KR100973247B1 - Depolymerization of Polytetramethylene glycol - Google Patents

Depolymerization of Polytetramethylene glycol Download PDF

Info

Publication number
KR100973247B1
KR100973247B1 KR1020080085883A KR20080085883A KR100973247B1 KR 100973247 B1 KR100973247 B1 KR 100973247B1 KR 1020080085883 A KR1020080085883 A KR 1020080085883A KR 20080085883 A KR20080085883 A KR 20080085883A KR 100973247 B1 KR100973247 B1 KR 100973247B1
Authority
KR
South Korea
Prior art keywords
exchange resin
cation exchange
polytetramethylene glycol
tetrahydrofuran
catalyst
Prior art date
Application number
KR1020080085883A
Other languages
Korean (ko)
Other versions
KR20100026758A (en
Inventor
김노현
이은구
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020080085883A priority Critical patent/KR100973247B1/en
Publication of KR20100026758A publication Critical patent/KR20100026758A/en
Application granted granted Critical
Publication of KR100973247B1 publication Critical patent/KR100973247B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/20Tetrahydrofuran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 폴리테트라메틸렌글리콜 해중합 방법에 관한 것으로, 더욱 구체적으로는 상기 폴리테트라메틸렌글리콜 해중합 방법은 폴리테트라메틸렌글리콜을 100 ~ 200℃의 온도와 양이온교환수지 촉매하에서 해중합하여 테트라히드로퓨란을 제조하는 것을 포함하는 폴리테트라메틸렌글리콜 해중합 방법에 관한 것이다.The present invention relates to a polytetramethylene glycol depolymerization method, and more specifically, to the polytetramethylene glycol depolymerization method, a tetrahydrofuran is prepared by depolymerizing polytetramethylene glycol at a temperature of 100 to 200 ° C. and a cation exchange resin catalyst. It relates to a polytetramethylene glycol depolymerization method comprising the same.

상술한 본 발명은 양이온교환수지 촉매를 사용함에 의해 낮은 온도에서 폴리테트라메틸렌글리콜을 해중합하여 테트라히드로퓨란을 제조하므로, 반응공정에 적용시 반응이 비교적 안정적으로 일어나고, 불순물이 유입되지 않아 테트라히드로퓨란의 순도가 매우 높고, 반응기에 상기 양이온교환수지 촉매가 흡착되지 않아 반응기의 작업성이 월등히 향상되고, 상기 양이온교환수지 촉매의 교체작업도 용이하여 상기 양이온교환수지 촉매가 오염될 염려가 없다. 또한, 상기 양이온교환수지 촉매 폐기시 별도의 전처리가 필요없고 비용도 절감되는 장점이 현저하다. In the present invention described above, tetrahydrofuran is prepared by depolymerizing polytetramethylene glycol at a low temperature by using a cation exchange resin catalyst, so that the reaction occurs relatively stably when applied to the reaction process, and impurities do not flow into the tetrahydrofuran. The purity of is very high, the cation exchange resin catalyst is not adsorbed in the reactor, the workability of the reactor is significantly improved, the replacement of the cation exchange resin catalyst is also easy, there is no fear of contamination of the cation exchange resin catalyst. In addition, when the cation exchange resin catalyst disposal, there is a remarkable advantage that no separate pretreatment is required and the cost is also reduced.

폴리테트라메틸렌글리콜, 테트라히드로퓨란, 해중합, 양이온교환수지, 수율, 안정성, 연속식, 회분식 Polytetramethylene glycol, tetrahydrofuran, depolymerization, cation exchange resin, yield, stability, continuous, batch

Description

폴리테트라메틸렌글리콜 해중합 방법 {Depolymerization of Polytetramethylene glycol}Polytetramethylene glycol depolymerization method {Depolymerization of Polytetramethylene glycol}

본 발명은 폴리테트라메틸렌글리콜 해중합 방법에 관한 것으로, 더욱 상세하게는 상기 폴리테트라메틸렌글리콜 해중합 방법은 폴리테트라메틸렌글리콜을 100 ~ 200℃의 온도와 양이온교환수지 촉매하에서 해중합하여 테트라히드로퓨란을 제조하는 것을 포함하는 폴리테트라메틸렌글리콜 해중합 방법에 관한 것이다.The present invention relates to a polytetramethylene glycol depolymerization method, and more specifically, to the polytetramethylene glycol depolymerization method, a tetrahydrofuran is prepared by depolymerizing polytetramethylene glycol at a temperature of 100 to 200 ° C. and a cation exchange resin catalyst. It relates to a polytetramethylene glycol depolymerization method comprising the same.

일반적으로, 테트라히드로퓨란은 유기화합물의 용매로 사용되거나 폴리우레탄의 원료인 폴리올의 원료 등 여러 분야에서 사용되어 지고 있다.In general, tetrahydrofuran is used in various fields such as a solvent of an organic compound or a raw material of polyol which is a raw material of polyurethane.

또한, 고분자는 단일 분자량이 아닌 다양한 분자량의 범위를 갖는다. 폴리테트라메틸렌글리콜(Polytetramethylene glycol, PTMG) 또한 다양한 분자량 범위를 가지며, 제조시 원치 않는 다른 범위의 분자량이 발생하거나 이와 혼합된 폴리테트라메틸렌글리콜(Polytetramethylene glycol, PTMG)이 발생할 수 있다. 또한, 올리고머와 같은 저분자량의 폴리테트라메틸렌글리콜(Polytetramethylene glycol, PTMG) 처리시, 이를 해결하기 위한 방법으로 열분해나 폐액처리등이 있으나, 가장 경제적인 방법은 다시 단량체인 테트라히드로퓨란(Tetrahydrofuran, THF)로 회수하는 것이다.In addition, polymers have a range of molecular weights other than a single molecular weight. Polytetramethylene glycol (PTMG) also has a wide range of molecular weights, and may generate other ranges of unwanted molecular weight during manufacture, or polytetramethylene glycol (PTMG) may be mixed therewith. In addition, when treating low molecular weight polytetramethylene glycol (PTMG), such as oligomers, there are thermal decomposition or waste solution treatment to solve this problem, but the most economical method is again tetrahydrofuran (Tetrahydrofuran, THF) ) To recover.

따라서 폴리테트라메틸렌글리콜(Polytetramethylene glycol, PTMG)를 해중합하여 테트라히드로퓨란(Tetrahydrofuran, THF)을 제조하는 방법이 개발되었고 그중 헤테로폴리산을 이용하는 방법, 황산, 표백토(Bleaching earth), 실리카알루미나, 퍼플루오로알킬설퍼네이트 금속염(Metal perfluoroalkylsulfonates)을 이용하는 방법, 고령토와 무결정 실리카, 혹은 X-제올라이트(X-zeolite) 촉매을 이용하는 방법, 지르코니아(ZrO2)와 실리카(SiO2)의 혼합물를 이용하여 제조하는 방법 등이 알려져 있다.Therefore, a method of preparing tetrahydrofuran (THF) by depolymerizing polytetramethylene glycol (PTMG) has been developed, among which a method using heteropoly acid, sulfuric acid, bleaching earth, silica alumina, and perfluoro Method using metal perfluoroalkylsulfonates, method using kaolin and amorphous silica or X-zeolite catalyst, method using a mixture of zirconia (ZrO 2 ) and silica (SiO 2 ) This is known.

특히. 일본공개특허 소60-109584호에는 폴리테트라메틸렌글리콜 해중합의 촉매로서 헤테로폴리산을 이용하는 방법이 제시되어 있다. 그러나 상기 제조방법은 반응단계에서 발생한 수분에 의하여 촉매의 활성이 저하되어 반응효율이 떨어지는 단점이 있으며, 반응 중 폴리테트라메틸렌글리콜(Polytetramethylene glycol, PTMG) 부족시 일부 열산화된 폴리테트라메틸렌글리콜(Polytetramethylene glycol, PTMG)이 반응기에 흡착되는 문제가 있고, 높은 운용 비용 때문에 경제성이 떨어진다.Especially. Japanese Laid-Open Patent Publication No. 60-109584 discloses a method of using heteropolyacid as a catalyst for polytetramethylene glycol depolymerization. However, the manufacturing method has a disadvantage in that the activity of the catalyst is lowered due to the deterioration of the catalyst activity due to the water generated in the reaction step. glycol, PTMG) is adsorbed in the reactor, and the economic efficiency is low because of the high operating cost.

미국등록특허 제4,115,408호에는 폴리테트라메틸렌글리콜 해중합의 촉매로서 황산을 이용하는 방법이 제시되어 있다. 그러나 상기 제조방법은 부식의 문제가 있 으며, 또한 해중합 후 황산을 하수처리시 반드시 중화시켜야 하는 문제점이 있다.US Patent No. 4,115,408 discloses the use of sulfuric acid as a catalyst for polytetramethylene glycol depolymerization. However, the manufacturing method has a problem of corrosion, and also has a problem that must be neutralized during the sewage treatment of sulfuric acid after depolymerization.

또한, 미국등록특허 제4,363,924호에는 폴리테트라메틸렌글리콜 해중합 촉매로서 표백토를 이용하는 방법이 제시되어 있다. 그러나 상기 제조방법은 촉매의 활성도와 수명에 문제가 있어 더 개선되어야 한다.In addition, U.S. Patent No. 4,363,924 discloses a method of using bleaching earth as a polytetramethylene glycol depolymerization catalyst. However, the preparation method has problems in activity and lifetime of the catalyst and should be further improved.

일본공개특허 소62-257931호에는 폴리테트라메틸렌글리콜 해중합 촉매로서 실리카-알루미나를 이용하는 방법이 제시되어 있다. 그러나 상기 제조 방법 역시 촉매의 활성도와 수명에 문제가 있어 더 개선되어야 한다.Japanese Laid-Open Patent Publication No. 62-257931 discloses a method of using silica-alumina as a polytetramethylene glycol depolymerization catalyst. However, the preparation method also has problems in activity and life of the catalyst and should be further improved.

국제공개특허 95/02625에는 폴리테트라메틸렌글리콜 해중합 촉매로서 퍼플루오로알킬설퍼네이트 금속염을 이용하는 방법이 제시되어 있다. 그러나 상기 제조 방법은 촉매의 높은 비용 때문에 경제성이 크게 떨어진다.International Publication No. 95/02625 discloses a method of using a perfluoroalkylsulfonate metal salt as a polytetramethylene glycol depolymerization catalyst. However, the manufacturing method is greatly economical due to the high cost of the catalyst.

독일등록특허 제4,410,685호에는 폴리테트라메틸렌글리콜 해중합 촉매로서 고령토, 무결정 실리카, 혹은 X-제올라이트를 이용하는 방법이 제시되어 있다. 그러나 상기 제조방법 역시 활성도와 수명이 더 개선되어야 한다.German Patent No. 4,410,685 discloses a process using kaolin, amorphous silica, or X-zeolite as polytetramethylene glycol depolymerization catalyst. However, the preparation method also needs to be improved in activity and lifespan.

또한, 일본공개특허 평11-269262호에는 폴리테트라메틸렌글리콜 해중합 촉매로서 지르코니아(ZrO2)와 실리카(SiO2)의 혼합물을 이용하는 방법이 제시되어 있다. 그러나 상기 제조방법도 촉매의 활성도와 수명이 개선되어야 한다.In addition, Japanese Patent Laid-Open No. 11-269262 discloses a method of using a mixture of zirconia (ZrO 2 ) and silica (SiO 2 ) as a polytetramethylene glycol depolymerization catalyst. However, the preparation method should also improve the activity and lifetime of the catalyst.

상기에 기술된 제조방법들은 상업화 공정에 적용시키는데 있어서 명확한 방법을 제시하지 못하고 있고 상기 제조방법들을 적용시 수율과 운용 비용이 개선되어야 한다. 따라서, 좀 더 효율적인 폴리테트라메틸렌글리콜(Polytetramethylene glycol, PTMG) 해중합을 위한 촉매 시스템 개발이 요구되고 있다.The manufacturing methods described above do not provide a clear method for applying to the commercialization process, and the yield and operating cost should be improved when the manufacturing methods are applied. Therefore, there is a need for developing a catalyst system for more efficient polytetramethylene glycol (PTMG) depolymerization.

따라서, 본 발명의 목적은 종래의 상업화 공정 미비와 수율과 운용 비용이 개선되어야 하는 문제점을 양이온교환수지 채택과 상기 양이온교환수지의 최적량과 정량반응온도의 최적성을 연구함으로써 해결하여 높은 반응 수율로 안전하고 간편하게 폴리테트라메틸렌글리콜을 테트라히드로퓨란으로 해중합하는 폴리테트라메틸렌글리콜 해중합 방법을 제공하는 데 그 목적이 있다. Accordingly, the object of the present invention is to solve the problem of the lack of conventional commercialization process, the yield and the operating cost by solving the problem by adopting the cation exchange resin, the optimum amount of the cation exchange resin and the optimum of the quantitative reaction temperature, high reaction yield. It is an object of the present invention to provide a polytetramethylene glycol depolymerization method for depolymerizing polytetramethylene glycol safely and simply with tetrahydrofuran.

상술한 바와 같은 목적을 해결하기 위하여 본 발명은, 폴리테트라메틸렌글리콜 해중합 방법으로서, 폴리테트라메틸렌글리콜을 100 ~ 200℃의 온도와 양이온교환수지 촉매하에서 해중합하여 테트라히드로퓨란을 제조하는 것을 포함하는 폴리테트라메틸렌글리콜 해중합 방법을 제공한다.In order to solve the above object, the present invention provides a polytetramethylene glycol depolymerization method, comprising: polytetramethylene glycol depolymerized under a temperature of 100 to 200 ° C. and a cation exchange resin catalyst to produce tetrahydrofuran. A tetramethylene glycol depolymerization method is provided.

또한, 상기 양이온교환수지 촉매의 양은 1 중량% ~ 95 중량%인 것을 특징으로 한다.In addition, the amount of the cation exchange resin catalyst is characterized in that 1% by weight to 95% by weight.

또한, 상기 폴리테트라메틸렌글리콜 해중합 방법은 상기 양이온교환수지를 사용한 연속식 또는 회분식 공정을 통해 상기 테트라히드로퓨란을 제조하는 것을 특징으로 한다.In addition, the polytetramethylene glycol depolymerization method is characterized in that for producing the tetrahydrofuran through a continuous or batch process using the cation exchange resin.

본 발명의 폴리테트라메틸렌글리콜 해중합 방법은 양이온교환수지 촉매를 사용함에 의해 낮은 온도에서 폴리테트라메틸렌글리콜을 해중합하여 테트라히드로퓨란을 제조하므로, 반응공정에 적용시 반응이 비교적 안정적으로 일어나고, 불순물이 유입되지 않아 테트라히드로퓨란의 순도가 매우 높고, 반응기에 상기 양이온교환수지 촉매가 흡착되지 않아 반응기의 작업성이 월등히 향상되고, 상기 양이온교환수지 촉매의 교체작업도 용이하여 상기 양이온교환수지 촉매가 오염될 염려가 없다. 또한, 상기 양이온교환수지 촉매 폐기시 별도의 전처리가 필요없고 비용도 절감되는 장점이 현저하다.Since the polytetramethylene glycol depolymerization method of the present invention uses a cation exchange resin catalyst to depolymerize polytetramethylene glycol at low temperature to produce tetrahydrofuran, the reaction occurs relatively stably when applied to the reaction process, and impurities are introduced. Since the purity of the tetrahydrofuran is very high, and the cation exchange resin catalyst is not adsorbed to the reactor, the workability of the reactor is greatly improved, and the cation exchange resin catalyst can be easily replaced to contaminate the cation exchange resin catalyst. There is no worry. In addition, when the cation exchange resin catalyst disposal, there is a remarkable advantage that no separate pretreatment is required and the cost is also reduced.

본 발명은 폴리테트라메틸렌글리콜 해중합 방법으로서, 상기 폴리테트라메틸렌글리콜 해중합 방법은 폴리테트라메틸렌글리콜을 100 ~ 200℃의 온도와 양이온교환수지 촉매하에서 해중합하여 테트라히드로퓨란을 제조하는 것을 포함한다.The present invention is a polytetramethylene glycol depolymerization method, wherein the polytetramethylene glycol depolymerization method includes depolymerizing polytetramethylene glycol at a temperature of 100 to 200 ° C. and a cation exchange resin catalyst to prepare tetrahydrofuran.

구체적으로, 상기 폴리테트라메틸렌글리콜 해중합 반응은 고분자인 상기 폴리테트라메틸렌글리콜(Polytetramethylene glycol, PTMG)을 단량체인 테트라히드로퓨란(Tetrahydrofuran, THF)을 생성하기 위하여 가열과 고효율의 반응활성을 지닌 양이온교환수지의 촉매를 사용하여 상기 테트라히드로퓨란의 수율과 순도를 월등히 향상시키고, 반응 공정을 안정적으로 유지한다.Specifically, the polytetramethylene glycol depolymerization reaction is a cation exchange resin having heating and high-efficiency reaction activity in order to produce the polymer tetratetramethylene glycol (PTMG) as a monomer tetrahydrofuran (THF) By using the catalyst of the tetrahydrofuran to significantly improve the yield and purity, the reaction process is maintained stably.

여기서, 상기 폴리테트라메틸렌글리콜 해중합 방법은 중합의 역반응, 즉 중합체가 분해하여 단량체를 생성하는 해중합의 산물인 테트라히드로퓨란을 생성하기 위하여 상기 폴리테트라메틸렌글리콜을 가열하여 분해시키게 된다. 이때, 반응온도가 높고 안정성이 떨어지므로 상기 폴리테트라메틸렌글리콜 해중합시 반응촉매로서 고효율의 반응활성을 지닌 양이온교환수지를 접촉시켜 사용하여 반응을 안정적이고 생성된 테트라히드로퓨란의 순도와 수율을 향상시키게 한다.Here, in the polytetramethylene glycol depolymerization method, the polytetramethylene glycol is decomposed by heating in order to generate tetrahydrofuran, which is a product of a depolymerization reaction, that is, a polymer decomposes to form a monomer. At this time, since the reaction temperature is high and the stability is low, the cation exchange resin having a high-efficiency reaction activity is used as a reaction catalyst in the polytetramethylene glycol depolymerization to make the reaction stable and to improve the purity and yield of the produced tetrahydrofuran. do.

본 발명의 반응을 통해 순도 99% 이상의 테트라히드로퓨란을 얻을 수 있다.Through the reaction of the present invention, tetrahydrofuran having a purity of 99% or more can be obtained.

본 발명에서 사용되는 폴리테트라메틸렌글리콜은 하기 화학식 1로 각각 독립적으로 표시되는 중합체 사슬 혼합물이다:Polytetramethylene glycol used in the present invention is a polymer chain mixture each independently represented by the following formula (1):

Figure 112010027881281-pat00001
Figure 112010027881281-pat00001

삭제delete

상기 폴리테트라메틸렌글리콜는 n 값이 2 내지 70으로 양 말단이 히드록시기로 되어 있으며, 중량평균 분자량이 250 내지 5,000 정도로서 특별히 제한되지 않는다.The polytetramethylene glycol has a n value of 2 to 70, and both ends thereof have a hydroxyl group, and a weight average molecular weight of about 250 to 5,000 is not particularly limited.

또한, 본 발명에서 사용되는 양이온교환수지는 다공성(porous) 형태의 양이온교환수지 또는 겔(Gel) 형의 양이온교환수지로서, 두 가지 형태의 이온교환수지 모두 사용 가능하다. In addition, the cation exchange resin used in the present invention is a porous cation exchange resin or a gel type cation exchange resin, both types of ion exchange resin can be used.

상기 양이온교환수지는 스티렌(Styrene) 중합체, 스티렌 중합체와 디비닐벤젠(Divinylbenzene)과의 공중합체, 메타크릴(Metacryl)계 중합체, 아크릴(Acryl)계 공중합체, 그리고 페놀과 포름알데히드와의 공중합체로부터 선택할 수 있으며, 작용기로는 설포네이트(Sulonate)기, 카르복실산(Carboxylic acid), 염소이온, 히드록시기 등이 결합되어 있는데 모두 사용 가능하다. The cation exchange resin is a styrene polymer, a copolymer of styrene polymer and divinylbenzene, a methacryl polymer, an acrylic copolymer, and a copolymer of phenol and formaldehyde The functional group is a sulfonate group (Sulonate), carboxylic acid (Carboxylic acid), chlorine ions, hydroxy group, etc. are all used.

특히 상기 양이온교환수지는 스티렌(Stylene) 중합체 또는 스티렌 중합체와 디비닐벤젠(Divinylbenzene)과의 공중합체로 이루어져 있고, 작용기로는 설포네이트(Sulonate)기가 있는 것이 바람직하다. In particular, the cation exchange resin is composed of a styrene polymer or a copolymer of a styrene polymer and divinylbenzene, and a functional group preferably includes a sulfonate group.

상기 양이온교환수지는 반응 시스템에서 쉽게 분리될 수 있으며, 연속적인 반응이 가능하여 경제적이다. 그리고 재생 또는 재농축이 불필요하며 반응의 선택성이 높아 부산물이 적고, 장치의 부식성이 낮아 재질선택이 용이하다.The cation exchange resin can be easily separated in the reaction system, it is economical to enable a continuous reaction. In addition, there is no need for regeneration or re-concentration, high selectivity of reaction, less by-products, and low corrosiveness of the device, making it easy to select materials.

또한, 불순물이 유입되지 않고, 반응기에 상기 양이온교환수지 촉매가 흡착되지 않아 반응기의 작업성이 향상되고, 상기 양이온교환수지 촉매의 교체작업도 용이하여 상기 양이온교환수지 촉매가 오염될 염려가 없다. 또한, 상기 양이온교환수지 촉매 폐기시 별도의 전처리가 필요없고 비용도 절감된다.In addition, impurities are not introduced, and the cation exchange resin catalyst is not adsorbed to the reactor, thereby improving the workability of the reactor, and the replacement of the cation exchange resin catalyst is also easy, so that the cation exchange resin catalyst is not contaminated. In addition, the disposal of the cation exchange resin catalyst does not require a separate pretreatment and cost is reduced.

양이온교환수지의 가교도는 세공(micropore)의 크기와 직접적으로 관련이 있는데, 큰 세공을 가지며 가교도가 낮은 양이온교환수지는 큰 분자가 양이온교환수지 내부로 확산될 수 있기 때문에 반응속도가 빠르며 열안정성도 비교적 우수하다. 입도(Particle size) 또한 가교도 만큼 반응속도에 영향을 주는데, 양이온교환수지 의 작은 입자는 빠른 반응속도를 가지나 입자크기는 운전시 어떤 장애도 있지 않을 정도이어야 한다.The degree of crosslinking of the cation exchange resin is directly related to the size of the micropore. The cation exchange resin having large pores and low crosslinking degree has a high reaction rate and thermal stability because large molecules can diffuse into the cation exchange resin. Relatively good. Particle size also affects the reaction rate as much as the degree of crosslinking. Small particles of cation exchange resins have a fast reaction rate, but the particle size should be such that there is no obstacle in operation.

또한, 상기 양이온교환수지 촉매의 양은 1 중량% ~ 95 중량%인 것을 특징으로 한다.In addition, the amount of the cation exchange resin catalyst is characterized in that 1% by weight to 95% by weight.

상기 양이온교환수지 촉매의 양이 상기 범위 미만인 경우에는 반응이 진행되지 않고 상기 범위를 초과할 때에는 양이온교환수지 함량에 따른 수율의 변화가 없기 때문에 의미가 없다. 즉, 예를 들어 양이온교환수지의 함량이 95 중량%일때의 수율과 99 중량%일때의 수율이 같기 때문에 공정에서는 비용만 낭비하게 된다.When the amount of the cation exchange resin catalyst is less than the above range, the reaction does not proceed, and when it exceeds the above range, there is no meaning because there is no change in yield depending on the cation exchange resin content. That is, for example, since the yield when the content of the cation exchange resin is 95% by weight and the yield when 99% by weight is the same, only the cost is wasted in the process.

본 발명에서 사용되는 양이온교환수지의 해중합 반응시 온도는 100 내지 200 ℃ 이다. 온도가 100 ℃ 미만일 경우에는 반응이 일어나지 않으며, 반응온도가 200 ℃를 초과하면 양이온교환수지의 이온교환 작용기의 열안정성 때문에 촉매 성능이 저하되며, 반응이 격렬히 일어나게 되고, 해중합이 덜 된 물질이나, 완전히 해중합이 안된 물질이 증기 형태로 유입이 되어 순도가 저하된다. 또한, 양이온교환수지의 작용기 물질이 테트라히드로퓨란에 혼입되어 바람직하지 않다.    The temperature during the depolymerization reaction of the cation exchange resin used in the present invention is 100 to 200 ℃. If the temperature is less than 100 ℃, the reaction does not occur, if the reaction temperature exceeds 200 ℃ due to the thermal stability of the ion exchange functional group of the cation exchange resin, the catalytic performance is deteriorated, the reaction occurs violently, depolymerization is less, Purity is lowered by the inflow of substances that are not completely depolymerized in the form of steam. In addition, the functional material of the cation exchange resin is incorporated into tetrahydrofuran, which is not preferable.

또한, 상기 폴리테트라메틸렌글리콜 해중합 방법은 상기 양이온교환수지를 사용한 연속식 또는 회분식 공정을 통해 상기 테트라히드로퓨란을 제조하는 것을 특징으로 한다.In addition, the polytetramethylene glycol depolymerization method is characterized in that for producing the tetrahydrofuran through a continuous or batch process using the cation exchange resin.

상기 양이온교환수지를 사용하여 연속식 공정으로 상기 테트라히드로퓨란을 제조하는 경우, 상기 폴리테트라메틸렌글리콜을 계속 공급하므로 상기 양이온교환 수지를 효율적으로 사용하는 장점이 있고, 상기 양이온교환수지를 사용하여 회분식 공정으로 상기 테트라히드로퓨란을 제조하는 경우, 저장탱크가 충분하므로 제조된 상기 테트라히드로퓨란을 대용량으로 회수하는 장점이 있다.When the tetrahydrofuran is manufactured in a continuous process using the cation exchange resin, the polytetramethylene glycol is continuously supplied, and thus the cation exchange resin is efficiently used, and the cation exchange resin is used as a batch type. When the tetrahydrofuran is produced by the process, since the storage tank is sufficient, there is an advantage of recovering the produced tetrahydrofuran at a large capacity.

이하, 본 발명을 실시예에 의해 상세히 설명한다. Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다. 실시예에서 사용되는 약어들은 아래와 같다.However, the following examples are illustrative of the present invention, and the contents of the present invention are not limited by the following examples. Abbreviations used in the examples are as follows.

THF : 테트라히드로퓨란(Tetrahydrofuran)THF: Tetrahydrofuran

PTMG : 폴리테트라메틸렌글리콜(Polytetramethylene glycol)PTMG: Polytetramethylene glycol

GC : 기체크로마토그래피(Gas chromatography)GC: Gas Chromatography

FID : 불꽃이온화 검출기 (Flame Ionization Detector)FID: Flame Ionization Detector

실시예Example 1 One

PTMG는 중량평균 분자량이 1850인 것을 사용했으며 양이온 교환수지는 다공성 형의 스티렌(Styrene)과 디비닐벤젠(Divinylbenzene)의 공중합체이며, 작용기는 설포네이트(Sulfonate)이다.PTMG used a weight average molecular weight of 1850. Cation exchange resin is a copolymer of porous styrene and divinylbenzene, and the functional group is sulfonate.

상온에서 반응기에 질소로 가압 탈압하고 PTMG 1,000g과 양이온 교환수지 20 중량%을 투입하고 온도를 120℃까지 승온하였다. 반응 결과 THF수율은 200 g/h 이었으며, 순도는 99.97%임을 GC/FID로 확인하였다.At room temperature, the reactor was pressurized and depressurized with nitrogen, 1,000 g of PTMG and 20 wt% of cation exchange resin were added thereto, and the temperature was raised to 120 ° C. THF yield was 200 g / h, the purity was 99.97% by GC / FID confirmed.

실시예Example 2 2

실시예 1과 동일한 장치에 동종의 PTMG 1,000g과 양이온 교환수지 1 중량%을 투입하고 온도를 130℃까지 승온하였다. THF의 수율은 32g/h이며, 순도는 99.91%임을 GC/FID로 확인하였다.1,000 g of the same kind of PTMG and 1% by weight of cation exchange resin were added to the same apparatus as in Example 1, and the temperature was raised to 130 ° C. The yield of THF is 32g / h, the purity was confirmed by GC / FID 99.91%.

실시예Example 3 3

실시예 1과 동일한 장치에 동종의 PTMG 1,000g과 양이온 교환수지 10 중량%을 투입하고 온도를 130℃까지 승온하였다. THF의 수율은 90g/h이며, 순도는 99.96%임을 GC/FID로 확인하였다.1,000 g of the same kind of PTMG and 10% by weight of the cation exchange resin were added to the same apparatus as in Example 1, and the temperature was raised to 130 ° C. The yield of THF is 90g / h, the purity was confirmed by GC / FID 99.96%.

실시예Example 4 4

실시예 1과 동일한 장치에 동종의 PTMG 1,000 g과 양이온 교환수지 20 중량%을 투입하고 온도를 140℃까지 승온하였다. THF의 수율은 940g/h이며, 순도는 99.93%임을 GC/FID로 확인하였다1,000 g of the same kind of PTMG and 20% by weight of the cation exchange resin were added to the same apparatus as in Example 1, and the temperature was raised to 140 ° C. The yield of THF is 940g / h, the purity was confirmed by GC / FID 99.93%

실시예Example 5 5

실시예 1과 동일한 장치에 동종의 PTMG 1,000g과 양이온 교환수지 20 중량%을 투입하고 온도를 200℃까지 승온하였다. THF의 수율은 685g/h이며, 순도는 99.79%임을 GC/FID로 확인하였다.1,000 g of the same kind of PTMG and 20% by weight of the cation exchange resin were added to the same apparatus as in Example 1, and the temperature was raised to 200 ° C. The yield of THF is 685g / h, the purity was confirmed by GC / FID 99.79%.

실시예Example 6 6

실시예 1과 동일한 장치에 동종의 PTMG 1,000g과 양이온 교환수지 20 중량%을 투입하고 온도를 140℃까지 승온후 온도를 유지하면서 PTMG를 0.8kg/h의 속도로 지속적으로 공급하였다. THF의 수율은 912g/h이며, 순도는 99.92%임을 GC/FID로 확인하였다.1,000 g of the same kind of PTMG and 20% by weight of a cation exchange resin were added to the same apparatus as in Example 1, and PTMG was continuously supplied at a rate of 0.8 kg / h while maintaining the temperature after raising the temperature to 140 ° C. The yield of THF is 912g / h, the purity was confirmed by GC / FID 99.92%.

비교예Comparative example 1 One

실시예 1과 동일한 장치에 동종의 PTMG 1,000g과 양이온 교환수지 20 중량%을 투입하고 온도를 90℃까지 승온하였다. 반응 결과 THF를 수득할 수 없었으며, 이를 통해 반응이 일어나지 않음을 확인하였다.1,000 g of the same kind of PTMG and 20% by weight of cation exchange resin were added to the same apparatus as in Example 1, and the temperature was raised to 90 ° C. As a result, THF could not be obtained, and it was confirmed that the reaction did not occur.

비교예Comparative example 2 2

실시예 1과 동일한 장치에 동종의 PTMG 1,000g과 양이온 교환수지 0.8 중량%을 투입하고 온도를 130℃까지 승온하였다. 반응 결과 THF를 수득할 수 없었으며, 이를 통해 반응이 일어나지 않음을 확인하였다.1,000 g of the same kind of PTMG and 0.8% by weight of cation exchange resin were added to the same apparatus as in Example 1, and the temperature was raised to 130 ° C. As a result, THF could not be obtained, and it was confirmed that the reaction did not occur.

비교예Comparative example 3 3

실시예 1과 동일한 장치에 동종의 PTMG 1,000g과 양이온 교환수지 20 중량%을 투입하고 온도를 210℃까지 승온하였다. THF의 수율은 430g/h이며, 순도는 97.86%임을 GC/FID로 확인하였다.1,000 g of the same kind of PTMG and 20% by weight of the cation exchange resin were added to the same apparatus as in Example 1, and the temperature was raised to 210 ° C. The yield of THF is 430g / h, the purity was confirmed by GC / FID 97.86%.

비교예Comparative example 4 4

실시예 1과 동일한 장치에 동종의 PTMG 1,000g과 X-제올라이트 10 중량%을 투입하고 온도를 130℃까지 승온하였다. THF의 수율은 29g/h이며, 순도는 99.90%임을 GC/FID로 확인하였다.1,000 g of the same kind of PTMG and 10 wt% of X-zeolite were added to the same apparatus as in Example 1, and the temperature was raised to 130 ° C. The yield of THF is 29g / h, the purity was confirmed by GC / FID 99.90%.

비교예Comparative example 5 5

실시예 1과 동일한 장치에 동종의 PTMG 1,000g과 표백토 10 중량%을 투입하고 온도를 130℃까지 승온하였다. THF의 수율은 32g/h이며, 순도는 99.89%임을 GC/FID로 확인하였다.1,000 g of the same kind of PTMG and 10% by weight of bleached earth were added to the same apparatus as in Example 1, and the temperature was raised to 130 ° C. The yield of THF is 32g / h, the purity was confirmed by GC / FID 99.89%.

비교예Comparative example 6 6

실시예 1과 동일한 장치에 동종의 PTMG 1,000g과 지르코니아(ZrO2)와 실리카(SiO2)의 혼합물을 10 중량%을 투입하고 온도를 170℃까지 승온하였다. THF의 수율은 30g/h이며, 순도는 99.69%임을 GC/FID로 확인하였다.In the same apparatus as in Example 1, 1,000 wt% of the same kind of PTMG, a mixture of zirconia (ZrO 2 ) and silica (SiO 2 ) was added thereto, and the temperature was raised to 170 ° C. The yield of THF is 30g / h, the purity was confirmed by GC / FID 99.69%.

반응온도Reaction temperature 촉매catalyst 투입량input THFTHF 순도 water THFTHF 생성률 Generation rate 실시예 1Example 1 120℃120 DEG C 양이온교환수지Cation Exchange Resin 20 중량%20 wt% 99.97%99.97% 200 g/h200 g / h 실시예 2Example 2 130℃130 ℃ 양이온교환수지Cation Exchange Resin 1 중량%1 wt% 99.91%99.91% 32 g/h32 g / h 실시예 3Example 3 130℃130 ℃ 양이온교환수지Cation Exchange Resin 10 중량%10 wt% 99.96%99.96% 90 g/h90 g / h 실시예 4Example 4 140℃140 ℃ 양이온교환수지Cation Exchange Resin 20 중량%20 wt% 99.93%99.93% 940 g/h940 g / h 실시예 5Example 5 200℃200 ℃ 양이온교환수지Cation Exchange Resin 20 중량%20 wt% 99.79%99.79% 685 g/h685 g / h 실시예 6Example 6 140℃140 ℃ 양이온교환수지Cation Exchange Resin 10 중량%10 wt% 99.92%99.92% 912g/h912 g / h 비교예 1Comparative Example 1 90℃90 ° C 양이온교환수지Cation Exchange Resin 20 중량%20 wt% -- -- 비교예 2Comparative Example 2 130℃130 ℃ 양이온교환수지Cation Exchange Resin 0.8 중량%0.8 wt% -- -- 비교예 3Comparative Example 3 210℃210 ℃ 양이온교환수지Cation Exchange Resin 20 중량%20 wt% 97.86%97.86% 430 g/h430 g / h 비교예 4Comparative Example 4 130℃130 ℃ X-제올라이트X-zeolite 10 중량%10 wt% 99.90%99.90% 29g/h29g / h 비교예 5Comparative Example 5 130℃130 ℃ 표백토Bleached soil 10 중량%10 wt% 99.89%99.89% 32g/h32g / h 비교예 6Comparative Example 6 170℃170 ℃ ZrO2와 SiO2
혼합물
Of ZrO 2 and SiO 2
mixture
10 중량%10 wt% 99.69%99.69% 30g/h30 g / h

실시예 1과 실시예 4는 비교적 낮은 온도에서 상기 양이온교환수지 20 중량%를 사용하였을 때 THF의 생성률이 매우 크고, 실시예 5는 비교적 높은 온도에서도 THF의 생성률이 크다. 그러나, 비교예 3은 THF의 생성률은 크나 THF의 순도는 조금 낮다. 실시예 2와 비교예 2를 비교해보면 촉매인 양이온교환수지의 양이 1 중량%를 넘어야 반응이 개시됨을 알 수 있다. 실시예 3과 실시예 6은 촉매인 양이온교환수지의 양이 10 중량% 이므로 THF 생성률이 높음을 알 수 있다. 비교예 1은 반응온도가 낮아 해중합 반응이 개시되지 않음을 알 수 있다. 비교예 4 내지 비교예 6은 촉매의 함량이 많음에도 불구하고 상기 양이온교환수지 촉매에 비해 THF 생성율이 낮다. In Example 1 and Example 4, when the 20% by weight of the cation exchange resin is used at a relatively low temperature, the generation rate of THF is very high, and Example 5 has a high generation rate of THF even at a relatively high temperature. However, in Comparative Example 3, the generation rate of THF is large but the purity of THF is slightly low. Comparing Example 2 with Comparative Example 2, it can be seen that the reaction is not started until the amount of the cation exchange resin, which is a catalyst, exceeds 1% by weight. In Example 3 and Example 6, the amount of cation exchange resin as a catalyst is 10% by weight, so it can be seen that the THF production rate is high. It can be seen that in Comparative Example 1, the reaction temperature is low and the depolymerization reaction is not started. Comparative Examples 4 to 6 have a lower THF generation rate than the cation exchange resin catalyst despite the high content of the catalyst.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The foregoing description is merely illustrative of the technical idea of the present invention, and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (3)

폴리테트라메틸렌글리콜을 100 ~ 200℃의 온도와 양이온교환수지 촉매로서 설포네이트기 또는 염소이온의 작용기를 갖는 스티렌중합체, 스티렌중합체와 디비닐벤젠의 공중합체, 메타크릴계 중합체, 아크릴계 공중합체, 및 페놀과 포름알데히드의 공중합체 중 어느 하나 또는 이들 중 2 이상인 촉매 하에서 해중합하여 테트라히드로퓨란을 제조하는 것을 포함하는 폴리테트라메틸렌글리콜 해중합 방법.A styrene polymer having a sulfonate group or a functional group of chlorine ions as a cation exchange resin catalyst at a temperature of 100 to 200 ° C and a polytetramethylene glycol, a copolymer of styrene polymer and divinylbenzene, a methacryl polymer, an acrylic copolymer, and A polytetramethylene glycol depolymerization method comprising depolymerizing under a catalyst of any one or two or more of copolymers of phenol and formaldehyde to produce tetrahydrofuran. 제1항에 있어서, 상기 양이온교환수지 촉매의 양은 1 중량% ~ 95 중량%인 것을 특징으로 하는 폴리테트라메틸렌글리콜 해중합 방법.The polytetramethylene glycol depolymerization method according to claim 1, wherein the amount of the cation exchange resin catalyst is 1 wt% to 95 wt%. 제1항에 있어서, 상기 폴리테트라메틸렌글리콜 해중합 방법은 상기 양이온교환수지를 사용한 연속식 또는 회분식 공정을 통해 상기 테트라히드로퓨란을 제조하는 것을 특징으로 하는 폴리테트라메틸렌글리콜 해중합 방법.The polytetramethylene glycol depolymerization method according to claim 1, wherein the polytetramethylene glycol depolymerization method produces the tetrahydrofuran through a continuous or batch process using the cation exchange resin.
KR1020080085883A 2008-09-01 2008-09-01 Depolymerization of Polytetramethylene glycol KR100973247B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080085883A KR100973247B1 (en) 2008-09-01 2008-09-01 Depolymerization of Polytetramethylene glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080085883A KR100973247B1 (en) 2008-09-01 2008-09-01 Depolymerization of Polytetramethylene glycol

Publications (2)

Publication Number Publication Date
KR20100026758A KR20100026758A (en) 2010-03-10
KR100973247B1 true KR100973247B1 (en) 2010-07-30

Family

ID=42178053

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080085883A KR100973247B1 (en) 2008-09-01 2008-09-01 Depolymerization of Polytetramethylene glycol

Country Status (1)

Country Link
KR (1) KR100973247B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794547B2 (en) * 1986-04-10 1995-10-11 三菱化学株式会社 Modification method of polytetramethylene ether glycol
KR20000045846A (en) * 1998-12-30 2000-07-25 조정래 Method for reducing average molecular weight of copolymerized polyether glycol containing polyoxytetramethylene glycol or oxytetramethylene group

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794547B2 (en) * 1986-04-10 1995-10-11 三菱化学株式会社 Modification method of polytetramethylene ether glycol
KR20000045846A (en) * 1998-12-30 2000-07-25 조정래 Method for reducing average molecular weight of copolymerized polyether glycol containing polyoxytetramethylene glycol or oxytetramethylene group

Also Published As

Publication number Publication date
KR20100026758A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
US4243799A (en) Polymerization of tetrahydrofuran
KR20100045995A (en) Dehydrochlorination of hydrochlorofluorocarbons using pre-treated activated carbon catalysts
WO2011063500A1 (en) Process for preparing furfural from xylose
CN101485990B (en) Solid supported heteropoly acid catalyst and preparation method thereof
KR101511708B1 (en) Apparatus and method for removing halogen generated during the polyisobutylene preparation process
JPS587614B2 (en) Continuous production of lower alcohols, especially isopropanol
US4165440A (en) Catalytic hydration of ethylene oxide to ethylene glycol
KR101529828B1 (en) Method for preparing dimethyolalkanal
CN105348034A (en) Hexafluoropropylene-2-butyne synthesizing method
KR0170383B1 (en) Process for producing propenyl ether concentration in hydroxy-functional polyether compounds
US5118869A (en) Polymerizing tetrahydrofuran to produce polytetramethylene ether glycol using a modified fluorinated resin catalyst containing sulfonic acid groups
CN108484896A (en) A kind of preparation method of low VOC high-activity high molecular weight polyether polyols
KR100973247B1 (en) Depolymerization of Polytetramethylene glycol
EP4035772A1 (en) Catalyst for alkylene oxide addition reaction and application thereof
Zhao et al. Highly efficient production of 5-hydroxymethylfurfural from fructose via a bromine-functionalized porous catalyst under mild conditions
EP3173403B1 (en) Method for preparing n,n'-bis(2-cyanoethyl)-1,2-ethylenediamine by using cation exchange resin as catalyst
EP2133344A1 (en) Method for continuously producing 2,5-dihydrofuran
KR20120024310A (en) Preparation method of propylene glycol monomethyl ether acetate
US9550717B2 (en) Method for recovering anionic fluorinated emulsifier
EP2509970B1 (en) Depolymerization of oligomeric cyclic ethers
JP2016022400A (en) Dewatering solid catalyst for sugar alcohol, and production method of dianhydride sugar alcohol using catalyst
EP4029603A1 (en) Catalytic oxidation catalyst, preparation method therefor, and method for deep treatment of organic matters in mdi saline
Manjunathan et al. Integrated process towards sustainable renewable plastics: Production of 2, 5-furandicarboxylic acid from fructose in a base-free environment
EP3088081A1 (en) Resin solid acid and production method therefor
CN112029085A (en) Method for preparing polyether polyol by adopting solution polymerization method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160614

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170613

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180612

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190611

Year of fee payment: 10