KR100973349B1 - Enzymatic hydrolysis of food waste and methane fermentation by UASB bioreactor - Google Patents

Enzymatic hydrolysis of food waste and methane fermentation by UASB bioreactor Download PDF

Info

Publication number
KR100973349B1
KR100973349B1 KR1020080058431A KR20080058431A KR100973349B1 KR 100973349 B1 KR100973349 B1 KR 100973349B1 KR 1020080058431 A KR1020080058431 A KR 1020080058431A KR 20080058431 A KR20080058431 A KR 20080058431A KR 100973349 B1 KR100973349 B1 KR 100973349B1
Authority
KR
South Korea
Prior art keywords
food waste
methane
hydrolysis
weight
enzyme
Prior art date
Application number
KR1020080058431A
Other languages
Korean (ko)
Other versions
KR20090132254A (en
Inventor
문희천
송일석
최시림
김동기
박익범
허종원
김종찬
박용출
Original Assignee
경기도(보건환경연구원)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경기도(보건환경연구원) filed Critical 경기도(보건환경연구원)
Priority to KR1020080058431A priority Critical patent/KR100973349B1/en
Publication of KR20090132254A publication Critical patent/KR20090132254A/en
Application granted granted Critical
Publication of KR100973349B1 publication Critical patent/KR100973349B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

본 발명은 음식물쓰레기를 이용한 메탄 생산방법에 관한 것으로서, 보다 상세하게는 메탄 생산방법에 있어서, 분쇄된 음식물쓰레기 100중량부 당 혼합효소 0.2~0.4중량부를 첨가하고, 45~55℃의 온도에서 8~10시간 동안 반응시켜 가수분해액을 얻는 단계(S10); 상기 가수분해액을 3500~4500rpm에서 5~15분간 원심분리하여 상등액을 채취하는 단계(S20); 상기 상등액을 증류수로 5~6배 희석하여 UASB 반응기의 유입수로 사용하는 단계(S30); 및 상기 UASB 반응기를 이용하여 메탄을 얻는 단계(S40);를 포함하며, 여기에서, 상기 혼합효소는 카보하이드라제:프로테아제:리파아제가 1:2:1의 비율로 혼합되고, 상기 UASB 반응기의 온도는 35~40℃인 것을 특징으로 하는 음식물쓰레기를 이용한 메탄 생산방법에 관한 것이다.The present invention relates to a methane production method using food waste, and more specifically, in the methane production method, 0.2 to 0.4 parts by weight of mixed enzyme per 100 parts by weight of ground food waste is added at a temperature of 45 to 55 ° C. Reaction for 10 hours to obtain a hydrolysis solution (S10); Collecting the supernatant by centrifuging the hydrolysis solution at 3500 to 4500 rpm for 5 to 15 minutes (S20); Diluting the supernatant with distilled water 5 to 6 times to use the influent of the UASB reactor (S30); And obtaining methane using the UASB reactor (S40), wherein the mixed enzyme is carbohydrase: protease: lipase in a ratio of 1: 2: 1, and the mixture of the UASB reactor The temperature relates to a methane production method using food waste, characterized in that 35 ~ 40 ℃.

음식물쓰레기, 효소, 가수분해, UASB, 메탄발효 Food waste, enzymes, hydrolysis, UASB, methane fermentation

Description

음식물쓰레기를 이용한 메탄 생산방법{Enzymatic hydrolysis of food waste and methane fermentation by UASB bioreactor}Production method of methane using food waste {Enzymatic hydrolysis of food waste and methane fermentation by UASB bioreactor}

본 발명은 음식물쓰레기를 이용한 메탄 생산방법에 관한 것으로서, 보다 상세하게는 혼합 효소에 의한 음식물쓰레기의 가수분해를 실시하여 가장 높은 VSS 감소율 및 SCOD 증가율을 갖는 가수분해액을 얻은 후, 상기 음식물쓰레기의 효소 가수분해액을 메탄 생산을 위한 UASB 반응기의 유입수로 사용하여 고 순도 및 고 효율의 메탄을 얻는 음식물쓰레기를 이용한 메탄 생산방법에 관한 것이다.The present invention relates to a method of producing methane using food waste, and more particularly, by hydrolyzing food waste by a mixed enzyme to obtain a hydrolysis solution having the highest VSS reduction rate and SCOD growth rate, The present invention relates to a method of producing methane using food waste which obtains methane of high purity and efficiency by using an enzyme hydrolyzate as an influent of a UASB reactor for methane production.

음식물쓰레기는 쉽게 부패하고, 악취를 발생시키며, 고 염분이 함유된 질병 발생의 원인 물질로서, 적절한 방법으로 처리해야 하는 환경 오염물질로 인식되어 왔다. 반면, 음식물쓰레기는 가용성 당, 전분질, 지방질, 단백질, 셀룰로오스 등과 같은 고농도의 유기화합물을 함유하고 있어, 생물 공정의 발효기질로서 활용하게 되면, 처리비용 감소 및 환경오염 방지 효과 뿐만 아니라 자원 재순환의 측면에서 큰 의미가 있다. 따라서, 이러한 관점에서 음식물쓰레기를 이용한 메탄발효는 화석연료를 대체할 수 있는 신·재생에너지의 생산, 지구온난화 가스의 감축 효과 및 자원 재활용의 차원에서 최근 많은 주목을 받고 있는 실정이다. Food waste is easily polluted, odorous, and causes high-salt disease-causing diseases. It has been recognized as an environmental pollutant that must be disposed of in an appropriate manner. On the other hand, food waste contains high concentrations of organic compounds such as soluble sugars, starch, fats, proteins, cellulose, etc., and when used as fermentation substrates in biological processes, it not only reduces treatment costs and prevents environmental pollution but also recycles resources. Has great meaning. Therefore, methane fermentation using food waste has received much attention in recent years in terms of production of renewable energy that can replace fossil fuels, reduction of global warming gas, and resource recycling.

음식물쓰레기와 같은 고형폐기물을 메탄 발효 기질로 이용하기 위해서는, 그 전제조건으로 고형물의 효율적 가수분해 과정이 필수적이다. 기존의 고형 폐기물 메탄 발효 공정에서 입자상 유기물의 가수분해 반응이 전체 발효 공정의 율속단계(rate-limiting step)로 작용하여 유기성분의 분해속도 및 소화조의 수리학적 체류시간을 결정하는데 중요한 인자로 작용하였다. 또한, 음식물쓰레기는 전분질, 단백질, 지방 등 다양한 유기화합물질로 구성되어 있으므로, 가수분해 및 산 발효과정에서 상기 세 가지 성분의 함량, 각각의 분해속도 및 생분도(Biodegradability)의 차이에 따라, 유기산의 축적에 의한 발효조의 운전에 있어 다양한 문제점을 드러내고 있다. 이러한 고 농도 고형물을 함유한 바이오매스의 효율적 메탄화를 위해 산 발효조 및 메탄 발효조의 공간적 분리 및 다양한 메탄 발효 공정 최적화를 위한 연구가 최근 활발히 진행되고 있다.  In order to use solid wastes such as food waste as methane fermentation substrates, efficient hydrolysis of solids is essential as a precondition. In the existing solid waste methane fermentation process, the hydrolysis reaction of particulate organic matter acts as a rate-limiting step of the entire fermentation process, which is an important factor in determining the decomposition rate of organic components and the hydraulic residence time of the digester. . In addition, since food waste is composed of various organic compounds such as starch, protein, and fat, organic acid according to the difference in the content of the three components, the decomposition rate and biodegradability of the three components during hydrolysis and acid fermentation, In the operation of the fermenter by the accumulation of various problems have been revealed. In order to efficiently methanize biomass containing such high concentration solids, studies have been actively conducted for spatial separation of acid fermentation tanks and methane fermentation tanks and optimization of various methane fermentation processes.

종래에는 음식물쓰레기 중의 전분, 단백질 및 셀룰로오스 성분들의 생분해도는 산 발효조의 pH, 체류시간 및 환경조건에 의해 결정되므로, 산 발효단계에서 적정 희석배율을 조정한 결과(3.0-1.0/d), 음식물쓰레기 중의 셀룰로오스 및 단백질의 가수분해의 증가에 따른 산 발효조의 효율 증가를 알 수 있었다. 또한, 여기에서 음식물쓰레기의 약 50%가 셀룰로오스 성분인 야채인 점을 고려하여, 셀룰로오스 분해능이 우수한 루멘 미생물을 식종균으로 이용하여 기존 중온 산 발효균(59.5%)의 효율과 비교하여 약 1.2배의 향상된 산 발효율(71.2%)이 보고되었다. 또한, 생물학적 질소인 제거 공정(BNR:Biological Nutrient Removal)의 외부 탄소원으로 음식물쓰레기를 활용하기 위하여, 산 발효의 효율 증가를 위해 효소 전처리를 시도하 였다. 하지만, 고 효율 메탄 발효를 위한 음식물쓰레기의 가수분해 및 산 발효단계를 대체할 수 있는 효소 가수분해에 대한 연구는 미미한 실정이다.Conventionally, since biodegradability of starch, protein and cellulose components in food waste is determined by the pH, residence time and environmental conditions of the acid fermentation tank, the result of adjusting the appropriate dilution ratio in the acid fermentation step (3.0-1.0 / d), food It was found that the efficiency of acid fermenter increased with increasing hydrolysis of cellulose and protein in the waste. In addition, considering that about 50% of food waste is a cellulose-based vegetable, about 1.2 times as much as the efficiency of conventional mesophilic fermentation bacteria (59.5%) using lumen microorganisms having excellent cellulose resolution as a seed germ. Improved acid efficiency (71.2%) has been reported. In addition, in order to utilize food waste as an external carbon source of Biological Nutrient Removal (BNR), an enzyme pretreatment was attempted to increase the efficiency of acid fermentation. However, studies on the enzymatic hydrolysis that can replace the hydrolysis and acid fermentation of food waste for high efficiency methane fermentation are insignificant.

최근 고효율 UASB(Upflow anaerobic sludge bed)는 다양한 종류의 산업 폐수 처리에 광범위하게 응용되고 있으며, 특히, 미생물의 자화 응집 과정에 의해 형성된 고밀도 혐기성 박테리아의 응집체인 과립 입상 슬러지는 UASB 반응기 내 고밀도 메탄 박테리아 유지 및 긴 체류시간을 확보할 수 있어, 높은 유기물 부하율 (OLR:Organic Loading Rate)에 대응력이 뛰어난 공정으로 인정받고 있는 실정이다.Recently, high-efficiency upflow anaerobic sludge bed (UASB) has been widely applied to various kinds of industrial wastewater treatment. Particularly, granular granular sludge, which is agglomerates of high density anaerobic bacteria formed by the microbial magnetization flocculation process, maintains high density methane bacteria in the UASB reactor. And because it can secure a long residence time, it is recognized as a process excellent in response to high organic loading rate (OLR: Organic Loading Rate).

본 발명의 목적은 음식물쓰레기가 함유하고 있는 유기성 고형물의 효율적 전처리 공정으로서 산업용 효소 가수분해의 적용 가능성을 알아보기 위하여, 효소에 의한 음식물쓰레기의 가수분해 실험을 실시하여 가장 높은 VSS 감소율 및 SCOD 증가율을 갖는 혼합 효소 비율 및 첨가량, 그리고 반응시간을 측정하고, 이와 같이 효소 가수분해를 실시한 음식물쓰레기 배지액을 UASB 반응기의 기질로 사용하여 고 순도 및 고 효율의 메탄을 생산하고자 하는 것이다.An object of the present invention is to investigate the applicability of industrial enzyme hydrolysis as an efficient pretreatment process of organic solids containing food wastes. It is intended to produce methane of high purity and high efficiency using the mixed enzyme ratio, the amount of addition, and the reaction time, and the food waste medium liquid subjected to the enzymatic hydrolysis as the substrate of the UASB reactor.

상기 목적을 달성하기 위한 본 발명의 음식물쓰레기를 이용한 메탄 생산방법은, 메탄 생산방법에 있어서, 분쇄된 음식물쓰레기 100중량부 당 혼합효소 0.2~0.4중량부를 첨가하고, 45~55℃의 온도에서 8~10시간 동안 반응시켜 가수분해액을 얻는 단계(S10); 상기 가수분해액을 3500~4500rpm에서 5~15분간 원심분리하여 상등액을 채취하는 단계(S20); 상기 상등액을 증류수로 5~6배 희석하여 UASB 반응기의 유입수로 사용하는 단계(S30); 및 상기 UASB 반응기를 이용하여 메탄을 얻는 단계(S40);를 포함한다.Methane production method using the food waste of the present invention for achieving the above object, in the methane production method, adding 0.2 to 0.4 parts by weight of mixed enzyme per 100 parts by weight of ground food waste, and at a temperature of 45 ~ 55 ℃ Reaction for 10 hours to obtain a hydrolysis solution (S10); Collecting the supernatant by centrifuging the hydrolysis solution at 3500 to 4500 rpm for 5 to 15 minutes (S20); Diluting the supernatant with distilled water 5 to 6 times to use the influent of the UASB reactor (S30); And obtaining methane using the UASB reactor (S40).

이때, 상기 혼합효소는 카보하이드라제:프로테아제:리파아제를 1:2:1의 비율로 첨가하여 혼합하고, 상기 UASB 반응기의 온도는 35~40℃인 것이 바람직하다.At this time, the mixed enzyme is mixed by adding carbohydrase: protease: lipase in a ratio of 1: 2: 1, the temperature of the UASB reactor is preferably 35 ~ 40 ℃.

본 발명에 의한 음식물쓰레기를 이용한 메탄 생산방법에서는, 메탄 생산을 위한 전처리 공정으로서, 카보하이드라제:프로테아제:리파아제가 1:2:1의 비율로 혼합된 효소를 음식물쓰레기에 적정량 첨가하여 8~10시간 동안 가수분해 반응시킴으로써 높은 VSS 감소율과 SCOD 증가율을 얻었을 뿐만 아니라, 상기와 같은 혼합 효소 가수분해액을 UASB 반응기의 기질로 사용하여 고 효율 및 고 순도의 메탄을 얻을 수 있었다.In the methane production method using food waste according to the present invention, as a pretreatment step for the production of methane, by adding an appropriate amount to the food waste, an enzyme mixed with carbohydrase: protease: lipase in a ratio of 1: 2: 1 to 8 ~ By hydrolysis for 10 hours, not only high VSS reduction rate and SCOD increase rate were obtained, but also high efficiency and high purity methane could be obtained using the above mixed enzyme hydrolysis solution as a substrate of the UASB reactor.

본 발명을 보다 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명에서 사용한 음식물쓰레기는 경기도 중소기업센타의 구내식당에서 수거한 것이며, 수거한 음식물쓰레기의 구성은 야채류 49중량%, 곡류 31중량%, 어육 및 육류 17중량%, 그리고 기타성분 3중량%였다. Food waste used in the present invention was collected in the cafeteria of Gyeonggi-do Small and Medium Business Center, the composition of the collected food waste was 49% by weight of vegetables, 31% by weight of grains, 17% by weight of fish and meat, and 3% by weight of other ingredients.

이와 같이 수거한 음식물쓰레기를 분쇄기(AM-11, ACE, Nissei, Japan)를 이용하여 분쇄하여 금속성 체(1800~2200㎛ 메쉬)로 거른 후, 효소 가수분해 실험의 원료로 사용하였다. The food waste thus collected was pulverized using a grinder (AM-11, ACE, Nissei, Japan), filtered through a metallic sieve (1800-2200 μm mesh), and used as a raw material for the enzymatic hydrolysis experiment.

상기와 같이 분쇄된 음식물쓰레기의 특성을 아래 표 1에 나타내었다.The characteristics of the food waste pulverized as described above are shown in Table 1 below.

구분division 수치shame 수분함량(중량%)Moisture content (wt%) 81.581.5 고형물함량(중량%)Solid content (% by weight) 18.518.5 고형물함량 중 휘발성 고형물(중량%)Volatile solids (% by weight) of solids 95.795.7 고형물함량 중 재 함량(중량%)Ash content in solids content (% by weight) 4.34.3 휘발성 부유물(g/L)Volatile Float (g / L) 91.091.0 pHpH 4.34.3 TCOD(mg/L)TCOD (mg / L) 263.5263.5 SCOD(mg/L)SCOD (mg / L) 127.4127.4 점도(g/cm3)Viscosity (g / cm 3 ) 1.0481.048

상기 표 1에서 알 수 있는 바와 같이, 분쇄된 음식물쓰레기는 수거 과정에서 이미 산 발효가 진행되어 pH가 4.3이었고, 높은 수분함량(81.5중량%) 및 고형물함량(18.5중량%)을 나타내었다. 고형물함량 중 약 95중량%의 휘발성 고형물과 4.3중량%의 재 함량을 포함하고 있었고, 또한 총 COD는 263.5g/L 및 용존성 COD는 127.4 g/L를 나타내었다.As can be seen in Table 1, the crushed food waste already had an acid fermentation during the harvesting process, the pH was 4.3, and exhibited a high water content (81.5 wt%) and a solid content (18.5 wt%). The solids contained about 95% by weight of volatile solids and 4.3% by weight of ash, and the total COD was 263.5 g / L and the dissolved COD was 127.4 g / L.

또한, 본 발명에서 사용한 효소는 산업용 효소인 카보하이드라제(Carbohydrase), 프로테아제(Protease) 및 리파아제(Lipase)이며, 이를 사용하여 음식물쓰레기의 개별 및 혼합 효소 가수분해를 실시하였다. 이 중, 상기 카보하이드라제(Carbohyrases)는 아스페르길루스 아쿨레아투스(Aspergillus aculeatus) 유래 다중 복합 효소로서, 아라바나제(arabanase), 셀룰라아제(cellulase), 베타-글루카나아제(β-glucanase), 헤미셀룰라아제(hemicellulase), 자일라나아제(xylanase) 등을 포함하는 광범위한 카보하이드라제(carbohydrases)의 한 종류로 노보자임사(Novozymes)로부터 구입하였다. 또한, 상기 프로테아제(Protease)는 아스페르길루스 오리재(Aspergillus oryzae) 유래 단백질 분해효소로서, 식품산업 특히 육류 가공 산업에 주로 사용되고, 또한, 상기 리파아제(Lipase)는 칸디다 루고스(Candida rugos) 유래의 지방 분해효소이며, 장쇄, 중쇄, 단쇄 지방 가수분해 효소이다. 상기 프로테아제 및 리파아제 효소는 아마노사(Amano)로부터 구입하였다.In addition, the enzymes used in the present invention are industrial enzymes, carbohydrase, protease, and lipase, which were used to perform individual and mixed enzyme hydrolysis of food waste. Among them, Carbohyrases is a multiple complex enzyme derived from Aspergillus aculeatus, arabanase (arabanase), cellulase (cellulase), beta-glucanase (β-glucanase) ), One of a broad range of carbohydrases, including hemicellulase, xylanase and the like, was purchased from Novozymes. In addition, the protease is a protease derived from Aspergillus oryzae, and is mainly used in the food industry, particularly the meat processing industry, and the lipase is Candida rugos. It is a lipase derived from, and is a long chain, heavy chain, or short chain lipase. The protease and lipase enzymes were purchased from Amano.

1. 음식물쓰레기의 효소 가수분해1. Enzymatic Hydrolysis of Food Waste

음식물쓰레기의 가수분해를 위한 최적의 효소 첨가량 및 혼합 비율을 알아보기 위하여, 음식물쓰레기를 이용한 개별 및 혼합 효소 가수분해를 실시하였다. In order to find out the optimal amount of enzyme addition and mixing ratio for the hydrolysis of food waste, individual and mixed enzyme hydrolysis using food waste was performed.

효소 가수분해 실험을 실시하기 위하여, 상기에서 분쇄된 음식물쓰레기와 증류수를 무게비 1:1로 혼합하여 시료를 조제하여 준비하였다. In order to perform the enzymatic hydrolysis experiment, the crushed food waste and distilled water were mixed at a weight ratio of 1: 1 to prepare a sample.

1-1. 개별 효소 가수분해1-1. Individual enzyme hydrolysis

먼저, 개별 효소 가수분해 실험은 1L 삼각 플라스크에 상기에서 조제한 시료 500g을 넣고, 3N NaOH로 상기 시료의 pH를 4.5로 조절하고, 카보하이드라제, 프로테아제 및 리파아제를 분쇄된 음식물쓰레기 100중량부 당 각각 0.02, 0.05, 0.1, 0.2, 0.4중량부를 첨가하여 혼합한 후 45~55℃의 인큐베이터(DSK 512, 대일 엔지니어링, 한국)에서 130~170rpm의 교반속도로 24~26시간 동안 개별 효소 가수분해를 실시하였다.First, in the individual enzymatic hydrolysis experiment, 500 g of the sample prepared above was put in a 1 L Erlenmeyer flask, the pH of the sample was adjusted to 4.5 with 3N NaOH, and carbohydrase, protease and lipase per 100 parts by weight of crushed food waste. After adding 0.02, 0.05, 0.1, 0.2 and 0.4 parts by weight, the individual enzyme hydrolysis was performed for 24 to 26 hours at a stirring speed of 130 to 170 rpm in an incubator at 45 to 55 ° C (DSK 512, Daeil Engineering, Korea). Was carried out.

1-2. 혼합 효소 가수분해1-2. Mixed Enzyme Hydrolysis

또한, 혼합 효소 가수분해 실험은 상기 각 효소의 혼합율(카보하이드라제:프로테아제:리파아제)을 1:1:1, 2:1:1, 1:2:1 및 1:1:2로 혼합하여 시료에 첨가하였으며, 혼합 효소 주입량은 음식물쓰레기 100중량부 당 0.4중량부로 일정하게 주입하여, 상기 개별 효소 가수분해 실험과 동일한 조건에서 실시하였다. In addition, the mixed enzyme hydrolysis experiment was carried out by mixing the mixing ratio (carbohydrase: protease: lipase) of each of the enzymes at 1: 1: 1, 2: 1: 1, 1: 2: 1 and 1: 1: 2 The sample was added to the sample, and the mixed enzyme injection amount was constant at 0.4 parts by weight per 100 parts by weight of food waste, and was carried out under the same conditions as the individual enzyme hydrolysis experiment.

상기와 같은 개별 및 혼합 가수분해 실험은 3회 반복 실시하였다.Such individual and mixed hydrolysis experiments were repeated three times.

1-3. 개별 효소 가수분해에 의한 1-3. By individual enzymatic hydrolysis VSSVSS 감소율 Reduction

먼저, 개별 효소 가수분해에 의한 음식물쓰레기 중의 부유 고형물(VSS)의 감소율로 효소의 가수분해능을 평가하였다.First, the hydrolytic ability of the enzyme was evaluated by the rate of decrease of suspended solids (VSS) in the food waste by individual enzyme hydrolysis.

도 2에 나타난 바와 같이 각 효소의 주입량 증가와 함께 VSS 감소율은 쌍곡선 형태로 증가하였다. As shown in FIG. 2, the decrease in VSS was increased in a hyperbolic form with an increase in the injection amount of each enzyme.

효소로 리파아제를 첨가한 경우, 첨가량 0.1중량부까지 VSS 감소율이 급격히 증가하여 22%에 이르렀으나, 그 이상의 첨가량에서는 VSS 감소율의 증가는 관찰되지 않았다. 실제로 리파아제 실험에서 음식물쓰레기 중의 유지 성분이 효과적으로 제거되었지만, VSS 감소율의 증가에는 큰 영향을 미치지 않았다. 또한, 효소로 카보하이드라제를 이용한 가수분해 실험에서는, 첨가량 0.2중량부까지 VSS 감소량이 증가하여 약 43%의 VSS 감소율을 나타내었다. 하지만, 효소로 프로테아제를 첨가한 경우 첨가량 0.2중량부까지 VSS 감소율이 지속적으로 증가하여 가장 높은 VSS 감소율인 약 51%의 증가율을 보였다. When the lipase was added as an enzyme, the VSS reduction rate increased to 22% by 0.1 parts by weight, but no increase in VSS was observed at the addition amount. Indeed, the fats and oils in the food waste were effectively removed in the lipase experiments, but they did not significantly affect the increase in the VSS reduction rate. In addition, in the hydrolysis experiment using carbohydrase as an enzyme, the VSS reduction amount increased to 0.2 parts by weight, showing a VSS reduction rate of about 43%. However, when the protease was added as an enzyme, the decrease in VSS was continuously increased up to 0.2 parts by weight, showing an increase rate of about 51%, the highest decrease in VSS.

1-4. 혼합 효소 가수분해에 의한 1-4. By mixed enzyme hydrolysis VSSVSS 감소율 및  Reduction rate and SCODSCOD 증가율 Increase

다음, 각 효소를 다양한 혼합비로 혼합한 혼합 효소 가수분해에 의한 음식물쓰레기 중의 부유 고형물(VSS)의 감소율 및 용출된 SCOD의 증가율로 효소의 가수분해능을 평가하였다.Next, the hydrolysis capacity of the enzyme was evaluated by the rate of decrease of suspended solids (VSS) and the rate of increase of the eluted SCOD by the mixed enzyme hydrolysis in which each enzyme was mixed at various mixing ratios.

아래 표 2는 효소 주입량을 음식물쓰레기 100중량부 당 0.4중량부로 일정하게 하고, 각 효소의 다양한 혼합비에서 VSS 감소율과 용출된 SCOD의 증가율을 나타낸 것이다. Table 2 below shows the amount of enzyme injected at 0.4 parts by weight per 100 parts by weight of food waste, and shows the rate of VSS decrease and the rate of eluted SCOD at various mixing ratios of each enzyme.

혼합비(C:P:L)Mixing ratio (C: P: L) VSS 감소율(%)VSS Reduction (%) SCOD 증가율(%)% SCOD Growth 1:1:11: 1: 1 5858 5151 2:1:12: 1: 1 5656 5050 1:2:11: 2: 1 6262 5656 1:1:21: 1: 2 5353 4949

C: 카보하이드라제 P: 프로테아제 L: 리파아제C: carbohydrase P: protease L: lipase

상기 표 2에서 알 수 있는 바와 같이, 프로테아제 첨가 비율이 높은 C:P:L=1:2:1에서 가장 높은 VSS 감소율과 SCOD 증가율이 관찰되었으며, 개별 프로테아제 효소 가수분해 실험의 VSS 감소율(43%)에 비해 훨씬 높은 62%의 VSS 감소율을 보였다. 이러한 결과는 음식물쓰레기 생물 폴리머의 연결작용 단백질(lectin-like protein)이 프로테아제에 의해 가수분해되고, 그 이외의 폴리사카라이드 및 유지 성분은 카보하이드라제 및 리파아제에 의해 분해되어 개별 프로테아제 가수분해 보다 높은 VSS 감소율을 나타낸 것으로 판단된다.As can be seen in Table 2, the highest VSS reduction rate and SCOD increase rate were observed at high protease addition ratio of C: P: L = 1: 2: 1, and the VSS reduction rate of the individual protease enzymatic hydrolysis experiment (43%). VSS reduction was much higher than). These results indicate that the lectin-like protein of food waste biopolymers is hydrolyzed by proteases, and other polysaccharides and oils and fats are degraded by carbohydrases and lipases, rather than individual protease hydrolysis. We believe this is a high rate of VSS reduction.

1-5. 혼합 효소 첨가량 및 반응시간 측정1-5. Mixed enzyme addition and reaction time measurement

상기 개별 및 혼합 효소 가수분해 실험 결과에서 카보하이드라제:프로테아제:리파아제의 혼합비율이 1:2:1일 때 음식물쓰레기의 가수 분해율이 가장 높았기 때문에, 상기 혼합비율을 혼합 효소 첨가량 실험을 위한 최적의 비율로 선정하여 혼합 효소 첨가량 결정 실험을 실시하였다. When the mixing ratio of carbohydrase: protease: lipase is 1: 2: 1 in the results of the individual and mixed enzyme hydrolysis experiments, the hydrolysis ratio of food waste was the highest. The optimum ratio was selected and the mixed enzyme addition amount determination experiment was performed.

음식물쓰레기 가수분해를 위한 최적의 혼합 효소 첨가량을 결정하기 위한 혼합 효소 첨가량 결정 실험은 효소를 첨가하지 않은 대조군과, 음식물쓰레기 100중량부 당 각각 0.02, 0.05, 0.1, 0.2, 0.3, 0.4중량부의 혼합 효소를 첨가한 실험군을 상기 개별 및 혼합 효소 가수분해 실험과 동일한 조건에서 실시하였으며, 주기적으로 시료를 채취하여 VSS 감소율 및 SCOD 증가율을 분석하여 가수분해율을 평가하였다.Experiment to determine the amount of mixed enzyme added for the hydrolysis of food waste was performed by mixing the control group without adding enzyme with 0.02, 0.05, 0.1, 0.2, 0.3, 0.4 parts by weight per 100 parts by weight of food waste, respectively. The experimental group to which the enzyme was added was carried out under the same conditions as the individual and mixed enzyme hydrolysis experiments, and samples were periodically taken to evaluate the rate of hydrolysis by analyzing the VSS reduction rate and SCOD increase rate.

도 3은 시간 경과에 따른 각 혼합효소 첨가량의 VSS 농도를 나타낸 것이다. 도 3에서 알 수 있는 바와 같이, 혼합효소 첨가량의 증가에 따라 VSS 농도는 급격히 감소하였고, 특히 0.1중량부 첨가량까지는 효소 첨가량에 따른 VSS 농도 감소가 뚜렷하였지만, 0.2~0.4중량부 첨가량에서는 그 차이가 미미하였다. 0.4중량부 첨가량에서 약 16,000mg/L의 가장 낮은 VSS 농도를 관찰할 수 있었다. Figure 3 shows the VSS concentration of each mixed enzyme addition over time. As can be seen in Figure 3, the VSS concentration was sharply reduced with the increase in the amount of the mixed enzyme, in particular, the amount of VSS was significantly decreased according to the amount of the enzyme added up to 0.1 part by weight, but the difference was 0.2 to 0.4 parts by weight. It was insignificant. At 0.4 parts by weight, the lowest VSS concentration of about 16,000 mg / L was observed.

또한, 각 혼합 효소 첨가량에서 음식물쓰레기 중 고형물의 가수분해는 반응 초기인 2시간 전후에서 급격히 일어남을 알 수 있었고, 6시간에서 8시간 경과 후에는 VSS 농도 변화가 미미함을 고려해 볼 때, 음식물쓰레기의 혼합 효소 반응시간으로서 8~10시간이 적당한 것으로 판단된다. In addition, it was found that the hydrolysis of the solids in the food wastes occurred suddenly around 2 hours (the initial stage of the reaction) at the amount of each mixed enzyme added, and considering that the VSS concentration was insignificant after 6 to 8 hours, the food wastes It is judged that 8-10 hours are suitable as reaction time of the mixed enzyme of.

따라서, 음식물쓰레기 효소 가수분해를 위한 최적의 조건으로 혼합 효소비율은 카보하이드라제:프로테아제:리파아제=1:2:1, 혼합 효소 첨가량은 0.2~0.4%, 그리고 효소 가수분해 시간은 8~10시간이 바람직한 것을 알 수 있었다. Therefore, as the optimum conditions for hydrolysis of food waste enzymes, the mixed enzyme ratio is carbohydrase: protease: lipase = 1: 2: 1, the mixed enzyme addition amount is 0.2-0.4%, and the enzyme hydrolysis time is 8-10. It turned out that time is preferable.

상기와 같은 혼합 효소를 이용한 음식물쓰레기 효소 가수분해 실험에서 순수 VSS 감소량에 대한 순수 SCOD의 증가량을 도 4에 나타내었다. 도 4에서 알 수 있는 바와 같이, 순수 VSS 감소량에 대한 순수 SCOD 증가량 사이에 0.9608의 높은 상관계수(r2)를 나타내었는데, 이것은 효소 반응액 중의 SCOD 증가는 음식물쓰레기 중의 고형물의 가수분해에 기인함을 알 수 있는 것이었다. 또한, 순수 VSS 감소량과 순수 SCOD 증가량의 비율은 1.29로서, 혼합 효소 가수분해에 의해 음식물쓰레기 중의 1g의 VSS로부터 1.29g의 순수 SCOD가 생성되었다. 이러한 결과는 종래의 생물학적 질소인고도처리공정(BNR:Biological Nutrient Removal)의 기질로서 음식물쓰레기의 효소 가수분해 실험에서 얻어진 상관계수(1.24)보다 약간 높은 수치이다.In the food waste enzyme hydrolysis experiment using the mixed enzyme as described above, the amount of increase of pure SCOD to the amount of pure VSS is shown in FIG. 4. As can be seen in FIG. 4, there was a high correlation coefficient (r 2 ) of 0.9608 between the net SCOD increase to net VSS decrease, which is due to the hydrolysis of solids in food waste. I was able to know. In addition, the ratio of the pure VSS decrease amount and the pure SCOD increase amount was 1.29, and 1.29 g of pure SCOD was produced from 1 g of VSS in food waste by mixed enzyme hydrolysis. These results are slightly higher than the correlation coefficient (1.24) obtained in the enzymatic hydrolysis experiment of food waste as a substrate of a conventional biological nitrogen removal process (BNR).

2. 메탄 발효2. Methane Fermentation

상기에서 실시한 혼합 효소 첨가량 결정 실험 결과를 근거로 하여 카보하이드라제:프로테아제:리파아제=1:2:1의 혼합비율로 혼합된 혼합효소를 음식물쓰레기 100중량부 당 0.2~0.4중량부씩 첨가하여 8~10시간 동안 반응시키는 것을 음식물쓰레기 효소 가수분해 실험의 최적 인자로 선정하였다. Based on the results of the mixed enzyme addition experiment conducted above, 0.2 to 0.4 parts by weight of the mixed enzyme mixed at a mixing ratio of carbohydrase: protease: lipase = 1: 2: 1 was added per 100 parts by weight of food waste. The reaction for ˜10 hours was selected as the optimal factor for the food waste enzyme hydrolysis experiment.

2-1. 2-1. UASBUASB 반응기를 이용한 메탄 생산 Methane Production Using Reactors

상기와 같은 조건에서 조제된 음식물쓰레기 가수분해액을 3500~4500rpm에서 5~15분간 원심 분리하여 그 상등액을 증류수로 5~6배 희석한 다음, 상기 희석액을 메탄 발효 실험을 위한 UASB(상향류식 혐기성 폐수처리법) 반응기의 유입수로 사용하였다.Centrifuged food waste hydrolyzate prepared under the above conditions at 3500-4500rpm for 5-15 minutes, and the supernatant was diluted 5-6 times with distilled water, and then the diluted solution was UASB (upflow anaerobic anaerobic) for methane fermentation experiment. Wastewater treatment method).

도 1에는 UASB 반응기가 도시되어 있으며, UASB 반응기는 유리 재질로 제작되었고, 반응기 용량은 본체[직경(7cm)×높이(66cm)]와 기체-액체-고체 분리기[직경(11cm)×높이(15cm)]로 구성되고 실 용적은 2.7dm3 이다. 또한, 연동 펌프를 이용하여 약 92L/day의 내부수를 순환시켜 내부 반송속도(vs)는 1m/h를 유지하였으며, 히팅 자켓(Heating jacket)을 사용하여 반응기의 온도를 35~40℃로 조절하였다. 반응기 유입수는 정량 펌프를 이용하여 다양한 유기물 부하율(OLR:Organic Loading Rate), 3.5, 4.9, 7.3, 9.1kgCOD/m3d 에서 실험을 실시하였으며, 유입수의 pH는 조절하지 않았다. 또한, 유출수 라인을 U자로 제작하고 반응기의 각 부분은 밀폐시켜 외부 공기의 유입을 차단하였으며, 20L 용량의 가스 포집기(water-displace gas collector)는 아크릴로 제작하여 일일 발생 가스량 및 CH4의 순도를 측정하였다.1, a UASB reactor is shown, and the UASB reactor is made of glass, and the reactor capacity is the main body (diameter (7 cm) x height (66 cm)) and the gas-liquid-solid separator (diameter (11 cm) x height (15 cm). )] And its capacity is 2.7dm 3 . In addition, by using a peristaltic pump circulating the internal water of about 92L / day to maintain the internal conveying speed (v s ) 1m / h, using a heating jacket (heating jacket) to the temperature of the reactor to 35 ~ 40 ℃ Adjusted. The reactor influent was tested at various organic loading rates (OLR), 3.5, 4.9, 7.3, and 9.1 kg COD / m 3 d using a metering pump, and the pH of the influent was not controlled. In addition, the effluent line was made of U, and each part of the reactor was sealed to block the inflow of external air, and the 20L water-displace gas collector was made of acryl to improve the amount of generated gas and purity of CH 4 . Measured.

2-2. 유기물 2-2. Organic matter 부하율에On load rate 대한 메탄 생성량 Methane production

식종 과립 슬러지는 주정 폐수처리 공장의 UASB 플랜트에서 인발하였으며, 메탄 발효를 실시하기 위해 전체 반응기 용량의 약 25부피%의 과립 슬러지를 식종하여 1개월간 순응 과정을 거친 후 약 60일에 걸쳐 유기물 부하율(Organic Loading Rate)이 각각 3.5, 4.9, 7.3, 9.1 kgCOD/m3d일 때 실험을 실시하였으며, 그 결과 도 5에서와 같이 유기물 부하율이 증가함에 따라 메탄량도 점차 증가됨을 알 수 있었다. 즉, 유기물 부하율 3.51, 4.9, 7.3, 9.1kgCOD/m3d 에서 각각 2.3, 3.9, 5.9 및 7.8L의 순수 메탄이 생성되었다.The seeded granular sludge was drawn from the UASB plant of the ethanol wastewater treatment plant, and the organic loading rate was increased over 60 days after the granulation sludge of about 25% by volume of the total reactor capacity was planted for methane fermentation. Organic Loading Rate) was conducted at 3.5, 4.9, 7.3 and 9.1 kgCOD / m 3 d, respectively. As a result, as shown in FIG. 5, the amount of methane was gradually increased as the organic loading rate was increased. That is, 2.3, 3.9, 5.9 and 7.8 L of pure methane were produced at organic loading rates of 3.51, 4.9, 7.3 and 9.1 kg COD / m 3 d, respectively.

2-3. 메탄 2-3. methane 생성율Generation rate  And CODCOD 제거율 측정 Removal rate measurement

파쇄한 음식물쓰레기 중 총 고형물(TS:total solid), 휘발성 고형물(VS:volatile solid), 휘발성 부유 고형물(VSS:volatile suspended solid) 함량은 표준방법(Standard method)에 따라 정량하였다. 또한 총 화학적 산소요구량(TCOD:total chemical oxygen demand) 및 용존성 화학적 산소요구량(SCOD:soluble chemical oxygen demand)은 HACH DR/2000 분광광도계(spectrophotometer)(U.S.A)를 이용하여 분석하였다. 또한, 메탄 순도는 불꽃 이온화 검출기(FID:Flame ionization detector)가 장착된 가스크로마토그래피(Hewlett-Packard 6890 series)를 사용하였고, DB-TPH 캐필러리 컬럼(capillary column)(30m×0.32mm×0.25μm)을 사용하였다. 시료 주입부와 검출부의 온도는 각각 100 및 250℃로 설정하였고 운반가스로는 헬륨 및 수소-공기 불꽃을 사용하였다.Total solids (TS), volatile solids (VS), and volatile suspended solids (VSS) of crushed food waste were quantified according to the standard method. Total chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) were analyzed using a HACH DR / 2000 spectrophotometer (U.S.A). In addition, the methane purity was gas chromatography (Hewlett-Packard 6890 series) equipped with a flame ionization detector (FID), DB-TPH capillary column (30m x 0.32mm x 0.25) μm) was used. The temperature of the sample injection section and the detection section was set to 100 and 250 ° C., respectively, and helium and hydrogen-air flames were used as carrier gases.

메탄 발효조 운전기간 중 각 유기물 부하율(OLR)의 정상상태(stage state)에서 분석된 유입수 및 유출수의 농도, SCOD, 그리고 생성된 메탄의 SCOD 제거율, 순도 및 음식물쓰레기 휘발성 고형물(VS)로부터 생성된 메탄 생성율을 아래 표 3에 나타내었다. Methane produced from the concentrations of influent and effluent, SCOD, and SCOD removal, purity and food waste volatile solids (VS) analyzed at the steady state of each organic loading rate (OLR) during the operation of the methane fermentor. The production rate is shown in Table 3 below.

항목Item 측정값Measures 유입수
Influent
pHpH 4.5±0.24.5 ± 0.2
SCOD(g/L)SCOD (g / L) 20.5±0.320.5 ± 0.3 유출수
Runoff
pHpH 7.7±0.37.7 ± 0.3
SCOD(g/L)SCOD (g / L) 0.19±0.030.19 ± 0.03 생성된 메탄

Methane produced

SCOD 제거율(%)SCOD removal rate (%) 99.0±0.399.0 ± 0.3
메탄 순도(%)Methane Purity (%) 73.0±1.073.0 ± 1.0 메탄 생성율(m3CH4/kgVS)Methane production rate (m 3 CH 4 / kgVS) 0.372±0.0180.372 ± 0.018

상기 표 3에서 알 수 있는 바와 같이, 음식물쓰레기 가수분해액을 5배 희석하여 사용한 유입수의 SCOD(20.5±0.3g/L)는 메탄 발효과정에서 대부분의 기질로 소모되어 약 99.0±0.3%의 높은 SCOD 제거율을 나타내었으며, 생성된 가스 중 메탄의 순도는 73.0±1.0%로 고 순도의 메탄이 생성되었다. 또한, 실험에 소모된 SCOD를 근거로 하여 음식물쓰레기 중 VS 함량으로부터 환산하였을 때 약 0.372±0.018 m3CH4/kgVS의 높은 메탄 생성율을 나타내었다.As can be seen in Table 3, SCOD (20.5 ± 0.3g / L) of the influent used by diluting the food waste hydrolyzate five times is consumed as most substrates in the methane fermentation process, resulting in a high of about 99.0 ± 0.3%. The SCOD removal rate was shown, and the methane purity of the produced gas was 73.0 ± 1.0%, resulting in high purity methane. In addition, on the basis of the SCOD consumed in the experiment, when the conversion from the VS content of food waste showed a high methane production rate of about 0.372 ± 0.018 m 3 CH 4 / kgVS.

3. 다른 3. other 바이오매스와의With biomass 메탄 생성량 비교 측정 Methane Production Comparison

본 발명에서 생성된 메탄의 생성율을 다양한 바이오매스 원료로부터 생성된 메탄 생성율과 비교한 것이 아래 표 4에 나타나 있다. The production rate of methane produced in the present invention is compared with the production rate of methane produced from various biomass raw materials is shown in Table 4 below.

종류Kinds 메탄 생성율(m3CH4/kgVS)Methane production rate (m 3 CH 4 / kgVS) 가축분뇨(manures)Manure 0.252~0.3480.252-0.348 축분(cow)Cow 0.252~0.3230.252-0.323 돈분(swine)Swine 0.320~0.3480.320-0.348 계분(poultry)Poultry 0.258~0.3300.258-0.330 농산물 잔재물(Agro-Industrial waste)Agro-Industrial waste 0.310~0.3900.310-0.390 사탕무(sugar beet)Sugar beet 0.3700.370 토마토(tomato)Tomato 0.3200.320 오렌지(orange)Orange 0.3300.330 곡물(Brewer's grain)Brew's grain 0.3100.310 사탕수수(sorghum)Sugar cane (sorghum) 0.3900.390 도시 고형폐기물(Municipal solid waste)Municipal solid waste 0.140~0.5400.140-0.540 정원쓰레기(Yard wastes)Yard wastes 0.140~0.2090.140-0.209 폐종이류(Paper waste)Paper waste 0.215~0.3690.215-0.369 하수오니(Sewage sludge)Sewage sludge 0.225~0.3200.225-0.320 유럽 음식물쓰레기(European food waste)European food waste 0.321~0.5400.321-0.540 한국 음식물쓰레기(Korean food waste)Korean food waste 0.356~0.4400.356-0.440 본 발명Invention 0.353~0.3900.353-0.390

상기 표 4에서 알 수 있는 바와 같이, 음식물쓰레기로부터 생성된 메탄 생성량(0.372±0.018m3CH4/kgVS)은 축분, 돈분, 계분과 같은 가축분뇨(0.252~0.348m3CH4/kgVS), 사탕무, 토마토, 오렌지, 사탕수수 등의 농산물 잔재물(0.310~0.390m3CH4/kgVS) 및 정원 쓰레기, 폐종이류, 하수오니 등의 도시 고형 폐기물 유래 바이오매스(0.140~0.540m3CH4/kgVS)보다는 높은 메탄 생성율을 나타내어 음식물쓰레기는 고 순도 메탄 생성을 위해 높은 잠재력을 가진 바이오매스임을 의미하고 있다. 하지만, 기존의 2단 메탄 발효 공정을 이용한 유럽과 한국의 음식물쓰레기로부터 생성된 메탄 수율(0.321~0.540 및 0.356~0.440m3CH4/kgVS) 보다는 약간 낮은 수치를 나타내었는데, 이것은 음식물쓰레기의 효소분해 과정에서 음식물쓰레기 중의 고형분(VSS)의 낮은 가수분해율에 기인한 것으로 판단된다.As can be seen in Table 4, the amount of methane produced from food waste (0.372 ± 0.018 m 3 CH 4 / kg VS) is livestock manure (0.252 ~ 0.348 m 3 CH 4 / kg VS), such as livestock meal, pig meal, poultry meal, Agricultural residues (0.310 ~ 0.390m 3 CH 4 / kgVS) such as sugar beet, tomato, orange, sugarcane and biomass derived from municipal solid waste (0.140 ~ 0.540m 3 CH 4 / kgVS) such as garden waste, waste paper, sewage sludge Since the methane production rate is higher than), food waste is a biomass with high potential for high purity methane production. However, it was slightly lower than the methane yield (0.321 ~ 0.540 and 0.356 ~ 0.440m 3 CH 4 / kgVS) produced from food waste in Europe and Korea using the conventional two-stage methane fermentation process. It is believed that this is due to the low hydrolysis rate of solids (VSS) in the food waste during the decomposition process.

도 1은 본 발명에서 메탄 생산을 위해 사용하는 UASB 반응기를 도시한 도면이다.1 is a view showing a UASB reactor used for the production of methane in the present invention.

도 2는 음식물쓰레기의 개별 효소 가수분해에서 각 효소의 주입량 증가에 따른 음식물쓰레기 중의 부유 고형물(VSS) 감소율을 나타낸 그래프이다.FIG. 2 is a graph showing the decrease in suspended solids (VSS) in food wastes according to an increase in the amount of each enzyme injected in individual enzyme hydrolysis of food wastes.

도 3은 음식물쓰레기의 혼합 효소 가수분해에서 시간 경과에 따른 각 혼합 효소 첨가량의 VSS 농도를 나타낸 그래프이다.Figure 3 is a graph showing the VSS concentration of each mixed enzyme addition over time in the mixed enzyme hydrolysis of food waste.

도 4는 음식물쓰레기의 혼합 효소 가수분해에서 순수 VSS 감소량에 대한 순수 SCOD 증가량을 나타낸 그래프이다.4 is a graph showing the pure SCOD increase with respect to the pure VSS decrease in the mixed enzyme hydrolysis of food waste.

도 5는 유기물 부하량의 증가에 따른 메탄 생성량을 나타낸 그래프이다. 5 is a graph showing the amount of methane produced by increasing the organic load.

Claims (4)

메탄 생산방법에 있어서,In the methane production method, 분쇄된 음식물쓰레기 100중량부 당 혼합효소 0.2~0.4중량부를 첨가하고, 45~55℃의 온도에서 8~10시간 동안 반응시켜 가수분해액을 얻는 단계(S10);Adding 0.2 to 0.4 parts by weight of mixed enzyme per 100 parts by weight of crushed food waste and reacting at a temperature of 45 to 55 ° C. for 8 to 10 hours to obtain a hydrolysis solution (S10); 상기 가수분해액을 3500~4500rpm에서 5~15분간 원심분리하여 상등액을 채취하는 단계(S20);Collecting the supernatant by centrifuging the hydrolysis solution at 3500 to 4500 rpm for 5 to 15 minutes (S20); 상기 상등액을 증류수로 5~6배 희석하여 UASB 반응기의 유입수로 사용하는 단계(S30); 및Diluting the supernatant with distilled water 5 to 6 times to use the influent of the UASB reactor (S30); And 상기 UASB 반응기를 이용하여 메탄을 얻는 단계(S40);Obtaining methane using the UASB reactor (S40); 를 포함하는 것을 특징으로 하는 음식물쓰레기를 이용한 메탄 생산방법.Methane production method using food waste, characterized in that it comprises a. 삭제delete 제 1항에 있어서,The method of claim 1, 상기 혼합효소는 카보하이드라제:프로테아제:리파아제를 1:2:1의 비율로 첨가하여 혼합한 것을 특징으로 하는 음식물쓰레기를 이용한 메탄 생산방법.The mixed enzyme is a methane production method using food waste, characterized in that the carbohydrase: protease: lipase is added by mixing in a ratio of 1: 2: 1. 제 1항에 있어서,The method of claim 1, 상기 UASB 반응기의 온도는 35~40℃인 것을 특징으로 하는 음식물쓰레기를 이용한 메탄 생산방법.The temperature of the UASB reactor is methane production method using food waste, characterized in that 35 ~ 40 ℃.
KR1020080058431A 2008-06-20 2008-06-20 Enzymatic hydrolysis of food waste and methane fermentation by UASB bioreactor KR100973349B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080058431A KR100973349B1 (en) 2008-06-20 2008-06-20 Enzymatic hydrolysis of food waste and methane fermentation by UASB bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080058431A KR100973349B1 (en) 2008-06-20 2008-06-20 Enzymatic hydrolysis of food waste and methane fermentation by UASB bioreactor

Publications (2)

Publication Number Publication Date
KR20090132254A KR20090132254A (en) 2009-12-30
KR100973349B1 true KR100973349B1 (en) 2010-07-30

Family

ID=41691345

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080058431A KR100973349B1 (en) 2008-06-20 2008-06-20 Enzymatic hydrolysis of food waste and methane fermentation by UASB bioreactor

Country Status (1)

Country Link
KR (1) KR100973349B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101255972B1 (en) * 2012-07-04 2013-04-23 윤재현 Method for promoting production of biogas using pancreatin in an anaerobic digestion process
CN111250046B (en) * 2020-03-18 2022-03-11 台州职业技术学院 Method for preparing biochar by hydrolyzing and carbonizing kitchen waste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253700A (en) * 1996-03-27 1997-09-30 Shinko Pantec Co Ltd Method and apparatus for treating sludge
KR20040105493A (en) * 2003-06-09 2004-12-16 송성달 Method and apparatus for the treatment of organic waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09253700A (en) * 1996-03-27 1997-09-30 Shinko Pantec Co Ltd Method and apparatus for treating sludge
KR20040105493A (en) * 2003-06-09 2004-12-16 송성달 Method and apparatus for the treatment of organic waste

Also Published As

Publication number Publication date
KR20090132254A (en) 2009-12-30

Similar Documents

Publication Publication Date Title
Yao et al. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts
Mirmohamadsadeghi et al. Biogas production from food wastes: A review on recent developments and future perspectives
Hoarau et al. Sugarcane vinasse processing: Toward a status shift from waste to valuable resource. A review
Chatterjee et al. Role of stage-separation in the ubiquitous development of anaerobic digestion of organic fraction of municipal solid waste: a critical review
Antonopoulou et al. Biohydrogen and methane production from cheese whey in a two-stage anaerobic process
Mata-Alvarez et al. A critical review on anaerobic co-digestion achievements between 2010 and 2013
Nishio et al. Recent development of anaerobic digestion processes for energy recovery from wastes
Zhang et al. Extracellular enzyme activities during regulated hydrolysis of high-solid organic wastes
Bartacek et al. Developments and constraints in fermentative hydrogen production
Dębowski et al. The influence of anaerobic digestion effluents (ADEs) used as the nutrient sources for Chlorella sp. cultivation on fermentative biogas production
Yu et al. Production and utilization of methane biogas as renewable fuel
Fang et al. Volatile fatty acid production from spent mushroom compost: Effect of total solid content
Lopez-Hidalgo et al. A meta-analysis of research trends on hydrogen production via dark fermentation
Ameen et al. Co-digestion of microbial biomass with animal manure in three-stage anaerobic digestion
Fang et al. Solid-state anaerobic fermentation of spent mushroom compost for volatile fatty acids production by pH regulation
Selvamurugan et al. High rate anaerobic treatment of coffee processing wastewater using upflow anaerobic hybrid reactor
Singh et al. Development of mixed inoculum for methane enriched biogas production
CN103620042A (en) Process for the digestion of organic material
Saratale et al. Biohydrogen from renewable resources
Xu et al. Hydrogen generation performance from Taihu algae and food waste by anaerobic codigestion
Prakash et al. Wastewater: a potential bioenergy resource
Patil et al. A comparative study on anaerobic co-digestion of water hyacinth with poultry litter and cow dung
Hussain et al. Biotechnology for zero waste: emerging waste management techniques
Singh et al. Leach bed reactors for production of short-chain fatty acids: A review of critical operating parameters, current limitations and challenges, and prospects
KR101255972B1 (en) Method for promoting production of biogas using pancreatin in an anaerobic digestion process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130626

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140523

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee