight ratio of anhydrous ethanol and powder is 1: 1 in a polyethylene bottle, and then 1 part by weight of a dispersant is added for smooth mixing. The sample thus prepared was wet mixed with zirconia balls for 12-24 hours. The mixed slurry was heated to 100 ° C. in an oven to remove the solvent, firstly pulverized and placed in an alumina crucible and calcined in a quartz tube furnace for 2 hours at 600-650 ° C. in a vacuum or argon atmosphere (5-10 sccm). Furnace cooling (˜20 degrees per minute).
표 2의 베타상의 경우, 상기 알파상의 경우와 동일하며 하소단계에서 진공 또는 아르곤 분위기(5~10 sccm)하에서 750~800도에서 2시간 동안 열처리 후 상온으로 급냉(분당 500도)하여 얻었다. In the case of the beta phase of Table 2, the same as the alpha phase was obtained by heat treatment at 750 ~ 800 degrees for 2 hours under vacuum or argon atmosphere (5 ~ 10 sccm) in the calcination step and then quenched to room temperature (500 degrees per minute).
필요한 경우 하소된 분말을 위의 혼합공정과 동일한 방식으로 1~24시간 분쇄(milling)할 수도 있다.If necessary, the calcined powder may be milled for 1 to 24 hours in the same manner as the above mixing process.
분쇄 후 100℃ 오븐에서 건조한 분말을 사용하여 광흡수특성 및 광촉매 분해 특성을 측정하였다. After pulverization, light absorption and photocatalytic decomposition characteristics were measured using a dry powder in an oven at 100 ° C.
(2) 액상법(2) Liquid phase method
출발물질로 주석염화물(SnCl2, 99.0%)과 암모늄바나데이트(NH4VO3, 99.9%)중에서 선택된 하나이상의 화합물과 소디움 텅스테이트(Na2WO4,99.9%)와 소디움 몰리브데이트(Na2MoO4,99.9%) 중에서 선택된 하나이상의 화합물을 표 1 또는 표 2의 조성비가되도록 칭량하여 증류수에 녹였다. 그 다음 증류수에 녹인 후 용액의 pH를 1몰의 NaOH용액 또는 암모니아용액을 이용하여 조절한 후, 수열합성기를 이용하여 50~250℃의 온도에서 1~24시간 동안 가열한 후, 원심분리,세척, 건조단계를 거쳐 분말을 얻었다. 필요한 경우 진공 또는 아르곤 분위기에서 200~500℃에서 재가열할 수도 있다.As starting materials, at least one compound selected from tin chloride (SnCl 2 , 99.0%) and ammonium vanadate (NH 4 VO 3 , 99.9%), sodium tungstate (Na 2 WO 4 , 99.9%) and sodium molybdate (Na 2 MoO 4, were weighed at least one compound selected from the group consisting of 99.9%) such that the composition ratio of Table 1 or Table 2 were dissolved in distilled water. After dissolving in distilled water, the pH of the solution was adjusted using 1 mol of NaOH or ammonia solution, and then heated at a temperature of 50-250 ° C. for 1 to 24 hours using a hydrothermal synthesizer, followed by centrifugation and washing. The powder was obtained through a drying step. If necessary, it may be reheated at 200 to 500 ° C. in a vacuum or argon atmosphere.
(3) 액상분해(3) liquid phase decomposition
상기 가시광 응답형 광촉매 분말 0.3g을 칭량하고, 쿼츠 글래스 용기(120 ml)에 Rhodamine B (47.9 μmol) 100ml 용액에 넣은 후 흡착/탈착 평형상태를 얻기 위해 어둠속에서 약 30분간 교반하였다. 그 후 100 와트 할로겐 램프 (Ushio) 2개와 420nm UV cut-off 필터를 사용하여 순수 가시광빛을 조사한 다음, 일정시간 간격으로 주사기를 사용하여 샘플링하고, 원심분리 등으로 용액속에 남아 있는 분말을 제거한 후 UV-vis spectroscopy로 분해정도를 측정하였다.0.3 g of the visible light responsive photocatalyst powder was weighed, placed in a 100 ml solution of Rhodamine B (47.9 μmol) in a quartz glass vessel (120 ml), and stirred for about 30 minutes in the dark to obtain an adsorption / desorption equilibrium. Then, irradiate pure visible light with two 100-watt halogen lamps (Ushio) and a 420nm UV cut-off filter, sample them with a syringe at regular intervals, remove the powder in the solution by centrifugation, etc. The degree of degradation was measured by UV-vis spectroscopy.
(4) 기상 분해(4) gas phase decomposition
기상분해를 위해 아크릴 재질의 박스(가로 10 cm, 세로 10 cm, 높이 10 cm)를 사용하고 생성된 가스(주로 CO2)가 새는 것을 방지하기 위해서 밀봉하고 빛을 조사하기 위해 한쪽 면을 쿼츠 글래스로 제작한 용기를 사용하였다. 그다음 아세트알데히드를 0.01cc를 주입한 후 빛을 조사하면서 생성된 CO2양을 가스크로마토그래피를 이용하여 정량화하였다. 분해효율(%)은 이론상 아세트할데히드가 100%분해되었을 때 생성되는 CO2양 대비 생성된 CO2양을 기준으로 계산되었다.An acrylic box (10 cm wide, 10 cm high and 10 cm high) is used for gas phase decomposition, and the quartz glass is sealed on one side to seal and irradiate light to prevent leakage of the gas (mainly CO 2 ). A vessel made of was used. Thereafter, 0.01 cc of acetaldehyde was injected, and the amount of CO 2 generated while irradiating light was quantified using gas chromatography. The decomposition efficiency (%) was theoretically calculated based on the amount of CO 2 produced compared to the amount of CO 2 produced when 100% of acetaldehyde was decomposed.
다음 표 1과 표2는 각각 고상법을 이용하여 제조한 분말의 밴드갭, 분말크기 및 광촉매 분해 특성을 보여준다.Table 1 and Table 2 show the bandgap, powder size and photocatalytic decomposition characteristics of the powder prepared by the solid phase method, respectively.
상기 표 1에서 알 수 있듯이, 크기가 0.5 마이크론인 상용의 WO3 가시광 광촉매와 그 특성을 비교했을 때, 상기 식 1로 표현되는 가시광 응답형 광촉매 분말들 모두 가시광(420nm이상) 조사시에 액상분해 및 기상분해에 높은 활성을 나타내었다. 특히, 베타상의 SnWO4가 Rhodamine B분해 및 아세트알데히드분해에서 가장 높은 분해효율을 나타내었다. 뿐만 아니라 소량(0.03 mol%)의 V또는 Mo가 치환되었을 경우 분해효율의 증가를 나타내었다. As can be seen from Table 1, when comparing the characteristics of the commercially available WO 3 visible light photocatalyst having a size of 0.5 micron with its properties, all of the visible light responsive photocatalyst powders represented by the
표 3의 경우 pt와 같은 공촉매를 담지할 경우 분해효율을 나타낸다. 결과적으로 공촉매를 담지할 경우 알파상과 베타상 모두 현저한 분해효율의 증가가 나타났다.Table 3 shows the decomposition efficiency when supporting a cocatalyst such as pt. As a result, when the cocatalyst was supported, the significant degradation efficiency of both alpha and beta phases was observed.
도 4의 경우 일반 가정에서 사용하는 형광등을 사용하여 광촉매 분해효율을 검증한 결과를 나타낸다. 도 4의 그래프에서 확인할 수 있는 바와 같이, 실내에서 사용하는 형광등하에서도 높은 분해효율을 나타내었다. 또한 본 발명에 따른 화합물의 경우 옅은 노란색(베타상)과 짙은 붉은색(알파상)을 나타내는데, 이러한 색을 이용하여 실내에서 다양한 응용 제품도 개발이 가능할 것이다. 따라서 본 발명에 따른 광촉매 화합물 또는 광촉매 조성물은 시각적인 측면과 기능적인 측면 모두를 고려할 때 기존의 광촉매 물질에 비해 성능이 매우 월등하다는 것을 알 수 있다.4 shows the results of verifying photocatalytic decomposition efficiency using a fluorescent lamp used in a general household. As can be seen in the graph of Figure 4, it showed a high decomposition efficiency even under fluorescent lamps used indoors. In addition, the compound according to the present invention exhibits a pale yellow (beta phase) and a deep red (alpha phase). By using such a color, various applications may be developed indoors. Therefore, it can be seen that the photocatalytic compound or photocatalyst composition according to the present invention is very superior in performance compared to conventional photocatalytic materials in consideration of both visual and functional aspects.
또한 본 발명에서 제조된 텅스테이트계 광촉매 화합물들은 밴드갭이 작아서 태양광을 효율적으로 이용할 수 있고, 액상분해 및 기상분해에 높은 활성을 나타내었으며, 따라서 가시광 응답형 광촉매 조성물로서 이용가치가 매우 높다. In addition, the tungstate-based photocatalyst compounds prepared in the present invention have a small bandgap, which can efficiently use sunlight, exhibit high activity in liquid phase decomposition and vapor phase decomposition, and thus have high value as a visible light responsive photocatalyst composition.
결론적으로, 본 발명은 태양광의 대부분을 차지하는 가시광선을 효율적으로 이용하기 위해 밴드갭이 2.6eV 이하로 작은 화합물을 사용하며, 페놀, 염료와 같은 액상유해물질 분해 및 아세트알데히드, 포름알데히드와 같은 기상유해물질 분해에 우수한 특성을 나타내고 또한 화학적으로 광촉매 반응 후 안정한 텅스테이트계 가시광 응답형 광촉매 조성물 및 이들의 제조방법 그리고 유해물질 분해 방법에 대한 발명으로 향후 여러 가지 환경문제 및 에너지 문제에 있어서 그 응용가능성을 제공하는데 큰 의의가 있다.In conclusion, the present invention uses a compound having a bandgap of less than 2.6 eV or less in order to efficiently use visible light, which occupies most of the sunlight, and decomposes liquid harmful substances such as phenol and dyes, and vapors such as acetaldehyde and formaldehyde. Tungstate-based visible light responsive photocatalyst compositions that exhibit excellent properties for the decomposition of harmful substances and are chemically photocatalytically reacted, methods for their preparation, and methods for decomposing hazardous substances are applicable to various environmental and energy problems in the future. There is great significance in providing this.
도 1은 태양광 및 실내에서 사용되는 일반적인 형광등의 빛 스펙트럼를 나타낸 그래프이다.1 is a graph showing the light spectrum of a typical fluorescent lamp used in sunlight and indoors.
도 2는 본 발명에 따른 광촉매 화합물 중 SnWO4의 알파상과 베타상의 할로겐 램프를 사용했을 때 로다민 B 염료의 분해효율을 나타내는 그래프이다.Figure 2 is a graph showing the decomposition efficiency of rhodamine B dye when using an alpha- and beta-phase halogen lamp of SnWO 4 of the photocatalyst compound according to the present invention.
도 3은 본 발명에 따른 광촉매 화합물 중 SnWO4의 알파상과 베타상의 형광등 램프를 사용했을 때 로다민 B 염료의 분해효율을 나타내는 그래프이다.3 is a graph showing the decomposition efficiency of rhodamine B dye when the alpha- and beta-phase fluorescent lamps of SnWO 4 of the photocatalytic compound according to the present invention are used.
도 4는 본 발명에 따른 광촉매 화합물 중 SnWO4의 알파상과 베타상의 광흡수특성 및 밴드갭 에너지크기를 나타내는 그래프이다.Figure 4 is a graph showing the light absorption characteristics and band gap energy size of the alpha and beta phase of SnWO 4 of the photocatalytic compound according to the present invention.
도 5는 고상법을 이용하여 제조된 분말의 FESEM사진이다: (a)α-SnWO4, (b)α-(Sn0.99V0.01)WO4, (c) α-Sn(W0.99Mo0.01)O4, (d) β-SnWO4, (e)β-(Sn0.99V0.01)WO4,(f)β-Sn(W0.99Mo0.01)O4. 5 is a FESEM photograph of a powder prepared using the solid phase method: (a) α-SnWO 4 , (b) α- (Sn 0.99 V 0.01 ) WO 4 , (c) α-Sn (W 0.99 Mo 0.01 ) O 4 , (d) β-SnWO 4 , (e) β- (Sn 0.99 V 0.01 ) WO 4 , (f) β-Sn (W 0.99 Mo 0.01 ) O 4.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090007164A KR100980322B1 (en) | 2009-01-29 | 2009-01-29 | Visible-light active oxide photocatalysts and synthesis methods thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090007164A KR100980322B1 (en) | 2009-01-29 | 2009-01-29 | Visible-light active oxide photocatalysts and synthesis methods thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100088032A KR20100088032A (en) | 2010-08-06 |
KR100980322B1 true KR100980322B1 (en) | 2010-09-07 |
Family
ID=42754366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090007164A KR100980322B1 (en) | 2009-01-29 | 2009-01-29 | Visible-light active oxide photocatalysts and synthesis methods thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100980322B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101538616B1 (en) * | 2013-09-13 | 2015-07-21 | 한국세라믹기술원 | Method for preparing co-doped vanadium dioxide with transition materials |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01218635A (en) * | 1988-02-29 | 1989-08-31 | Hitachi Ltd | Deodorizing agent, its manufacturing method, deodorizing method, deodorizing apparatus and refrigeration cycle apparatus with said deodorizing apparatus |
JP2003048715A (en) | 2001-05-28 | 2003-02-21 | Sumitomo Chem Co Ltd | Ceramics dispersion liquid and method for manufacturing the same |
KR20070082760A (en) * | 2006-02-17 | 2007-08-22 | 삼성전자주식회사 | MANUFACTURING METHOD OF TRANSITION METAL ION ADDED AND 10nm MEAN PARTICLE DIAMETER SIZED METAL OXIDE HAVING SEMICONDUCTOR CHARACTERISTIC, MATERIAL MANUFACTURED THEREBY, AND FILTER, FAN FILTER UNIT AND CLEAN ROOM SYSTEM HAVING THE SAME MATERIAL |
KR100867601B1 (en) | 2007-08-28 | 2008-11-10 | 한국과학기술원 | Method for synthesis of semiconductor oxide using by supercritical water |
-
2009
- 2009-01-29 KR KR1020090007164A patent/KR100980322B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01218635A (en) * | 1988-02-29 | 1989-08-31 | Hitachi Ltd | Deodorizing agent, its manufacturing method, deodorizing method, deodorizing apparatus and refrigeration cycle apparatus with said deodorizing apparatus |
JP2003048715A (en) | 2001-05-28 | 2003-02-21 | Sumitomo Chem Co Ltd | Ceramics dispersion liquid and method for manufacturing the same |
KR20070082760A (en) * | 2006-02-17 | 2007-08-22 | 삼성전자주식회사 | MANUFACTURING METHOD OF TRANSITION METAL ION ADDED AND 10nm MEAN PARTICLE DIAMETER SIZED METAL OXIDE HAVING SEMICONDUCTOR CHARACTERISTIC, MATERIAL MANUFACTURED THEREBY, AND FILTER, FAN FILTER UNIT AND CLEAN ROOM SYSTEM HAVING THE SAME MATERIAL |
KR100867601B1 (en) | 2007-08-28 | 2008-11-10 | 한국과학기술원 | Method for synthesis of semiconductor oxide using by supercritical water |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101538616B1 (en) * | 2013-09-13 | 2015-07-21 | 한국세라믹기술원 | Method for preparing co-doped vanadium dioxide with transition materials |
Also Published As
Publication number | Publication date |
---|---|
KR20100088032A (en) | 2010-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100945035B1 (en) | Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof | |
Robert | Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications | |
Anandan et al. | An overview of semi-conductor photocatalysis: modification of TiO2 nanomaterials | |
TWI476043B (en) | Photocatalytic materials and process for producing the same | |
Alagarasi et al. | Solar-light driven photocatalytic activity of mesoporous nanocrystalline TiO2, SnO2, and TiO2-SnO2 composites | |
Saqlain et al. | Visible light-responsive Fe-loaded TiO2 photocatalysts for total oxidation of acetaldehyde: Fundamental studies towards large-scale production and applications | |
JPWO2006064799A1 (en) | Composite metal oxide photocatalyst with visible light response | |
CN102380366B (en) | Bismuth and silicon doped nano titanium dioxide photocatalyst, preparation and application thereof | |
Zhang et al. | Photocatalytic degradation of methylene blue by ZnGa2O4 thin films | |
CN102824921A (en) | Preparation method of Ag2S/Ag3PO4 composite photocatalyst | |
Sun et al. | Photocatalytic degradation of gaseous o-xylene over M-TiO 2 (M= Ag, Fe, Cu, Co) in different humidity levels under visible-light irradiation: activity and kinetic study | |
Zhao et al. | Recent progress on mixed-anion type visible-light induced photocatalysts | |
US20070082807A1 (en) | Visible light responsive complex oxide photocatalyst and method of using the same to decompose and eliminate harmful chemical substance | |
CN104226340A (en) | Preparation method of visible-light nano composite photocatalyst AgCl-SnO2 | |
CN101690891B (en) | Synthetic method of visible light catalyst SnWO4 | |
Alhaddad et al. | Fabrication of novel neodymium oxide coupled mesoporous titania for effective visible light-induced photocatalyst for decomposition of Ciprofloxacin | |
Li et al. | Persistent luminescence assisted photocatalytic properties of CaAl2O4:(Eu, Nd)/TiO2− xNy and Sr4Al14O25:(Eu, Dy)/TiO2− xNy | |
Casillas et al. | Coupled Al-Ga-xAg composites prepared by the sol–gel method and their efficient photocatalytic performance in the degradation of diclofenac | |
JP3870267B2 (en) | Bismuth complex oxide visible light responsive photocatalyst of alkali metal and Ag and method for decomposing and removing harmful chemicals using the same | |
KR100980322B1 (en) | Visible-light active oxide photocatalysts and synthesis methods thereof | |
CN115155624B (en) | Heterojunction composite material for removing aldehyde through visible light catalysis, preparation method of heterojunction composite material and method for degrading VOCs through visible light catalysis | |
JPWO2007097220A1 (en) | Visible light responsive photocatalyst | |
Yeasmin et al. | Synthesis, characterization and efficiency of HAp-TiO2-ZnO composite as a promising photocatalytic material | |
CN110180557A (en) | A kind of Ag2S/TiO2The preparation method and applications of composite photo-catalyst | |
JP3834625B2 (en) | Indium barium composite oxide visible light responsive photocatalyst, method for producing hydrogen using this photocatalyst, and method for decomposing harmful chemical substances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130816 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20140722 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20150730 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20160212 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20170724 Year of fee payment: 8 |