KR100973305B1 - Pore controlling method for activated carbons and hydrogen storage device employing the activated carbons by the the method - Google Patents

Pore controlling method for activated carbons and hydrogen storage device employing the activated carbons by the the method Download PDF

Info

Publication number
KR100973305B1
KR100973305B1 KR1020080019273A KR20080019273A KR100973305B1 KR 100973305 B1 KR100973305 B1 KR 100973305B1 KR 1020080019273 A KR1020080019273 A KR 1020080019273A KR 20080019273 A KR20080019273 A KR 20080019273A KR 100973305 B1 KR100973305 B1 KR 100973305B1
Authority
KR
South Korea
Prior art keywords
activated carbon
hydrogen storage
plasma
hydrogen
present
Prior art date
Application number
KR1020080019273A
Other languages
Korean (ko)
Other versions
KR20090093635A (en
Inventor
박수진
이주형
Original Assignee
주식회사 엑스에프씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엑스에프씨 filed Critical 주식회사 엑스에프씨
Priority to KR1020080019273A priority Critical patent/KR100973305B1/en
Publication of KR20090093635A publication Critical patent/KR20090093635A/en
Application granted granted Critical
Publication of KR100973305B1 publication Critical patent/KR100973305B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0021Carbon, e.g. active carbon, carbon nanotubes, fullerenes; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

활성탄소의 기공조절방법 및 이에 의해 처리된 활성탄소를 포함하는 수소저장장치가 제공된다. Provided are a method for controlling porosity of activated carbon and a hydrogen storage device including activated carbon treated by the same.

본 발명에 따른 활성탄소의 기공조절방법은 전극이 구비된 반응챔버에 활성탄소를 위치시키는 단계; 불소계 가스를 공급하며 전압을 인가하여 플라즈마를 형성하는 단계; 및 상기 플라즈마로 상기 활성탄소의 표면을 처리함으로써 미세기공의 분율을 증가시키고 평균 미세기공 직경을 감소시키는 것을 특징으로 하며, 본 발명에 따르면 간단한 공정을 통하여 상용 활성탄소의 미세기공 분율을 증가시킬 수 있고, 평균 미세기공 직경을 감소시킬 수 있으며, 본 발명에 따라 표면처리된 활성탄소를 포함하는 수소저장장치의 경우 종래의 상용 활성탄소를 사용하는 경우에 비하여 수소저장능력이 최대 50% 이상 증가된다.Pore control method of activated carbon according to the present invention comprises the steps of placing the activated carbon in the reaction chamber equipped with an electrode; Supplying a fluorine-based gas and applying a voltage to form a plasma; And treating the surface of the activated carbon with the plasma to increase the fraction of micropores and reduce the average micropore diameter. According to the present invention, the fraction of commercially available carbon can be increased through a simple process. The average micropore diameter can be reduced, and the hydrogen storage device including the activated carbon surface-treated according to the present invention increases the hydrogen storage capacity by up to 50% or more compared with the conventional commercial activated carbon.

Description

활성탄소의 기공조절방법 및 이에 의해 처리된 활성탄소를 포함하는 수소저장장치{Pore controlling method for activated carbons and hydrogen storage device employing the activated carbons by the the method} Pore controlling method for activated carbons and hydrogen storage device employing the activated carbons by the the method}

본 발명은 활성탄소의 기공조절방법에 관한 것으로서, 더욱 상세하게는 활성탄소의 미세기공의 분율을 증가시키고 평균 미세기공 직경을 감소시킬 수 있는 활성탄소의 기공조절방법 및 이에 의해 처리된 활성탄소를 포함하는 수소저장장치에 관한 것이다.The present invention relates to a method for controlling porosity of activated carbon, and more particularly, a method for controlling pore of activated carbon capable of increasing the fraction of micropores of activated carbon and decreasing the average micropore diameter, and hydrogen comprising the activated carbon treated thereby. Relates to a storage device.

수소는 환경문제 및 화석연료의 가격상승이나 고갈을 예상할 때 궁극적인 미래의 대체에너지원 또는 에너지 매체(Energy carrier)로 부상하고 있다. 이는 화석연료가 대기오염물질 배출의 주범이며, 최근에는 배출되는 이산화탄소의 대기중 농도증가로 지구온난화의 우려를 가중시키고 있는데 반하여, 수소는 공해물질을 배출시키지 않으며, 환경친화적이고 일반 연료, 수소자동차, 수소비행기, 연료전지 등 현재의 에너지 시스템에서 사용되는 거의 모든 분야에 이용될 수 있다는 장점이 있기 때문이다. Hydrogen is emerging as the ultimate future alternative energy source or energy carrier when anticipating environmental problems and rising or depleting fossil fuel prices. This is because fossil fuels are the main culprit of air pollutants, and in recent years, the increased concentration of carbon dioxide emitted into the atmosphere raises the concern about global warming, while hydrogen does not emit pollutants, and it is environmentally friendly, fuel, and hydrogen vehicles. This is because it can be used in almost all fields used in current energy systems such as hydrogen airplanes and fuel cells.

그러나 수소는 상온, 대기압 상태에서 기체로 존재하기 때문에 체적당 에너 지밀도가 낮고 운반 및 저장이 불편하다는 단점이 있다. 특히, 수소 자동차의 양산을 위해서는 가급적 낮은 압력에서 높은 저장율로 수소를 저장할 수 있어야 한다. 미국 에너지부(DOE)에서 제시하는 수소저장에 대한 연도별 목표치는 2010년에 6중량%, 2015년에 9중량%이다.However, since hydrogen exists as a gas at room temperature and atmospheric pressure, energy density per volume is low and transport and storage are inconvenient. In particular, for mass production of hydrogen vehicles, hydrogen should be able to be stored at a high storage rate at low pressure. The annual target for hydrogen storage from the US Department of Energy (DOE) is 6% by 2010 and 9% by 2015.

수소의 저장기술은 기체, 액체, 고체상태로 저장하는 방법이 제안되었으며, 수소를 기체상태로 저장하는 방법은 저장 밀도를 높이기 위하여 고압상태의 수소를 실린더에 보관하여 저장하는 것인데, 현재 가장 보편적으로 사용되고 있는 방법으로서 보관이 간단하고, 특별한 부대장치를 필요로 하지 않으나, 저장밀도가 낮고, 500기압 이상의 초고압이므로 위험하다는 단점이 있다. The storage technology of hydrogen has been proposed to be stored in gas, liquid and solid state, and the method of storing hydrogen in gas state is to store and store high pressure hydrogen in cylinder to increase storage density. As a method used, it is easy to store and does not require a special auxiliary device, but has a disadvantage of low storage density and danger because it is ultra-high pressure of 500 atmospheres or more.

한편, 수소를 고체상태로 저장하는 방법으로서 희토류 금속으로 이루어진 수소저장합금을 이용하여, 상기 수소저장합금이 수소와 가역적으로 반응함으로써 금속수소화물을 형성하는 것에 의해 수소를 저장하는 방법이 알려져 있는데, 티탄-철합금, 란탄-니켈합금, 마그네슘-니켈합금 등은 거의 실용화 단계에 있으며 상온에서 20∼40atm의 압력으로 수소를 저장할 수 있다는 장점이 있지만, 무게가 무겁고 고가이며 피독현상과 미분화에 의한 성능열화의 문제점이 있다. Meanwhile, as a method of storing hydrogen in a solid state, a method of storing hydrogen by using a hydrogen storage alloy made of rare earth metal and forming a metal hydride by reversibly reacting with hydrogen is known. Titanium-iron alloys, lanthanum-nickel alloys and magnesium-nickel alloys are in the practical stage of practical use and have the advantage of storing hydrogen at a pressure of 20 to 40 atm at room temperature, but they are heavy, expensive, and have performance due to poisoning and micronization. There is a problem of deterioration.

또한, 수소흡착을 유도하기 위한 넓은 표면적의 수소 흡착체로써 탄소나노튜브 등의 탄소재료 또는 금속-유기 골격구조(metal-organic framework:MOF)와 같은 다공성 물질을 이용하는 것에 대한 연구가 진행되고 있는데, 금속-유기 골격구조의 경우 금속 클러스터가 차지하는 중량이 대부분이어서 무게가 비교적 무겁고 제조비용이 고가라는 문제가 있었다.In addition, research on the use of a porous material such as a carbon-based material such as carbon nanotubes or a metal-organic framework (MOF) as a large surface area hydrogen adsorbent for inducing hydrogen adsorption, In the case of the metal-organic skeleton structure, the metal cluster occupies most of the weight, so that the weight is relatively heavy and the manufacturing cost is expensive.

이에 비하여, 탄소재료는 단일의 원소로 구성되어 있음에도 불구하고, 결합의 형태가 다양하며, 화학적 안정성, 전기 및 열전도성, 고강도, 고탄성율, 생체친화성 등의 우수한 특성을 가진 우수한 재료이다. 더불어 기존의 수소저장방법에 비해 안전하고 가벼울 뿐만 아니라 저장비용이 낮은 장점이 있으며, 수소저장이 가역적이어서 반영구적으로 사용할 수 있을 뿐만 아니라 친환경적이라는 큰 장점을 가지고 있다. On the contrary, although the carbon material is composed of a single element, there are various forms of bonding, and the carbon material is an excellent material having excellent properties such as chemical stability, electrical and thermal conductivity, high strength, high elastic modulus, and biocompatibility. In addition, it has the advantages of being safer and lighter than the conventional hydrogen storage method, and having a low storage cost. Since hydrogen storage is reversible, it can be used semi-permanently as well as being environmentally friendly.

하지만 기존의 상용화된 활성탄소를 그 미세기공의 분율이 너무 낮고 평균 미세기공의 직경이 약 2nm로서 수소 분자의 평균 직경보다 상당히 크기 때문에 수소의 저장에 적합하지 않았다. 즉, 수소를 저장하기에 적합한 공간은 수소분자를 물리적 결합으로 고정시킬 수 있는, 더 작은 미세기공 약 1∼1.5 nm 정도의 기공이 필요하다. 이를 위해서는 새로운 기공부여 방법이 제공되거나 기존의 상용화된 활성탄소의 기공경을 축소시키는 기술이 제공되어야 한다.However, the commercially available activated carbon was not suitable for storing hydrogen because its fraction of micropores was too low and the average micropore diameter was about 2 nm, which is considerably larger than the average diameter of hydrogen molecules. That is, a space suitable for storing hydrogen requires pores of about 1 to 1.5 nm in size and smaller micropores that can fix hydrogen molecules by physical bonds. To this end, a new method for pore provision or a technique for reducing the pore size of existing commercially available activated carbon should be provided.

따라서, 본 발명이 해결하고자 하는 첫 번째 과제는 활성탄소의 미세기공 분율을 증가시키고 평균 미세기공 직경을 감소시킬 수 있는 활성탄소의 기공조절방법을 제공하는 것이다.Accordingly, the first problem to be solved by the present invention is to provide a pore control method of activated carbon that can increase the micropore fraction of activated carbon and reduce the average micropore diameter.

또한, 본 발명이 해결하고자 하는 두 번째 과제는 상기 방법에 의해 처리된 활성탄소를 이용한 수소저장장치를 제공하는 것이다.In addition, a second problem to be solved by the present invention is to provide a hydrogen storage device using the activated carbon treated by the method.

본 발명은 상기 첫 번째 과제를 달성하기 위하여, The present invention to achieve the first object,

전극이 구비된 반응챔버에 활성탄소를 위치시키는 단계; 불소계 가스를 공급하며 전압을 인가하여 플라즈마를 형성하는 단계; 및 상기 플라즈마로 상기 활성탄소의 표면을 처리함으로써 미세기공의 분율을 증가시키고 평균 미세기공 직경을 감소시키는 것을 특징으로 하는 활성탄소의 기공조절방법을 제공한다.Placing activated carbon in a reaction chamber equipped with an electrode; Supplying a fluorine-based gas and applying a voltage to form a plasma; And treating the surface of the activated carbon with the plasma to increase the fraction of the fine pores and to reduce the average fine pore diameter.

본 발명의 일 실시예에 의하면, 상기 플라즈마의 형성은 대기압에서 진행되며, 상기 불소계 가스는 하나 이상의 불소원자로 치환된 탄소수 1 내지 3의 플루오로 알칸일 수 있고, 상기 불소계 가스의 농도는 10 내지 500ppm일 수 있다.According to an embodiment of the present invention, the plasma is formed at atmospheric pressure, and the fluorine-based gas may be fluoro alkanes having 1 to 3 carbon atoms substituted with one or more fluorine atoms, and the concentration of the fluorine-based gas is 10 to 500 ppm. Can be.

또한, 상기 불소계 가스는 CHF3, CH2F2 또는 CH3F일 수 있다.In addition, the fluorine-based gas is CHF 3 , CH 2 F 2 Or CH 3 F.

본 발명의 다른 실시예에 의하면, 상기 전압은 5 내지 100 W인 것이 바람직하다.According to another embodiment of the invention, the voltage is preferably 5 to 100W.

본 발명의 또 다른 실시예에 의하면, 상기 전극과 활성탄소의 거리는 0.1 내지 10mm일 수 있다.According to another embodiment of the present invention, the distance between the electrode and the activated carbon may be 0.1 to 10mm.

또한, 상기 플라즈마로 상기 활성탄소의 표면을 처리하는 시간은 30 내지 600초일 수 있다.In addition, the time for treating the surface of the activated carbon with the plasma may be 30 to 600 seconds.

본 발명의 바람직한 실시예에 의하면, 상기 플라즈마 처리된 활성탄소의 미세기공 분율은 87 내지 97%이며, 평균 미세기공 직경은 1.2 내지 1.9 nm일 수 있다.According to a preferred embodiment of the present invention, the micropore fraction of the plasma-treated activated carbon is 87 to 97%, the average micropore diameter may be 1.2 to 1.9 nm.

본 발명은 상기 두 번째 과제를 해결하기 위하여,The present invention to solve the second problem,

상기 기공조절방법에 의해 처리된 활성탄소를 포함하는 것을 특징으로 하는 수소저장장치를 제공한다. It provides a hydrogen storage device comprising the activated carbon treated by the pore control method.

본 발명에 따르면 간단한 공정을 통하여 상용 활성탄소의 미세기공 분율을 증가시키는 한편, 평균 미세기공 직경을 감소시킬 수 있으며, 본 발명에 따라 표면처리된 활성탄소를 포함하는 수소저장장치의 경우 종래의 상용 활성탄소를 사용하는 경우에 비하여 수소저장능력이 최대 50% 이상 증가된다.According to the present invention, while increasing the micropore fraction of the commercially available activated carbon through a simple process, it is possible to reduce the average micropore diameter, in the case of a hydrogen storage device containing the surface-treated activated carbon according to the present invention conventional commercial activity Compared with carbon, hydrogen storage capacity is increased by up to 50% or more.

이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 활성탄소의 기공조절방법은 불소계 플라즈마 처리 공정에 의해 상용 활성탄소의 미세기공 분율을 증가시키고, 평균 미세기공 직경을 감소시킬 수 있으며, 상기 본 발명에 따라 처리된 활성탄소를 이용한 수소저장장치는 종래의 상용 활성탄소를 이용한 경우보다 수소저장능력을 최대 50% 이상 증가시킬 수 있다는 것을 특징으로 한다.The pore control method of activated carbon according to the present invention can increase the micropore fraction of the commercially available activated carbon by the fluorine-based plasma treatment process, reduce the average micropore diameter, the hydrogen storage device using the activated carbon treated according to the present invention Is characterized in that it can increase the hydrogen storage capacity up to 50% or more than when using a conventional commercial activated carbon.

상기 불소계 플라즈마 처리에 의해 활성탄소의 미세기공 분율이 증가하고 평균 미세기공 직경이 감소되는 이유는 활성탄소에는 대기공, 중기공 및 미세기공들이 존재하는데, 본 발명에 따른 불소계 플라즈마 처리를 하게 되면 활성탄소에 미세 에칭에 의한 다수의 미세기공들이 새로 생성되기 때문이다. 한편, 대기공이나 중기공의 경우에도 에칭이 되긴 하지만, 수소저장에 있어서는 미세기공이 중요한 인자가 되며, 에칭에 의해 새로 생성된 미세기공의 경우에는 그 기공 크기가 매우 작기 때문에 전체적인 미세기공 분율이 증가하고, 평균 미세기공 직경은 감소하게 되는 것이다. 다양한 플라즈마 중에서 불소계 플라즈마가 가장 바람직한 이유는 탄소와의 적절한 상호작용에 의해 기공의 파괴를 최소화하며 미세기공들을 형성시킬 수 있기 때문이다. The reason why the micropore fraction of the activated carbon is increased and the average micropore diameter is decreased by the fluorine-based plasma treatment is that there are atmospheric, medium and micropores in the activated carbon. This is because a large number of micropores are newly generated by fine etching. On the other hand, although the etching is performed in the case of atmospheric or mesopores, micropores are an important factor in hydrogen storage, and in the case of newly formed micropores, the pore size is very small, so the overall micropore fraction is very small. And the average micropore diameter decreases. Among the various plasmas, fluorine-based plasma is most preferable because it can form micropores while minimizing pore destruction by proper interaction with carbon.

본 발명에 사용되는 상기 활성탄소로는 상용으로 판매하는 활성탄 또는 활성탄소섬유 등을 사용해도 무방하다. As the activated carbon used in the present invention, commercially available activated carbon or activated carbon fibers may be used.

불소계 플라즈마 처리시 사용하는 가스는 비활성 가스인 He 등에 불소계 가스인 탄소수 1 내지 3의 플루오로 알칸을 사용하는데, 상기 플루오로 알칸은 상온 및 상압에서 기체로 존재하는 한 특별히 제한되지 않으며, CHF3, CH2F2 또는 CH3F 가 바람직하다. 분자량이 작은 기체를 사용하면 미세기공을 좀더 많이 만들 수 있다는 장점이 있다. Gas, which is used when the fluorine-based plasma treatment in using an alkane as a fluorine-based gas, fluoroalkyl having 1-3 carbon atoms or the like inert gas He, to the fluoro-alkane is not particularly limited as long as that present in a gas at normal temperature and normal pressure, CHF 3, Preference is given to CH 2 F 2 or CH 3 F. The use of small molecular weight gas has the advantage of making more micropores.

상기 불소계 가스는 10 ppm 내지 500 ppm 정도 함유되어 있는 것이 바람직한데, 10ppm 미만인 때에는 플라즈마 처리효과가 너무 미약하며, 500ppm을 초과하는 때에는 플라즈마 발생에 부정적인 영향을 미칠 수 있기 때문이다. Preferably, the fluorine-based gas is contained in an amount of about 10 ppm to about 500 ppm, because the plasma treatment effect is too weak at less than 10 ppm, and negatively affects plasma generation when exceeding 500 ppm.

본 발명에서 플라즈마의 전압이 5 W에서 100 W의 범위를 갖는 것이 바람직하다. 이는 너무 낮은 영역에서는 플라즈마 처리시간이 길어지고 너무 높은 영역에서는 급작스러운 반응에 의해 제어가 쉽지 않기 때문이다. In the present invention, it is preferable that the voltage of the plasma is in the range of 5W to 100W. This is because the plasma treatment time is long in the low region and it is not easy to control by the sudden reaction in the high region.

본 발명에서 플라즈마 처리시 가스의 주입량은 3∼5 l/min이 바람직하며, 5 l/min인 것이 더욱 바람직하다. 본 발명에서 플라즈마 발생을 위한 주파수는 12∼14 MHz가 바람직하며, 보다 바람직하게는 13.56 MHz일 수 있다. In the present invention, the injection amount of gas during the plasma treatment is preferably 3 to 5 l / min, more preferably 5 l / min. In the present invention, the frequency for plasma generation is preferably 12 to 14 MHz, more preferably 13.56 MHz.

한편, 플라즈마 소스와 활성탄소 사이의 거리는 0.1∼10 mm인 것이 바람직한데, 보다 바람직하게는 1∼5 mm일 수 있다. 상기 거리가 0.1 mm 미만인 때에는 거리가 너무 가까워서 폭발의 위험이 있고, 10 mm를 초과하는 때에는 처리 효과가 미약하기 때문에 바람직하지 않다.On the other hand, the distance between the plasma source and the activated carbon is preferably 0.1 to 10 mm, more preferably 1 to 5 mm. If the distance is less than 0.1 mm, the distance is too close, there is a risk of explosion, and if it is more than 10 mm, the treatment effect is weak, which is not preferable.

본 발명에서는 플라즈마 처리 시간은 30초부터 600초까지가 바람직하다. 보다 바람직하게는 60초∼300초 사이가 좋은데 이는 너무 적은 시간에 충분한 불소기를 도입하기 위해서는 강한 에너지를 사용해야 하며, 너무 오랜 시간 플라즈마 처리를 실시할 경우 활성탄소의 기공구조 파괴를 불러올 수 있기 때문이다.In the present invention, the plasma treatment time is preferably 30 seconds to 600 seconds. More preferably, between 60 and 300 seconds is preferable because strong energy must be used to introduce sufficient fluorine groups in too little time, and if the plasma treatment is performed for too long, pore structure destruction of activated carbon can be caused.

본 발명에 따른 수소저장장치는 수소저장용기와 수소 주입관 및 방출관을 포함하며, 수소저장용기의 내부에 상기 본 발명에 따라 처리된 활성탄소가가 충진되어 있는 것을 특징으로 한다. 상기 주입관 및 방출관은 일체로 형성될 수도 있다.The hydrogen storage device according to the present invention includes a hydrogen storage container, a hydrogen injection tube and a discharge tube, and is characterized in that the activated carbon value treated according to the present invention is filled in the hydrogen storage container. The injection tube and the discharge tube may be integrally formed.

본 발명에서 상기 수소저장용기는 고진공과 100∼200bar의 고압을 견딜 수 있는 소재인 한 특별히 제한되지 않으며, 예를 들어 고강도 알미늄 소재를 안감으로 하고 초경량, 고탄성의 탄소섬유 복합재를 덧씌워 제조된 것일 수 있다. 상기 진공도는 수소주입 이전에 필요한 진공도이며, 수소저장시 수소주입압력은 통상 100bar 정도이기 때문에 이러한 고압을 견딜 수 있기 위한 상한치로서 약 200bar의 압력을 견딜 수 있도록 설계된 것이다. 또한 상기 수소저장용기의 형상도 특별히 제한되지는 않지만 압력분포가 균일하게 되고 압력을 지탱할 수 있도록 원통형상인 것이 바람직하다.In the present invention, the hydrogen storage container is not particularly limited as long as it is a material capable of withstanding high vacuum and high pressure of 100 to 200 bar. For example, the hydrogen storage container is manufactured by using a high strength aluminum material as a lining and overlaying an ultra-lightweight, high elastic carbon fiber composite material. Can be. The vacuum degree is a vacuum degree required before hydrogen injection, and the hydrogen injection pressure during hydrogen storage is generally about 100 bar, so it is designed to withstand a pressure of about 200 bar as an upper limit to withstand such a high pressure. In addition, the shape of the hydrogen storage container is not particularly limited, but it is preferable that the pressure distribution is cylindrical so that the pressure distribution is uniform and the pressure can be sustained.

이하에서는 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in more detail the present invention.

도 1에는 본 발명의 일 예에 따른 수소저장장치의 개략적인 단면도가 도시되어 있는데 이는 본 발명에 따른 수소저장장치의 구조를 설명하기 위한 것일 뿐 본 발명이 이에 한정되는 것은 아니다.1 is a schematic cross-sectional view of a hydrogen storage device according to an embodiment of the present invention, which is intended to explain the structure of the hydrogen storage device according to the present invention, but the present invention is not limited thereto.

도 1을 참조하면 본 발명에 따른 수소저장장치(1)는 원통형의 수소저장용기(10)의 내부에 본 발명에 따라 처리된 활성탄소(20)가 충진되어 있고 상기 수소저장용기(10)의 일측에는 일정압력의 수소기체를 주입시킬 수 있는 주입관(30)이 구비되고 타측에는 수소기체를 방출시키는 방출관(40)이 구비되며, 상기 주입관(30)과 방출관(40)에는 개폐를 조절할 수 있는 밸브(미도시)가 설치된다. 이미 언급한 바와 같이, 상기 주입관과 방출관은 일체로 형성될 수도 있다.Referring to FIG. 1, the hydrogen storage device 1 according to the present invention is filled with an activated carbon 20 treated according to the present invention inside a cylindrical hydrogen storage container 10 and of the hydrogen storage container 10. One side is provided with an injection tube 30 for injecting hydrogen gas at a predetermined pressure, and the other side is provided with a discharge tube 40 for discharging the hydrogen gas, the injection tube 30 and the discharge tube 40 is opened and closed Valve (not shown) that can be adjusted is installed. As already mentioned, the injection tube and the discharge tube may be integrally formed.

마지막으로 수소주입이 끝나면 주입관(30)을 닫고 수소를 원료로 사용하는 자동차 기타 기계장치에 상기 방출관(40)을 연결하여 수소를 방출시킴으로써 에너지원으로 사용할 수 있다.Finally, when the hydrogen injection is completed, the injection pipe 30 may be closed and the discharge pipe 40 may be connected to an automobile or other apparatus using hydrogen as a raw material to release hydrogen to use as an energy source.

도면에는 도시하지 않았지만 본 발명에 따른 수소저장장치(1)의 내부에는 수소의 주입/방출을 원활하게 하기 위하여 상기 수소저장용기(10)의 축방향을 따라 하나 이상의 수소이동관을 더 구비할 수도 있고, 기타 당업계에서 공지된 기타 부가적인 장치를 더 구비할 수 있음은 물론이다. Although not shown in the drawing, the hydrogen storage device 1 according to the present invention may further include one or more hydrogen pipes along the axial direction of the hydrogen storage container 10 to facilitate the injection / discharge of hydrogen. Of course, other additional devices known in the art may be further provided.

도 2에는 본 발명에 따른 복수의 수소저장장치가 연결된 사용예를 도시하였다. 도 2를 참조하면, 상기 제 1 실시예에 따른 수소저장장치(1)를 다수개로 구성 한 일군의 수소저장장치가 도시되어 있는데, 이러한 일군의 수소저장장치는 외부 수소생성기(2)를 통해 발생된 수소가스가 이를 일정압력으로 공급하는 가압공급기(3)를 거쳐 공급관(15)를 따라 주입관(30)을 통하여 유입되고, 이 공급관(15)에 병렬식으로 각각의 수소저장장치(1)가 배치된다. 아울러, 각각의 수소저장장치(1)의 방출관(40)이 병렬로 연결되게 배출관(16)을 설치하여, 이를 통해 외부의 수소기체 소모장치(4)로 공급하도록 되어 있다. Figure 2 shows an example of the use of a plurality of hydrogen storage device is connected according to the present invention. Referring to FIG. 2, a group of hydrogen storage devices including a plurality of hydrogen storage devices 1 according to the first embodiment is illustrated, and the group of hydrogen storage devices is generated through an external hydrogen generator 2. The hydrogen gas is introduced through the injection pipe 30 along the supply pipe 15 through a pressurizing feeder 3 for supplying it at a constant pressure, and each hydrogen storage device 1 in parallel to the supply pipe 15. Is placed. In addition, the discharge pipe 16 is installed so that the discharge pipe 40 of each hydrogen storage device 1 is connected in parallel, and is supplied to the external hydrogen gas consumption device 4 through this.

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명하지만 본 발명이 이에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to preferred examples, but the present invention is not limited thereto.

실시예 1Example 1

활성탄소 5 g을 5 l/min의 유량으로 He이 공급되는 300 mm x 400 mm의 반응 챔버의 가운에서 위치시킨 뒤, 플라즈마 전극과의 위치를 1 mm로 세팅하였다. 이에 CHF3 가스를 10 ppm으로 공급하고, 전압을 10 W로 60초간 처리하였다. 5 g of activated carbon was placed in the gown of a 300 mm × 400 mm reaction chamber fed with He at a flow rate of 5 l / min, and then the position with the plasma electrode was set to 1 mm. CHF 3 gas was supplied at 10 ppm, and the voltage was treated at 10 W for 60 seconds.

실시예 2Example 2

활성탄소 5 g을 5 l/min의 유량으로 He이 공급되는 300 mm x 400 mm의 반응 챔버의 가운에서 위치시킨 뒤, 플라즈마 전극과의 위치를 3 mm로 세팅하였다. 이에 CHF3 가스를 10 ppm으로 공급하고, 전압을 10 W로 60초간 처리하였다. 5 g of activated carbon was placed in the gown of a 300 mm × 400 mm reaction chamber fed with He at a flow rate of 5 l / min, and then the position with the plasma electrode was set to 3 mm. CHF 3 gas was supplied at 10 ppm, and the voltage was treated at 10 W for 60 seconds.

실시예 3Example 3

활성탄소 5 g을 5 l/min의 유량으로 He이 공급되는 300 mm x 400 mm의 반응 챔버의 가운에서 위치시킨 뒤, 플라즈마 전극과의 위치를 5 mm로 세팅하였다. 이에 CHF3 가스를 10 ppm으로 공급하고, 전압을 10 W로 60초간 처리하였다. 5 g of activated carbon was placed in the gown of a 300 mm × 400 mm reaction chamber fed with He at a flow rate of 5 l / min, and then the position with the plasma electrode was set to 5 mm. CHF 3 gas was supplied at 10 ppm, and the voltage was treated at 10 W for 60 seconds.

실시예 4Example 4

활성탄소 5 g을 5 l/min의 유량으로 He이 공급되는 300 mm x 400 mm의 반응 챔버의 가운에서 위치시킨 뒤, 플라즈마 전극과의 위치를 5 mm로 세팅하였다. 이에 CHF3 가스를 10 ppm으로 공급하고, 전압을 10 W로 120초간 처리하였다.5 g of activated carbon was placed in the gown of a 300 mm × 400 mm reaction chamber fed with He at a flow rate of 5 l / min, and then the position with the plasma electrode was set to 5 mm. CHF 3 gas was supplied at 10 ppm, and the voltage was treated with 10 W for 120 seconds.

실시예 5Example 5

활성탄소 5 g을 5 l/min의 유량으로 He이 공급되는 300 mm x 400 mm의 반응 챔버의 가운에서 위치시킨 뒤, 플라즈마 전극과의 위치를 5 mm로 세팅하였다. 이에 CHF3 가스를 10 ppm으로 공급하고, 전압을 10 W로 300초간 처리하였다. 5 g of activated carbon was placed in the gown of a 300 mm × 400 mm reaction chamber fed with He at a flow rate of 5 l / min, and then the position with the plasma electrode was set to 5 mm. CHF 3 gas was supplied at 10 ppm, and the voltage was treated with 10 W for 300 seconds.

실시예 6Example 6

활성탄소 5 g을 5 l/min의 유량으로 He이 공급되는 300 mm x 400 mm의 반응 챔버의 가운에서 위치시킨 뒤, 플라즈마 전극과의 위치를 5 mm로 세팅하였다. 이에 CHF3 가스를 100 ppm으로 공급하고, 전압을 10 W로 300초간 처리하였다. 5 g of activated carbon was placed in the gown of a 300 mm × 400 mm reaction chamber fed with He at a flow rate of 5 l / min, and then the position with the plasma electrode was set to 5 mm. CHF 3 gas was supplied at 100 ppm, and the voltage was treated with 10 W for 300 seconds.

실시예 7Example 7

활성탄소 5 g을 5 l/min의 유량으로 He이 공급되는 300 mm x 400 mm의 반응 챔버의 가운에서 위치시킨 뒤, 플라즈마 전극과의 위치를 5 mm로 세팅하였다. 이에 CHF3 가스를 500 ppm으로 공급하고, 전압을 10 W로 300초간 처리하였다. 5 g of activated carbon was placed in the gown of a 300 mm × 400 mm reaction chamber fed with He at a flow rate of 5 l / min, and then the position with the plasma electrode was set to 5 mm. CHF 3 gas was supplied at 500 ppm, and the voltage was treated with 10 W for 300 seconds.

실시예 8Example 8

활성탄소 5 g을 5 l/min의 유량으로 He이 공급되는 300 mm x 400 mm의 반응 챔버의 가운에서 위치시킨 뒤, 플라즈마 전극과의 위치를 5 mm로 세팅하였다. 이에 CHF3 가스를 500 ppm으로 공급하고, 전압을 50 W로 300초간 처리하였다. 5 g of activated carbon was placed in the gown of a 300 mm × 400 mm reaction chamber fed with He at a flow rate of 5 l / min, and then the position with the plasma electrode was set to 5 mm. CHF 3 gas was supplied at 500 ppm, and the voltage was treated at 50 W for 300 seconds.

실시예 9Example 9

활성탄소 5 g을 5 l/min의 유량으로 He이 공급되는 300 mm x 400 mm의 반응 챔버의 가운에서 위치시킨 뒤, 플라즈마 전극과의 위치를 5 mm로 세팅하였다. 이에 CHF3 가스를 500 ppm으로 공급하고, 전압을 100 W로 300초간 처리하였다. 5 g of activated carbon was placed in the gown of a 300 mm × 400 mm reaction chamber fed with He at a flow rate of 5 l / min, and then the position with the plasma electrode was set to 5 mm. CHF 3 gas was supplied at 500 ppm, and the voltage was treated with 100 W for 300 seconds.

시험예 1Test Example 1

상기 실시예 1 내지 9에 의해 처리된 활성탄소의 비표면적, 미세기공 분율 및 평균 미세기공 직경을 각각 10회씩 측정하고 그 평균값을 하기 표 1에 나타내었으며, 상기 실시예 1 내지 9에 의해 처리된 활성탄소를 이용한 수소저장결과를 도 3에 도시하였다. The specific surface area, micropore fraction and average micropore diameter of the activated carbon treated by Examples 1 to 9 were measured 10 times, respectively, and the average values thereof are shown in Table 1 below, and the activities treated by Examples 1 to 9 were measured. Hydrogen storage using carbon is shown in FIG. 3.

상기 측정은 하기의 방법에 의해 수행하였다.The measurement was carried out by the following method.

(1) 활성탄소 기공구조 측정(1) Activated carbon pore structure measurement

표면처리된 활성탄소의 기공구조는 77K의 액체 질소 분위기 하에서 시료 약 0.1 g을 채취하여 질소기체를 흡착질로 하여 흡착량을 측정하였다. 시료의 전처리는 573K에서 시료 내 잔류 압력이 10-3 torr 이하로 될 때까지 약 9∼12 시간 동안 탈기(degassing) 시켰다. N2 등온흡착시험 후, P/Po (P는 부분 압력, Po는 포화 증기압)가 약 0.05에서 0.3까지는 흡착량에 대해서 직선의 기울기를 나타내며, 이것으로부터 BET 비표면적 및 미세기공 분율, 평균 미세기공 직경 등을 구하였다.The pore structure of the surface-treated activated carbon was measured by taking about 0.1 g of a sample under a 77 K liquid nitrogen atmosphere and adsorbing nitrogen gas as an adsorbate. Pretreatment of the sample was degassed for about 9-12 hours at 573 K until the residual pressure in the sample was 10 -3 torr or less. After N 2 isothermal adsorption test, P / P o (P is the partial pressure, Po is the saturated vapor pressure), the slope of the straight line with respect to the adsorption amount from about 0.05 to 0.3, from which the BET specific surface area, micropore fraction, average micropore diameter, etc. were determined.

(2) 수소저장양 측정 (wt.%)(2) Determination of hydrogen storage amount (wt.%)

기능성 흑연의 수소저장양 측정을 위해 각 샘플은 573K에서 잔류 압력을 10-3 torr 이하로 유지한 상태로 6 시간 동안 탈기시킨 후, BEL-HP (BEL Japan)을 이용하여 298K, 100 기압의 조건에서 수소저장량을 측정하였다. 수소저장측정방식은 step-by-step 방식을 사용하였으며, 1회 평균 시료량은 1.0 g으로 하였다.In order to measure the hydrogen storage amount of functional graphite, each sample was degassed for 6 hours while maintaining the residual pressure at 10 -3 torr or lower at 573K, and then subjected to conditions of 298K and 100 atm using BEL-HP (BEL Japan). The hydrogen storage amount was measured at. The hydrogen storage measurement method was a step-by-step method, and the average amount of samples was 1.0 g.

샘플명Sample name 비표면적 (m2/g)Specific surface area (m 2 / g) 미세기공 분율 (%)Micropore fraction (%) 평균 미세기공경 (nm)Average micropore diameter (nm) 미처리Untreated 15501550 8585 2.02.0 실시예1Example 1 15251525 8888 1.731.73 실시예2Example 2 15301530 87.587.5 1.81.8 실시예3Example 3 15401540 8787 1.91.9 실시예4Example 4 15251525 8888 1.751.75 실시예5Example 5 15101510 9090 1.71.7 실시예6Example 6 14701470 9494 1.51.5 실시예7Example 7 14501450 95.595.5 1.351.35 실시예8Example 8 14351435 9696 1.31.3 실시예9Example 9 14201420 9797 1.21.2

상기 표 1 및 첨부된 도 3을 참조하면, 본 발명에 따른 기공조절방법으로 표면처리된 활성탄소는 기존의 상용화된 활성탄소에 비해 높은 미세기공 분율 및 낮은 평균 미세기공 직경을 가지는 것으로 확인되었으며, 이에 따라 비표면적이 감소되었음에도 불구하고 수소저장능이 증대되었다는 것을 확인할 수 있다. Referring to Table 1 and the accompanying Figure 3, the activated carbon surface-treated by the pore control method according to the present invention was found to have a high micropore fraction and a low average micropore diameter compared to conventional commercially available activated carbon, As a result, although the specific surface area was reduced, the hydrogen storage capacity was increased.

도 1은 본 발명의 일 실시예에 따른 수소저장장치의 개략적인 단면도이다.1 is a schematic cross-sectional view of a hydrogen storage device according to an embodiment of the present invention.

도 2는 본 발명에 따른 복수의 수소저장장치가 연결된 실시예이다.2 is an embodiment in which a plurality of hydrogen storage devices according to the present invention are connected.

도 3은 실시예 1 내지 9에 의해 처리된 활성탄소를 이용한 수소저장결과에 대한 도면이다.3 is a view of the hydrogen storage results using the activated carbon treated in Examples 1 to 9.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10: 수소저장용기 20: 유무기복합재10: hydrogen storage container 20: organic-inorganic composite material

30: 주입관 40: 방출관30: injection tube 40: discharge tube

50: 유기금속 전구체 공급관 60: 진공용 가스관50: organometallic precursor supply pipe 60: vacuum gas pipe

Claims (9)

전극이 구비된 반응챔버에 활성탄소를 위치시키는 단계; 10 내지 500ppm의 농도로 불소계 가스를 공급하며 전압을 인가하여 플라즈마를 형성하는 단계; 및 상기 플라즈마로 상기 활성탄소의 표면을 처리함으로써 미세기공의 분율을 증가시키고 평균 미세기공 직경을 감소시키는 것을 특징으로 하는 활성탄소의 기공조절방법.Placing activated carbon in a reaction chamber equipped with an electrode; Supplying a fluorine-based gas at a concentration of 10 to 500 ppm and applying a voltage to form a plasma; And treating the surface of the activated carbon with the plasma to increase the fraction of micropores and to reduce the average micropore diameter. 제 1항에 있어서, The method of claim 1, 상기 플라즈마의 형성은 대기압에서 진행되며, 상기 불소계 가스는 하나 이상의 불소원자로 치환된 탄소수 1 내지 3의 플루오로 알칸인 것을 특징으로 하는 활성탄소의 기공조절방법. Formation of the plasma proceeds at atmospheric pressure, the fluorine-based gas is pore control method of activated carbon, characterized in that fluoro alkanes having 1 to 3 carbon atoms substituted with one or more fluorine atoms. 제 2항에 있어서, 3. The method of claim 2, 상기 불소계 가스는 CHF3, CH2F2 또는 CH3F인 것을 특징으로 하는 활성탄소의 기공조절방법. The fluorine-based gas is CHF 3 , CH 2 F 2 Or CH 3 F pore control method of the activated carbon. 삭제delete 제 1항에 있어서, The method of claim 1, 상기 전압은 5 내지 100 W인 것을 특징으로 하는 활성탄소의 기공조절방법.The voltage is pore control method of the activated carbon, characterized in that 5 to 100 W. 제 1항에 있어서,The method of claim 1, 상기 전극과 활성탄소의 거리가 0.1 내지 10mm인 것을 특징으로 하는 활성탄소의 기공조절방법. Pore control method of the activated carbon, characterized in that the distance of the electrode and the activated carbon is 0.1 to 10mm. 제 1항에 있어서, The method of claim 1, 상기 플라즈마로 상기 활성탄소의 표면을 처리하는 시간은 30 내지 600초인 것을 특징으로 하는 활성탄소의 기공조절방법.The time for treating the surface of the activated carbon with the plasma is 30 to 600 seconds, characterized in that pore control method of activated carbon. 제 1항에 있어서, The method of claim 1, 상기 플라즈마 처리된 활성탄소의 미세기공 분율이 87 내지 97%이며, 평균 미세기공 직경이 1.2 내지 1.9 nm인 것을 특징으로 하는 활성탄소의 기공조절방법.The fine pore fraction of the plasma-treated activated carbon is 87 to 97%, the average fine pore diameter of 1.2 to 1.9 nm characterized in that the pore control method of activated carbon. 제 1항 내지 제 3항 또는 제5항 내지 제8항 중 어느 한 항에 따른 기공조절방법에 의해 처리된 활성탄소를 포함하는 것을 특징으로 하는 수소저장장치.A hydrogen storage device comprising activated carbon treated by the pore control method according to any one of claims 1 to 3 or 5 to 8.
KR1020080019273A 2008-02-29 2008-02-29 Pore controlling method for activated carbons and hydrogen storage device employing the activated carbons by the the method KR100973305B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080019273A KR100973305B1 (en) 2008-02-29 2008-02-29 Pore controlling method for activated carbons and hydrogen storage device employing the activated carbons by the the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080019273A KR100973305B1 (en) 2008-02-29 2008-02-29 Pore controlling method for activated carbons and hydrogen storage device employing the activated carbons by the the method

Publications (2)

Publication Number Publication Date
KR20090093635A KR20090093635A (en) 2009-09-02
KR100973305B1 true KR100973305B1 (en) 2010-07-30

Family

ID=41302096

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080019273A KR100973305B1 (en) 2008-02-29 2008-02-29 Pore controlling method for activated carbons and hydrogen storage device employing the activated carbons by the the method

Country Status (1)

Country Link
KR (1) KR100973305B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102190541B1 (en) * 2019-12-27 2020-12-14 인하대학교 산학협력단 Electrode materials with nickel-introduced for hydrogen storage and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000062733A (en) * 1999-03-05 2000-10-25 조셉 제이. 스위니 Plasma etching of silicon using fluorinated gas mixtures
KR20030046455A (en) * 2000-09-19 2003-06-12 에라켐 유럽 에스.에이. Device and method for converting carbon containing feedstock into carbon containing materials, having a defined nanostructure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000062733A (en) * 1999-03-05 2000-10-25 조셉 제이. 스위니 Plasma etching of silicon using fluorinated gas mixtures
KR20030046455A (en) * 2000-09-19 2003-06-12 에라켐 유럽 에스.에이. Device and method for converting carbon containing feedstock into carbon containing materials, having a defined nanostructure

Also Published As

Publication number Publication date
KR20090093635A (en) 2009-09-02

Similar Documents

Publication Publication Date Title
US7721601B2 (en) Hydrogen storage tank and method of using
US7896950B2 (en) Plasma-aided method and apparatus for hydrogen storage and adsorption of gases into porous powder
US6626981B2 (en) Microporous carbons for gas storage
JPS62216901A (en) Cryogenic storage method and device for hydrogen by carbon for assisting metal
JP2009525258A (en) Nanoporous carbon material and system and method using the same
WO2006022329A8 (en) Evaporated fuel gas adsorbent, evaporated fuel gas trapping apparatus, active carbon and process for producing the same
Anson et al. Hydrogen adsorption on a single-walled carbon nanotube material: a comparative study of three different adsorption techniques
KR100973305B1 (en) Pore controlling method for activated carbons and hydrogen storage device employing the activated carbons by the the method
EP2358631B1 (en) Fuel removal system for hydrogen implanted in a nanostructure material
CN113350983A (en) Electric field polarized gas adsorption system
Salehi et al. Theoretical and experimental study on the adsorption and desorption of methane by granular activated carbon at 25 C
KR100937517B1 (en) Porous carbon material, method for preparing the same and use of the same for hydrogen storage
US20110160042A1 (en) Method for constructing fractal network structure in hydrogen storage material
KR100255178B1 (en) Method and apparatus for treating bog in a low temperature liquid storage tank
WO2005120715A2 (en) Electrostatic switch for hydrogen storage and release from hydrogen storage media
KR100745567B1 (en) Nano-sized Ni doped Carbon Nanotubes for hydrogen storage and its preparation method
Buczek et al. Improvement of hydrogen storage capacity for active carbon
KR100744832B1 (en) Preparation of porous carbon nanofibers containing mesopores
Gadiou et al. The influence of microporosity on the hydrogen storage capacity of ordered mesoporous carbons
US20060191409A1 (en) Electrostatic switch for hydrogen storage and release from hydrogen storage media
JP2005113361A (en) Fluorinated amorphous nano carbon fiber and process for producing the same, hydrogen storing material comprising fluorinated amorphous nano carbon fiber, and hydrogen storing apparatus and fuel cell system
KR101400228B1 (en) Nano porous material, method for preparing the nano porous material and hydrogen strorage device employing the same
Nour et al. Enhanced discharge of ANG storage for vehicle use
KR101089061B1 (en) Functional graphite material and manufacturing method thereof
KR102343364B1 (en) Activated carbon for gas storage derived from starch using potassium oxalate and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130716

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140707

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151228

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee