KR100975898B1 - Ether-substituted imidazolium type zwitterion and electrolyte for lithium battery comprising the same - Google Patents

Ether-substituted imidazolium type zwitterion and electrolyte for lithium battery comprising the same Download PDF

Info

Publication number
KR100975898B1
KR100975898B1 KR1020080006177A KR20080006177A KR100975898B1 KR 100975898 B1 KR100975898 B1 KR 100975898B1 KR 1020080006177 A KR1020080006177 A KR 1020080006177A KR 20080006177 A KR20080006177 A KR 20080006177A KR 100975898 B1 KR100975898 B1 KR 100975898B1
Authority
KR
South Korea
Prior art keywords
lithium
secondary battery
imidazolium
lithium secondary
group
Prior art date
Application number
KR1020080006177A
Other languages
Korean (ko)
Other versions
KR20090080298A (en
Inventor
김훈식
이제승
정민석
배현우
전은희
이현주
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020080006177A priority Critical patent/KR100975898B1/en
Publication of KR20090080298A publication Critical patent/KR20090080298A/en
Application granted granted Critical
Publication of KR100975898B1 publication Critical patent/KR100975898B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 에테르기 및 설포네이트기가 치환된 이미다졸륨계 양쪽성 이온, 이의 제조방법, 이를 함유하는 전해질 조성물 및 상기 전해질 조성물을 포함하는 리튬 이차전지에 관한 것이다. 본 발명의 에테르기 및 설포네이트기가 치환된 이미다졸륨계 양쪽성 이온을 첨가제로 함유하는 리튬 이차전지용 전해질 조성물은 전기화학적 안정성 및 충방전 성능이 현저히 우수하다. The present invention relates to an imidazolium-based amphoteric ion in which an ether group and a sulfonate group are substituted, a method for preparing the same, an electrolyte composition containing the same, and a lithium secondary battery including the electrolyte composition. The electrolyte composition for a lithium secondary battery containing an imidazolium-based amphoteric ion substituted with an ether group and a sulfonate group of the present invention as an additive is remarkably excellent in electrochemical stability and charge / discharge performance.

리튬 이차전지, 전해질, 첨가제, 이미다졸륨계 양쪽성 이온 Lithium secondary battery, electrolyte, additive, imidazolium-based amphoteric ion

Description

에테르기가 치환된 이미다졸륨계 양쪽성 이온 및 그를 포함하는 리튬 이차전지용 전해질 조성물{ETHER-SUBSTITUTED IMIDAZOLIUM TYPE ZWITTERION AND ELECTROLYTE FOR LITHIUM BATTERY COMPRISING THE SAME} Imidazolium-based amphoteric ion substituted with an ether group, and an electrolyte composition for a lithium secondary battery comprising the same {ETHER-SUBSTITUTED IMIDAZOLIUM Type

본 발명은 에테르기 및 설포네이트기가 치환된 이미다졸륨계 양쪽성 이온, 이의 제조방법, 이를 함유하는 전해질 조성물 및 상기 전해질 조성물을 포함하는 리튬 이차전지에 관한 것이다. 보다 구체적으로, 본 발명은 C-2 위치에 에테르기가 도입된 이미다졸륨계 설폰화된 양쪽성 이온, 이의 제조방법, 이를 함유하는 전기화학적 안정성 및 리튬 이차전지의 충방전 성능이 현저히 우수한 전해질 조성물 및 상기 전해질 조성물을 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to an imidazolium-based amphoteric ion in which an ether group and a sulfonate group are substituted, a method for preparing the same, an electrolyte composition containing the same, and a lithium secondary battery including the electrolyte composition. More specifically, the present invention provides an imidazolium sulfonated amphoteric ion having an ether group introduced at the C-2 position, a method for preparing the same, an electrolyte composition having excellent electrochemical stability, and a charge / discharge performance of a lithium secondary battery. It relates to a lithium secondary battery comprising the electrolyte composition.

전지는 화학물질의 산화-환원 반응을 통해 화학에너지를 전기에너지로 변환시키는 장치로서, 그 사용 특성에 따라 비가역 반응으로 내부 에너지가 고갈되면 폐기해야 하는 일차전지(primary battery)와 지속적인 충전 및 방전을 통하여 재사용이 가능한 이차전지(secondry battery)로 구분할 수 있다. 최근 전자, 통신 및 컴퓨터 산업 등의 급속한 발전으로 캠코더, 휴대폰 및 노트북 컴퓨터 등 휴대용 전자제품의 사용이 일반화됨에 따라, 기기의 소형, 경량화 및 고기능화에 대한 관심 및 수요가 증대되고 있어 이러한 수요에 상응하여 많은 연구가 이루어지고 있다. 현재 상용화되어 시판되고 있는 고성능 이차전지 중에서는 리튬이온 전지가 가장 최근에 개발된 전지이다. 리튬이온 전지는 높은 에너지 밀도, 급속 충방전 특성, 싸이클 성능이 우수하여, 핸드폰이나 노트북 컴퓨터 배터리 등으로 급속하게 그 시장을 확대하여 가고 있다.A battery is a device that converts chemical energy into electrical energy through oxidation-reduction reactions of chemical substances.It is a primary battery that must be discarded when internal energy is depleted due to irreversible reaction according to its use characteristics. It can be divided into a rechargeable secondary battery. Recently, due to the rapid development of the electronics, telecommunications, and computer industries, the use of portable electronic products such as camcorders, mobile phones, and notebook computers has become common, and the interest and demand for miniaturization, light weight, and high functionality of devices have increased. Much research is being done. Among the high-performance secondary batteries currently commercially available and commercially available, lithium ion batteries are the most recently developed batteries. Li-ion batteries have high energy density, rapid charge and discharge characteristics, and excellent cycle performance, and are rapidly expanding their markets to mobile phones and notebook computer batteries.

리튬 이차전지의 전해질 용액은 용매와 리튬염으로 구성되며, 경우에 따라서는 전지의 특성을 향상시키거나 문제점을 개선하기 위해 첨가제를 추가한다. 현재 용매로는 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 디메틸카보네이트(DMC), 에틸메틸카보네이트(EMC), 디에틸카보네이트(DEC) 등의 환형 또는 사슬형 카보네이트를 혼합한 비양성자성 혼합 유기용매가 널리 사용되며, 리튬염으로는 리튬헥사플루오로포스페이트(LiPF6), 리튬테트라플루오로보레이트(LiBF4), 과염소산리튬(LiClO4), 리튬비스(트리플루오로메탄설포닐)이미드(LiN(SO2CF3)2), 리튬비스(퍼플루오로에탄설포닐)이미드(LiN(SO2CF2CF3)2) 등이 일반적으로 사용되고 있다. The electrolyte solution of the lithium secondary battery is composed of a solvent and a lithium salt, and in some cases, additives are added to improve the characteristics of the battery or to improve the problem. As a solvent, an aprotic mixed organic compound containing cyclic or chain carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and diethyl carbonate (DEC) Solvents are widely used, and lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), and lithium bis (trifluoromethanesulfonyl) imide ( LiN (SO 2 CF 3 ) 2 ), lithium bis (perfluoroethanesulfonyl) imide (LiN (SO 2 CF 2 CF 3 ) 2 ), and the like are generally used.

리튬 이차전지의 초기 충전 시 전해질 내의 리튬이온은 환원되어 음극인 탄소전극 사이에 삽입이 되며, 양극인 리튬금속 산화물은 전해액에 용해되어 전해질의 리튬이온 농도를 유지한다. 이 과정에서 리튬이온과 유기용매 또는 리튬염의 음이온 등이 일부 분해되며 탄소전극 표면위에 얇은 고체 전해질 계면(solid electrolyte interface: SEI) 피막을 형성하게 되는데, 이 SEI 피막은 탄소전극 표면에 리튬이온의 원활한 이동을 도와주는 일종의 통로역할을 하며, 리튬이온에 비해 분자량이 큰 유기용매 등이 탄소전극 사이에 삽입되며 전극구조를 파괴하는 것을 방지해 주는 역할을 한다. 따라서 전지의 초기 충전 시 음극 표면에 형성되는 SEI 피막의 성분 및 구조가 전지의 안정성 및 충방전 특성에 큰 영향을 미치게 된다. 즉, SEI 피막이 과량 생성되면 리튬이온의 통로를 막아 충방전이 원활하지 못해 전지성능을 저하시킬 수 있다. 반면에 SEI 피막이 안정적으로 형성되지 못하면 유기용매가 탄소전극에 과량 유입되어 유기용매의 추가적 분해를 촉진시키거나 전극이 팽윤되는 등의 문제가 발생하게 된다. 따라서 고성능 이차전지를 구현하기 위해서 유기용매 보다 낮은 전위에서 먼저 분해하여 안정한 SEI 피막을 형성할 수 있는 기능성 첨가제의 개발이 절실히 요구되어 왔다.During initial charging of the lithium secondary battery, lithium ions in the electrolyte are reduced and inserted between the carbon electrodes as the negative electrodes, and lithium metal oxides as the positive electrodes are dissolved in the electrolyte to maintain the lithium ion concentration of the electrolyte. In this process, lithium ions and organic solvents or anions of lithium salts are partially decomposed and a thin solid electrolyte interface (SEI) film is formed on the surface of the carbon electrode. It serves as a kind of passage to help the movement, and the organic solvent, which has a higher molecular weight than lithium ions, is inserted between the carbon electrodes and prevents the electrode structure from being destroyed. Therefore, the components and structure of the SEI film formed on the surface of the negative electrode during initial charging of the battery have a great influence on the stability and charge / discharge characteristics of the battery. That is, when the SEI film is excessively generated, it may block the passage of lithium ions and thus may not smoothly charge and discharge the battery, thereby reducing battery performance. On the other hand, if the SEI film is not formed stably, the organic solvent may be excessively introduced into the carbon electrode to promote further decomposition of the organic solvent or to swell the electrode. Therefore, in order to implement a high performance secondary battery, development of a functional additive capable of forming a stable SEI film by dissolving at a lower potential than an organic solvent first has been urgently required.

탄소전극 표면에 SEI를 형성하는 것으로 알려진 유기용매로는 EC, 비닐카보네이트(VC), DMC, EMC 등이 있으며, 유기용매의 환원 분해반응으로 인한 전지 성능의 저하를 최소화하기 위하여, 전해액에 이산화탄소 (일본 특허공개 평7-176323), 설파이드계 화합물 (일본 특허공개 평7-320779), 비닐 에스테르계 화합물 (대한민국 특허 제10-0412527호), 과불소화 설폰 및 디비닐 설폰 (대한민국 특허 제10-0485901호), 비닐 실레인계 및 보레이트계 화합물 (대한민국 특허 제10-0736909호) 등을 첨가제로 부가하는 방법이 제시된 바 있다.Organic solvents known to form SEI on the surface of the carbon electrode include EC, vinyl carbonate (VC), DMC, EMC, and the like. In order to minimize deterioration of battery performance due to reduction decomposition reaction of organic solvent, Japanese Patent Laid-Open No. 7-176323), sulfide compound (Japanese Patent Laid-Open No. 7-320779), vinyl ester compound (Korean Patent No. 10-0412527), perfluorinated sulfone and divinyl sulfone (Korean Patent No. 10-0485901 No.), vinyl silane-based and borate-based compound (Korean Patent No. 10-0736909) and the like has been proposed a method of adding as an additive.

최근에는 비휘발성, 비가연성 및 높은 이온전도도 등의 뛰어난 물성으로 인해 이온성 액체(ionic liquid)를 이차전지용 전해질의 첨가제로 이용하고자 하는 연구가 활발히 진행되어 왔다. 특히 이미다졸륨계 이온성 액체에 대한 연구가 가장 광범위하게 진행되어져 왔다. 그러나 이미다졸륨은 C-2 위치의 양성자가 비교적 쉽게 해리되어 전극 표면에서 부반응이 일어날 수 있음이 보고된 이후, 이를 극복하기 위한 일환으로 C-2 위치에 알킬기가 치환된 이미다졸륨에 대한 연구가 이루어져 왔으나, 유기용매에 비해 상대적으로 높은 점도로 인한 이온전도도의 저하 등의 문제로 인해 전지에 대한 응용 예는 그리 많지 않다.Recently, due to the excellent properties such as non-volatile, non-flammable and high ionic conductivity, research has been actively conducted to use an ionic liquid as an additive for a secondary battery electrolyte. In particular, research on imidazolium-based ionic liquids has been most extensively conducted. However, since imidazolium has been reported to dissociate protons at the C-2 position relatively easily and cause side reactions on the electrode surface, studies on imidazolium substituted with an alkyl group at the C-2 position to overcome this problem. Although has been made, due to problems such as a decrease in the ionic conductivity due to the relatively high viscosity compared to the organic solvent, there are not many applications for the battery.

한편, 호주 모나쉬 대학의 맥파레인(McFarlane) 등은 프로판설포네이트가 치환된 피롤리디늄 구조의 양쪽성 이온(zwitterion) 화합물의 리튬염 용액 내에서의 전기화학적 안정성에 대한 연구를 보고한 바 있다 (Advanced Materials 2005, 17, 2497; WO 2006/017898). Meanwhile, McFarlane et al. At the University of Monash, Australia, reported a study on the electrochemical stability of lithium salt solution of zwitterion compound of pyrrolidinium structure substituted with propanesulfonate. (Advanced Materials 2005, 17, 2497; WO 2006/017898).

이와 같이 소량의 유기 또는 무기물을 첨가제로 사용함으로써 초기 충전 시 안정한 SEI 피막을 형성하여 이차전지의 충방전 성능을 향상시키기 위한 노력이 진행되어 왔으나, 첨가되는 화합물의 특성에 따라 오히려 비가역 용량을 증가시키거나 음극인 탄소전극과 반응하여 분해되거나 불안정한 피막을 형성하는 등 아직 개선해야 할 여지가 많이 존재하였다. 특히 이러한 경향은 고온이나 고율의 충방전 시 보다 심하게 나타났다.Efforts have been made to improve the charging and discharging performance of secondary batteries by forming a stable SEI film during initial charging by using a small amount of an organic or inorganic material as an additive. However, the irreversible capacity may be increased depending on the characteristics of the added compound. There is still much room for improvement, such as forming a decomposed or unstable film by reacting with a carbon electrode, which is a cathode or a cathode. In particular, this tendency was more severe at high temperatures and at high rates of charge and discharge.

상기와 같은 문제점을 해결하기 위하여, 본 발명자들은 리튬 이차전지의 충 방전 시 탄소 음전극에의 원활한 리튬이온의 이동성과 유기용매의 삽입 및 반응에 의한 전지성능 저하를 개선하기 위하여, 탄소 음전극 표면에 안정적인 SEI 피막 형성에 도움이 되는 새로운 첨가제를 개발하기 위하여 연구하던 중, 이미다졸륨계 양쪽성 이온의 전기화학적 안정성을 향상시키기 위하여 C-2 위치에 에테르 작용기를 도입한 결과, 기존 이미다졸륨계 양쪽성 이온에 비해 현저히 향상된 전기화학적 안정성 및 리튬 이차전지의 충방전 성능을 보임을 확인하고 본 발명을 완성하게 되었다.In order to solve the above problems, the present inventors are stable on the surface of the carbon negative electrode to improve the mobility of lithium ions to the carbon negative electrode during the charge and discharge of the lithium secondary battery and to reduce the battery performance by the insertion and reaction of the organic solvent While investigating to develop a new additive to help form the SEI film, an ether functional group was introduced at the C-2 position to improve the electrochemical stability of the imidazolium-based amphoteric ion. Compared to the significantly improved electrochemical stability and charging and discharging performance of the lithium secondary battery was confirmed to complete the present invention.

따라서, 본 발명의 목적은 열적 및 전기화학적으로 안정한, 에테르기와 설포네이트기가 치환된 이미다졸륨계 양쪽성 이온을 제공하는 것이다.Accordingly, it is an object of the present invention to provide imidazolium-based amphoteric ions substituted with ether and sulfonate groups which are thermally and electrochemically stable.

본 발명의 다른 목적은 상기 양쪽성 이온을 용이하고 경제적으로 제조하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for easily and economically preparing the zwitterions.

본 발명의 또 다른 목적은 상기 양쪽성 이온를 첨가제로서 함유하는 전해질 조성물을 제공하는 것이다. Another object of the present invention is to provide an electrolyte composition containing the zwitterion as an additive.

본 발명의 또 다른 목적은 상기 전해질 조성물을 포함하는 리튬 이차전지를 제공하는 것이다.Still another object of the present invention is to provide a lithium secondary battery including the electrolyte composition.

본 발명은 리튬 이차전지용 전해질의 첨가제로서 사용될 수 있는, 화학식 1로 표시되는 에테르기와 설포네이트기가 치환된 이미다졸륨계 양쪽성 이온에 관한 것이다.The present invention relates to imidazolium-based amphoteric ions substituted with an ether group and a sulfonate group represented by the formula (1), which can be used as an additive of an electrolyte for a lithium secondary battery.

[화학식 1][Formula 1]

Figure 112008004861360-pat00001
Figure 112008004861360-pat00001

상기 식에서, Where

n은 3 또는 4인 정수이고,n is an integer of 3 or 4,

m은 1 또는 2인 정수이며,m is an integer of 1 or 2,

R1 및 R2 각각 독립적으로 C1-C6의 알킬기 또는 C1-C6의 알케닐기이다. R 1 And R 2 is Each independently is an alkenyl group of C 1 -C 6 alkyl group or a C 1 -C 6.

바람직하게는, n은 3이고, m은 1이며, R1 및 R2 각각 독립적으로 C1-C6의 알킬기이다. 보다 바람직하게는, R1은 메틸, 에틸, 프로필 또는 부틸, 가장 바람직하게는 메틸이고, R2는 부틸이다. Preferably, n is 3, m is 1 and R 1 And R 2 is Each independently represents an alkyl group of C 1 -C 6 . More preferably, R 1 is methyl, ethyl, propyl or butyl, most preferably methyl and R 2 is butyl.

본 명세서에서, C1-C6의 알킬기는 탄소수 1 내지 6개로 구성된 직쇄형 또는 분지형 탄화수소를 의미하며, 예를 들어 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실 등이 포함되나 이에 한정되는 것은 아니다.In the present specification, an alkyl group of C 1 -C 6 means a straight or branched hydrocarbon having 1 to 6 carbon atoms, and examples include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, and the like. no.

또한, C1-C6의 알케닐기는 탄소수 1 내지 6개로 구성된 직쇄형 또는 분지형의 이중결합을 가지는 불포화 탄화수소를 의미하며, 예를 들어 에틸렌일, 프로필렌 일, 부틸렌일 등이 포함되나 이에 한정되는 것은 아니다. In addition, an alkenyl group of C 1 -C 6 means an unsaturated hydrocarbon having a straight or branched double bond composed of 1 to 6 carbon atoms, and includes, for example, ethyleneyl, propyleneyl, butyleneyl, and the like. It doesn't happen.

한편으로, 본 발명은 상기 화학식 1로 표시되는 에테르기와 설포네이트기가 치환된 이미다졸륨계 양쪽성 이온의 제조방법에 관한 것이다. 보다 구체적으로, 본 발명은 On the other hand, the present invention relates to a method for producing an imidazolium-based amphoteric ion in which the ether group and sulfonate group represented by Chemical Formula 1 are substituted. More specifically, the present invention

(i) 하기 반응식 1에서와 같이, 이미다졸과 파라포름알데히드를 반응시켜 2-히드록시알킬이미다졸을 수득하고, 이를 염기 존재하에 알킬 할라이드 또는 알케닐 할라이드와 반응시켜 에테르기가 치환된 이미다졸을 수득하는 단계; 및(i) As shown in Scheme 1, imidazole and paraformaldehyde are reacted to obtain 2-hydroxyalkylimidazole, which is reacted with alkyl halide or alkenyl halide in the presence of a base to convert ether group to imidazole. Obtaining; And

(ii) 하기 반응식 2에서와 같이, 상기 단계 (i)에서 수득한 에테르기가 치환된 이미다졸을 1,3-프로판설톤 또는 1,4-부탄설톤과 반응시키는 단계를 포함하는 상기 화학식 1로 표시되는 양쪽성 이온의 제조방법에 관한 것이다. (ii) represented by the formula (1) comprising reacting the imidazole substituted with the ether group obtained in step (i) with 1,3-propanesultone or 1,4-butanesultone, as shown in Scheme 2 below It relates to a method for producing amphoteric ions.

[반응식 1]Scheme 1

Figure 112008004861360-pat00002
Figure 112008004861360-pat00002

[반응식 2]Scheme 2

Figure 112008004861360-pat00003
Figure 112008004861360-pat00003

상기 식에서, Where

n은 3 또는 4인 정수이고,n is an integer of 3 or 4,

m은 1 또는 2인 정수이며,m is an integer of 1 or 2,

R1 및 R2 각각 독립적으로 C1-C6의 알킬기 또는 C1-C6의 알케닐기이고, R 1 And R 2 is Each independently is an alkenyl group of C 1 -C 6 alkyl group or a C 1 -C 6,

R3는 수소 또는 메틸기이며,R 3 is hydrogen or a methyl group,

X는 할로겐이다. X is halogen.

또 다른 한편으로, 본 발명은 상기 화학식 1로 표시되는 에테르기와 설포네이트기가 치환된 이미다졸륨계 양쪽성 이온, 리튬염 및 유기용매를 포함하는 리튬 이차전지용 전해질 조성물에 관한 것이다.On the other hand, the present invention relates to an electrolyte composition for a lithium secondary battery comprising an imidazolium-based amphoteric ion, a lithium salt, and an organic solvent in which the ether group and sulfonate group represented by Chemical Formula 1 are substituted.

상기 화학식 1로 표시되는 양쪽성 이온의 함량은 전해질 조성물 총 중량에 대하여 1 ~ 15 중량%인 것이 바람직하며, 1 ~ 5 중량%가 보다 바람직하다.The amphoteric ion represented by Formula 1 is preferably 1 to 15% by weight, more preferably 1 to 5% by weight based on the total weight of the electrolyte composition.

상기 리튬염으로는, 리튬 이차전지에 통상적으로 사용되는 리튬염, 예를 들어 리튬니트레이트, 과염소산리튬, 리튬아세테이트, 리튬트리플루오로아세테이트, 리튬트리플레이트, 리튬비스(트리플루오로메탄설포닐)이미드, 리튬비스(퍼플루오로에탄설포닐)이미드, 리튬테트라플루오로보레이트 또는 리튬헥사플루오로포스페이트가 사용될 수 있다. 리튬염의 함량은 전해질 조성물 총 중량에 대하여 5 ~ 30 중량%인 것이 바람직하며, 10 ~ 20 중량%가 보다 바람직하다.Examples of the lithium salts include lithium salts commonly used in lithium secondary batteries, such as lithium nitrate, lithium perchlorate, lithium acetate, lithium trifluoroacetate, lithium triplate, and lithium bis (trifluoromethanesulfonyl). Imides, lithiumbis (perfluoroethanesulfonyl) imide, lithiumtetrafluoroborate or lithium hexafluorophosphate may be used. The content of the lithium salt is preferably 5 to 30% by weight, more preferably 10 to 20% by weight based on the total weight of the electrolyte composition.

상기 유기용매로는, 리튬 이차전지에 통상적으로 사용되는 유기용매, 예를 들어 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트, 에틸아세테이트, 아세톤, 아세토니트릴, 감마-부티로락톤, 테트라히드로퓨란, 1,4-디옥산(dioxane), 2-메틸테트라히드로퓨란, 디메틸설폭시드, 설포란(sulforane), 1-메틸피롤리돈, N,N-디메틸포름아미드, 디메톡시에탄, 디글림(diglyme), 트리글림(triglyme) 및 테트라글림(tetraglyme)으로 구성되는 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물을 사용할 수 있다. 상기 유기용매의 함량은 전해질 조성물 총 중량에 대하여 50 ~ 95 중량% 인 것이 바람직하다.As the organic solvent, organic solvents commonly used in lithium secondary batteries, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl acetate, acetone, acetonitrile, gamma-butyrolactone, tetrahydrofuran, 1,4 -Dioxane, 2-methyltetrahydrofuran, dimethylsulfoxide, sulfolane, 1-methylpyrrolidone, N, N-dimethylformamide, dimethoxyethane, diglyme, tree Any one or a mixture of two or more selected from the group consisting of triglyme and tetraglyme can be used. The content of the organic solvent is preferably 50 to 95% by weight based on the total weight of the electrolyte composition.

본 발명의 전해질 조성물은 상기 화학식 1로 표시되는 양쪽성 이온, 리튬염 및 유기용매와 함께 이온성 액체를 추가로 포함할 수 있다.The electrolyte composition of the present invention may further include an ionic liquid together with the zwitterion ion, the lithium salt, and the organic solvent represented by Chemical Formula 1.

상기 이온성 액체는, 리튬 이차전지에 통상적으로 사용되는 이온성 액체, 예를 들어 피롤리디늄, 이미다졸륨, 피페리디늄, 피리디늄, 암모늄 및 몰폴리늄으로 구성되는 군으로부터 선택된 적어도 어느 하나를 사용할 수 있다. 상기 이온성 액체의 함량은 전해질 조성물 총 중량에 대하여 10 ~ 50 중량% 인 것이 바람직하다.The ionic liquid is at least one selected from the group consisting of ionic liquids commonly used in lithium secondary batteries, for example, pyrrolidinium, imidazolium, piperidinium, pyridinium, ammonium and morpholinium Can be used. The content of the ionic liquid is preferably 10 to 50% by weight based on the total weight of the electrolyte composition.

또한, 본 발명의 전해질 조성물은 전해질의 기계적 강도 및 전극과의 계면 성능 등을 향상시키기 위하여 접착성 개선제, 충진제 등과 같은 각종 첨가제를 추가로 포함할 수 있다.In addition, the electrolyte composition of the present invention may further include various additives such as an adhesion improving agent, a filler, etc. in order to improve the mechanical strength of the electrolyte and the interface performance with the electrode.

또 다른 한편으로, 본 발명은 상기 전해질 조성물을 포함하는 것을 특징으로 하는 리튬 이차전지에 관한 것이다. On the other hand, the present invention relates to a lithium secondary battery comprising the electrolyte composition.

본 발명에 따른 에테르기 및 설포네이트기가 치환된 이미다졸륨계 양쪽성 이온은 높은 열적 및 전기화학적 안정성을 가지며, 이를 첨가제로 함유하는 리튬 이차전지용 전해질 조성물은 종래의 이미다졸륨 계열의 양쪽성 이온보다 높은 전기화학적 안정성 및 향상된 충방전 성능을 나타낸다. The imidazolium-based amphoteric ion in which the ether group and the sulfonate group are substituted according to the present invention has high thermal and electrochemical stability, and the electrolyte composition for a lithium secondary battery containing the additive as an additive is more effective than the conventional High electrochemical stability and improved charge / discharge performance.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다. Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it is obvious to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예Example 1: 2- 1: 2- 히드록시메틸Hydroxymethyl -1--One- 메틸이미다졸의Methylimidazole 제조 Produce

스텐레스 고압반응기에 1-메틸이미다졸 15.0 g (0.183 몰)과 파라포름알데히드 9.0 g (0.3 몰)를 아세토니트릴 50 mL와 함께 넣고, 120 oC에서 12 시간 동안 반응시켜 노란색의 액체를 얻었다. 반응용매를 감압하에서 제거하여 얻어진 흰색 고체를 에탄올에 녹여 저온에서 재결정하였다 (수율 75%).In a stainless autoclave, 15.0 g (0.183 mol) of 1-methylimidazole and 9.0 g (0.3 mol) of paraformaldehyde were added together with 50 mL of acetonitrile and reacted at 120 ° C. for 12 hours to obtain a yellow liquid. The white solid obtained by removing the reaction solvent under reduced pressure was dissolved in ethanol and recrystallized at low temperature (yield 75%).

1H NMR (400 MHz, DMSO-d 6 , 25oC): δ (ppm) = 7.06 (d, 1H, CHN), 7.50 (d, 1H, CHN), 5.25 (s, 1H, OH), 4.46 (d, 2H, CH2O), 3.64 (s, 3H, CH3). 1 H NMR (400 MHz, DMSO- d 6 , 25 o C): δ (ppm) = 7.06 (d, 1H, CHN), 7.50 (d, 1H, CHN), 5.25 (s, 1H, OH), 4.46 (d, 2H, CH 2 O), 3.64 (s, 3H, CH 3 ).

실시예Example 2: 2- 2: 2- 히드록시에틸Hydroxyethyl -1--One- 메틸이미다졸의Methylimidazole 제조 Produce

스텐레스 고압반응기에 1,2-디메틸이미다졸 8.79 g (0.09 몰)과 파라포름알데히드 9.0 g (0.3 몰)를 아세토니트릴/DMSO (4/1) 혼합액 50 mL와 함께 넣고, 120 oC에서 12 시간 동안 반응시켜 노란색의 액체를 얻었다. 반응용매를 감압하에서 제거하여 얻어진 흰색 고체를 THF에 녹여 저온에서 재결정하였다 (수율 60%). In a stainless autoclave, 8.79 g (0.09 mole) of 1,2-dimethylimidazole and 9.0 g (0.3 mole) of paraformaldehyde were added together with 50 mL of acetonitrile / DMSO (4/1) mixture, and 12 at 120 o C. The reaction was carried out for a time to obtain a yellow liquid. The reaction solvent was removed under reduced pressure, and the white solid obtained was dissolved in THF and recrystallized at low temperature (yield 60%).

1H NMR (400 MHz, DMSO-d 6 , 25oC): δ (ppm) = 6.84 (d, 1H, CHN), 6.73 (d, 1H, CHN), 3.96 (t, 2H, CH2O), 3.80 (s, 1H, OH), 3.50 (s, 3H, CH3), 2.76 (t, 2H, CH2C). 1 H NMR (400 MHz, DMSO- d 6 , 25 o C): δ (ppm) = 6.84 (d, 1H, CHN), 6.73 (d, 1H, CHN), 3.96 (t, 2H, CH 2 O) , 3.80 (s, 1H, OH), 3.50 (s, 3H, CH 3 ), 2.76 (t, 2H, CH 2 C).

실시예Example 3: 1-부틸-2- 3: 1-butyl-2- 히드록시메틸이미다졸의Of hydroxymethylimidazole 제조 Produce

스텐레스 고압반응기에 1-부틸이미다졸 15.14 g (0.12 몰)과 파라포름알데히드 6.0 g(0.2 몰)를 DMSO 50 mL와 함께 넣고, 120 oC에서 12 시간 동안 반응시켜 노란색의 액체를 얻었다. 반응용매를 감압하에서 제거한 후 저온에서 정치하여 흰색 고체를 얻었다 (수율 83%). 15.14 g (0.12 mol) of 1-butylimidazole and 6.0 g (0.2 mol) of paraformaldehyde were added together with 50 mL of DMSO in a stainless autoclave, and reacted at 120 ° C. for 12 hours to obtain a yellow liquid. The reaction solvent was removed under reduced pressure and left at low temperature to yield a white solid (yield 83%).

1H NMR (400 MHz, CDCl3, 25oC): δ (ppm) = 6.70 (d, 1H, CHN), 6.80 (d, 1H, CHN), 4.60 (s, 2H, CH2O), 4.00 (t, 2H, CCH2O), 1.80 (q, 2H, CH2), 1.40 (q, 2H, CH2), 0.90 (t, 2H, CH3). 1 H NMR (400 MHz, CDCl 3 , 25 o C): δ (ppm) = 6.70 (d, 1H, CHN), 6.80 (d, 1H, CHN), 4.60 (s, 2H, CH 2 O), 4.00 (t, 2H, CCH 2 O), 1.80 (q, 2H, CH 2 ), 1.40 (q, 2H, CH 2 ), 0.90 (t, 2H, CH 3 ).

실시예Example 4: 2- 4: 2- 히드록시메틸Hydroxymethyl -1--One- 비닐이미다졸의Vinylimidazole 제조 Produce

스텐레스 고압반응기에 1-비닐이미다졸 17.22 g (0.18 몰)과 파라포름알데히드 9.0 g (0.3 몰)를 아세토니트릴 50 mL와 함께 넣고, 120 oC에서 12 시간 동안 반응시켜 노란색의 액체를 얻었다. 반응용매를 감압하에서 제거하여 얻은 흰색 고체를 THF에 녹여 저온에서 재결정하였다 (수율 53%). In a stainless autoclave, 17.22 g (0.18 mol) of 1-vinylimidazole and 9.0 g (0.3 mol) of paraformaldehyde were added together with 50 mL of acetonitrile and reacted at 120 ° C. for 12 hours to obtain a yellow liquid. The white solid obtained by removing the reaction solvent under reduced pressure was dissolved in THF and recrystallized at low temperature (yield 53%).

1H NMR (400 MHz, CDCl3, 25oC): δ (ppm) = 7.62 (d, 1H, CHN), 7.26 (m, 1H, NCH), 6.88 (d, 1H, CHN), 5.40 (m, 2H, CCH2), 4.89 (t, 1H, OH), 4.53 (s, 2H, CH2O). 1 H NMR (400 MHz, CDCl 3 , 25 o C): δ (ppm) = 7.62 (d, 1H, CHN), 7.26 (m, 1H, NCH), 6.88 (d, 1H, CHN), 5.40 (m , 2H, CCH 2 ), 4.89 (t, 1H, OH), 4.53 (s, 2H, CH 2 O).

실시예Example 5: 2- 5: 2- 부톡시메틸Butoxymethyl -1--One- 메틸이미다졸의Methylimidazole 제조 Produce

물 60 mL에 NaOH 1.5 몰을 녹인 용액을 플라스크에 넣고, 실시예 1에서 얻은 1-메틸-2-히드록시메틸이미다졸 6.73 g (0.06 몰)을 첨가한 후 80 oC에서 1 시간 동안 교반하였다. 반응 혼합물에 Bu4NBr 0.19 g (0.0006 몰)을 넣고 브로모부탄 8.22 g (0.06 몰)을 천천히 적가한 후, 80 oC에서 8 시간 동안 반응시켰다. 유기층을 분리해 물로 세척하고 MgSO4로 수분을 제거한 후 감압건조하여 갈색 액체를 얻었다(수 율 65%).Put a solution of 1.5 mol NaOH in 60 mL of water into a flask, 6.73 g (0.06 mol) of 1-methyl-2-hydroxymethylimidazole obtained in Example 1 was added and stirred at 80 o C for 1 hour. It was. 0.19 g (0.0006 mol) of Bu 4 NBr was added to the reaction mixture, and 8.22 g (0.06 mol) of bromobutane was slowly added dropwise, followed by reaction at 80 ° C. for 8 hours. The organic layer was separated, washed with water, dried with MgSO 4 , and dried under reduced pressure to obtain a brown liquid (yield 65%).

1H NMR (400 MHz, DMSO-d 6, 25 oC): δ (ppm) = 7.1 (s, 1H, CHN), 6.7 (s, 1H, CHN), 4.4 (s, 2H, NCH2O), 3.6 (s, 3H, NCH3), 3.3 (m, 2H, OCH2), 1.4 (m, 2H, CH2), 1.3 (m, 2H, CH2), 1.2 (m, 2H, CH2). 1 H NMR (400 MHz, DMSO- d 6 , 25 o C): δ (ppm) = 7.1 (s, 1H, CHN), 6.7 (s, 1H, CHN), 4.4 (s, 2H, NCH 2 O) , 3.6 (s, 3H, NCH 3 ), 3.3 (m, 2H, OCH 2 ), 1.4 (m, 2H, CH 2 ), 1.3 (m, 2H, CH 2 ), 1.2 (m, 2H, CH 2 ) .

실시예Example 6: 2- 6: 2- 부톡시메틸Butoxymethyl -1--One- 부틸이미다졸의Butylimidazole 제조 Produce

물 60 mL에 NaOH 1.5 몰을 녹인 용액을 플라스크에 넣고, 실시예 3에서 얻은 1-부틸-2-히드록시메틸이미다졸 9.25 g (0.06 몰)을 첨가한 후 80 oC에서 1 시간 동안 교반하였다. 반응 혼합물에 Bu4NBr 0.19 g (0.0006 몰)을 넣고 브로모부탄 8.22 g (0.06 몰)을 천천히 적가한 후, 80 oC에서 8 시간 동안 반응시켰다. 유기층을 분리해 물로 세척하고 MgSO4로 수분을 제거한 후 감압건조하여 갈색 액체를 얻었다(수율 60%).A solution of 1.5 mol of NaOH in 60 mL of water was added to a flask, and 9.25 g (0.06 mol) of 1-butyl-2-hydroxymethylimidazole obtained in Example 3 was added thereto, followed by stirring at 80 ° C. for 1 hour. It was. 0.19 g (0.0006 mol) of Bu 4 NBr was added to the reaction mixture, and 8.22 g (0.06 mol) of bromobutane was slowly added dropwise, followed by reaction at 80 ° C. for 8 hours. The organic layer was separated, washed with water, dried with MgSO 4 , and dried under reduced pressure to obtain a brown liquid (yield 60%).

1H NMR (400 MHz, DMSO-d 6, 25 oC): δ (ppm) = 7.1 (d, 1H, CHN), 6.8 (d, 1H, CHN), 4.4 (s, 2H, CH2O), 3.9 (t, 2H, NCH2), 3.3 (t, 2H, OCH2), 1.7 (m, 2H, CH2), 1.5 (m, 2H, CH2), 1.3 (m, 4H, CH2), 0.9 (m, 6H, CH3). 1 H NMR (400 MHz, DMSO- d 6 , 25 o C): δ (ppm) = 7.1 (d, 1H, CHN), 6.8 (d, 1H, CHN), 4.4 (s, 2H, CH 2 O) , 3.9 (t, 2H, NCH 2 ), 3.3 (t, 2H, OCH 2 ), 1.7 (m, 2H, CH 2 ), 1.5 (m, 2H, CH 2 ), 1.3 (m, 4H, CH 2 ) , 0.9 (m, 6H, CH 3 ).

실시예Example 7: 2- 7: 2- 부톡시메틸Butoxymethyl -1--One- 메틸이미다졸륨Methylimidazolium -3--3- 프로판설포네이트의Of propanesulfonate 제조 Produce

둥근바닥 플라스크에 아세톤 20 mL와 실시예 5에서 수득한 2-부톡시메틸-1-메틸이미다졸 1.7 g (0.01 몰)을 넣고, 1,3-프로판설톤 1.5 g (0.012 몰)을 첨가한 후 12 시간 동안 환류반응시켰다. 반응 혼합물을 여과한 후 아세톤으로 수 회 세척하여 흰색 고체 상태의 2-부톡시메틸-1-메틸이미다졸륨-3-프로판설포네이트를 얻었다 (수율 83%). 20 mL of acetone and 1.7 g (0.01 mol) of 2-butoxymethyl-1-methylimidazole obtained in Example 5 were added to a round bottom flask, and 1.5 g (0.012 mol) of 1,3-propanesultone was added thereto. After refluxing for 12 hours. The reaction mixture was filtered and washed several times with acetone to give 2-butoxymethyl-1-methylimidazolium-3-propanesulfonate as a white solid (yield 83%).

1H NMR (400 MHz, DMSO-d 6, 25 oC): δ (ppm) = 7.8 (d, 1H, CHN), 7.7 (d, 1H, CHN), 4.8 (s, 2H, NCH2O), 4.3 (m, 2H, NCH2), 3.8 (s, 3H, NCH3), 3.5 (m, 2H, OCH2), 2.4 (m, 2H, SCH2), 2.0 (m, 2H, CH2), 1.5 (m, 2H, CH2), 1.3 (m, 2H, CH2), 1.3 (m, 3H, CH3). 1 H NMR (400 MHz, DMSO- d 6 , 25 o C): δ (ppm) = 7.8 (d, 1H, CHN), 7.7 (d, 1H, CHN), 4.8 (s, 2H, NCH 2 O) , 4.3 (m, 2H, NCH 2 ), 3.8 (s, 3H, NCH 3 ), 3.5 (m, 2H, OCH 2 ), 2.4 (m, 2H, SCH 2 ), 2.0 (m, 2H, CH 2 ) , 1.5 (m, 2H, CH 2 ), 1.3 (m, 2H, CH 2 ), 1.3 (m, 3H, CH 3 ).

실시예Example 8: 2- 8: 2- 부톡시메틸Butoxymethyl -1--One- 부틸이미다졸륨Butyl imidazolium -3--3- 프로판설포네이트의Of propanesulfonate 제조 Produce

둥근바닥 플라스크에 아세톤 20 mL와 실시예 6에서 수득한 2-부톡시메틸-1-부틸이미다졸 2.1 g (0.01 몰)을 넣고, 1,3-프로판설톤 1.5 g (0.012 몰)을 첨가한 후 12 시간 동안 환류반응시켰다. 반응 혼합물을 여과한 후 아세톤으로 수 회 세척하여 흰색 고체 상태의 2-부톡시메틸-1-부틸이미다졸륨-3-프로판설포네이트를 얻었다 (수율 80%). 20 mL of acetone and 2.1 g (0.01 mol) of 2-butoxymethyl-1-butylimidazole obtained in Example 6 were added to a round bottom flask, and 1.5 g (0.012 mol) of 1,3-propanesultone was added thereto. After refluxing for 12 hours. The reaction mixture was filtered and washed several times with acetone to give 2-butoxymethyl-1-butylimidazolium-3-propanesulfonate as a white solid (yield 80%).

1H NMR (400 MHz, DMSO-d 6, 25 oC): δ (ppm) = 7.9 (d, 2H, CHN), 4.9 (s, 2H, CH2O), 4.4 (t, 2H, NCH2), 4.2 (t, 2H, NCH2), 3.6 (t, 2H, OCH2), 2.5 (m, 2H, CH2), 2.1 (t, 2H, CH2S), 1.8 (m, 2H, CH2), 1.6 (m, 2H, CH2), 1.3 (m, 4H, CH2), 0.9 (m, 6H, CH3). 1 H NMR (400 MHz, DMSO- d 6 , 25 o C): δ (ppm) = 7.9 (d, 2H, CHN), 4.9 (s, 2H, CH 2 O), 4.4 (t, 2H, NCH 2 ), 4.2 (t, 2H, NCH 2 ), 3.6 (t, 2H, OCH 2 ), 2.5 (m, 2H, CH 2 ), 2.1 (t, 2H, CH 2 S), 1.8 (m, 2H, CH 2 ), 1.6 (m, 2H, CH 2 ), 1.3 (m, 4H, CH 2 ), 0.9 (m, 6H, CH 3 ).

비교예Comparative example 1: 1,2- 1: 1,2- 디메틸이미다졸륨Dimethylimidazolium -3--3- 프로판설포네이트의Of propanesulfonate 제조 Produce

둥근바닥 플라스크에 아세톤 20 mL와 1,2-디메틸이미다졸 5.77 g (0.06 몰)을 넣고, 1,3-프로판설톤 7.33 g (0.06 몰)을 첨가한 후 12 시간 동안 환류반응시켰다. 반응 혼합물을 여과한 후 아세톤으로 수 회 세척하여 흰색 고체 상태의 1,2-디메틸이미다졸륨-3-프로판설포네이트를 얻었다 (수율 91%). 20 mL of acetone and 5.77 g (0.06 mol) of 1,2-dimethylimidazole were added to a round bottom flask, and 1,3-propanesultone 7.33 g (0.06 mol) was added thereto, followed by reflux for 12 hours. The reaction mixture was filtered and washed several times with acetone to give 1,2-dimethylimidazolium-3-propanesulfonate as a white solid (yield 91%).

1H NMR (400 MHz, D2O, 25 oC): δ (ppm) = 7.41 (s, 1H, CHN), 7.34 (s, 1H, CHN), 4.29 (t, 2H, CH2N), 3.78 (s, 3H, NCH3), 2.95 (t, 2H, SCH2), 2.61 (s, 3H, CH3), 2.26 (m, 2H, CH2). 1 H NMR (400 MHz, D 2 O, 25 o C): δ (ppm) = 7.41 (s, 1H, CHN), 7.34 (s, 1H, CHN), 4.29 (t, 2H, CH 2 N), 3.78 (s, 3H, NCH 3 ), 2.95 (t, 2H, SCH 2 ), 2.61 (s, 3H, CH 3 ), 2.26 (m, 2H, CH 2 ).

비교예Comparative example 2: 1- 2: 1- 메톡시에틸Methoxyethyl -2--2- 메틸이미다졸륨Methylimidazolium -3--3- 프로판설포네이트의Of propanesulfonate 제조 Produce

NaH 2.6 g (0.11 몰)이 담긴 무수 DMF 50 mL에 2-메틸이미다졸 8.2 g (0.1 몰)을 DMF 100 mL에 녹인 용액을 상온에서 천천히 적가한 후, 60 ℃에서 1시간 동안 반응시켰다. 반응 후 과량의 NaH를 여과하여 제거하고 얻은 갈색 용액에 2-클로로에틸 메틸 에테르 9.4 g (0.1 몰)을 30분에 걸쳐 천천히 적가하였다. 3시간 후 NaCl 침전을 여과하여 제거한 후, 1,3-프로판설톤 12.8 g (0.105 몰)을 가하고 80 ℃에서 12시간 동안 반응시켰다. 반응이 완료된 후 감압 건조를 통해 얻어진 고체 생성물을 아세톤으로 세척한 후 메탄올에서 재결정하여 흰색 고체 상태의 1-메톡시에틸-2-메틸이미다졸륨-3-프로판설포네이트를 얻었다 (수율 82%). A solution of 8.2 g (0.1 mol) of 2-methylimidazole in 50 mL of anhydrous DMF containing 2.6 g (0.11 mol) of NaH was slowly added dropwise at room temperature to the reaction, followed by reaction at 60 ° C. for 1 hour. After the reaction, excess NaH was filtered off and 9.4 g (0.1 mol) of 2-chloroethyl methyl ether was slowly added dropwise to the brown solution obtained over 30 minutes. After 3 hours, NaCl precipitate was removed by filtration, and 12.8 g (0.105 mol) of 1,3-propanesultone was added thereto, and reacted at 80 ° C. for 12 hours. After the reaction was completed, the solid product obtained by drying under reduced pressure was washed with acetone and recrystallized from methanol to obtain 1-methoxyethyl-2-methylimidazolium-3-propanesulfonate as a white solid (yield 82%). .

1H NMR (400 MHz, D2O, 25 oC): δ (ppm) = 7.42 (d, 2H, CHN), 3.81 (t, 2H, CH2), 3.34 (s, 3H, CH3), 3.30 (m, 4H, CH2), 2.93 (t, 2H, CH2), 2.62 (s, 3H, CH3), 2.13 (m, 2H, CH2). 1 H NMR (400 MHz, D 2 O, 25 o C): δ (ppm) = 7.42 (d, 2H, CHN), 3.81 (t, 2H, CH 2 ), 3.34 (s, 3H, CH 3 ), 3.30 (m, 4H, CH 2 ), 2.93 (t, 2H, CH 2 ), 2.62 (s, 3H, CH 3 ), 2.13 (m, 2H, CH 2 ).

실험예Experimental Example 1: 전기화학적 안정성 측정 1: Electrochemical stability measurement

상기 실시예 7에서 제조한 2-부톡시메틸-1-메틸이미다졸륨-3-프로판설포네이트, 상기 비교예 1에서 제조한 1,2-디메틸이미다졸륨-3-프로판설포네이트 및 상기 비교예 2에서 제조한 1-메톡시에틸-2-메틸이미다졸륨-3-프로판설포네이트를 각각 1 M 농도로 LiPF6가 용해되어 있는 에틸렌 카보네이트(EC):프로필렌 카보네이트(PC):디메틸카보네이트(DMC)의 1:1:1 혼합용액에 1 ~ 5 중량% 녹인 다음, 전기화학 분석기(Electrochemical Analyzer; CH Instruments사, Model 660A)로 순환전압전류를 측정하였다. 이때, 전극으로는 유리탄소(glassy carbon) 전극을 사용하였고, 상대 전극으로는 백금선을, 기준 전극으로는 은선을 사용하였다. 측정 속도는 10 mVS-1로 하였다.2-butoxymethyl-1-methylimidazolium-3-propanesulfonate prepared in Example 7, 1,2-dimethylimidazolium-3-propanesulfonate prepared in Comparative Example 1 and the comparison Ethylene carbonate (EC): Propylene carbonate (PC): Dimethyl carbonate in which LiPF 6 was dissolved in the 1-methoxyethyl-2-methylimidazolium-3-propanesulfonate prepared in Example 2 at 1 M concentration, respectively. 1 to 5% by weight in a 1: 1: 1 mixed solution of DMC), and the cyclic voltammetry was measured by an electrochemical analyzer (Electrochemical Analyzer; Model 660A, CH Instruments). In this case, a glassy carbon electrode was used as the electrode, a platinum wire was used as the counter electrode, and a silver wire was used as the reference electrode. The measurement speed was 10 mVS- 1 .

그 결과, 도 1에 나타낸 바와 같이 C-2 위치에 에테르기가 치환된 경우 -2.5 V에서 2.5 V(vs. Ag)에 걸쳐, 현저히 향상된 전기화학적 안정성을 보임을 확인하였다.As a result, as shown in FIG. 1, when the ether group was substituted at the C-2 position, it was confirmed that the electrochemical stability was significantly improved from -2.5 V to 2.5 V (vs. Ag).

실험예Experimental Example 2:  2: 충방전Charge and discharge 성능 측정 Performance measurement

상기 실시예 7에서 제조한 2-부톡시메틸-1-메틸이미다졸륨-3-프로판설포네이트 및 상기 비교예 1에서 제조한 1,2-디메틸이미다졸륨-3-프로판설포네이트를 각각 1 M 농도로 LiPF6가 용해되어 있는 에틸렌 카보네이트(EC):프로필렌 카보네이트(PC):디메틸카보네이트(DMC)의 1:1:1 혼합용액에 1 ~ 5 중량% 녹여 전해질을 제조하였다. 리튬이차전지는 양전극으로 LiCoO2를, 음전극으로는 탄소전극을 사용하여 무습실에서 제작하였으며, 전지 싸이클러(Cycler; 원아텍, WBC 3000)를 이용해서 제작된 리튬이차전지의 충방전 성능을 측정하였다.2-butoxymethyl-1-methylimidazolium-3-propanesulfonate prepared in Example 7 and 1,2-dimethylimidazolium-3-propanesulfonate prepared in Comparative Example 1 were each 1 An electrolyte was prepared by dissolving 1 to 5% by weight in a 1: 1: 1 mixed solution of ethylene carbonate (EC): propylene carbonate (PC): dimethyl carbonate (DMC) in which LiPF 6 was dissolved at a M concentration. The lithium secondary battery was fabricated in a dry room using LiCoO 2 as a positive electrode and a carbon electrode as a negative electrode, and the charge and discharge performance of the lithium secondary battery manufactured using a battery cycler (Cycler; One Artec, WBC 3000) was measured. It was.

그 결과, 도 2에 나타낸 바와 같이, 1/2 C에서 120회 이상에 걸쳐 반복적인 충방전을 실시한 결과, 본 발명에 의한 C-2 위치에 에테르기가 도입된 이미다졸륨계 설폰화된 양쪽성 이온을 첨가제로 사용한 경우 현저히 향상된 충방전 성능을 보임을 확인하였다.As a result, as shown in Fig. 2, repeated charging and discharging was performed at 1/2 C for 120 or more times. As a result, imidazolium sulfonated amphoteric ions having an ether group introduced at the C-2 position according to the present invention. When used as an additive was confirmed to show a significantly improved charge and discharge performance.

도 1은 (a) 양쪽성 이온을 첨가하지 않은 모델(model) 전해질, (b) 1,2-디메틸이미다졸륨-3-프로판설포네이트, (c) 1-메톡시에틸-2-메틸이미다졸륨-3-프로판설포네이트 및 (d) 2-부톡시메틸-1-메틸이미다졸륨-3-프로판설포네이트를 각각 첨가한 전해질의 전기화학적 안정성을 나타낸 그래프이다. 1 shows (a) a model electrolyte without addition of zwitterion ions, (b) 1,2-dimethylimidazolium-3-propanesulfonate, and (c) 1-methoxyethyl-2-methyl It is a graph showing the electrochemical stability of the electrolyte to which midazolium-3-propanesulfonate and (d) 2-butoxymethyl-1-methylimidazolium-3-propanesulfonate were added, respectively.

도 2는 (a) 양쪽성 이온을 첨가하지 않고 제조한 리튬 이차전지, (b) 2.25 중량%의 2-부톡시메틸-1-메틸이미다졸륨-3-프로판설포네이트, (c) 4.5 중량%의 2-부톡시메틸-1-메틸이미다졸륨-3-프로판설포네이트, 및 (d) 2.25 중량%의 1,2-디메틸이미다졸륨-3-프로판설포네이트를 각각 첨가제로 사용하여 제조한 리튬 이차전지의 충방전 성능을 나타낸 그래프이다.FIG. 2 shows (a) a lithium secondary battery prepared without adding amphoteric ions, (b) 2.25 wt% 2-butoxymethyl-1-methylimidazolium-3-propanesulfonate, (c) 4.5 wt % 2-butoxymethyl-1-methylimidazolium-3-propanesulfonate and (d) 2.25% by weight of 1,2-dimethylimidazolium-3-propanesulfonate as additives respectively A graph showing the charge and discharge performance of a lithium secondary battery.

Claims (11)

하기 화학식 1로 표시되는 이미다졸륨계 양쪽성 이온:Imidazolium-based amphoteric ions represented by Formula 1 below: [화학식 1][Formula 1]
Figure 112008004861360-pat00004
Figure 112008004861360-pat00004
상기 식에서, Where n은 3 또는 4인 정수이고,n is an integer of 3 or 4, m은 1 또는 2인 정수이며,m is an integer of 1 or 2, R1 및 R2 각각 독립적으로 C1-C6의 알킬기 또는 C1-C6의 알케닐기이다. R 1 And R 2 is Each independently is an alkenyl group of C 1 -C 6 alkyl group or a C 1 -C 6.
제1항에 있어서, The method of claim 1, n은 3 또는 4인 정수이고,n is an integer of 3 or 4, m은 1 또는 2인 정수이며,m is an integer of 1 or 2, R1 및 R2 각각 독립적으로 C1-C6의 알킬기인 것을 특징으로 하는 이미다졸륨계 양쪽성 이온. R 1 and R 2 Imidazolium-based amphoteric ions each independently being a C 1 -C 6 alkyl group. 제1항에 있어서, The method of claim 1, n은 3이고, m은 1이며,n is 3, m is 1, R1은 메틸, 에틸, 프로필 또는 부틸이고,R 1 is methyl, ethyl, propyl or butyl, R2는 부틸인 것을 특징으로 하는 이미다졸륨계 양쪽성 이온.R 2 is butyl imidazolium-based amphoteric ion. 제1항에 있어서, The method of claim 1, n은 3이고, m은 1이며,n is 3, m is 1, R1은 메틸이고,R 1 is methyl, R2는 부틸인 것을 특징으로 하는 이미다졸륨계 양쪽성 이온.R 2 is butyl imidazolium-based amphoteric ion. (i) 하기 반응식 1에서와 같이, 이미다졸과 파라포름알데히드를 반응시켜 2-히드록시알킬이미다졸을 수득하고, 이를 염기 존재하에 알킬 할라이드 또는 알케닐 할라이드와 반응시켜 에테르기가 치환된 이미다졸을 수득하는 단계; 및(i) As shown in Scheme 1, imidazole and paraformaldehyde are reacted to obtain 2-hydroxyalkylimidazole, which is reacted with alkyl halide or alkenyl halide in the presence of a base to convert ether group to imidazole. Obtaining; And (ii) 하기 반응식 2에서와 같이, 상기 단계 (i)에서 수득한 에테르기가 치환된 이미다졸을 1,3-프로판설톤 또는 1,4-부탄설톤과 반응시키는 단계를 포함하는 제1항의 화학식 1로 표시되는 이미다졸륨계 양쪽성 이온의 제조방법: (ii) Formula 1 of claim 1 comprising reacting the imidazole substituted with the ether group obtained in step (i) with 1,3-propanesultone or 1,4-butanesultone as in Scheme 2 below Method for producing an imidazolium-based amphoteric ion represented by: [반응식 1]Scheme 1
Figure 112010021905462-pat00005
Figure 112010021905462-pat00005
[반응식 2]Scheme 2
Figure 112010021905462-pat00006
Figure 112010021905462-pat00006
상기 식에서, Where n은 3 또는 4인 정수이고,n is an integer of 3 or 4, m은 1 또는 2인 정수이며,m is an integer of 1 or 2, R1 및 R2 각각 독립적으로 C1-C6의 알킬기 또는 C1-C6의 알케닐기이고, R 1 and R 2 Each independently is an alkenyl group of C 1 -C 6 alkyl group or a C 1 -C 6, R3는 수소 또는 메틸기이며,R 3 is hydrogen or a methyl group, X는 할로겐이다. X is halogen.
제1항의 화학식 1로 표시되는 이미다졸륨계 양쪽성 이온, 리튬염 및 유기용매를 포함하는 것을 특징으로 하는 리튬 이차전지용 전해질 조성물.An electrolyte composition for a lithium secondary battery, comprising an imidazolium-based amphoteric ion, a lithium salt, and an organic solvent of claim 1. 제6항에 있어서, 리튬염이 리튬니트레이트, 과염소산리튬, 리튬아세테이트, 리튬트리플루오로아세테이트, 리튬트리플레이트, 리튬비스(트리플루오로메탄설포닐)이미드, 리튬비스(퍼플루오로에탄설포닐)이미드, 리튬테트라플루오로보레이트 또는 리튬헥사플루오로포스페이트인 것을 특징으로 하는 리튬 이차전지용 전해질 조성물. The lithium salt according to claim 6, wherein the lithium salt is lithium nitrate, lithium perchlorate, lithium acetate, lithium trifluoroacetate, lithium triplate, lithium bis (trifluoromethanesulfonyl) imide, lithium bis (perfluoroethanesulfur) Phenyl) imide, lithium tetrafluoroborate or lithium hexafluoro phosphate electrolyte composition for a lithium secondary battery. 제6항에 있어서, 유기용매가 에틸렌카보네이트, 프로필렌카보네이트, 디메틸카보네이트, 에틸아세테이트, 아세톤, 아세토니트릴, 감마-부티로락톤, 테트라히드로퓨란, 1,4-디옥산, 2-메틸테트라히드로퓨란, 디메틸설폭시드, 설포란, 1-메틸피롤리돈, N,N-디메틸포름아미드, 디메톡시에탄, 디글림(diglyme), 트리글림 및 테트라글림으로 구성되는 군으로부터 선택된 어느 하나 또는 둘 이상의 혼합물인 것을 특징으로 하는 리튬 이차전지용 전해질 조성물.The organic solvent of claim 6, wherein the organic solvent is ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl acetate, acetone, acetonitrile, gamma-butyrolactone, tetrahydrofuran, 1,4-dioxane, 2-methyltetrahydrofuran, Any one or a mixture of two or more selected from the group consisting of dimethyl sulfoxide, sulfolane, 1-methylpyrrolidone, N, N-dimethylformamide, dimethoxyethane, diglyme, triglyme and tetraglyme An electrolyte composition for a lithium secondary battery, characterized in that. 제6항 내지 제8항 중 어느 한 항에 있어서, 이온성 액체를 추가로 포함하는 것을 특징으로 하는 리튬 이차전지용 전해질 조성물. The electrolyte composition for a lithium secondary battery according to any one of claims 6 to 8, further comprising an ionic liquid. 제9항에 있어서, 이온성 액체가 피롤리디늄, 이미다졸륨, 피페리디늄, 피리디늄, 암모늄 및 몰폴리늄으로 구성되는 군으로부터 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 전해질 조성물.The electrolyte for a lithium secondary battery according to claim 9, wherein the ionic liquid comprises at least one selected from the group consisting of pyrrolidinium, imidazolium, piperidinium, pyridinium, ammonium and morpholinium. Composition. 제6항의 리튬 이차전지용 전해질 조성물을 포함하는 것을 특징으로 하는 리튬 이차전지.A lithium secondary battery comprising the electrolyte composition for a lithium secondary battery of claim 6.
KR1020080006177A 2008-01-21 2008-01-21 Ether-substituted imidazolium type zwitterion and electrolyte for lithium battery comprising the same KR100975898B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080006177A KR100975898B1 (en) 2008-01-21 2008-01-21 Ether-substituted imidazolium type zwitterion and electrolyte for lithium battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080006177A KR100975898B1 (en) 2008-01-21 2008-01-21 Ether-substituted imidazolium type zwitterion and electrolyte for lithium battery comprising the same

Publications (2)

Publication Number Publication Date
KR20090080298A KR20090080298A (en) 2009-07-24
KR100975898B1 true KR100975898B1 (en) 2010-08-13

Family

ID=41291416

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080006177A KR100975898B1 (en) 2008-01-21 2008-01-21 Ether-substituted imidazolium type zwitterion and electrolyte for lithium battery comprising the same

Country Status (1)

Country Link
KR (1) KR100975898B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297786B1 (en) 2012-03-12 2013-08-20 서울대학교산학협력단 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including the same
KR20210121327A (en) 2020-03-26 2021-10-08 군산대학교산학협력단 Electrolyte composition for lithium metal battery, and lithium secondary battery comprising same
KR20230089560A (en) 2021-12-13 2023-06-20 고려대학교 산학협력단 An sulfide-based solid electrolyte for lithium secondary battery, manufacturing method thereof, and electrode including the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151977A1 (en) * 2014-03-31 2015-10-08 リンテック株式会社 Zwitterionic compound and ion conductor
KR102195257B1 (en) 2018-11-22 2020-12-24 건국대학교 글로컬산학협력단 Imidazolium based Li salt, process for the synthesis thereof and electrolyte composition comprising the same
CN110071329B (en) * 2018-11-27 2021-06-22 欣旺达电子股份有限公司 Lithium battery and electrolyte thereof
WO2022211320A1 (en) * 2021-03-31 2022-10-06 주식회사 엘지에너지솔루션 Electrolyte additive for secondary battery, non-aqueous electrolyte comprising same for lithium secondary battery, and lithium secondary battery
KR20220136119A (en) 2021-03-31 2022-10-07 주식회사 엘지에너지솔루션 Electrolyte additives for secondary battery, non-aqueous electrolyte for secondary battery comprising same and secondary battery
WO2023172044A1 (en) * 2022-03-08 2023-09-14 주식회사 엘지에너지솔루션 Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery, comprising same, and lithium secondary battery
KR20230141627A (en) * 2022-03-30 2023-10-10 주식회사 엘지에너지솔루션 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020047243A (en) * 1999-10-19 2002-06-21 요헨 카르크, 안드레아스 비베르바흐 Process for the production of zwitterionic polyamines
JP2003062467A (en) 2001-08-24 2003-03-04 Central Glass Co Ltd Ion liquid composition
US20060223995A1 (en) 2005-03-29 2006-10-05 Hirofumi Uchimura Superhigh purity ionic liquid
KR100660065B1 (en) * 2005-03-29 2006-12-21 한국과학기술연구원 The lithium salts of pyrrolidinium type zwitterion and the preparation method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020047243A (en) * 1999-10-19 2002-06-21 요헨 카르크, 안드레아스 비베르바흐 Process for the production of zwitterionic polyamines
JP2003062467A (en) 2001-08-24 2003-03-04 Central Glass Co Ltd Ion liquid composition
US20060223995A1 (en) 2005-03-29 2006-10-05 Hirofumi Uchimura Superhigh purity ionic liquid
KR100660065B1 (en) * 2005-03-29 2006-12-21 한국과학기술연구원 The lithium salts of pyrrolidinium type zwitterion and the preparation method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101297786B1 (en) 2012-03-12 2013-08-20 서울대학교산학협력단 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including the same
WO2013137596A1 (en) * 2012-03-12 2013-09-19 서울대학교 산학협력단 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery including same
KR20210121327A (en) 2020-03-26 2021-10-08 군산대학교산학협력단 Electrolyte composition for lithium metal battery, and lithium secondary battery comprising same
KR20230089560A (en) 2021-12-13 2023-06-20 고려대학교 산학협력단 An sulfide-based solid electrolyte for lithium secondary battery, manufacturing method thereof, and electrode including the same

Also Published As

Publication number Publication date
KR20090080298A (en) 2009-07-24

Similar Documents

Publication Publication Date Title
KR100975898B1 (en) Ether-substituted imidazolium type zwitterion and electrolyte for lithium battery comprising the same
US11489201B2 (en) Modified ionic liquids containing phosphorus
US9991559B2 (en) Functionalized ionic liquid electrolytes for lithium ion batteries
JP5524347B2 (en) Cyclic sulfate ester compound, non-aqueous electrolyte containing the same, and lithium secondary battery
EP3391454B1 (en) Silane-functionalized ionic liquids and electrolytes comprising the same
KR100907774B1 (en) Electrolyte
EP4106070A1 (en) Phosphorus-containing electrolytes
US20200303775A1 (en) Electrolyte Additive, Lithium Secondary Battery Electrolyte, and Lithium Secondary Battery
US9472831B2 (en) Lithium-2-methoxy-1,1,2,2-tetrafluoro-ethanesulfonate and use thereof as conductive salt in lithium-based energy accumulators
TW200827324A (en) Additive for non-aqueous electrolyte and secondary battery using the same
JP6101575B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and lithium secondary battery
KR20060104164A (en) The lithium salts of pyrrolidinium type zwitterion and the preparation method of the same
US8795904B2 (en) Nonaqueous electrolyte solvents and additives
KR20070116668A (en) Electrolyte solution
JP6267038B2 (en) Non-aqueous electrolyte and power storage device including the same
US10038218B2 (en) Salts of N-containing heterocyclic anions as components in electrolytes
EP3656009B1 (en) Modified ionic liquids containing triazine
KR101069471B1 (en) Non-aqueous electrolyte and secondary battery using the same
KR20210141995A (en) Modified ionic liquids containing cyclic phosphorus moieties
WO2018033200A1 (en) Fluorinated ionic liquids with high oxygen solubility for metal-air batteries
KR100879363B1 (en) Ester-substituted imidazolium type zwitterion and electrolyte for lithium battery comprising the same
CN115621478A (en) Application of non-aqueous electrolyte containing lithium chlorosulfonyl imide in primary lithium battery
KR20190033539A (en) A method for producing an ionic liquid for an electrolyte comprising an ether group having a high ion conductivity
KR20210107060A (en) Modified Ionic Liquids Containing Boron
KR20200059924A (en) Imidazolium based Li salt, process for the synthesis thereof and electrolyte composition comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130722

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140804

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150804

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160831

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170807

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180801

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190806

Year of fee payment: 10