KR100975803B1 - An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell - Google Patents

An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell Download PDF

Info

Publication number
KR100975803B1
KR100975803B1 KR1020090082553A KR20090082553A KR100975803B1 KR 100975803 B1 KR100975803 B1 KR 100975803B1 KR 1020090082553 A KR1020090082553 A KR 1020090082553A KR 20090082553 A KR20090082553 A KR 20090082553A KR 100975803 B1 KR100975803 B1 KR 100975803B1
Authority
KR
South Korea
Prior art keywords
layer
ultra thin
mtj
ultra
ferromagnetic
Prior art date
Application number
KR1020090082553A
Other languages
Korean (ko)
Other versions
KR20090109516A (en
Inventor
타이 민
포-캉 왕
시젱 시
이민 구오
Original Assignee
헤드웨이 테크놀로지스 인코포레이티드
어플라이드 스핀트로닉스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 헤드웨이 테크놀로지스 인코포레이티드, 어플라이드 스핀트로닉스, 인크. filed Critical 헤드웨이 테크놀로지스 인코포레이티드
Priority to KR1020090082553A priority Critical patent/KR100975803B1/en
Publication of KR20090109516A publication Critical patent/KR20090109516A/en
Application granted granted Critical
Publication of KR100975803B1 publication Critical patent/KR100975803B1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1657Word-line or row circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/02Disposition of storage elements, e.g. in the form of a matrix array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/14Word line organisation; Word line lay-out
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

MTJ MRAM 셀(magnetic tunnel junction magnetic random access memory cell)은 두께가 100nm보다 작은 고 도전성 재료의 초박막 직교 워드 및 비트 라인들 간에 형성된다. 이 두께의 라인들은 소정 전류에 대해서 대략 2팩터만큼 향상되는 셀 자유층에서 스위칭 자계들을 발생시킨다. 이와 같은 얇은 라인들을 지닌 셀의 제조는 더욱 얇은 침착들에 따라서 실제로 간단하게 되는데, 그 이유는 이 제조 공정은 패터닝 및 폴리싱 동안 CMP에 의해 재료를 제거할 필요성을 제거함으로써, 라인들 및 셀 자유층 간에 균일한 간격을 발생시킨다. A magnetic tunnel junction magnetic random access memory cell (MTJ MRAM) cell is formed between ultra thin orthogonal word and bit lines of a highly conductive material of less than 100 nm in thickness. Lines of this thickness generate switching magnetic fields in the cell free layer that are enhanced by approximately two factors for a given current. The manufacture of a cell with such thin lines is actually simpler with thinner depositions, since this manufacturing process eliminates the need to remove material by CMP during patterning and polishing, thereby creating lines and cell free layers. Generate even intervals in the liver.

워드 라인, 비트 라인, 셀 자유층, 패터닝, 폴리싱 Word Line, Bit Line, Cell Free Layer, Patterning, Polishing

Description

MTJ MRAM 셀, MTJ MRAM 셀들의 어레이, 및 MTJ MRAM 셀을 형성하는 방법{An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell}An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell} MRTM MRAM cells, arrays of MTV MRMAM cells, and an MJMRAM cell

본 발명은 출원되어 본 출원과 동일한 양수인에게 양도된 문서 번호 HT03-044에 관한 것이다.The present invention relates to document number HT03-044, filed and assigned to the same assignee as the present application.

본 발명은 메모리 저장 장치들로서 자기 터널 접합들(MTJ; magnetic tunnel junctions)의 설계 및 제조에 관한 것이며, 특히 워드 및 비트 라인들이 극히 얇게 되어 소정의 기록 전류를 위하여 MTJ 자유층에서 더욱 높은 자속을 발생시키도록 설계하는 것에 관한 것이다.FIELD OF THE INVENTION The present invention relates to the design and manufacture of magnetic tunnel junctions (MTJ) as memory storage devices, in particular word and bit lines being extremely thin resulting in higher magnetic flux in the MTJ free layer for a given write current. It is about designing to make.

자기 터널 접합(MTJ)은 근본적으로 2개의 전극들을 포함하는데, 이 전극들 은터널 장벽층에 의해 분리되는 자화된 강자성 재료의 층들이다. 터널 장벽층은 충분히 얇게 되어, 전하 캐리어들(전형적으로 전자들)이 양자 기계적 터널링에 의해 층을 가로지를 수 있도록 한다. 그러나, 터널링 가능성은 상이한 스핀 방향들을 지닌 전자들을 수용하는 터널링 상태들의 이용률을 따르기 때문에 스핀 종속된다. 그러므로, 전체 터널링 전류는 스핀-업 대 스핀-다운 전자들의 수에 좌우되고 나서, 강자성층들의 자화 방향에 대해서 전자 스핀의 방향에 좌우된다. 따라서, 소정 인가 전압에 대해서 상대적인 자화 방향들이 변화되면, 터널링 전류는 또한 변화될 것이다. 이 MTJ의 작용에 따라서, 고정된 전압을 위한 터널링 전류의 변화 감지는 이를 포함하는 2개의 강자성층들의 상대적인 자화 방향들을 결정할 수 있다.  Magnetic tunnel junction (MTJ) essentially comprises two electrodes, which are layers of magnetized ferromagnetic material separated by a tunnel barrier layer. The tunnel barrier layer is thin enough to allow charge carriers (typically electrons) to cross the layer by quantum mechanical tunneling. However, the tunneling possibility is spin dependent because it depends on the utilization of tunneling states that accept electrons with different spin directions. Therefore, the total tunneling current depends on the number of spin-up versus spin-down electrons, and then on the direction of electron spin relative to the magnetization direction of the ferromagnetic layers. Thus, if the magnetization directions relative to a given applied voltage change, the tunneling current will also change. Depending on the action of this MTJ, sensing the change in tunneling current for a fixed voltage can determine the relative magnetization directions of the two ferromagnetic layers containing it.

정보 저장 장치들로서 MTJ를 사용하려면, 강자성층들 중 적어도 한 층의 자화가 다른 층에 대해서 변화될 수 있어야 하고 또한 터널링 전류 또는 이와 등가의 접합 저항의 변화들을 감지하는 것을 필요로 한다. 2가지 상태의 메모리 저장 장치로서 가장 간단한 형태에 있어서, MTJ는 데이터를 기록시에 단지 자화들을 평행(저 저항) 또는 반평행(고 저항)으로 구성하는 것을 필요로 하고 데이터를 판독시에 터널링 전류 변화 또는 저항 변화를 실행하는 것을 필요로 할 수 있다. To use MTJ as information storage devices, the magnetization of at least one of the ferromagnetic layers must be able to change with respect to the other layer and also require sensing of changes in tunneling current or equivalent junction resistance. In its simplest form as a two-state memory storage device, the MTJ only needs to organize the magnetizations in parallel (low resistance) or antiparallel (high resistance) when writing the data and the tunneling current when reading the data. It may be necessary to implement a change or resistance change.

실제, MTJ의 자유 강자성층은 회전 자유롭지만 자화용이축을 따른 양 방향(자기 결정 이방성의 방향)에서 활성적으로 정렬되는 것이 바람직한 자화를 갖는 것으로서 모델링될 수 있다. 고정된 층의 자화는 자신의 자화용이축 방향에서 영구 정렬되는 것으로서 간주될 수 있다. 자유층이 고정된 층과 비정렬될 때, 이 접합은 자신의 최대 저항을 가지며, 자유층이 고정된 층과 정렬될 때, 최소 저항이 제공된다. 전형적인 MRAM 회로에서, MTJ 장치들은 워드 라인들 및 비트 라인들이라 칭하는 직교 전류 운반 라인들의 교차부에 위치된다. 2개의 라인들이 전류를 운반할 때, 이 장치는 자신의 자유층의 자화 방향을 변경시킴으로써 기록된다. 단지 하나의 라인이 전류를 운반할 때, 장치의 저항은 감지되어, 이 장치가 효율적으로 판독되도록 한다. 부가적인 전류 운반 라인들이 어떤 장치 구성들에 제공되어 장치의 저항을 감지하지만, 가장 간단하게는 이 장치는 상술된 바와 같이 작용한다. 이와 같은 MTJ 장치는 Gallagher 등(미국 특허 제5,650,958호)에 의해 제공되는데, 그는 자화가 층의 평면에 있지만 회전이 자유롭지 않는 피닝된(pinned) 강자성층과 더불어 자화가 피닝된 층의 자화에 대해서 회전 자유롭게 되는 자유 자기층을 지닌 MTJ 장치를 형성하는 것을 개시한다.Indeed, the free ferromagnetic layer of the MTJ can be modeled as having magnetization that is free to rotate but is actively aligned in both directions (the direction of magnetic crystal anisotropy) along the easy axis of magnetization. The magnetization of the fixed layer can be regarded as being permanently aligned in its magnetizing axis. When the free layer is misaligned with the fixed layer, this junction has its maximum resistance and when the free layer is aligned with the fixed layer, a minimum resistance is provided. In a typical MRAM circuit, MTJ devices are located at the intersection of orthogonal current carrying lines called word lines and bit lines. When two lines carry current, the device is written by changing the magnetization direction of its free layer. When only one line carries current, the resistance of the device is sensed, allowing the device to be read efficiently. Additional current carrying lines are provided for certain device configurations to sense the resistance of the device, but most simply the device acts as described above. This MTJ device is provided by Gallagher et al. (US Pat. No. 5,650,958), which rotates with respect to the magnetization of a pinned layer with a pinned ferromagnetic layer where the magnetization is in the plane of the layer but is not free to rotate. Disclosed is an MTJ device having a free magnetic layer that is freed.

다른 형태들의 DRAM과 전력 소모 및 장치 밀도면에서 MTJ MRAM 장치가 경쟁력이 있기 위해선, MTJ는 전형적으로 서브-미크론 치수의 매우 소형으로 만들어질 필요가 있다. Parkin 등(미국 특허 제 6,166,948)은 자유층이 층들 간의 교환 결합(exchange coupling)을 방지하지만 직접 다이폴 결합을 허용하도록 선택된 스페이서 층에 의해 분리되는 2개의 반평행 자화된 층들로 이루어지는 MTJ MRAM 셀의 형성을 개시한다. 이로 인해, 자유층은 폐 플러스 루프들을 갖고, 2개의 층들은 스위칭 동작들 동안 동시에 자신들의 자화들을 스위칭한다. Parkin은 서브-미크론 치수들이 10-100Mbit 용량들의 범위 내에서 DRAM 메모리들과 경쟁력이 있을 필요가 있다는 점에 주목하였다. Parkin은 또한 이와 같은 소형 크기들이 상당한 문제들, 특히 초상자성과 관련된다는 점에 주목하였는데, 이 초상자성은 너무 작아서 충분한 자기 이방성(소정 자화 방향을 유지하기 위한 샘플의 특성 측정)을 가질 수 없는 강자성 재료의 샘플들에서 자화의 자발적인 열적 변동이다. 매우 소형의 단면적을 지닌 MARM 셀들에서 바람직하지 않은 자발적인 열적 변동들을 극복하기 위하여, 자기층들을 두껍게 만들 필요가 있다. 불행하게도, 필요로 되는 스위칭 필드의 크기는 층 두께에 따라서 증가됨으로써, 셀의 자유층의 자기 방향을 변경시키기 위해 선 많을 량의 전류를 소모함으로 셀을 열적으로 안정시키는 비용을 지불하게 된다. In order for MTJ MRAM devices to be competitive in terms of other types of DRAM and power consumption and device density, MTJ typically needs to be made very small in sub-micron dimensions. Parkin et al. (US Pat. No. 6,166,948) form an MTJ MRAM cell in which the free layer consists of two antiparallel magnetized layers separated by a spacer layer selected to prevent exchange coupling between layers but allow direct dipole bonding. Initiate. Due to this, the free layer has closed plus loops, and the two layers switch their magnetizations simultaneously during the switching operations. Parkin noted that sub-micron dimensions need to be competitive with DRAM memories in the range of 10-100 Mbit capacities. Parkin also noted that these small sizes are associated with significant problems, especially superparamagnetisms, which are too small to have sufficient magnetic anisotropy (a measure of the properties of the sample to maintain the direction of the magnetization). Spontaneous thermal variation of magnetization in samples of material. To overcome undesirable spontaneous thermal fluctuations in MARM cells with very small cross-sectional areas, it is necessary to thicken the magnetic layers. Unfortunately, the size of the switching field required increases with the layer thickness, thereby paying the cost of thermally stabilizing the cell by consuming a large amount of current to change the magnetic orientation of the free layer of the cell.

MTJ 셀이 자화 방향을 유지할 수 있도록 되어 기록 전류들이 제로가 될 때조차도 효율적으로 데이터를 저장하도록 하는데 어느 정도의 이방성이 필요하다. 셀 크기들이 지속적으로 감소되기 때문에, 이 기술은 광범위의 다양한 형상들(예를 들어, 직사각형들, 다이아몬드들, 타원형들, 등)의 셀들을 형성함으로써 어느 정도의 자기 이방성을 제공하도록 함으로써, 고유 결정 이방성의 부족이 형상 이방성과 상반되게 된다. 그러나, 이 형태의 이방성은 자체 문제들을 가지고 있다. 특히 MTJ 장치들에서 성가신 형상-관련된 문제는 형상 이방성(비원형 샘플들의 특성)에 의해 발생된 불균일하고 제어할 수 없는 에지-필드들을 야기시킨다. 셀 크기가 감소됨에 따라서, 이들 에지 필드들은 셀의 몸체의 자화보다 상대적으로 더 중요하게 되고 데이터 저장 및 판독에 악 영향을 미친다. 이와 같은 형상 이방성은 충분한 크기일 때 초상자성의 나쁜 영향들을 감소시키지만, 이들은 데이터를 저장하기 위한 MTJ의 자화 방향을 변화시키는 고 전류들을 필요로 하는 부작용이 있다. Some anisotropy is required to allow the MTJ cell to maintain the magnetization direction so that data can be efficiently stored even when the write currents are zero. Because cell sizes are continually reduced, this technique inherently determines by providing some degree of magnetic anisotropy by forming cells of a wide variety of shapes (eg, rectangles, diamonds, ellipses, etc.). Lack of anisotropy is incompatible with shape anisotropy. However, this form of anisotropy has its own problems. Particularly cumbersome shape-related problems in MTJ devices result in uneven and uncontrollable edge-fields caused by shape anisotropy (characteristic of non-circular samples). As the cell size is reduced, these edge fields become relatively more important than the magnetization of the body of the cell and adversely affect data storage and reading. Such shape anisotropy reduces the adverse effects of superparamagnetism when large enough, but they have the side effect of requiring high currents to change the magnetization direction of the MTJ for storing data.

형상 이방성이 높을 때 자유층의 자화 방향을 변화시키는데 필요로 되는 고 전류들의 문제를 처리하기 위한 한 가지 방법은 저전류 값들에 의해 발생된 필드들을 집중시키는 메커니즘을 제공하는 것이다. 이 방법은 구리다미신(damascene) 전류 운반 라인 주위에 형성된 연자성(NiFe) 층인 플럭스 컨센트레이터(flux concentrator)를 형성하는 것을 개시한 Durlam 등(미국 특허 제6,211,090 B1호)에 의해 행해진다. 이 층은 MRAM 셀의 하부측에서 디지트 라인을 형성하는 구리 라인의 3개의 측들 주위에 형성된다. One way to deal with the problem of high currents required to change the magnetization direction of the free layer when shape anisotropy is high is to provide a mechanism to focus the fields generated by low current values. This method is done by Durlam et al. (US Pat. No. 6,211,090 B1), which discloses forming a flux concentrator, a layer of soft magnetic (NiFe) formed around a copper damascene current transport line. This layer is formed around the three sides of the copper line forming a digit line at the bottom side of the MRAM cell.

2가지 부가적인 방법들은 일 실시예에서 전류에서 높은 퍼센티지의 스핀 편향된 전자들을 발생시키는 재료로 피닝된 층을 형성하고 또 다른 실시예에서 셀 요소에서 필드 반전들을 발생시키도록 지원하기 위하여 자기 차폐에 의해 발생된 오프셋팅 자계를 인가하는 것을 개시한 Nakao(미국 특허 제6,509,621 B2호)에 행해진다. Two additional methods are provided by magnetic shielding to form a pinned layer of material in one embodiment that generates high percentages of spin deflected electrons in the current and in another embodiment to assist in generating field inversions in the cell element. Nakao (US Pat. No. 6,509,621 B2), which discloses the application of the generated offset magnetic field.

또한 다른 방법은 층 평면과 수직한 자화용이축을 지닌 자유층들을 형성하고 나서 동일한 평면에서 워드 및 비트 라인들을 형성하는 것을 개시한 Sekiguchi 등(미국 특허 제6,611,455 B2)에 의해 행해진다. Another method is also performed by Sekiguchi et al. (US Pat. No. 6,611,455 B2), which discloses forming free layers with a magnetizing axis perpendicular to the layer plane and then forming word and bit lines in the same plane.

본 발명은 또한 초소형 MRAM 셀들에서 자유층의 자화를 재지향시키는데 필요로 되는 고 전류를 감소시키는 문제를 처리하는데, 여기서 초상자성 작용은 두꺼운 자유층들을 필요로 한다. 종래 대략 300nm의 두께와 비교하여 특히 100nm 미만에서 상당한 박성의 워드 및/또는 비트 라인들을 형성함으로써 2 팩터만큼 자유층에서 스위칭 필드를 증가시킨다. 이러한 얇은 라인들의 부가적인 이점은 이들의 제조를 용이하게 한다는 것이다. 이들 포메이션을 위한 패터닝 공정은 재료를 덜 제거하는 것을 필요로 하고 화학적 기계적 폴리싱(CMP)에 대한 필요성을 제거하는데, 이는 라인 두께 면에서 제어할 수 없는 변화들을 발생시킬 수 있다. 최종적으로, 이들 초박막 라인들은 MTJ 셀에 대한 자신들의 위치들과 관련하여 각종 형태들로 손쉽게 형성될 수 있다. 본 발명에서, 셀은 워드 및 비트 라인들 간에 위치된다. 이하의 설명에서, 라인들을 형성하는 일반적인 방법은 셀에 대해서 자신들의 배치의 예시와 함께 설명될 것이다.The present invention also addresses the problem of reducing the high current required to redirect the magnetization of the free layer in ultra-small MRAM cells, where the superparamagnetism requires thick free layers. Increasing the switching field in the free layer by two factors by forming significant thin word and / or bit lines, especially at less than 100 nm, compared to conventional thicknesses of approximately 300 nm. An additional advantage of these thin lines is that they facilitate their manufacture. The patterning process for these formations requires less material removal and eliminates the need for chemical mechanical polishing (CMP), which can result in uncontrollable changes in line thickness. Finally, these ultra thin lines can be easily formed in various forms with respect to their positions with respect to the MTJ cell. In the present invention, a cell is located between word and bit lines. In the following description, the general method of forming the lines will be described with an example of their arrangement for the cell.

본 발명의 제 1 목적은 워드 및 비트 라인 스위칭 전류들의 더욱 효율적인 사용을 행하는 MTJ MRAM 셀을 제공하는 것인데, 이로 인해 이 라인들은 전류들을 더욱 낮게 하면서 스위칭을 위한 충분한 강도의 자계들을 발생시킨다. It is a first object of the present invention to provide an MTJ MRAM cell that makes more efficient use of word and bit line switching currents, whereby these lines generate magnetic fields of sufficient intensity for switching while lowering currents.

본 발명의 제 2 목적은 제조 공정을 간단하게 하는 이와 같은 셀 및 이 셀의 워드 및 비트들을 제조하는 방법을 제공하는 것이며, 특히 화학적-기계적 폴리싱(CMP)의 공정과 관련된 제어될 수 없는 변화들을 제거하는 것이다.It is a second object of the present invention to provide such a cell that simplifies the manufacturing process and a method of manufacturing the words and bits of the cell, in particular the uncontrolled changes associated with the process of chemical-mechanical polishing (CMP). To remove it.

본 발명의 제3 목적은 이와 셀들 및 이와 같은 셀들의 어레이들을 제공하는 것이다. It is a third object of the present invention to provide such cells and arrays of such cells.

이들 목적들은 워드 및/또는 비트 라인들을 100nm보다 작은 상당한 박성으로 고 도전성 재료들로 형성하는 MRAM 셀 설계 및 제조 방법에 의해 성취될 것이다. 도전성 재료는 Al, Cu, Au, Ru, Ta, CuAu, CuAg, NiCr, Rh와 같은 고 도전성 재료일 수 있고 (NiCr/Cu)의 다수의 라미네이션들과 같은 이들 재료들의 다층들일 수 있다. These objects will be achieved by an MRAM cell design and fabrication method that forms word and / or bit lines from highly conductive materials with significant thinness of less than 100 nm. The conductive material may be a high conductive material such as Al, Cu, Au, Ru, Ta, CuAu, CuAg, NiCr, Rh and may be multilayers of these materials, such as multiple laminations of (NiCr / Cu).

종래 기술의 워드 및 비트 라인들에서, 워드/비트 라인들의 종횡비(두께(t) 대 폭(w)의 비)는 1과 근접하게 된다. 간단한 물리학(암페어의 법칙)을 적용하면 비교될 수 있는 두께(t) 및 폭(w), 운반 전류(I)의 종래 기술의 라인의 표면에서 자계(HS)는 다음과 같이 제공된다는 것을 보여준다. HS=πI/w.In word and bit lines of the prior art, the aspect ratio (ratio of thickness t to width w) of word / bit lines is close to one. Applying simple physics (ampere's law) shows that the magnetic field (H S ) at the surface of the prior art lines of thickness (t) and width (w), the carrying current (I), can be compared as: . H S = πI / w.

제안된 초박막 워드/비트 라인 설계를 위하여, 여기서 w>>t이며, 자계는 다음 관계를 따른다: HS=2πI/w. 따라서, 2팩터 만큼 와이어 표면에서 자계를 향상시킨다. MRAM 셀이 라인 표면으로부터 작은 거리를 두고 위치되기 때문에, 이점은 다소 감소될 것이지만, 특히 제조 방법이 라인 및 셀 간의 거리를 균일하게 작게 유지되도록 하기 때문에 여전히 상당하게 될 것이다.For the proposed ultra-thin word / bit line design, where w >> t, the magnetic field follows the relationship: H S = 2πI / w. Thus, the magnetic field is improved at the wire surface by two factors. Since the MRAM cell is located at a small distance from the line surface, the benefit will be somewhat reduced, but will still be significant, especially because the manufacturing method keeps the distance between the line and the cell uniformly small.

도 1a는 본 발명의 MTJ MRAM의 수직 단면도를 도시한 것이다. 수평 단면이 실질적으로 원형인 다층화된 셀 요소는 도시된 축들(폭은 x-방향이고 두께는 y-방향이다)의 z-축을 따라 길이가 확장되는 초박막 기록 워드 라인(10) 및 x-축(폭은 z-방향이고 두께는 y-방향이다)을 따라서 길이가 확장되고 워드 라인 아래에 수직으로 있는 초박막 비트 라인(20)의 수직 분리된 교차부에 있다. 기록 워드 라인 및 비트 라인들은 절연층(15)으로 분리되고 또한 절연체에 의해 부분적으로 둘러싸여 진다. 기록 워드 및 비트 라인들은 두께(tw 및 tb)를 각각 갖는데, 이는 본 발명의 목적들에 따라서 자신들의 폭들(ww 및 wb)(도시되지 않음) 보다 실질적으로 작으며, 여기서 tw 및 tb 둘 다는 대략 100nm 보다 작고 이들의 폭들은 대략 300 내지 500nm 이다. 종래 기술의 워드 및 비트 라인들이 이에 필적한 폭들 및 두께들로 형성된다는 점에 또다시 유의하여야 하는데, 이들 둘 다는 대략 300 내지 500nm이다. 초박막 기록 워드 또는 비트 라인 제조 공정의 설명이 이하에 보다 상세하게 설명될 것 이다. Figure 1a shows a vertical cross-sectional view of the MTJ MRAM of the present invention. The multi-layered cell element having a substantially circular horizontal cross section includes an ultra-thin write word line 10 and an x-axis extending in length along the z-axis of the illustrated axes (width in the x-direction and thickness in the y-direction). Width in the z-direction and thickness in the y-direction) and at the vertically separated intersection of the ultra-thin bit line 20 extending vertically below the word line. The write word line and the bit lines are separated by the insulating layer 15 and are also partially surrounded by the insulator. The write word and bit lines have thicknesses t w and t b , respectively, which are substantially smaller than their widths w w and w b (not shown) according to the purposes of the present invention, where t w And t b Both are less than approximately 100 nm and their widths are approximately 300-500 nm. Again it should be noted that the word and bit lines of the prior art are formed in comparable widths and thicknesses, both of which are approximately 300-500 nm. The description of the ultra thin write word or bit line fabrication process will be described in more detail below.

대략 200 내지 400 옴스트롱의 두께 및 대략 0.3 내지 0.7미크론의 측방 치수의 MTJ MRAM 셀 요소(50)는 워드(20) 및 비트 라인들(10)의 교차부 간에 위치되어 도시된다. 이 셀 요소는 비트 라인 상에 형성되는 시드층(51), 반강자성 피닝층(52), 결합층(54)에 의해 분리되는 제 2(53) 및 제 1(55) 강자성층을 포함하는 합성 강자성 피닝된 층, 터널링 장벽층(56), 적층된(laminated) 구조일 수 있는 자유층(57) 및 비트 라인 아래의 캡핑층(capping layer)(58)을 포함하는 수평 다층 제조이다. 판독 동작들에 사용되는 판독 워드 라인(59)이라 칭하는 부가적인 도전 전극은 셀의 상부 표면상에 형성된다. 이 워드 라인은 도전 전극으로부터 절연체(15)에 의해 분리된다. 전극을 제거할 수 있고 워드 라인을 상부 셀 표면에 전기 접촉시킬 수 있다. 셀 및 제조 공정에 사용되는 재료들 및 치수들의 상세한 설명은 바람직한 실시예의 설명 내에서 후술될 것이다.MTJ MRAM cell element 50, having a thickness of approximately 200-400 ohms strong and lateral dimensions of approximately 0.3-0.7 microns, is shown positioned between the intersection of word 20 and bit lines 10. This cell element comprises a seed layer 51, an antiferromagnetic pinning layer 52, a second (53) and a first (55) ferromagnetic layer separated by a bonding layer 54 formed on the bit line. It is a horizontal multilayer fabrication comprising a ferromagnetic pinned layer, a tunneling barrier layer 56, a free layer 57, which may be a laminated structure, and a capping layer 58 below the bit line. An additional conductive electrode called read word line 59 used for read operations is formed on the top surface of the cell. This word line is separated by an insulator 15 from the conductive electrode. The electrode can be removed and the word line can be in electrical contact with the upper cell surface. Details of the materials and dimensions used in the cell and manufacturing process will be described later within the description of the preferred embodiment.

본 발명의 효과는 워드 및 비트 라인 스위칭 전류들의 더욱 효율적인 사용을 행하는 MTJ MRAM 셀을 제공하여, 이 라인들은 전류들을 더욱 낮게 하면서 스위칭을 위한 충분한 강도의 자계들을 발생시키는 것이고, 워드 및 비트 라인들이 극히 얇게 되어 소정의 기록 전류를 위하여 MTJ 자유층에서 더욱 높은 자속을 생성하게 되는 것이다. The effect of the present invention is to provide an MTJ MRAM cell that makes more efficient use of word and bit line switching currents, such that these lines generate magnetic fields of sufficient intensity for switching while lowering currents, the word and bit lines being extremely It becomes thinner, producing higher magnetic flux in the MTJ free layer for a given write current.

본 발명의 바람직한 실시예는 초박막 워드 및 비트 라인들의 교차부, 특히 이들 라인들 간에 MTJ MRAM 셀을 형성함으로써, 더욱 작은 전류들이 셀 자유층의 위치에서 적절한 스위칭 필드들을 발생시킨다. A preferred embodiment of the present invention forms an MTJ MRAM cell at the intersection of ultra thin word and bit lines, in particular between these lines, so that smaller currents generate appropriate switching fields at the location of the cell free layer.

도 1a를 참조하면, 본 발명의 직교 지향되어 수직 분리된 초박막 워드(10) 및 비트(20) 라인들 간에 형성된 다층화된 MTJ 셀 요소(50)를 도시한 것이다. 2개의 라인들은 서로에 대해서 교차하는 수직 분리된 수평 평면들에서 확장되지만 서로로부터 절연됨으로써, 셀이 위치되는 교차부를 형성한다. 이하에서, 용어 "교차부(intersection)"는 라인들을 교차하여 수직 분리된다는 것을 의미한다. 워드 라인은 도면의 평면에서 수직으로 지향되며, 비트 라인은 도면의 평면 내에 있다. 판독 동작들(59)에 사용되는 부가적인 도전 전극(대안적으로 판독 워드 라인에 표시된다)은 셀의 상부 표면상에 형성된다. 셀의 동작 동안, 도전 전극은 통상적으로 MRAM 셀의 논리 상태를 결정하기 위하여 사용되는 액세싱 트랜지스터에 접속될 것이다. 이 전극은 워드 라인으로부터 절연되어 분리되지만, 이 분리는 셀의 자유층에서 워드 라인의 전계 강도를 유지시킬 수 있을 만큼 작게 유지되어야 한다는 것이 명백하다. 비트 라인(20)은 대략 100nm 이하의 두께 및 대략 300 내지 5000nm의 폭으로 형성된 Al, Cu, Au, Ru, Ta, CuAu, CuAg, NiCr, Rh와 같은 고 도전성 재료의 단일층 및 (NiCr/Cu)의 다수의 라미네이션들과 같은 이들 재료들의 다층들일 수 있다. 상술된 바와 같이, x-방향을 따라서 확장되는 판독 워드 라인과 같은 부가적인 도전 전극(59)은 셀의 상부 표면과 접촉하여 형성되고 판독 동작들을 위하여 비트 라인(20)과 결합하여 사용된다. 접속 라인(60)은 전극(59)으로부터 액세싱 트랜지스터(도시되지 않음)의 단자로 진행하는데, 이는 MRAM 셀의 논리 상태(즉, 저항) 를 결정하도록 사용되는 회로의 부분이다. 도 1a에 도시된 특정 구성에서, 단일 MRAM 셀은 단일 트랜지스터에 접속된다. 2개의 이와 같은 셀들의 부분적인 어레이는 특정 MRAM 어레이 설계의 부분을 형성하는데, 각각의 예가 도 1d에 도시되며, 각각은 수직 분리된 교차하는 워드 라인 및 비트 라인 간에 형성되고 각각의 자체 트랜지스터에 의해 액세스 된다. 1A, a multi-layered MTJ cell element 50 formed between orthogonally oriented vertically separated ultra-thin word 10 and bit 20 lines is shown. The two lines extend in vertically separated horizontal planes that intersect with each other but are insulated from each other, thereby forming an intersection where the cell is located. In the following, the term “intersection” means that the lines are vertically separated by crossing the lines. The word line is oriented vertically in the plane of the drawing, and the bit line is in the plane of the drawing. An additional conductive electrode (alternatively indicated in the read word line) used for read operations 59 is formed on the top surface of the cell. During operation of the cell, the conductive electrode will typically be connected to an access transistor that is used to determine the logic state of the MRAM cell. This electrode is insulated and separated from the word line, but it is clear that this separation should be kept small enough to maintain the field strength of the word line in the free layer of the cell. The bit line 20 is a single layer of high conductive material such as Al, Cu, Au, Ru, Ta, CuAu, CuAg, NiCr, Rh formed in a thickness of about 100 nm or less and a width of about 300 to 5000 nm and (NiCr / Cu It can be multiple layers of these materials, such as multiple laminations of n). As described above, an additional conductive electrode 59, such as a read word line extending along the x-direction, is formed in contact with the top surface of the cell and used in conjunction with the bit line 20 for read operations. Connection line 60 runs from electrode 59 to a terminal of an access transistor (not shown), which is part of the circuit used to determine the logic state (ie, resistance) of the MRAM cell. In the particular configuration shown in FIG. 1A, a single MRAM cell is connected to a single transistor. The partial array of two such cells forms part of a particular MRAM array design, each example of which is shown in FIG. 1D, each formed between vertically separated intersecting word lines and bit lines and each having its own transistor. Is accessed.

셀 요소(50)를 다시 참조하면, 시드층(51)은 비트 라인(20)상에 형성되고 셀의 다음 형성된 층들의 고품질 형성을 촉진시킨다. 시드층은 대략 5 내지 100 옴스트롱의 두께로 형성되는 NiCr 또는 NiFe의 층일 수 있다. 단일 피닝된 층 또는 이 실시예에서처럼, 합성 강자성 피닝된 층은 시드층상에 형성된다. 이 합성층은 반강자성 피닝층(52), 제 2 강자성층(53), 결합층(54) 및 제 1 강자성층(55)을 포함한다. 반강자성층은 제 2 강자성층의 자화를 전방향적으로 피닝하고 제 1 강자성층은 제 1 층의 방향과 반평행 방향으로 자화된다. 제 1 및 제 2 강자성층들은 대략 5 내지 100 옴스트롱의 두께로 형성되어 정합되는 CoFe의 층들이 되어, 이 구성의 순자기 모멘트가 실질적으로 제로가 되게 한다. 결합층은 적절한 두께의 Rh, Ru, Cr 또는 Cu의 층으로 되어 자기 모멘트들 간에 강한 반평행 결합을 유지시킨다. 반강자성 피닝층(52)은 대략 10 내지 100 옴스트롱의 두께의 PtMn, NiMn, OsMn, IrMn, PtPdMn, PtCrMn, 또는 FeMn의 층일 수 있다.Referring back to cell element 50, seed layer 51 is formed on bit line 20 and promotes high quality formation of the next formed layers of the cell. The seed layer may be a layer of NiCr or NiFe formed to a thickness of approximately 5 to 100 ohms strong. A single pinned layer or as in this embodiment, a synthetic ferromagnetic pinned layer is formed on the seed layer. The composite layer includes an antiferromagnetic pinning layer 52, a second ferromagnetic layer 53, a bonding layer 54, and a first ferromagnetic layer 55. The antiferromagnetic layer pins the magnetization of the second ferromagnetic layer in an omnidirectional manner and the first ferromagnetic layer is magnetized in an antiparallel direction to the direction of the first layer. The first and second ferromagnetic layers are formed to a thickness of approximately 5 to 100 ohms strong to form matching layers of CoFe, such that the net magnetic moment of this configuration is substantially zero. The bonding layer is a layer of Rh, Ru, Cr or Cu of appropriate thickness to maintain strong antiparallel bonding between the magnetic moments. The antiferromagnetic pinning layer 52 may be a layer of PtMn, NiMn, OsMn, IrMn, PtPdMn, PtCrMn, or FeMn of approximately 10 to 100 ohms thick.

터널링 배리어층(56)은 피닝된 층의 제 1 강자성층(55)상에 형성된다. 이 층은 산화된 Al 또는 산화된 Al-Hf 바이레이어와 같은 절연 재료층이고 대략 7 내지 15 옴스트롱의 두께로 형성된다. 강자성 자유층(57)은 장벽층상에 형성된다. 자유 층은 대략 5 내지 100 옴스트롱의 두께로 형성되는 CoFe 또는 NiFe의 층과 같은 강자성 재료의 단일층일 수 있거나, 반평행 방향들에서 자화되고 비자성의 스페이서 층에 의해 분리되는 제 1 및 제 2 강자성층들을 포함하지만 Rh, Ru, Cr 또는 Cu와 같은 도전성 재료를 포함하는 다층일 수 있는데, 이는 적절한 두께로 이루어져 2개의 강자성층들 간에 강한 반평행 결합을 유지시킨다. 셀의 형성 동안, 비트 라인에 수직 또는 평행한 강자성층들의 자기 이방성 방향을 설정하는 것이 유용하다. 캡핑층(58)은 자유층상에 형성되고 셀 요소(50)를 완성한다. 캡핑층은 대략 5 내지 100 옴스트롱의 두께로 형성되는 Ru 또는 Ta의 층 또는 Ru/Ta의 다층일 수 있다. 판독 워드 라인(59)은 셀 요소(50)의 캡핑층(58) 상에 형성된다. 절연 재료(15)의 층은 셀을 둘러싸고 기록 워드 라인(10)을 비트 라인(20)으로부터 분리시키고 판독 워드 라인(59)을 워드 라인(10)으로부터 분리시킨다. 비트 라인과 같은 기록 워드 라인(10)은 본 발명의 방법에 따라서 형성된 두께면에서 100nm 보다 작은 도전성 재료의 초박막층 이다. 판독 및 기록 워드 라인들 간의 분리는 가능한 작게 유지되어 셀 요소 자유층에서 기록 워드 라인 자계의 강도를 유지시킨다는 점에 또한 유의하라. 초박막 라인들의 두께 보다 크지 않은 분리가 바람직하다.The tunneling barrier layer 56 is formed on the first ferromagnetic layer 55 of the pinned layer. This layer is an insulating material layer, such as oxidized Al or oxidized Al-Hf bilayer, and is formed to a thickness of approximately 7 to 15 ohms. Ferromagnetic free layer 57 is formed on the barrier layer. The free layer may be a single layer of ferromagnetic material, such as a layer of CoFe or NiFe, formed to a thickness of approximately 5 to 100 ohms strong, or may be the first and second ferromagnetics magnetized in antiparallel directions and separated by a nonmagnetic spacer layer. It may be a multilayer comprising layers but comprising a conductive material such as Rh, Ru, Cr or Cu, which is of appropriate thickness to maintain a strong antiparallel bond between the two ferromagnetic layers. During the formation of the cell, it is useful to set the magnetic anisotropy direction of the ferromagnetic layers perpendicular or parallel to the bit line. Capping layer 58 is formed on the free layer and completes cell element 50. The capping layer may be a layer of Ru or Ta or a multilayer of Ru / Ta formed to a thickness of approximately 5 to 100 ohms strong. The read word line 59 is formed on the capping layer 58 of the cell element 50. A layer of insulating material 15 surrounds the cell and separates the write word line 10 from the bit line 20 and the read word line 59 from the word line 10. The write word line 10, such as the bit line, is an ultra thin layer of conductive material smaller than 100 nm in thickness formed according to the method of the present invention. Note also that the separation between read and write word lines is kept as small as possible to maintain the strength of the write word line magnetic field in the cell element free layer. Separation not larger than the thickness of the ultra thin lines is preferred.

도 1b를 참조하면, 본 발명의 초박막 워드(10) 및 비트(20) 라인들을 사용하지만 판독 워드 라인(도 1a의 (59))이 없고 대신 기록 워드 라인(10)이 셀 요소(50)의 상부 표면과 접촉하여 형성된다는 점에서 도 1a의 설계와 상이한 MTJ MRAM 설계가 도시되어 있다. 셀 요소는 도 1a의 셀 요소와 동일함으로, 이에 대해선 상세히 도시하지 않았다. 이 구성에서, 셀의 논리 상태는 기록 워드 라인 및 비 트 라인만을 사용하여 결정된다. Referring to FIG. 1B, the present invention uses the ultra-thin word 10 and bit 20 lines but lacks a read word line (59 in FIG. 1A) and instead writes a word line 10 of the cell element 50. An MTJ MRAM design is shown that differs from the design of FIG. 1A in that it is formed in contact with the top surface. The cell element is the same as the cell element of FIG. 1A and is not shown in detail. In this configuration, the logic state of the cell is determined using only write word lines and bit lines.

도 1c를 참조하면, 도 1a의 셀 요소와 각각 동일한 다수의 셀 요소들(50)(2개가 도시)이 도 1b의 구성에서 공통 워드 라인(10) 및 개별적인 비트 라인(20)간에 형성되는 MRAM 셀들의 어레이를 개요적으로 도시한 것이다. 그 후, 워드 라인은 접속 도체(60)에 의해 단일 액세싱 트랜지스터(도시되지 않음)에 접속된다. 간결성을 위하여 단지 2개만이 도시되고 이들 둘 다는 (50)으로 표시되며, 각 셀은 분리된 비트 라인(20)과 접촉하여 형성되고, 이 라인은 도면의 평면 밖으로 지향된다. 이 구성에서 시드층(51)인 셀 요소의 상부 표면은 비트 라인(20)의 하부 표면과 접촉하고, 캡핑층(58)인 셀 요소의 하부 표면은 워드 라인(10)의 상부 표면과 접촉한다. 도 1a에서 (59)로 표시된 바와 같은 분리층(58)이 존재하지 않는다. 워드 라인(10) 및 비트 라인들(20)은 도 2a-d와 관련하여 후술될 본 발명의 방법에 따라서 형성된다. 이 구성에서, 공통 워드 라인과 접촉하는 모든 셀들은 단일 트랜지스터에 의해 액세스 된다. 이 어레이는 반전될 수 있음으로, 워드 라인은 비트 라인들 위에 놓이게 되며, 셀 요소는 반전된 층들을 가지고 액세싱 트랜지스터는 워드 라인 위에 놓이게 된다. Referring to FIG. 1C, an MRAM in which a plurality of cell elements 50 (two shown), each identical to the cell element of FIG. 1A, is formed between the common word line 10 and the individual bit line 20 in the configuration of FIG. 1B. An array of cells is shown schematically. The word line is then connected to a single access transistor (not shown) by the connection conductor 60. Only two are shown for the sake of brevity, both of which are denoted by (50), and each cell is formed in contact with a separate bit line 20, which is directed out of the plane of the drawing. In this configuration the top surface of the cell element, which is the seed layer 51, is in contact with the bottom surface of the bit line 20, and the bottom surface of the cell element, which is the capping layer 58, is in contact with the top surface of the word line 10. . There is no separation layer 58 as indicated by 59 in FIG. 1A. The word line 10 and the bit lines 20 are formed in accordance with the method of the present invention which will be described later with reference to FIGS. 2A-D. In this configuration, all the cells in contact with the common word line are accessed by a single transistor. This array can be inverted so that the word line is overlying the bit lines, the cell element has inverted layers and the access transistor is overlying the word line.

도 1d를 참조하면, 각각 도 1a의 구성인 2개의 MTJ MRAM 셀들의 어레이가 도시되어 있는데, 여기서 각 셀 요소(50)는 본 발명의 방법을 사용하여 형성된 교차하는 워드(10) 및 비트(20) 라인들 간에 배치되며, 동일한 비트 라인(20)은 각 셀에 공통되지만 각 워드 라인은 개별적인 셀 요소 위에 있게 된다. 전극(59)은 캡핑층(58) 상의 각 셀의 상부 표면과 접촉하여 형성되고 워드 라인으로부터 절연되고 (15), 각 전극은 접속 라인(60)에 의해 액세싱 트랜지스터(도시되지 않음)에 접속된다. 이 어레이 구성에서, 각 셀을 위한 하나의 트랜지스터가 존재한다. 전체 구성은 반전되어 비트 라인이 셀 위에 수직으로 배치되도록 하고 셀층 구조가 도 1a에 도시된 바에 대해서 반전되도록 한다는 점에 유의하라. Referring to FIG. 1D, there is shown an array of two MTJ MRAM cells, each of which is the configuration of FIG. 1A, where each cell element 50 is an intersecting word 10 and a bit 20 formed using the method of the present invention. ), The same bit line 20 is common to each cell, but each word line is on a separate cell element. Electrode 59 is formed in contact with the top surface of each cell on capping layer 58 and is insulated from the word line 15, and each electrode is connected to an access transistor (not shown) by connection line 60. do. In this array configuration, there is one transistor for each cell. Note that the overall configuration is reversed so that the bit lines are placed vertically above the cell and the cell layer structure is reversed as shown in FIG. 1A.

지금부터 도 2a-e를 참조하면, 본 발명의 비트 또는 워드 라인들을 제조시에 수반되는 여러 단계들이 개요적으로 도시되어 있다. 라인들의 초박막성은 보다 작은 전류를 적절한 스위칭 필드에 제공하기 위한 본 발명의 목적을 성취할 뿐만 아니라 적은 이온빔 에치(IBE) 트리밍 및 CMP 폴리싱이 요구되기 때문에 종래의 두꺼운 라인들 보다 손쉬운 방식으로 제조될 수 있다.Referring now to Figures 2A-E, the various steps involved in manufacturing the bit or word lines of the present invention are schematically illustrated. The ultra-thinness of the lines not only achieves the object of the present invention to provide a smaller current to the appropriate switching field, but also can be manufactured in an easier manner than conventional thick lines because less ion beam etch (IBE) trimming and CMP polishing are required. have.

우선 도 2a를 참조하면, 본 발명의 초박막 워드 또는 비트 라인들을 형성하는데 필요로 되는 공정 단계들 중 제 1 단계가 도시된다. 먼저, 얇은 도전층(100)이 실질적으로 평활한 상부 표면을 갖는 기판(90)에 걸쳐 침착되는데, 이 도전층은 스퍼터링(sputtering), 이온빔 침착(IBD) 또는 화학적 증기 침착(CVD)의 공정에 의해 워드 또는 비트 라인의 소망 최종 두께로 침착된다. 이 기판은 상부 표면들이 유전체층의 상부 표면과 공통-평활하게 되는 MTJ MRAM 셀 요소들을 포함하는 유전체층일 수 있다는 점에 유의하라. 대안적으로, 이 기판은 도 1a에서 (59)와 같은 도전 전극에 걸쳐서 형성되는 유전체층일 수 있다. 여기서, 이 기판은 상세하게 도시되지 않는다. 그 후, 포토레지스트층(200)은 도전층상에 형성된다.Referring first to FIG. 2A, a first step of the process steps required to form the ultra-thin word or bit lines of the present invention is shown. First, a thin conductive layer 100 is deposited over a substrate 90 having a substantially smooth top surface, which is subjected to a process of sputtering, ion beam deposition (IBD) or chemical vapor deposition (CVD). By the desired thickness of the word or bit line. Note that this substrate may be a dielectric layer comprising MTJ MRAM cell elements whose top surfaces are co-smooth with the top surface of the dielectric layer. Alternatively, the substrate may be a dielectric layer formed over a conductive electrode, such as 59 in FIG. 1A. Here, this substrate is not shown in detail. Thereafter, the photoresist layer 200 is formed on the conductive layer.

도 2b를 참조하면, 종래 기술에 잘 알려진 바와 같은 포토리소그래픽 공정(photolithographic process)에 의해 현재 패터닝된 포토레지스트층(210)이 도시 된다. 이 패터닝은 형성될 라인 폭 및 적절한 라인 방향으로 신장되는 스트립(또는 하나 이상의 라인이 형성되는 경우 다수의 스트립들)을 발생시킨다. Referring to FIG. 2B, a photoresist layer 210 is currently shown patterned by a photolithographic process as is well known in the art. This patterning produces a line width to be formed and a strip extending in the appropriate line direction (or a plurality of strips when one or more lines are formed).

도 2c를 참조하면, 이온 빔 에치(IBE) 또는 반응성 이온 에치(RIE)를 위한 마스크로서 사용되어 도전층의 주변 부분들을 제거하여 포토레지스트 패턴 아래에 소망 워드/비트 라인(150)을 남겨두는 패터닝된 포토레지스트(210)가 도시된다. 그 후, 포토레지스트는 제거되어(도시되지 않음) 기판(90)에 걸쳐서 적절하게 배열되는 워드/비트 라인들(150) 만을 남긴다. Referring to FIG. 2C, patterning is used as a mask for ion beam etch (IBE) or reactive ion etch (RIE) to remove peripheral portions of the conductive layer leaving a desired word / bit line 150 under the photoresist pattern. Photoresist 210 is shown. The photoresist is then removed (not shown) leaving only the word / bit lines 150 properly arranged over the substrate 90.

도 2d를 참조하면, 도 2c의 포메이션이 도시되는데, 여기서 절연 리필층(250)은 막 형성된 워드/비트 라인들 간에 그리고 이외 다른 것들(도시되지 않음) 간의 공간들을 채우도록 침착된다. 이 형태에서, MTJ 셀들은 워드/비트 라인들에 걸쳐서 형성될 수 있거나, 직교 세트의 워드 라인들은 이들이 비트 라인들인 경우 이들 라인들에 걸쳐서 형성될 수 있다. 막 형성된 라인들(150)이 비트 라인들(도면에서 평면과 직교하여 진행)이면, 이들 위에 걸쳐서 형성된 직교 라인들은 워들 라인들(도면에서 평면 내에서 진행)이 될 것이다.Referring to FIG. 2D, the formation of FIG. 2C is shown, where an insulating refill layer 250 is deposited to fill the spaces between the formed word / bit lines and between others (not shown). In this form, MTJ cells may be formed over word / bit lines, or orthogonal set of word lines may be formed over these lines if they are bit lines. If the just formed lines 150 are bit lines (run orthogonal to the plane in the figure), the orthogonal lines formed over them will be word lines (run in plane in the figure).

마지막으로 도 2e를 참조하면, 도 2a-d에 따라서 형성된 초박막 워드 라인(150)이 셀의 상부 표면상에 위치되도록 단지 예로서 MTJ MRAM 셀(50)을 포함하는 기판(90)이 도시되어 있다. 다른 초박막 교차하는 워드/비트 라인 구성들이 셀 요소들의 위치에서 어떻게 형성되는지가 당업자에게 명백하다. Finally, referring to FIG. 2E, a substrate 90 including an MTJ MRAM cell 50 is shown by way of example only such that the ultra-thin word line 150 formed in accordance with FIGS. 2A-D is located on the top surface of the cell. . It is apparent to those skilled in the art how other ultra thin cross word / bit line configurations are formed at the location of the cell elements.

간결성 및 재생성을 위하여, 비트 또는 워드 라인들(150)의 표면들은 화학적 기계적 폴리싱(CMP)에 의해 두께면에서 평탄화되거나 감소되지 않도록 할 필요가 있다. 이와 같은 폴리싱은 라인들에서 바람직하지 않은 두께 변화들을 초래하며, 이 변화들이 그 후 MTJ 셀 내의 라인들 및 자유층 간에서 충분히 작고 균일한 거리를 유지시키는데 악영향을 미친다. CMP 랩핑 공정을 제어하여 정확한 중지 포인트를 얻는 곤란성으로 인해 두께 변화가 초래된다. 이로 인해, CMP가 배제되기 때문에, 비트 라인들은 두껍게 만들 수 없으며, 이 때문에 높은 비평활 상부 표면을 생성시키는 두꺼운 침착을 피할 수 없게 되는데, 이것은 CMP를 행하지 않으면, 부정확한 포토레지스트 패터닝, 불량한 라인 지속성 및 전자이동을 포함한 문제들의 원인이 된다. 따라서, 본 발명의 얇은 침착은 유용하지 않는 CMP 공정 요건을 제거함과 동시에 필요로 되는 증가되는 자계들을 제공한다. For simplicity and reproducibility, the surfaces of the bit or word lines 150 need to be not flattened or reduced in thickness by chemical mechanical polishing (CMP). Such polishing results in undesirable thickness variations in the lines, which then adversely affects maintaining a sufficiently small and uniform distance between the lines and free layer in the MTJ cell. The difficulty in controlling the CMP lapping process to obtain accurate breakpoints results in thickness variations. Because of this, because CMP is excluded, the bit lines cannot be made thick, which makes it impossible to avoid thick deposits that produce a high non-smooth top surface, which would result in inaccurate photoresist patterning, poor line persistence if CMP is not done. And electron transfer. Thus, the thin deposition of the present invention eliminates the undesirable CMP process requirements while at the same time providing the increasing magnetic fields needed.

당업자가 이해하는 바와 같이, 본 발명의 바람직한 실시예는 본 발명을 제한하는 것이 아니라 본 발명을 예시한 것이다. 방법들, 공정들, 재료들, 구조들 및 치수들에 대한 개정들 및 수정들을 행할 수 있으며, 이를 통해서 초박막 비트 라인 및 초박막 워드 라인 간에 셀 요소를 포함하는 MTJ MRAM 셀을 형성하고 제공하면서, 첨부한 청구범위에 의해 규정된 바와 같은 본 발명에 따라서 MRAM 셀을 형성하고 제공한다.As will be appreciated by those skilled in the art, the preferred embodiments of the present invention are illustrative of the invention rather than limiting of the invention. Amendments and modifications to the methods, processes, materials, structures and dimensions can be made, thereby forming and providing an MTJ MRAM cell comprising a cell element between the ultra thin bit line and the ultra thin word line. An MRAM cell is formed and provided in accordance with the present invention as defined by one claim.

도 1a는 본 발명의 초박막 워드 및 비트 라인들 간에 형성된 셀 요소를 갖는 MTJ MRAM 셀의 개요적인 수직 단면도.1A is a schematic vertical cross-sectional view of an MTJ MRAM cell with cell elements formed between ultra-thin word and bit lines of the present invention.

도 1b는 도 1a의 구성에 대한 대안적인 구성에서 본 발명의 MTJ MRAM 셀을 개요적으로 도시한 수직 단면도.1B is a vertical cross-sectional view schematically illustrating the MTJ MRAM cell of the present invention in an alternative configuration to that of FIG. 1A;

도 1c는 초박막 워드 및 비트 라인들 간에 형성된 MTJ MRAM 셀들의 어레이(2개가 도시됨)의 개요도.1C is a schematic diagram of an array of MTJ MRAM cells (two shown) formed between ultra thin word and bit lines.

도 1d는 도 1a의 유형의 2개의 셀들의 어레이를 개요적으로 도시한 도면.1D schematically illustrates an array of two cells of the type of FIG. 1A.

도 2a-e는 워드 및 비트 라인들의 두께가 포메이션을 보다 간단하게 하는 방법을 나타내는 초박막 워드 또는 비트 라인의 형성을 더욱 상세하게 설명한 도면.2A-E illustrate in more detail the formation of ultra-thin words or bit lines showing how the thickness of word and bit lines makes the formation simpler.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10: 초박막 워드 라인10: Ultra Thin Word Line

20: 초박막 비트 라인20: ultra thin bit line

50: MTJ 셀 요소50: MTJ Cell Element

59: 도전 전극59: conductive electrode

60: 접속 라인60: connection line

Claims (12)

초박막 워드 및 비트 라인들의 교차부에 형성된 MTJ MRAM 셀(magnetic tunnel junction magnetic random access memory cell)에 있어서:In an MTJ MRAM cell formed at the intersection of ultra-thin word and bit lines: 상부 표면 및 하부 표면을 갖고 전기 도전 재료로 형성되고, 제 1 수평 평면 내에서 제 1 방향으로 연장되고 100nm 보다 작은 두께(tb)를 갖는 초박막 비트 라인;An ultra-thin bit line having a top surface and a bottom surface, formed of an electrically conductive material, extending in the first direction within the first horizontal plane and having a thickness t b less than 100 nm; 상부 표면 및 하부 표면을 갖고 전기 도전 재료로 형성된 초박막 기록 워드 라인으로서, 상기 제 1 수평 평면으로부터 수직으로 분리되는 제 2 수평 평면에서 상기 제 1 방향과 직교되는 방향으로 연장되고, 상기 초박막 비트 라인 및 100nm보다 작은 두께(tw)를 갖는 상기 초박막 워드 라인과 수직으로 분리된 교차부를 형성하도록 상기 초박막 비트 라인 위에 수직으로 통과하는, 상기 초박막 기록 워드 라인; 및An ultra thin write word line having an upper surface and a lower surface and formed of an electrically conductive material, the ultra thin write word line extending in a direction orthogonal to the first direction in a second horizontal plane that is vertically separated from the first horizontal plane; The ultra thin write word line passing vertically over the ultra thin bit line to form an intersection perpendicularly separated from the ultra thin word line having a thickness t w less than 100 nm; And 상부 표면 및 하부 표면을 갖고 자기 자유층을 포함하고 상기 초박막 워드 라인 및 상기 초박막 비트 라인의 상기 교차부에서 형성되는 수평으로 다층화된 자기 터널 접합(MTJ) 셀 요소를 포함하는, MTJ MRAM 셀.And a horizontally multilayered magnetic tunnel junction (MTJ) cell element having a top surface and a bottom surface and including a magnetic free layer and formed at the intersection of the ultra thin word line and the ultra thin bit line. 제 1 항에 있어서, The method of claim 1, 상기 MTJ 셀 요소는 상기 초박막 워드 및 비트 라인들 간의 교차부에 형성되 고, 상기 MTJ 셀 요소의 상부 표면은 상기 초박막 워드 라인의 하부 표면과 전기 접촉하고 상기 MTJ 셀 요소의 하부 표면은 상기 초박막 비트 라인의 상부 표면과 전기 접촉하는, MTJ MRAM 셀.The MTJ cell element is formed at the intersection between the ultra thin word and bit lines, the top surface of the MTJ cell element is in electrical contact with the bottom surface of the ultra thin word line and the bottom surface of the MTJ cell element is the ultra thin bit line MTJ MRAM cell in electrical contact with an upper surface of the cell. 제 1 항에 있어서, The method of claim 1, 상기 MTJ 셀 요소는 상부 표면상에 형성되는 도전 전극을 포함하는, MTJ MRAM 셀.And the MTJ cell element comprises a conductive electrode formed on the top surface. 제 3 항에 있어서, The method of claim 3, wherein 상기 MTJ 셀 요소는 상기 초박막 워드 및 비트 라인들 간의 교차부에 형성되고, 상기 MTJ 셀 요소의 하부 표면은 상기 초박막 비트 라인의 상부 표면과 접촉하고 상기 초박막 워드 라인의 하부 표면은 상기 도전 전극 위에 수직으로 놓이고 절연층에 의해 상기 도전 전극으로부터 분리되는, MTJ MRAM 셀.The MTJ cell element is formed at the intersection between the ultra thin word and bit lines, the bottom surface of the MTJ cell element is in contact with the top surface of the ultra thin bit line and the bottom surface of the ultra thin word line is perpendicular above the conductive electrode. MTJ MRAM cell laid down and separated from the conductive electrode by an insulating layer. 제 1 항에 있어서, The method of claim 1, 상기 전기 도전 재료는 Cu, Au, Al, Ag, CuAg, Ta, Cr, NiCr, NiFeCr, Ru, Rh 또는 상기 재료들의 다수의 적층된 층들인, MTJ MRAM 셀.Wherein the electrically conductive material is Cu, Au, Al, Ag, CuAg, Ta, Cr, NiCr, NiFeCr, Ru, Rh or multiple stacked layers of the materials. 제 1 항에 있어서, The method of claim 1, 상기 MTJ 셀 요소는,The MTJ cell element is, 상기 초박막 비트 라인의 상부 표면상에 형성된 시드층;A seed layer formed on an upper surface of the ultra thin bit line; 상기 시드층상에 형성된 반강자성 피닝층(antiferromagnetic pinning layer);An antiferromagnetic pinning layer formed on the seed layer; 상기 반강자성 피닝층상에 형성된 합성 강자성 피닝층으로서, 제 1 결합층에 의해 분리되는 동일 및 대향되는 자기 모멘트들의 제 1 및 제 2 강자성층들을 포함하는 상기 합성 강자성 피닝층;A synthetic ferromagnetic pinning layer formed on the antiferromagnetic pinning layer, the synthetic ferromagnetic pinning layer comprising first and second ferromagnetic layers of the same and opposite magnetic moments separated by a first bonding layer; 상기 합성 강자성 피닝층상에 형성된 터널링 장벽층;A tunneling barrier layer formed on the synthetic ferromagnetic pinning layer; 상기 터널링 장벽층상에 형성된 강자성 자유층;A ferromagnetic free layer formed on said tunneling barrier layer; 상기 강자성 자유층상에 형성된 캡핑층(capping layer)을 포함하고, A capping layer formed on the ferromagnetic free layer, 상기 강자성층들의 자기 이방성(magnetic anisotropy)은 상기 초박막 비트 라인과 평행 또는 수직하게 설정되는, MTJ MRAM 셀.The magnetic anisotropy of the ferromagnetic layers is set in parallel or perpendicular to the ultra thin bit line. 제 6 항에 있어서, The method of claim 6, 상기 강자성 자유층은 상기 자기 모멘트들의 반평행 결합(antiparallel coupling)을 유지하기 위하여 Ru, Rh, Cu 또는 Cr의 제 2 결합층에 의해 분리되는 동일 및 대향되는 자기 모멘트들의 제 3 및 제 4 강자성층들을 포함하는 합성 강자성층인, MTJ MRAM 셀.The ferromagnetic free layer is the third and fourth ferromagnetic layers of the same and opposite magnetic moments separated by a second coupling layer of Ru, Rh, Cu or Cr to maintain antiparallel coupling of the magnetic moments. An MTJ MRAM cell, which is a synthetic ferromagnetic layer comprising. 제 6 항에 있어서, The method of claim 6, 상기 반강자성 피닝층은 10 내지 500 옴스트롱의 두께의 PtMn, NiMn, OsMn, IrMn, PtPdMn, PtCrMn 또는 FeMn의 층이고, 상기 강자성층들은 5 내지 100 옴스트롱의 두께로 형성된 CoFe 또는 NiFe의 층들이며, 상기 결합층은 Rh, Ru, Cu 또는 Cr의 층인, MTJ MRAM 셀.The antiferromagnetic pinning layer is a layer of PtMn, NiMn, OsMn, IrMn, PtPdMn, PtCrMn or FeMn with a thickness of 10 to 500 ohms strong, and the ferromagnetic layers are layers of CoFe or NiFe formed to a thickness of 5 to 100 ohms strong. And wherein said bonding layer is a layer of Rh, Ru, Cu or Cr. 초박막 워드 및 비트 라인들의 교차부들 간에 형성된 MTJ MRAM 셀들의 어레이로서, 상기 초박막 워드 및 비트 라인들은 전기 도전 재료의 100nm보다 작은 두께로 형성되는, 상기 MTJ MRAM 셀들의 어레이에 있어서:An array of MTJ MRAM cells formed between intersections of ultra thin word and bit lines, wherein the ultra thin word and bit lines are formed with a thickness less than 100 nm of an electrically conductive material: 상부 표면 및 하부 표면을 갖고 제 1 방향으로 형성되는 적어도 하나의 초박막 워드 라인;At least one ultra thin word line having a top surface and a bottom surface and formed in a first direction; 상기 초박막 워드 라인의 상부 표면상에 균일하게 이격되어 형성된 복수의 동일한 MTJ 셀 요소들로서, 각각의 상기 MTJ 셀 요소의 하부 표면은 상기 초박막 워드 라인의 상부 표면과 전기 접촉하는, 상기 복수의 동일한 MTJ 셀 요소들;A plurality of identical MTJ cell elements formed uniformly spaced apart on the top surface of the ultra thin word line, the bottom surface of each MTJ cell element being in electrical contact with the top surface of the ultra thin word line Elements; 복수의 평행한 초박막 비트 라인들로서, 상기 초박막 비트 라인들 각각은 상부 및 하부 표면을 갖고, 상기 하부 표면은 상기 MTJ 셀 요소들 중 하나의 상부 표면과 전기 접촉하고, 상기 초박막 비트 라인들 각각은 상기 제 1 방향과 직교되는 제 2 방향으로 형성되는, 상기 복수의 평행한 초박막 비트 라인들; 및A plurality of parallel ultra thin bit lines, each of the ultra thin bit lines having a top and bottom surface, the bottom surface in electrical contact with a top surface of one of the MTJ cell elements, each of the ultra thin bit lines The plurality of parallel ultra thin bit lines formed in a second direction orthogonal to a first direction; And 상기 초박막 워드 라인 및 단일 액세싱 트랜지스터(accessing transistor) 간에 형성된 전기 도전 접속부를 포함하는, MTJ MRAM 셀들의 어레이.And an electrically conductive connection formed between the ultra thin word line and a single access transistor. 제 9 항에 있어서, The method of claim 9, 각각의 상기 MTJ 셀 요소는:Each said MTJ cell element is: 상기 초박막 비트 라인의 상기 하부 표면상에 형성된 시드층;A seed layer formed on the lower surface of the ultra thin bit line; 상기 시드층상에 형성된 반강자성 피닝층;An antiferromagnetic pinning layer formed on the seed layer; 상기 반강자성 피닝층상에 형성된 합성 강자성 피닝층으로서, 제 1 결합층에 의해 분리되는 동일 및 대향된 자기 모멘트들의 제 1 및 제 2 강자성층들을 포함하는 상기 합성 강자성 피닝층;A synthetic ferromagnetic pinning layer formed on the antiferromagnetic pinning layer, the synthetic ferromagnetic pinning layer comprising first and second ferromagnetic layers of the same and opposite magnetic moments separated by a first bonding layer; 상기 합성 강자성 피닝층상에 형성된 터널링 장벽층;A tunneling barrier layer formed on the synthetic ferromagnetic pinning layer; 상기 터널링 장벽층상에 형성된 강자성 자유층;A ferromagnetic free layer formed on said tunneling barrier layer; 상기 강자성 자유층상에 형성되고 상기 초박막 워드 라인의 상기 상부 표면과 접촉하는 캡핑층을 포함하고, A capping layer formed on the ferromagnetic free layer and in contact with the upper surface of the ultra thin word line, 상기 강자성층들의 자기 이방성은 상기 초박막 비트 라인과 평행 또는 수직하게 설정되는, MTJ MRAM 셀들의 어레이.Magnetic anisotropy of the ferromagnetic layers is set in parallel or perpendicular to the ultra-thin bit line. 초박막 워드 및 비트 라인들의 교차부들 간에 형성된 MTJ MRAM 셀들의 어레이로서, 상기 초박막 워드 및 비트 라인들은 전기 도전 재료의 100nm보다 작은 두께와 300nm 내지 500nm의 폭으로 형성되는, 상기 MTJ MRAM 셀들의 어레이에 있어서:An array of MTJ MRAM cells formed between intersections of ultra thin word and bit lines, wherein the ultra thin word and bit lines are formed with a thickness of less than 100 nm and a width of 300 nm to 500 nm of an electrically conductive material. : 제 1 평면에서 제 1 방향으로 형성된 상부 및 하부 표면을 갖는 적어도 하나의 초박막 비트 라인;At least one ultrathin bit line having a top and a bottom surface formed in a first direction in a first plane; 복수의 평행한 초박막 워드 라인들로서, 각각은 상부 및 하부 표면을 갖고, 상기 제 1 평면에 평행하고 상기 제 1 평면 위에서 수직으로 분리되는 제 2 평면에서 상기 제 1 방향과 직교되는 제 2 방향으로 형성되는, 상기 복수의 평행한 초박막 워드 라인들;A plurality of parallel ultra-thin word lines, each having an upper and a lower surface, formed in a second direction perpendicular to the first direction in a second plane parallel to the first plane and vertically separated above the first plane The plurality of parallel ultra-thin word lines; 상기 초박막 비트 라인 및 상기 초박막 워드 라인들의 각 교차부 간의 상기 초박막 비트 라인 상에 형성되는 복수의 동일한 MTJ 셀 요소들로서, 각각의 상기 MTJ 셀 요소는 상부 및 하부 표면을 가지며, 상기 각 MTJ 셀 요소의 하부 표면은 상기 초박막 비트 라인의 상부 표면과 전기 접촉하는, 상기 복수의 동일한 MTJ 셀 요소들; 및A plurality of identical MTJ cell elements formed on the ultra thin bit line between each of the ultra thin bit lines and each intersection of the ultra thin word lines, each MTJ cell element having a top and a bottom surface, each of the MTJ cell elements A bottom surface comprising the plurality of identical MTJ cell elements in electrical contact with the top surface of the ultra thin bit line; And 각 MTJ 셀 요소의 상부 표면과 접촉하여 형성되는 도전 전극으로서, 상기 초박막 워드 라인의 하부 표면 아래에 있고 상기 초박막 워드 라인으로부터 절연되고, 액세싱 트랜지스터에 전기 접속되는 상기 도전 전극을 포함하는, MTJ MRAM 셀들의 어레이.A conductive electrode formed in contact with an upper surface of each MTJ cell element, the conductive electrode being below the lower surface of the ultra thin word line and insulated from the ultra thin word line and electrically connected to an access transistor. Array of cells. 제 11 항에 있어서, The method of claim 11, 상기 MTJ 셀 요소 각각은:Each of the MTJ cell elements is: 상기 초박막 비트 라인의 상부 표면상에 형성된 시드층;A seed layer formed on an upper surface of the ultra thin bit line; 상기 시드층상에 형성된 반강자성 피닝층;An antiferromagnetic pinning layer formed on the seed layer; 상기 반강자성 피닝층상에 형성된 합성 강자성 피닝층으로서, 제 1 결합층에 의해 분리되는 동일 및 대향되는 자기 모멘트들의 제 1 및 제 2 강자성층들을 포함하는 상기 합성 강자성 피닝층;A synthetic ferromagnetic pinning layer formed on the antiferromagnetic pinning layer, the synthetic ferromagnetic pinning layer comprising first and second ferromagnetic layers of the same and opposite magnetic moments separated by a first bonding layer; 상기 합성 강자성 피닝층상에 형성된 터널링 장벽층;A tunneling barrier layer formed on the synthetic ferromagnetic pinning layer; 상기 터널링 장벽층상에 형성된 강자성 자유층;A ferromagnetic free layer formed on said tunneling barrier layer; 상기 강자성 자유층상에 형성되는 캡핑층을 포함하고, A capping layer formed on the ferromagnetic free layer, 상기 강자성층들의 자기 이방성은 상기 초박막 비트 라인과 평행 또는 수직하게 설정되는, MTJ MRAM 셀들의 어레이.Magnetic anisotropy of the ferromagnetic layers is set in parallel or perpendicular to the ultra-thin bit line.
KR1020090082553A 2004-07-16 2009-09-02 An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell KR100975803B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090082553A KR100975803B1 (en) 2004-07-16 2009-09-02 An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/892,668 2004-07-16
KR1020090082553A KR100975803B1 (en) 2004-07-16 2009-09-02 An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020090007547A Division KR100948009B1 (en) 2004-07-16 2009-01-30 An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell

Publications (2)

Publication Number Publication Date
KR20090109516A KR20090109516A (en) 2009-10-20
KR100975803B1 true KR100975803B1 (en) 2010-08-16

Family

ID=41552807

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090082553A KR100975803B1 (en) 2004-07-16 2009-09-02 An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell

Country Status (1)

Country Link
KR (1) KR100975803B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8836057B2 (en) 2012-05-18 2014-09-16 Samsung Electronics Co., Ltd. Magnetoresistive elements having protrusion from free layer and memory devices including the same
US10230043B2 (en) 2017-03-21 2019-03-12 International Business Machines Corporation Boron segregation in magnetic tunnel junctions
US10693059B2 (en) 2018-02-20 2020-06-23 International Business Machines Corporation MTJ stack etch using IBE to achieve vertical profile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030199104A1 (en) 2002-04-18 2003-10-23 Infineon Technologies North America Corp. Material combinations for tunnel junction cap layer, tunnel junction hard mask and tunnel junction stack seed layer in MRAM processing
US20030203510A1 (en) 2002-04-30 2003-10-30 Max Hineman Protective layers for MRAM devices
US20030206461A1 (en) * 2000-11-10 2003-11-06 Martin Freitag Magnetoresistive memory (MRAM)
US20040095804A1 (en) * 2002-11-14 2004-05-20 Renesas Technology Corp. Thin film magnetic memory device provided with magnetic tunnel junctions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030206461A1 (en) * 2000-11-10 2003-11-06 Martin Freitag Magnetoresistive memory (MRAM)
US20030199104A1 (en) 2002-04-18 2003-10-23 Infineon Technologies North America Corp. Material combinations for tunnel junction cap layer, tunnel junction hard mask and tunnel junction stack seed layer in MRAM processing
US20030203510A1 (en) 2002-04-30 2003-10-30 Max Hineman Protective layers for MRAM devices
US20040095804A1 (en) * 2002-11-14 2004-05-20 Renesas Technology Corp. Thin film magnetic memory device provided with magnetic tunnel junctions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8836057B2 (en) 2012-05-18 2014-09-16 Samsung Electronics Co., Ltd. Magnetoresistive elements having protrusion from free layer and memory devices including the same
KR101909201B1 (en) 2012-05-18 2018-10-17 삼성전자 주식회사 Magnetoresistive element and memory device including the same
US10230043B2 (en) 2017-03-21 2019-03-12 International Business Machines Corporation Boron segregation in magnetic tunnel junctions
US10804458B2 (en) 2017-03-21 2020-10-13 International Business Machines Corporation Boron segregation in magnetic tunnel junctions
US10693059B2 (en) 2018-02-20 2020-06-23 International Business Machines Corporation MTJ stack etch using IBE to achieve vertical profile

Also Published As

Publication number Publication date
KR20090109516A (en) 2009-10-20

Similar Documents

Publication Publication Date Title
KR100948009B1 (en) An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell
KR100893852B1 (en) Multi-bit magnetic memory cells
KR100741303B1 (en) Magnetic random access memory array with coupled soft adjacent magnetic layer
EP1248273B1 (en) Cladded read conductor for a tunnel junction memory cell
KR100752068B1 (en) Magnetic random access memory designs with patterned and stabilized magnetic shields
US5966323A (en) Low switching field magnetoresistive tunneling junction for high density arrays
US7227773B1 (en) Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
JP4226295B2 (en) Magnetoresistive element having a magnetically soft reference layer
EP1248265A2 (en) Magnetic memory cell
US20050167657A1 (en) Multi-bit magnetic memory cells
JP4128418B2 (en) Magnetoresistive element including a magnetically soft reference layer embedded with a conductor
JP2008059746A (en) Read method for magneto-resistive device having soft reference layer
US8097870B2 (en) Memory cell with alignment structure
US6791872B2 (en) Method and article for concentrating fields at sense layers
US7132707B2 (en) Magnetic random access memory array with proximate read and write lines cladded with magnetic material
JP2005229099A (en) Method and device for high-density magnetic random access memory (mram) having laminatable structure
JP2004006844A (en) Magnetoresistance memory element having magnetic field sink layer
US20070253243A1 (en) Memory array having memory cells formed from metallic material
KR100975803B1 (en) An MTJ MRAM cell, an array of MTJ MRAM cells, and a method of forming an MTJ MRAM cell
US20050045971A1 (en) Magnetic memory with self-aligned magnetic keeper structure
US6839271B1 (en) Magnetic memory device
CN113451355A (en) Spin orbit torque based magnetic memory device

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130809

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140806

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150806

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee