KR100973242B1 - Regeneration of Dehydrogenation Catalyst - Google Patents

Regeneration of Dehydrogenation Catalyst Download PDF

Info

Publication number
KR100973242B1
KR100973242B1 KR1020080075258A KR20080075258A KR100973242B1 KR 100973242 B1 KR100973242 B1 KR 100973242B1 KR 1020080075258 A KR1020080075258 A KR 1020080075258A KR 20080075258 A KR20080075258 A KR 20080075258A KR 100973242 B1 KR100973242 B1 KR 100973242B1
Authority
KR
South Korea
Prior art keywords
catalyst
regeneration
days
dehydrogenation
temperature
Prior art date
Application number
KR1020080075258A
Other languages
Korean (ko)
Other versions
KR20100013646A (en
Inventor
곽원식
천양호
송병준
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020080075258A priority Critical patent/KR100973242B1/en
Publication of KR20100013646A publication Critical patent/KR20100013646A/en
Application granted granted Critical
Publication of KR100973242B1 publication Critical patent/KR100973242B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/10Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using elemental hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 탈수소화 촉매의 재생방법에 관한 것으로, 더욱 상세하게는 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매를 이용하여 탄소수 11이상의 고리구조를 가진 탄화수소를 동일 고리의 방향족화합물로 탈수소화하는 반응공정에 수반되어 상기 촉매표면의 코크를 제거함과 동시에 수소로 환원시켜 재생하는 방법에 관한 것이다. 본 발명에 따른 탈수소화 촉매의 재생방법에 의하면, 탈수소화 반응의 전환율과 선택도를 안정적으로 유지할 수 있고, 또한 탈수소화 공정에 수반하여 탈수소화 촉매의 재생을 진행할 수 있으므로 별도의 장치나 추가적인 공정을 요하지 않아 경제적인 이점이 있다. The present invention relates to a method for regenerating a dehydrogenation catalyst, and more specifically, to a hydrocarbon having a ring structure of 11 or more carbon atoms using an alumina catalyst loaded with tin (Sn) and platinum (Pt) as an aromatic compound of the same ring. The present invention relates to a method of regenerating by reducing hydrogen and simultaneously reducing the coke on the surface of the catalyst accompanying the digestion reaction. According to the regeneration method of the dehydrogenation catalyst according to the present invention, the conversion and selectivity of the dehydrogenation reaction can be stably maintained, and the regeneration of the dehydrogenation catalyst can be carried out with the dehydrogenation process. There is no economic advantage because it does not cost.

1,5-디메틸나프탈렌, 1,5-디메틸테트랄린, 탈수소화 촉매, 촉매재생 1,5-dimethylnaphthalene, 1,5-dimethyltetraline, dehydrogenation catalyst, catalyst regeneration

Description

탈수소화 촉매의 재생방법{Regeneration of Dehydrogenation Catalyst}Regeneration of Dehydrogenation Catalyst

본 발명은 탈수소화 촉매의 재생방법에 관한 것으로, 더욱 상세하게는 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매를 이용하여 탄소수 11이상의 고리구조를 가진 탄화수소를 동일 고리의 방향족화합물로 탈수소화하는 반응공정에 수반되어 상기 촉매표면의 코크를 제거함과 동시에 수소로 환원시켜 재생하는 방법에 관한 것이다. The present invention relates to a method for regenerating a dehydrogenation catalyst, and more specifically, to a hydrocarbon having a ring structure of 11 or more carbon atoms using an alumina catalyst loaded with tin (Sn) and platinum (Pt) as an aromatic compound of the same ring. The present invention relates to a method of regenerating by reducing hydrogen and simultaneously reducing the coke on the surface of the catalyst accompanying the digestion reaction.

주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매는 탄소수 11이상의 고리구조를 가진 탄화수소를 탈수소화하여 동일고리의 방향족 화합물로 전환시키는 공정에 사용되는 탈수소화 촉매로서, 특히, 1,5-디메틸테트랄린(1,5-Dimethyltetralin: 이하 1,5-DMT)을 탈수소화하여 1,5-디메틸나프탈렌(1,5-Dimethylnaphthalene: 이하 1,5-DMN)으로 전환하는데 유용하게 사용된다. Tin (Sn) and platinum (Pt) -supported alumina catalysts are dehydrogenation catalysts used in the process of dehydrogenating hydrocarbons having a ring structure of 11 or more carbon atoms and converting them into aromatic compounds of the same ring, in particular, 1,5- It is usefully used to dehydrogenate dimethyl tetralin (1,5-DMT) to 1,5-dimethylnaphthalene (1,5-DMN).

참고로 1,5-DMN은 기계적, 열적, 화학적 안정성이 우수하여 플라스틱 병, LCD판넬, 마그네틱 테이프, 타어어 코드용 필름, 고온용 절연 테이프, 면상발열체 합지필름, 전자소재 등으로 다양한 상업적 용도로 사용되는 “폴리에틸렌나프탈렌(Polyethylenenaphthalene : 이하 PEN)”을 제조하기 위한 중간물질로서, 오르토-자일렌(ortho-Xylene)과 1,3-부타디엔(1,3-Butadiene)을 알켄닐화 반응을 거쳐 5-OTP가 생성되고, 고리화 반응을 거쳐서 1,5-DMT, 탈수소화 반응을 거쳐서 1,5-DMN, 이성질화 반응(isomeration)을 통해 2,6-DMN으로 전환되고, 결정화를 이용한 정제를 통해 2,6-DMN을 생성한다. 이를 다시 아세트산(acetic acid)을 이용해 산화와 정제를 거치면 PEN의 단량체인 2,6-나프탈렌 디카르복실산(2,6-Naphthalene Dicarboxylic Acid : 이하 2,6-NDA)이 생성되고, 이를 중합하면 최종적으로 PEN이 생성된다. For reference, 1,5-DMN has excellent mechanical, thermal, and chemical stability, so it can be used for various commercial purposes such as plastic bottle, LCD panel, magnetic tape, film for other codes, high temperature insulation tape, planar heating film, and electronic materials. Intermediates for the production of "polyethylenenaphthalene (PEN)" used, ortho-Xylene and 1,3-butadiene (1,3-Butadiene) through 5- OTP is produced, 1,5-DMT through cyclization, 1,5-DMN through dehydrogenation, 2,6-DMN through isomerization, and purification through crystallization Produce 2,6-DMN. Oxidation and purification using acetic acid again produces 2,6-naphthalene dicarboxylic acid (hereinafter referred to as 2,6-NDA), a monomer of PEN. Finally PEN is generated.

그런데, 이러한 탈수소화 촉매는 장기간 사용하게 되면 탄소 침전물인 코크(Coke)가 촉매의 표면에 부착되거나 촉매의 기공에 침투하여 탈수소화 반응을 저하시키므로, 이를 제거하여 반응효율을 증대시킬 필요가 있다. 이를 위하여 반응효율이 저하된 촉매를 재생시키는 방법에 대한 연구가 이루어져 왔다. However, such dehydrogenation catalysts have a long period of use, and thus, carbon deposits, such as coke, adhere to the surface of the catalyst or penetrate into the pores of the catalyst to lower the dehydrogenation reaction. Therefore, it is necessary to increase the reaction efficiency by removing them. To this end, research has been made on a method of regenerating a catalyst having a reduced reaction efficiency.

“On the Regeneration of Coked H-ZSM-5 Catalysts” (Sung-Jeng Jong외, Journal of Catalysis, 174, 210~218 (1998), ARTICLE NO. CA981971)에 의하면 촉매를 재생하여도 초기의 전환율은 처음 사용한 촉매와 유사한 전환율과 선택도를 가짐을 알 수 있다. According to “On the Regeneration of Coked H-ZSM-5 Catalysts” (Sung-Jeng Jong et al., Journal of Catalysis, 174, 210-218 (1998), ARTICLE NO.CA981971), It can be seen that the conversion and selectivity similar to the catalyst used.

또한, 등록특허 제 10-828856호에서는 5-오르토-톨릴펜텐(5-ortho-Tolylpentene)의 고리화반응에 사용되는 제올라이트 베타(Zeolite beta)촉매의 재생방법에 대하여 개시하고 있으나, 현재까지 알루미나 탈수소화 촉매의 재생방법에 대해서는 알려진 방법이 존재하지 않았다. In addition, Patent No. 10-828856 discloses a method for regenerating a zeolite beta catalyst used for cyclization of 5-ortho-Tolylpentene, but to date dehydrated alumina There is no known method for regenerating the digestion catalyst.

이에 본 발명은 탄소수 11이상의 고리구조를 가진 탄화수소를 탈수소화하여 동일고리의 방향족 화합물로 전환시키는 공정에 사용되는 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매의 재생하는 방법을 제공하는 것을 목적으로 한다. 특히, 상기 탈수소화 반응과 수반하여 촉매를 재생함으로써 공정을 간편하게 하고 효율을 높임으로써 경제적인 촉매의 재생방법을 제공하는 것을 목적으로 한다. Accordingly, the present invention provides a method for regenerating an alumina catalyst loaded with tin (Sn) and platinum (Pt) used in a process for dehydrogenating a hydrocarbon having a ring structure having 11 or more carbon atoms and converting it into an aromatic compound having the same ring. The purpose. In particular, an object of the present invention is to provide an economical method for regenerating the catalyst by simplifying the process and increasing the efficiency by regenerating the catalyst with the dehydrogenation reaction.

상기 목적을 달성하기 위해 본 발명에 따른 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매의 재생방법은 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매를 이용하여 탄소수 11이상의 고리구조를 가진 탄화수소를 탈수소화하여 동일 고리의 방향족 화합물로 전환시키는 반응공정에 수반되어 상기 촉매를 재생함에 있어서, 400~600℃ 온도에서 질소에 산소가 희석된 기체를 주입하여 상기 촉매표면에 부착되어 있는 코크를 산화하여 연소시키는 단계와, 상기 산소와 코크의 반응물을 제거하고 촉매를 건조하는 단계와, 200~400℃온도에서 수소로 상기 촉매를 환원시키는 단계를 포함하는 것을 특징으로 한다. In order to achieve the above object, the regeneration method of the alumina catalyst loaded with tin (Sn) and platinum (Pt) according to the present invention is a ring structure having 11 or more carbon atoms using an alumina catalyst loaded with tin (Sn) and platinum (Pt). In the regeneration of the catalyst, which is accompanied by a reaction process of dehydrogenating a hydrocarbon having a hydrogen to an aromatic compound of the same ring, an oxygen-diluted gas is injected into nitrogen at a temperature of 400 to 600 ° C. and attached to the surface of the catalyst. Oxidizing and burning the coke, removing the reactants of the oxygen and the coke, drying the catalyst, and reducing the catalyst with hydrogen at a temperature of 200 to 400 ° C.

또한, 본 발명에 따른 산화 온도는 반응기 내부 온도가 450~550℃인 것이 바 람직하다. In addition, the oxidation temperature according to the present invention is preferably the reactor internal temperature is 450 ~ 550 ℃.

이때, 상기 질소에 산소가 희석된 기체된 공기의 산소와 질소의 부피비는 0.03:1~0.27:1의 범위인 것이 바람직하다.At this time, the volume ratio of oxygen and nitrogen of the gas in which oxygen is diluted in nitrogen is preferably in the range of 0.03: 1 to 0.27: 1.

그리고, 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매의 재생함에 있어서, 촉매를 재생하는 시간은 60시간 이상인 것이 바람직하다. In regeneration of the alumina catalyst on which tin (Sn) and platinum (Pt) are supported, the time for regenerating the catalyst is preferably 60 hours or more.

마지막으로, 본발명에 따른 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매가 탈수소화 촉매로 사용되는 탄소수 11이상의 고리구조를 가진 탄화수소는 1,5-디메틸테트랄린이고 반응결과 생성되는 동일 고리의 방향족 화합물은 1,5-디메틸나프탈렌이 그 대표적 예이다.Finally, the hydrocarbon having a ring structure of 11 or more carbon atoms in which the alumina catalyst loaded with tin (Sn) and platinum (Pt) according to the present invention is used as a dehydrogenation catalyst is 1,5-dimethyltetraline and is produced as a result of the reaction. Typical examples of the aromatic compound of the same ring are 1,5-dimethylnaphthalene.

본 발명은 반응성이 떨어진 탈수소화 촉매를 재생함으로써 탄소수 11이상의 고리구조를 가진 탄화수소를 탈수소화하여 동일 고리의 방향족 화합물로 전환되는 반응의 전환율과 선택도를 안정적으로 유지하여 공정의 안정성을 확보할 수 있는 이점이 있다. The present invention can ensure the stability of the process by stably maintaining the conversion and selectivity of the reaction converted to an aromatic compound of the same ring by dehydrogenation of hydrocarbons having a ring structure of 11 or more carbon by regenerating a dehydrogenation catalyst that is less reactive There is an advantage to that.

또한, 탈수소화 공정에 수반하여 탈수소화 촉매의 재생을 진행하므로 별도의 장치나 추가적인 공정을 요하지 않을 뿐만 아니라, 본 발명을 통해 4회 이상 촉매의 재생이 가능하므로 촉매의 사용량을 절감할 수 있을 뿐만 아니라, 또한 폐촉매의 폐기물처리비용도 줄일 수 있으므로 경제적으로 효과가 있다.In addition, since the dehydrogenation catalyst is regenerated along with the dehydrogenation process, not only a separate device or an additional process is required, but also the catalyst can be regenerated more than four times through the present invention, thereby reducing the amount of catalyst used. In addition, it is also economically effective as it reduces the waste disposal cost of the spent catalyst.

그리고, 폐기물 발생을 줄임으로써 환경오염을 줄일 수 있는 효과를 창출할 수 있다. And, by reducing the generation of waste can create an effect that can reduce the environmental pollution.

탄소수 11이상의 고리구조를 가진 탄화수소의 탈수소화 공정의 바람직한 예로 디메틸테트랄린의 디메틸나프탈렌으로의 탈수소화 공정을 들 수 있는데, 이하에서는 설명의 편의를 위해 탄소수 11이상의 고리구조를 가진 탄화수소는 1,5-디메틸테트랄린(DMT)로, 그 생성물인 방향족화합물은 1,5-디메틸나프탈렌(DMN)으로 기술하기로 한다. Preferred examples of the dehydrogenation of hydrocarbons having a ring structure of 11 or more carbon atoms include dehydrogenation of dimethyl tetralin to dimethylnaphthalene. For the sake of explanation, hydrocarbons having a ring structure of 11 or more carbon atoms include 1, 5-dimethyltetraline (DMT), the aromatic product of which is described as 1,5-dimethylnaphthalene (DMN).

도 1은 본 발명의 일 실시양상에 따른 1,5-DMT 탈수소화 촉매의 재생장치를 나타낸 것으로, 1,5-DMT의 1,5-DMN으로의 탈수소화 반응에 수반하여 촉매를 재생할 수 있는 장치를 도식화 한 것이다. 1 shows a regeneration apparatus for a 1,5-DMT dehydrogenation catalyst according to an embodiment of the present invention, wherein the catalyst can be regenerated with dehydrogenation of 1,5-DMT to 1,5-DMN. It is a schematic of the device.

도 1에 도시된 바와 같이, 장치의 구성은 1,5-DMT 저장탱크(1), 1,5-DMT 주입펌프(2), Gas주입구(3), 탈수소화 고정층 반응기(4), 반응기 내부온도계(5), 자켓열원공급장치(6), 압력계(7), 1,5-DMN저장탱크(8), 포집드럼(9), 활성탄 베드(10) 로 구성되어있다.As shown in Figure 1, the configuration of the device is a 1,5-DMT storage tank (1), 1,5-DMT injection pump (2), Gas inlet (3), dehydrogenation fixed bed reactor (4), inside the reactor It consists of a thermometer (5), a jacket heat source supply device (6), a pressure gauge (7), a 1,5-DMN storage tank (8), a collection drum (9), and an activated carbon bed (10).

본 발명에 따른 탈수소화 촉매의 재생방법을 살펴보기에 앞서, 1,5-DMT의 탈수소화 반응과정을 살펴보기로 한다. Before looking at the method for regenerating the dehydrogenation catalyst according to the present invention, the process of dehydrogenation of 1,5-DMT will be described.

본 발명에서 사용한 탈수소화 촉매는 알루미나를 담체로 하여 백금과 주석의 비율이 0.1~10w/w%이고, 대한민국 특허공개공보 특2000-0026638과 특2005-0054559 에 기술한 방법으로 제조한다. 이러한 탈수소화 촉매가 채워져 있는 고정층 반응기(4) 내부의 수분과 불순물을 제거한 후, 수소를 이용해 탈수소화 촉매를 환원시킨다. 그리고, 자켓 열원공급장치(6)를 이용하여 고정층 반응기(4) 내부온도를 250℃로 설정한 후 주입펌프(2)를 가동하여 저장탱크(1)의 1,5-DMT가 고정층 반응기(4)로 주입되도록 한다. 이때 주입속도는 1~10L/hr, 바람직하게는 3~6L/hr이고, 온도는 250~450℃, 압력은 5~15기압하에서 탈수소화 반응을 진행시킨다. 이후, 고정층 반응기(4)에서 생성된 1,5-DMN는 1,5-DMN 저장탱크(8)에 저장되고, 반응결과 발생한 수소는 1,5-DMT 저장탱크 상부로 나와 활성탄 베드(10)를 거쳐서 제거된다. The dehydrogenation catalyst used in the present invention is prepared by the method described in Korean Patent Laid-Open Publication No. 2000-0026638 and 2005-0054559 in which the ratio of platinum and tin is 0.1-10 w / w% using alumina as a carrier. After removing water and impurities in the fixed bed reactor 4 filled with such a dehydrogenation catalyst, the dehydrogenation catalyst is reduced using hydrogen. Then, the internal temperature of the fixed bed reactor 4 is set to 250 ° C. using the jacket heat source supply device 6, and then the injection pump 2 is operated so that 1,5-DMT of the storage tank 1 is fixed bed reactor 4. To be injected. At this time, the injection rate is 1 ~ 10L / hr, preferably 3 ~ 6L / hr, the temperature is 250 ~ 450 ℃, the pressure proceeds the dehydrogenation reaction under 5 ~ 15 atm. Thereafter, 1,5-DMN generated in the fixed bed reactor (4) is stored in the 1,5-DMN storage tank (8), the hydrogen generated as a result of the reaction to the upper 1,5-DMT storage tank and activated carbon bed (10) It is removed via.

상기 탈수소화 반응을 진행하면서, 가스크로마토그라피(Gas Chromatography 이하 GC)분석을 통하여 1,5-DMN으로의 전환율과 선택도를 지속적으로 체크한다. (1,5-DMN의 전환율과 선택도는 다음식에 의한다.)During the dehydrogenation reaction, the conversion and selectivity to 1,5-DMN are continuously checked through gas chromatography (GC) analysis. (The conversion and selectivity of 1,5-DMN is based on the following equation.)

전환율(%) = ( 반응전1 ,5- DMT 의 양) - ( 반응후 1,5- DMN 의 양) x 100Conversion (%) = (1, before reaction, the amount of 5- DMT) - (amount of 1,5- DMN after the reaction) x 100

반응전 1,5-DMT의 양                         Amount of 1,5-DMT Before Reaction

선택도(%) = (1,5- DMN 의 생성량) x 100Selectivity (%) = ( quantity of 1,5- DMN ) x 100

(반응전1,5-DMT의 양) - (반응후 1,5-DMN의 양)             (Amount of 1,5-DMT before reaction)-(amount of 1,5-DMN after reaction)

1,5-DMN의 전환율과 선택도가 30~70%, 더욱 바람직하게는 50~60%로 떨어지면 탈수소화 반응을 중지하고, 다음과 같은 방법으로 탈수소화 촉매를 재생한다. When the conversion and selectivity of 1,5-DMN drops to 30 to 70%, more preferably 50 to 60%, the dehydrogenation reaction is stopped and the dehydrogenation catalyst is regenerated in the following manner.

1. 반응기 내부물질을 제거하는 단계1. Removing material inside the reactor

먼저, 고정층 반응기(4)의 내부온도를 200℃로 낮추고, 1,5-DMT 주입펌프(2)와 1,5-DMN 저장탱크(8)에 연결되어있는 밸브를 잠근다. 반응기 내외의 압력차를 이용하여 반응기 내부의 1,5-DMT 또는 1,5-DMN을 포집드럼(9)으로 배출되도록 한다. 내부압이 떨어져 더 이상 반응기(4)로부터 1,5-DMT와 1,5-DMN이 배출되지 않으면 가스 주입구(3)에 99.9%의 질소 또는 헬륨을 충분한 시간동안 주입하여 반응기 내부에 잔존하는 1,5-DMT 및 1,5-DMN과 이물질을 완전히 제거되도록 한다. 이때 포집드럼(9)에 연결된 배관은 스팀 또는 전기열선으로 열을 가해서 1,5-DMT 또는 1,5-DMN으로 인한 배관내부의 막힘현상을 방지한다. First, the internal temperature of the fixed bed reactor 4 is lowered to 200 ° C., and the valves connected to the 1,5-DMT injection pump 2 and the 1,5-DMN storage tank 8 are closed. The pressure difference inside and outside the reactor is used to discharge 1,5-DMT or 1,5-DMN in the reactor to the collecting drum 9. When 1,5-DMT and 1,5-DMN are not discharged from the reactor 4 due to low internal pressure, 99.9% of nitrogen or helium is injected into the gas inlet 3 for a sufficient time, thereby remaining 1 in the reactor. Allow complete removal of, 5-DMT and 1,5-DMN and debris. At this time, the pipe connected to the collection drum 9 is heated by steam or electric heating wire to prevent clogging in the pipe due to 1,5-DMT or 1,5-DMN.

2. 촉매 표면의 코크를 제거하는 단계2. Removing Coke from the Catalyst Surface

상기와 같이 반응물과 이물질이 제거된 반응기(4)내로 가스 주입구(3)를 통해 질소에 산소가 희석된 기체(산소,질소의 혼합비 0.03:1~0.27:1)를 0.1~5기압, 바람직하게는 0.5~1기압으로 주입하고, 반응기내의 온도를 1~10℃/min으로 400~450℃까지 승온하여 촉매표면의 코크(coke)를 산화연소시킨다. 이때 내부온도가 급격히 변할 경우 승온시키는 것을 멈추고 온도가 일정해 질 때까지 기다린다. 코크(coke)가 완전히 제거될 수 있도록 충분한 시간동안 산화시킨 후 반응기의 온도를 300℃로 낮추고, Gas 주입구(3)를 통해 99.9% 질소 또는 헬륨기체를 1시간 가량 투입하여 반응기내에 생성된 일산화탄소, 이산화탄소, 물 및 산소를 배출시킨다. 이후 반응기밖으로 배출된 일산화탄소, 이산화탄소, 물 등은 포집드럼(9)과 활 성탄베드(10)를 통해 대기로 방출한다. As described above, a gas (oxygen and nitrogen mixing ratio of 0.03: 1 to 0.27: 1) in which oxygen is diluted to nitrogen through the gas inlet 3 into the reactor 4 in which the reactants and the foreign substances are removed is preferably 0.1 to 5 atmospheres. Is injected at 0.5 to 1 atmosphere, and the temperature in the reactor is raised to 400 to 450 ° C. at 1 to 10 ° C./min to oxidize and burn coke on the surface of the catalyst. At this time, if the internal temperature changes suddenly, stop raising the temperature and wait until the temperature becomes constant. After oxidizing for enough time to completely remove the coke, the temperature of the reactor was lowered to 300 ° C., and 99.9% nitrogen or helium gas was introduced for about 1 hour through the gas inlet (3). It releases carbon dioxide, water and oxygen. Carbon monoxide, carbon dioxide, and water discharged out of the reactor are then discharged into the atmosphere through the collection drum 9 and the activated carbon bed 10.

3. 촉매를 활성화시키는 단계3. Activating the catalyst

상기와 같이 질소에 산소가 희석된 기체로 촉매표면의 코크(coke)를 산화연소시키고 그 부산물을 반응기내에서 제거한 후, 다시 반응기 내부에 99.9% 수소를 주입하여 촉매를 환원시켜 활성화시킨다. 이때 반응기 내부의 온도는 300℃로 조절한다. As described above, the coke on the surface of the catalyst is oxidized and burned with a gas diluted with oxygen in nitrogen, and the by-products are removed in the reactor, and then 99.9% hydrogen is injected into the reactor to activate the catalyst. At this time, the temperature in the reactor is adjusted to 300 ℃.

상기한 방법에 의해 1,5- 디메틸테트랄린과 같은 탄소수 11이상의 고리구조를 가진 탄화수소를 동일고리의 방향족 화합물로 전환하는 탈수소화 공정에 수반하여 상기 공정에 사용되는 촉매를 재생할 수 있다. By the above method, the catalyst used in the process can be regenerated in conjunction with the dehydrogenation process of converting a hydrocarbon having a ring structure of 11 or more carbon atoms such as 1,5-dimethyltetraline into an aromatic compound of the same ring.

한편, 상기 탈수소화 촉매의 재생과 관련하여 최적의 반응조건을 모색하기 위해 다음과 같은 실험을 실시하였다. 하기 실시예는 단지 본 발명의 바람직한 구현예를 설명하기 위한 것으로, 어떠한 의미로든 본 발명의 보호범위를 제한하는 것으로 해석되어서는 안된다. On the other hand, the following experiment was conducted to find the optimum reaction conditions in relation to the regeneration of the dehydrogenation catalyst. The following examples are merely to illustrate preferred embodiments of the present invention and should not be construed as limiting the protection scope of the present invention in any sense.

실시예Example 1 One

촉매를 재생하기에 적절한 재생시간을 알아보기 위하여 다음과 같은 실험을 실시하였다.In order to find out the proper regeneration time for regenerating the catalyst, the following experiment was carried out.

본 발명에 사용된 촉매는 알루미늄에 대한 백금과 주석의 비율이 각각 0.5 w/w%인 백금(Pt)과 주석(Sn)이 담지된 알루미나 촉매를 사용하였다. 탈수소화 촉매가 채워져 있는 반응기(3인치 X 68인치의 고정층반응기) 내부의 수분과 불순물을 제거한 후, 수소를 이용해 탈수소화 촉매를 환원시켰다. 그리고, 자켓 열원공급장치를 이용하여 반응기 내부온도를 300℃로 설정한 후 주입펌프를 가동하여 1,5-DMT가 4L/hr의 속도로 반응기내로 주입되도록 하여, 5~15기압(게이지 압력)하에서 탈수소화 반응을 진행시킨다. 1,5-DMN으로의 전환율이 50~60%미만이되면 1,5-DMT주입펌프와 1,5-DMN 저장탱크의 밸브를 잠그어 탈수소화 반응을 중지시키고, 재생시간을 각각 20시간, 40시간, 60시간, 80시간으로 달리 설정하여 촉매의 재생을 진행하였다. The catalyst used in the present invention used an alumina catalyst loaded with platinum (Pt) and tin (Sn) having a ratio of platinum to tin of aluminum of 0.5 w / w%, respectively. After removing water and impurities in the reactor (3 inches x 68 inches fixed bed reactor) filled with the dehydrogenation catalyst, the dehydrogenation catalyst was reduced using hydrogen. Then, using the jacketed heat source supply device, the reactor internal temperature was set to 300 ° C., and then an injection pump was operated to inject 1,5-DMT into the reactor at a rate of 4 L / hr. The dehydrogenation reaction proceeds under). When the conversion rate to 1,5-DMN is less than 50 ~ 60%, the valves of the 1,5-DMT injection pump and 1,5-DMN storage tank are shut off to stop the dehydrogenation reaction, and the regeneration time is 20 hours, The catalyst was regenerated at different settings of 40 hours, 60 hours and 80 hours.

촉매의 재생시 반응기의 온도는 200℃에서 2℃/min으로 승온하여 450℃로 유지하고, 질소에 산소가 희석된 기체(산소:질소=0.12:1)를 주입하여 촉매표면의 코크를 산화연소시킨후, 반응기의 온도를 10℃/min로 내려 200℃에서 99.9% 질소기체를 주입하여 1시간동안 내부에 잔존해 있는 반응결과물, 즉 일산화탄소, 이산화탄소, 물, 산소 등을 포집드럼과 활성탄베드를 통해 대기로 방출시킨후 99.9%의 수소기체를 10~20분동안 주입하여 촉매를 활성화시킨다. 이후 다시 상기 탈수소화 반응을 진행하면서 가스크로마토그래피를 통해 전환율과 선택도를 체크하여, 그 결과를 표 1과 같이 도출하였다.When regenerating the catalyst, the temperature of the reactor was increased from 200 ° C to 2 ° C / min and maintained at 450 ° C. Oxygen-diluted gas (oxygen: nitrogen = 0.12: 1) was injected into nitrogen to burn the coke on the catalyst surface. After lowering the temperature of the reactor to 10 ° C./min and injecting 99.9% nitrogen gas at 200 ° C., the reaction product, ie, carbon monoxide, carbon dioxide, water, oxygen, etc. remaining inside for 1 hour is collected and the activated carbon bed After release to the atmosphere through the injection of 99.9% hydrogen gas for 10 to 20 minutes to activate the catalyst. Thereafter, while performing the dehydrogenation reaction again, the conversion and selectivity were checked through gas chromatography, and the results were obtained as shown in Table 1.

촉매
사용
기간
catalyst
use
term
새 촉매New catalyst 재생 20시간20 hours playback 재생 40시간40 hours of playback 재생 60시간60 hours of playback 재생 80시간80 hours of playback
전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 1일1 day 99%99% 100%100% 96%96% 96%96% 98%98% 99%99% 99%99% 100%100% 98%98% 100%100% 10일10 days 97%97% 100%100% 90%90% 92%92% 95%95% 97%97% 97%97% 98%98% 98%98% 99%99% 20일20 days 96%96% 100%100% 84%84% 84%84% 92%92% 94%94% 98%98% 99%99% 97%97% 98%98% 30일30 days 97%97% 98%98% 77%77% 80%80% 88%88% 89%89% 93%93% 95%95% 94%94% 96%96% 40일40 days 93%93% 99%99% 69%69% 72%72% 82%82% 83%83% 90%90% 91%91% 90%90% 93%93% 50일50 days 92%92% 96%96% 60%60% 62%62% 76%76% 79%79% 86%86% 89%89% 88%88% 92%92% 60일60 days 90%90% 93%93% 49%49% 50%50% 72%72% 73%73% 83%83% 88%88% 85%85% 89%89% 70일70 days 88%88% 91%91% 35%35% 33%33% 66%66% 68%68% 80%80% 83%83% 82%82% 80%80% 80일80 days 85%85% 88%88% 28%28% 30%30% 57%57% 60%60% 76%76% 77%77% 78%78% 78%78% 90일90 days 80%80% 83%83% 17%17% 33%33% 48%48% 53%53% 71%71% 72%72% 74%74% 76%76% 100일100 days 76%76% 80%80% 12%12% 28%28% 33%33% 42%42% 64%64% 70%70% 64%64% 69%69% 110일110 days 70%70% 74%74% 11%11% 25%25% 20%20% 36%36% 56%56% 65%65% 57%57% 59%59% 120일120 days 62%62% 65%65% 10%10% 23%23% 10%10% 27%27% 47%47% 57%57% 49%49% 53%53%

상기 표 1의 새 촉매와 재생시간에 따른 전환율의 차이를 살펴보면, 재생시간은 60시간 이상일 경우 안정적인 전환율이 나왔다. 경제적인 측면을 고려할 경우 재생시간은 60시간이 적당함을 알 수 있다. Looking at the difference in the conversion rate according to the new catalyst and the regeneration time of Table 1, when the regeneration time is more than 60 hours came out a stable conversion rate. Considering the economic aspect, it can be seen that 60 hours of play time is appropriate.

실시예Example 2 2

촉매를 재생하기 위해 적절한 재생온도를 알아보기 위하여 다음과 같은 실험을 실시하였다.In order to find out the appropriate regeneration temperature for regenerating the catalyst, the following experiment was conducted.

재생온도는 각각 350℃, 450℃, 550℃로 달리 설정하여, 재생시간(60시간으로 설정)을 제외한 나머지조건은 실시예 1과 동일하게 하여 촉매의 재생을 진행한 후 다시 탈수소화반응을 진행하면서 가스크로마토그래피를 통한 전환율과 선택도를 매12시간 마다 확인하였으며, 그 결과는 10일 간격으로 다음 표 2과 같이 도출되었다. 이때, 재생온도가 600℃이상이면 반응기 내에서 탄화되어 반응기 내부 막힘현상을 유발하므로 600℃ 미만의 온도에서 반응을 진행하였다. The regeneration temperature was set differently to 350 ° C., 450 ° C., and 550 ° C., and the rest of the conditions were the same as those of Example 1 except for the regeneration time (set to 60 hours). In addition, the conversion and selectivity through gas chromatography were checked every 12 hours, and the results were obtained as shown in Table 2 at intervals of 10 days. At this time, if the regeneration temperature is more than 600 ℃ carbonized in the reactor causing the clogging phenomenon in the reactor was carried out at a temperature of less than 600 ℃.

촉매
사용기간
catalyst
Period of use
새 촉매New catalyst 온도 350℃Temperature 350 ℃ 온도 450℃Temperature 450 ℃ 온도 550℃Temperature 550 ℃
전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 1일1 day 99%99% 100%100% 96%96% 99%99% 99%99% 100%100% 99%99% 100%100% 10일10 days 97%97% 100%100% 94%94% 97%97% 97%97% 98%98% 99%99% 100%100% 20일20 days 96%96% 100%100% 91%91% 95%95% 98%98% 99%99% 98%98% 99%99% 30일30 days 97%97% 98%98% 86%86% 90%90% 93%93% 95%95% 95%95% 97%97% 40일40 days 93%93% 99%99% 81%81% 87%87% 90%90% 91%91% 92%92% 90%90% 50일50 days 92%92% 96%96% 74%74% 82%82% 86%86% 89%89% 86%86% 89%89% 60일60 days 90%90% 93%93% 69%69% 76%76% 83%83% 88%88% 84%84% 85%85% 70일70 days 88%88% 91%91% 60%60% 64%64% 80%80% 83%83% 81%81% 80%80% 80일80 days 85%85% 88%88% 51%51% 59%59% 76%76% 77%77% 75%75% 78%78% 90일90 days 80%80% 83%83% 39%39% 47%47% 71%71% 72%72% 70%70% 74%74% 100일100 days 76%76% 80%80% 28%28% 39%39% 64%64% 70%70% 65%65% 69%69% 110일110 days 70%70% 74%74% 17%17% 30%30% 56%56% 65%65% 56%56% 63%63% 120일120 days 62%62% 65%65% 10%10% 22%22% 47%47% 57%57% 48%48% 56%56%

상기 표 2의 새 촉매와 재생온도에 따른 전환율의 차이를 살펴보면, 재생 후 재생온도는 450℃ 이상일 경우 안정적인 전환율이 나왔다. 경제적인 측면을 고려할 경우 재생온도는 450℃가 적당함을 알 수 있다. Looking at the difference in the conversion rate according to the new catalyst and the regeneration temperature of Table 2, when the regeneration temperature after regeneration is more than 450 ℃ came out a stable conversion rate. Considering the economic aspect, it can be seen that the regeneration temperature is suitable for 450 ℃.

실시예Example 3 3

촉매의 재생회수와 이에 따른 적절한 사용기간을 알아보기 위하여 다음과 같은 실험을 실시하였다.In order to find out the recovery time of the catalyst and the proper use period, the following experiment was conducted.

재생회수는 1회, 2회, 3회, 4회로 달리 설정하고, 재생시간 및 재생온도는 상기 실시예의 결과에 따라 각각 60시간, 450℃로 설정하고 나머지 조건은 실시예1과 동일한 방법으로 하여 탈수소화 반응 및 촉매의 재생을 진행하였다. 전환율과 선택도는 GC로 매 12시간 마다 확인하였으며, 그 결과는 10일 간격으로 다음 표 3과 같이 도출되었다.The number of regenerations is set differently once, twice, three times and four times, and the regeneration time and regeneration temperature are set to 60 hours and 450 ° C. according to the results of the above examples, and the rest of the conditions are the same as in Example 1. The dehydrogenation reaction and regeneration of the catalyst were carried out. Conversion rate and selectivity were checked every 12 hours by GC, and the results are shown in Table 3 at 10-day intervals.

새 촉매New catalyst 1 회 재생1 play 2 회 재생2 play 3 회 재생3 play 4 회 재생4 play 전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 1일1 day 99%99% 100%100% 99%99% 100%100% 99%99% 100%100% 99%99% 100%100% 98%98% 100%100% 10일10 days 97%97% 100%100% 97%97% 98%98% 98%98% 100%100% 96%96% 98%98% 96%96% 100%100% 20일20 days 96%96% 100%100% 98%98% 99%99% 92%92% 96%96% 90%90% 97%97% 91%91% 94%94% 30일30 days 97%97% 98%98% 93%93% 95%95% 90%90% 92%92% 87%87% 94%94% 85%85% 92%92% 40일40 days 93%93% 99%99% 90%90% 91%91% 88%88% 90%90% 84%84% 90%90% 79%79% 87%87% 50일50 days 92%92% 96%96% 86%86% 89%89% 84%84% 88%88% 81%81% 86%86% 75%75% 82%82% 60일60 days 90%90% 93%93% 83%83% 88%88% 80%80% 84%84% 77%77% 83%83% 71%71% 81%81% 70일70 days 88%88% 91%91% 80%80% 83%83% 76%76% 80%80% 73%73% 80%80% 68%68% 71%71% 80일80 days 85%85% 88%88% 76%76% 77%77% 73%73% 76%76% 70%70% 78%78% 62%62% 70%70% 90일90 days 80%80% 83%83% 71%71% 72%72% 68%68% 73%73% 65%65% 74%74% 59%59% 71%71% 100일100 days 76%76% 80%80% 64%64% 70%70% 61%61% 69%69% 59%59% 69%69% 50%50% 64%64% 110일110 days 70%70% 74%74% 56%56% 65%65% 54%54% 66%66% 51%51% 62%62% 42%42% 56%56% 120일120 days 62%62% 65%65% 47%47% 57%57% 43%43% 52%52% 41%41% 51%51% 35%35% 47%47%

상기 표 3에서 전환율 70%이상인 사용기간을 살펴보면 새촉매의 경우 110일, 1회 재생시 90일, 2회 재생시 85일, 3회 재생시 80일, 4회 재생시 약 60일임을 알 수 있다. Looking at the usage period of the conversion rate more than 70% in Table 3, it can be seen that the new catalyst is 110 days, 90 days for one playback, 85 days for two playbacks, 80 days for three playbacks, and about 60 days for four playbacks. have.

실시예4Example 4

산소 공급원의 종류에 따른 온도변화 및 재생 후 전환율과 선택도를 알아보기 위해 다음과 같은 실험을 실시하였다. The following experiments were conducted to determine the temperature change and conversion and selectivity after regeneration according to the type of oxygen source.

산소 공급원은 공기(질소 79%, 산소 21%, 산소와 질소의 부피비 0.27:1)와 질소에 산소가 희석된 기체(질소 97%, 산소 3%, 산소와 질소의 부피비 0.03:1)를 사용하였고, 재생시간은 60시간, 자켓 열원 공급장치(6)로 200℃에서 2℃/min으로 승온하여 400℃에서 8.3시간, 450℃에서 49.6시간 유지하였다. 재생된 촉매에 실시예1과 같은 방법으로 탈수소화 반응을 진행하였고, 전환율과 선택도는 GC로 매 12시간 마다 확인하였으며, 그 결과는 10일 간격으로 다음 표 4와 같이 도출되었다.Oxygen source uses air (79% nitrogen, 21% oxygen, 0.27: 1 volume ratio of oxygen and nitrogen) and gas diluted with nitrogen (97% nitrogen, 3% oxygen, 0.03: 1 volume ratio of oxygen and nitrogen) The regeneration time was 60 hours, the jacket heat source feeder (6) was heated to 200 ℃ 2 ℃ / min and maintained at 8.3 ℃ 400 ℃, 49.6 hours at 450 ℃. The dehydrogenation reaction was carried out on the regenerated catalyst in the same manner as in Example 1, and the conversion and selectivity were confirmed every 12 hours by GC, and the results were obtained as shown in Table 4 at 10-day intervals.

촉매사용
기간
Use of catalyst
term
새 촉매New catalyst 질소:산소=79%:21%Nitrogen: Oxygen = 79%: 21% 질소:산소=97%:3%Nitrogen: Oxygen = 97%: 3%
전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 전환율Conversion rate 선택도Selectivity 1일1 day 99%99% 100%100% 99%99% 100%100% 99%99% 100%100% 10일10 days 97%97% 100%100% 98%98% 100%100% 97%97% 98%98% 20일20 days 96%96% 100%100% 97%97% 100%100% 98%98% 99%99% 30일30 days 97%97% 98%98% 94%94% 96%96% 93%93% 95%95% 40일40 days 93%93% 99%99% 89%89% 92%92% 90%90% 91%91% 50일50 days 92%92% 96%96% 88%88% 90%90% 86%86% 89%89% 60일60 days 90%90% 93%93% 85%85% 89%89% 83%83% 88%88% 70일70 days 88%88% 91%91% 80%80% 84%84% 80%80% 83%83% 80일80 days 85%85% 88%88% 78%78% 79%79% 76%76% 77%77% 90일90 days 80%80% 83%83% 74%74% 77%77% 71%71% 72%72% 100일100 days 76%76% 80%80% 67%67% 72%72% 64%64% 70%70% 110일110 days 70%70% 74%74% 55%55% 68%68% 56%56% 65%65% 120일120 days 62%62% 65%65% 48%48% 60%60% 47%47% 57%57%

표4에 의하면 촉매표면의 코크를 산화시키기 위해 사용한 산소공급원으로서, 질소에 산소가 희석된 기체를 사용하는 경우와, 공기를 이용하여 재생하는 경우 모두 전환율과 선택도가 유사함을 알 수 있다. According to Table 4, as the oxygen source used to oxidize the coke on the surface of the catalyst, the conversion and selectivity are similar in the case of using oxygen-diluted gas and nitrogen regeneration.

한편 도 2 및 도 3은 질소에 산소가 희석된 기체를 사용한 경우와, 공기를 사용한 경우의 열원공급장치의 설정온도에 따른 반응기 내부의 온도변화를 나타낸 그래프로서, 촉매표면의 코크가 제거되는 온도 및 촉매기공에 쌓인 코크가 제거되는 온도를 예측할 수 있다. 도 2에 도시된 바와 같이, 질소에 희석된 기체를 사용할 경우 급격한 온도 변화가 일어나지 않아서 반응기 내부의 온도제어가 손쉬운 반면, 도 3에 도시된 바와 같이 공기를 사용할 경우 급격한 온도 변화가 일어나 내부 온도제어가 어려웠다. 2 and 3 are graphs showing the temperature change in the reactor according to the set temperature of the heat source supply device when using a gas diluted with oxygen and nitrogen, and the temperature at which the coke on the catalyst surface is removed. And the temperature at which the coke accumulated in the catalyst pores is removed. As shown in FIG. 2, when a gas diluted in nitrogen is used, a sudden temperature change does not occur, so temperature control inside the reactor is easy, whereas when using air as shown in FIG. 3, a sudden temperature change occurs to control the internal temperature. Was difficult.

따라서, 촉매의 재생시 질소에 산소가 희석된 기체를 사용하는 경우 전환율과 선택도에 있어서는 공기와 유사하지만, 내부 온도제어 및 반응의 안정성을 위해서는 질소에 산소가 희석된 기체를 사용하는 것이 더욱 바람직함을 알 수 있다. Therefore, in the case of using oxygen-diluted gas in nitrogen during regeneration of the catalyst, it is similar to air in conversion and selectivity, but for the internal temperature control and stability of reaction, it is more preferable to use gas diluted in oxygen in nitrogen. It can be seen.

도 1은 1,5-DMT의 1,5-DMN으로의 탈수소화 반응에 수반하여 촉매를 재생할 수 있는 장치를 도식화한 것이다. 1 is a schematic diagram of a device capable of regenerating a catalyst with dehydrogenation of 1,5-DMT to 1,5-DMN.

도 2는 질소에 산소가 희석된 기체를 사용하여 촉매를 재생할 경우 시간에 따른 온도 변화곡선이다.2 is a temperature change curve with time when regenerating a catalyst using a gas diluted with oxygen in nitrogen.

도 3는 공기를 사용하여 촉매를 재생할 경우 시간에 따른 온도 변화곡선이다.3 is a temperature change curve with time when regenerating a catalyst using air.

1 : 1,5-DMT 저장탱크 2 : 1,5-DMT 주입펌프1: 1,5-DMT storage tank 2: 1,5-DMT injection pump

3 : Gas 주입구 4 : 탈수소화 고정층 반응기3: gas inlet port 4: dehydrogenation fixed bed reactor

5 : 반응기 내부온도계 6 : 자켓 열원 공급장치5: reactor internal thermometer 6: jacket heat source supply device

7 : 압력계 8 : 1,5-DMN 저장탱크7: pressure gauge 8: 1,5-DMN storage tank

9 : 포집드럼 10 : 활성탄 베드(Bed)9: capture drum 10: activated carbon bed (Bed)

Claims (5)

주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매를 이용하여 탄소수 11이상의 고리구조를 가진 탄화수소를 탈수소화하여 동일 고리의 방향족 화합물로 전환시키는 반응공정에 수반되어 상기 촉매를 재생함에 있어서, In the regeneration of the catalyst in a reaction process in which a hydrocarbon having a ring structure of 11 or more carbon atoms is dehydrogenated and converted into an aromatic compound of the same ring by using an alumina catalyst loaded with tin (Sn) and platinum (Pt), 400~600℃ 온도에서 산소와 질소의 부피비가 0.03:1 ~ 0.27:1인, 질소에 산소가 희석된 기체를 주입하여 상기 촉매표면에 부착되어 있는 코크를 산화하여 연소시키는 단계와; Oxidizing and burning the coke attached to the catalyst surface by injecting oxygen-diluted gas into nitrogen having a volume ratio of oxygen to nitrogen at a temperature of 400 to 600 ° C. of 0.03: 1 to 0.27: 1; 상기 산소와 코크의 반응물을 제거하고, 촉매를 건조하는 단계와; Removing the reactant of oxygen and coke and drying the catalyst; 200~400℃온도에서 수소로 상기 촉매를 환원시키는 단계를 포함하는 것을 특징으로 하는 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매의 재생방법.Regeneration method of alumina catalyst loaded with tin (Sn) and platinum (Pt), characterized in that it comprises the step of reducing the catalyst with hydrogen at 200 ~ 400 ℃ temperature. 제 1항에 있어서, 상기 산화 온도는 반응기 내부 온도가 450~550℃인 것을 특징으로 하는 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매의 재생방법.The method of regenerating an alumina catalyst loaded with tin (Sn) and platinum (Pt) according to claim 1, wherein the oxidation temperature is 450 to 550 ° C. 삭제delete 제 1항에 있어서, 상기 촉매를 재생하는 시간은 60시간 이상인 것을 특징으로 하는 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매의 재생방법.The method of regenerating an alumina catalyst loaded with tin (Sn) and platinum (Pt) according to claim 1, wherein the regeneration time of the catalyst is 60 hours or more. 제 1항에 있어서, 상기 탄소수 11이상의 고리구조를 가진 탄화수소는 1,5-디메틸테트랄린이고, 동일 고리의 방향족 화합물은 1,5-디메틸나프탈렌인 것을 특징으로 하는 주석(Sn)과 백금(Pt)이 담지된 알루미나 촉매의 재생방법.The method of claim 1, wherein the hydrocarbon having a ring structure having 11 or more carbon atoms is 1,5-dimethyltetraline, and the aromatic compound of the same ring is 1,5-dimethylnaphthalene (Sn) and platinum ( Regeneration method of alumina catalyst loaded with Pt).
KR1020080075258A 2008-07-31 2008-07-31 Regeneration of Dehydrogenation Catalyst KR100973242B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080075258A KR100973242B1 (en) 2008-07-31 2008-07-31 Regeneration of Dehydrogenation Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080075258A KR100973242B1 (en) 2008-07-31 2008-07-31 Regeneration of Dehydrogenation Catalyst

Publications (2)

Publication Number Publication Date
KR20100013646A KR20100013646A (en) 2010-02-10
KR100973242B1 true KR100973242B1 (en) 2010-07-30

Family

ID=42087618

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080075258A KR100973242B1 (en) 2008-07-31 2008-07-31 Regeneration of Dehydrogenation Catalyst

Country Status (1)

Country Link
KR (1) KR100973242B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101653457B1 (en) * 2014-11-26 2016-09-02 주식회사 효성 Method for regenerating catalysts in dehydrogenation process
KR102025097B1 (en) * 2017-12-27 2019-09-25 효성화학 주식회사 Dehydrogenation appratus and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030072359A (en) * 2000-12-04 2003-09-13 바스프 악티엔게젤샤프트 Regeneration of a dehydrogenation catalyst
KR100761512B1 (en) * 2006-08-22 2007-10-04 주식회사 효성 Dehydrogenation process of dimethylnaphthalene by metal catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030072359A (en) * 2000-12-04 2003-09-13 바스프 악티엔게젤샤프트 Regeneration of a dehydrogenation catalyst
KR100761512B1 (en) * 2006-08-22 2007-10-04 주식회사 효성 Dehydrogenation process of dimethylnaphthalene by metal catalyst

Also Published As

Publication number Publication date
KR20100013646A (en) 2010-02-10

Similar Documents

Publication Publication Date Title
EP2318344B1 (en) Ethanol production from acetic acid utilizing a cobalt catalyst
EP2318343B1 (en) Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst
US7820852B2 (en) Direct and selective production of ethyl acetate from acetic acid utilizing a bimetal supported catalyst
JP2011518879A5 (en)
JP2007176873A (en) Production method for raw material of resin, and resin and its production method
KR100973242B1 (en) Regeneration of Dehydrogenation Catalyst
RU2362762C2 (en) Method for oxidising of aromatic hydrocarbons and catalytic system thereof
WO2019109237A1 (en) Method for partially regenerating methanol to olefin catalyst and methanol to olefin process
CN111111790A (en) Activation method of catalyst for preparing oxalate through CO coupling
KR100828886B1 (en) Regeneration method of zeolite beta catalyst
AU2013213680A1 (en) Direct and selective production of ethanol from acetic acid utilizing a platinum/tin catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160614

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170613

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180612

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190611

Year of fee payment: 10