KR100973055B1 - Optical pH Sensing Polymeric Film Having Anti-fouling Property and Method for Preparing the Same - Google Patents

Optical pH Sensing Polymeric Film Having Anti-fouling Property and Method for Preparing the Same Download PDF

Info

Publication number
KR100973055B1
KR100973055B1 KR1020080075633A KR20080075633A KR100973055B1 KR 100973055 B1 KR100973055 B1 KR 100973055B1 KR 1020080075633 A KR1020080075633 A KR 1020080075633A KR 20080075633 A KR20080075633 A KR 20080075633A KR 100973055 B1 KR100973055 B1 KR 100973055B1
Authority
KR
South Korea
Prior art keywords
polymer membrane
group
optical
fluorescein
sensor
Prior art date
Application number
KR1020080075633A
Other languages
Korean (ko)
Other versions
KR20100013893A (en
Inventor
채규호
김진혁
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020080075633A priority Critical patent/KR100973055B1/en
Publication of KR20100013893A publication Critical patent/KR20100013893A/en
Application granted granted Critical
Publication of KR100973055B1 publication Critical patent/KR100973055B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 안티파울링 특성을 가지는 광학 pH센서용 고분자막 및 그 제조방법에 관한 것으로, 보다 상세하게는, 형광물질인 플루오레세인(fluorescein) 그룹을 가진 단량체와 안티파울링 특성을 가지는 MPC를 가교제, 광중합 개시제, 기본 단량체와 혼합한 후, 상기 혼합물에 자외선(UV)을 조사하여 광중합시키는 것을 특징으로 하는 광학 pH센서용 고분자막의 제조방법 및 상기 방법에 의해 제조된 광학 pH센서용 고분자막에 관한 것이다.The present invention relates to a polymer film for an optical pH sensor having an antifouling property and a method for manufacturing the same, and more particularly, a crosslinking agent comprising an MPC having an antifouling property and a monomer having a fluorescein group as a fluorescent material. And a photopolymerization initiator and a basic monomer, followed by photopolymerization by irradiating the mixture with ultraviolet (UV) light, and a polymer membrane for an optical pH sensor manufactured by the method. .

본 발명에 따른 고분자막은 물리, 화학적으로 안정하여 장기간 사용이 가능할 뿐만 아니라 수소 이온에 선택적으로 반응하여 광범위의 pH에서 선형적 형광변화가 나타나며, 미생물의 점착이 방지되는 효과를 가진다.The polymer membrane according to the present invention is physically and chemically stable and can be used for a long time, as well as selectively reacting with hydrogen ions, resulting in a linear fluorescence change at a wide range of pH and preventing the adhesion of microorganisms.

광학 pH센서, 안티파울링, 플루오레세인, 광중합, UV Optical pH sensor, antifouling, fluorescein, photopolymerization, UV

Description

안티파울링 특성을 가지는 광학 pH센서용 고분자막 및 그 제조방법{Optical pH Sensing Polymeric Film Having Anti-fouling Property and Method for Preparing the Same}Optical pH Sensing Polymeric Film Having Anti-fouling Property and Method for Preparing the Same}

본 발명은 안티파울링 특성을 가지는 광학 pH센서용 고분자막 및 그 제조방법에 관한 것으로, 보다 상세하게는, 형광물질인 플루오레세인(fluorescein) 그룹을 가진 단량체와 안티파울링 특성을 가지는 MPC를 가교제, 광중합 개시제, 기본 단량체와 혼합한 후, 상기 혼합물에 자외선(UV)을 조사하여 광중합시키는 것을 특징으로 하는 광학 pH센서용 고분자막의 제조방법 및 상기 방법에 의해 제조된 광학 pH센서용 고분자막에 관한 것이다.The present invention relates to a polymer film for an optical pH sensor having an antifouling property and a method for manufacturing the same, and more particularly, a crosslinking agent comprising an MPC having an antifouling property and a monomer having a fluorescein group as a fluorescent material. And a photopolymerization initiator and a basic monomer, followed by photopolymerization by irradiating the mixture with ultraviolet (UV) light, and a polymer membrane for an optical pH sensor manufactured by the method. .

현재 pH 센서용 형광물질로 보편적으로 이용되는 형광물질은 좁은 pH 범위에서 선형적인 형광 세기가 나타나 넓은 pH 범위에서 사용하기에 곤란하다. 또한 종래의 sol-gel 방법에 의한 센서 시스템의 제조는 정밀한 작업이 필요하고 재현성이 어렵다는 단점이 있으며 carrier의 분자량이 1000인 작은 분자의 경우 carrier의 침출 현상이 일어나는 단점이 있다. Fluorescent materials that are commonly used as phosphors for pH sensors currently exhibit linear fluorescence intensity in a narrow pH range, making them difficult to use in a wide pH range. In addition, the manufacturing of the sensor system by the conventional sol-gel method has the disadvantage of requiring precise work and difficult reproducibility, and in the case of a small molecule having a carrier molecular weight of 1000, a carrier leaching phenomenon occurs.

일반적으로 pH 센서용 형광물질의 재료로는 플루오레세인(fluorescein) 유도체와 루테니움 콤플렉스(retenium complex)가 잘 알려져 있다. 대표적으로 pH 센서용 고분자 재료를 제조하기 위하여 플루오레세인 유도체를 사용하여 광화학적 중합반응을 통해 pH 센서용 고분자 재료를 제조한 기술이 공개된 바 있다(M. Uttamlal et al., Polym Int. 51:1198, 2002). 또한, 상기 플루오레세인 유도체를 사용하여 제조한 pH 센서용 고분자 재료의 pH 민감도를 측정하여 pH 센서로서의 효능을 확인하고자 하였다. 그 결과, 상기 pH 센서용 고분자 재료는 약 pH 4~7의 범위에서만 pH 변화에 따라 다른 형광특성을 나타낸다고 보고되었다(H.D. Duong et al ., Microchemical J., 84:50, 2006).In general, fluorescein derivatives and rutenium complexes are well known as materials for fluorescent materials for pH sensors. Representatively, a technique for preparing a polymer material for pH sensor through photochemical polymerization using a fluorescein derivative has been disclosed to prepare a polymer material for pH sensor (M. Uttamlal et al. , Polym Int . 51: 1198, 2002). In addition, the pH sensitivity of the polymer material for pH sensor manufactured using the fluorescein derivative was measured to determine the efficacy as a pH sensor. As a result, it has been reported that the polymer material for pH sensor exhibits different fluorescence according to pH change only in the range of about pH 4-7 (HD Duong et. al ., Microchemical J. , 84:50, 2006).

또한, 미생물의 점착으로 인해 센서의 수명이 줄어들고 민감도가 저하되는 문제점을 해결하기 위한 방법으로 포스포릴콜린 (Phosphorylcholine, PC) 유도체를 사용하였다. 그러나 일부 PC유도체를 실제 응용시, 저분자의 유도체를 사용하면 물리적 결합력이 약하고 불안정하다. 따라서 비닐그룹을 갖는 PC유도체인 MPC와 다른 단량체와 공중합시켜 사용하고 있는데 이 경우도 고분자의 분자량이 104 이하에서는 물성이 약해 장시간 사용하면 수용액에 녹아버린다는 단점이 있다.In addition, phosphorylcholine (Phosphorylcholine, PC) derivative was used as a method to solve the problem that the lifespan of the sensor is reduced due to the adhesion of microorganisms and the sensitivity is reduced. However, in some applications of PC derivatives, the use of low molecular weight derivatives is weak and unstable. Therefore, it is used by copolymerizing with MPC, which is a PC derivative having a vinyl group, and other monomers. In this case, however, when the molecular weight of the polymer is 10 4 or less, the physical property is weak, so that it is dissolved in an aqueous solution when used for a long time.

종래, 형광법에 따라 상이한 두 가지 센서를 사용하여 수성샘플속의 pH 값과 이온강도를 독립적, 가역적, 광학적으로 측정한 방법(한국공개특허 제1997-7002991호), 에틸 아크릴아마이드 또는 메틸 아크릴아마이드와 N,N-디메틸아미노에틸 메타 아크릴레이트를 포함하는 온도와 pH 변화에 민감한 고분자 체계 및 제조방법(한국등록특허 제231,959호) 및 광촉매 특성을 지닌 나노 크기의 TiO2 입자를 역삼투 분리막에 도입시킨 안티파울링 특성이 우수한 역삼투 분리막의 제조법(한국등록특허 제444,126호)이 개시되어 있으나, 종래의 방법은 센서의 장기간 사용이 힘들고, 비용이 많이 들며, 제조과정이 다소 복잡하여 시간이 소요되는 단점이 있었다.Conventionally, a method of independently, reversibly and optically measuring the pH value and ionic strength in an aqueous sample using two different sensors according to the fluorescence method (Korean Patent Publication No. 1997-7002991), ethyl acrylamide or methyl acrylamide and N Polymer system and production method sensitive to temperature and pH changes including N-dimethylaminoethyl methacrylate (Korea Patent No. 231,959) and anti-introduction membranes with nano-sized TiO 2 particles with photocatalytic properties Although a method of manufacturing a reverse osmosis membrane having excellent fouling properties (Korean Patent No. 444,126) has been disclosed, the conventional method is difficult to use the sensor for a long time, it is expensive, and the manufacturing process is somewhat complicated, which takes time. There was this.

이에, 본 발명자들은 상기 종래 문제점을 개선하고자 예의 노력한 결과, 미생물 점착방지의 특성을 갖는 PC유도체인 2-메타크롤옥시에틸 포스포릴콜린(methacryoloxyethylphosphorycholine, MPC)과 중합할 수 있는 그룹을 가진 형광염료인 플루오레세인(fluorescein) 메타크릴레이트를 광중합시켜 고분자 막을 제조한 다음, 넓은 pH범위에서 선형적인 형광변화를 나타내고, 안티파울링 효과가 우수한 것을 확인함으로써, 본 발명을 완성하게 되었다. Accordingly, the present inventors have made efforts to improve the conventional problems, and as a result, a fluorescent dye having a group capable of polymerizing with 2-methacryloxyethylphosphorycholine (MPC), which is a PC derivative having the characteristics of antimicrobial adhesion, Photopolymerization of fluorescein methacrylate to produce a polymer membrane, and then showed a linear fluorescence change in a wide pH range, and confirmed that the antifouling effect is excellent, the present invention was completed.

본 발명의 목적은 물리, 화학적으로 안정하여 장기간 사용할 수 있고, 안티파울링(antifouling) 특성을 가지는 광학 pH 센서용 고분자막 및 그 제조방법을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a polymer film for an optical pH sensor and a method of manufacturing the same, which are physically and chemically stable and can be used for a long time and have antifouling properties.

본 발명의 다른 목적은 상기 고분자막을 함유하는 광학 pH센서를 제공하는 데 있다.Another object of the present invention to provide an optical pH sensor containing the polymer film.

상기 목적을 달성하기 위하여, 본 발명은 (a) 안티파울링 특성을 가진 단량체, 플루오레세인(fluorescein) 그룹을 가진 단량체, 기본 단량체(base monomer), 가교제 및 광중합 개시제를 용매에 첨가하여 혼합물을 제조하는 단계; 및 (b) 상기 혼합물을 기질의 표면에 도포한 후, 자외선을 조사하는 광중합 반응을 수행하여 고분자막을 제조하는 단계를 포함하는 안티파울링(antifouling) 특성을 가지는 광학 pH 센서용 고분자막의 제조방법 및 상기 방법으로 제조된 안티파울링(antifouling) 특성을 가지는 광학 pH 센서용 고분자막을 제공한다.In order to achieve the above object, the present invention provides a mixture of (a) a monomer having an antifouling property, a monomer having a fluorescein group, a base monomer, a crosslinking agent and a photopolymerization initiator to a solvent. Manufacturing; And (b) applying the mixture to the surface of the substrate, and then performing a photopolymerization reaction to irradiate ultraviolet rays to produce a polymer membrane, wherein the polymer membrane for an optical pH sensor has an antifouling property. It provides a polymer film for an optical pH sensor having an antifouling properties prepared by the above method.

본 발명은 또한, 상기 고분자막을 이용하여 제조된 광학 pH센서를 제공한다.The present invention also provides an optical pH sensor manufactured using the polymer membrane.

본 발명에 따른 고분자막은 물리, 화학적으로 안정하여 장기간 사용이 가능 할 뿐만 아니라 수소 이온에 선택적으로 반응하여 광범위한 pH에서 선형적 형광변화가 나타나며, 미생물의 점착이 방지되는 효과를 가진다.The polymer membrane according to the present invention is physically and chemically stable and can be used for a long time as well as selectively reacts with hydrogen ions, resulting in a linear fluorescence change at a wide range of pH and preventing the adhesion of microorganisms.

본 발명은 일관점에서, (a) 안티파울링 특성을 가진 단량체, 플루오레세인(fluorescein) 그룹을 가진 단량체, 기본 단량체(base monomer), 가교제 및 광중합 개시제를 용매에 첨가하여 혼합물을 제조하는 단계 및 (b) 상기 혼합물을 기질의 표면에 도포한 후, 자외선을 조사하는 광중합 반응을 수행하여 고분자막을 제조하는 단계를 포함하는 안티파울링(antifouling) 특성을 가지는 광학 pH 센서용 고분자막의 제조방법에 관한 것이다. In accordance with the present invention, (a) adding a monomer having antifouling properties, a monomer having a fluorescein group, a base monomer, a crosslinking agent and a photopolymerization initiator to a solvent to prepare a mixture. And (b) applying the mixture to the surface of the substrate, and then performing a photopolymerization reaction to irradiate ultraviolet rays to produce a polymer membrane. The method of manufacturing a polymer membrane for an optical pH sensor having an antifouling property comprising the steps of: It is about.

본 발명에 있어서, 상기 (a) 단계에서 기본 단량체 100 중량부에 대하여, 안티파울링 특성을 가진 단량체 0.1~10 중량부, 플루오레세인 그룹을 가진 단량체 0.01~30 중량부, 가교제 1~100 중량부, 광중합 개시제 0.001~20 중량부 및 용매 1~100 중량부를 첨가하는 것을 특징으로 한다. In the present invention, with respect to 100 parts by weight of the basic monomer in the step (a), 0.1 to 10 parts by weight of the monomer having antifouling properties, 0.01 to 30 parts by weight of monomer having a fluorescein group, 1 to 100 parts by weight of crosslinking agent It is characterized by adding 0.001-20 parts by weight of the photopolymerization initiator and 1-100 parts by weight of the solvent.

상기 (a)단계에서 기본 단량체 100중량부에 대하여 안티파울링 특성을 가진 단량체의 첨가량이 0.1 미만이면 미생물 점착도가 증가하는 문제가 있고, 10을 초과하면 제조된 고분자막의 물성이 떨어지는 문제가 있다.If the amount of the monomer having an antifouling property is less than 0.1 with respect to 100 parts by weight of the basic monomer in step (a), there is a problem that the microbial adhesion increases, and if it exceeds 10, there is a problem that the physical properties of the prepared polymer membrane is inferior. .

상기 (a)단계에서 기본 단량체 100중량부에 대하여 플루오레세인 유도체인 형광물질의 단량체 첨가량이 0.01 미만이면 형광의 세기가 약한 문제가 있고, 30을 초과하면 제조된 고분자막의 기계적 성질과 자기-켄칭(self-quenching)의 문제가 있다.If the monomer addition amount of the fluorescent material which is a fluorescein derivative with respect to 100 parts by weight of the basic monomer in step (a) is less than 0.01, the intensity of fluorescence is weak, and if it exceeds 30, the mechanical properties and self-quenching of the prepared polymer membrane There is a problem with (self-quenching).

상기 (a)단계에서 기본 단량체 100중량부에 대하여 가교제의 첨가량이 1 미만이면 가교반응이 일어나지 않는 문제가 있고, 100을 초과하면 제조되는 고분자막의 물성이 떨어지는 문제가 있다. If the amount of the crosslinking agent is less than 1 based on 100 parts by weight of the basic monomer in step (a), there is a problem in that no crosslinking reaction occurs.

상기 (a)단계에서 기본 단량체 100중량부에 대하여 광중합 개시제의 첨가량이 0.001 미만이면 광중합반응이 일어나지 않는 문제가 있고, 20을 초과하면 제조되는 고분자막의 물성이 떨어지는 문제가 있다.If the amount of the photopolymerization initiator added to less than 0.001 with respect to 100 parts by weight of the basic monomer in the step (a) there is a problem that the photopolymerization reaction does not occur, and if it exceeds 20 there is a problem that the physical properties of the polymer film produced.

상기 (a)단계에서 기본 단량체 100중량부에 대하여 용매의 첨가량이 1 미만이면 가교제 및 기본단량체가 용해되지 않는 문제가 있고, 100을 초과하면 광가교시 고분자 막의 물성이 떨어지는 문제가 있다.If the amount of the solvent is less than 1 with respect to 100 parts by weight of the basic monomer in step (a), there is a problem that the crosslinking agent and the basic monomer are not dissolved, and if it exceeds 100, there is a problem that the physical properties of the polymer membrane during photocrosslinking are inferior.

본 발명에 있어서, 형광염료로서 측정할 수 있는 pH 범위가 넓고, 광안정성을 지닌 플루오레세인 유도체를 사용하는데, 플루오레세인 메타크릴레이트를 사용하는 것이 바람직하다.In the present invention, a fluorescein derivative having a wide pH range which can be measured as a fluorescent dye and having photostability is preferably used, and fluorescein methacrylate is preferably used.

본 발명에 있어서, 상기 용매는 테트라히드로퓨란(tetrahydrofuran), 아세톤(acetone), 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 아세토니트릴(acetonitrile), 클로로포름(chloroform), 에틸 아세테이트(ethyl acetate)및 메틸에틸 케톤(methylethyl ketone)으로 구성된 군에서 선택되는 어느 하나 이상인 것을 특징으로 할 수 있으나, 이에 국한되는 것은 아니다.In the present invention, the solvent is tetrahydrofuran (acetra), acetone (acetone), methanol (methanol), ethanol (ethanol), propanol (propanol), acetonitrile (acetonitrile), chloroform (chloroform), ethyl acetate (ethyl acetate) and methylethyl ketone (methylethyl ketone) may be any one or more selected from the group consisting of, but is not limited thereto.

본 발명에 있어서, 미생물 점착 방지 특성을 지닌 안티파울링 유도체는 PC 유도체인 2-methacryoloxyethylphosphorycholine (MPC)를 사용하는 것을 특징으로 한다. 본 발명에서 사용된 용어 '안티파울링 유도체'란 PC 유도체 중 미생물 점착방지 특성을 가지는 화합물을 가리킨다. 본 발명에 따른 MPC는 ethylene 2-(methacryloyl)ethyl phosphate에 trimethylamine을 처리하여 제조하고, 안티파울링 특징이 있으며, 센서 응용시 미생물 점착방지효과가 있다.In the present invention, the antifouling derivative having antimicrobial adhesion characteristics is characterized by using 2-methacryoloxyethylphosphorycholine (MPC) which is a PC derivative. The term 'antifouling derivative' used in the present invention refers to a compound having antimicrobial adhesion properties among PC derivatives. The MPC according to the present invention is prepared by treating trimethylamine in ethylene 2- (methacryloyl) ethyl phosphate, has antifouling characteristics, and has antimicrobial adhesion effects in sensor applications.

본 발명에 있어서, 기본 단량체는 중합반응에 의해 고분자를 만들 수 있는 출발 물질 또는 기본 단위를 가리키는 것으로, 아크릴로니트릴(acrylonitrile), 아크릴아마이드(acrylamide), 메타크릴 아마이드(methacrylamide), 히드록시에틸 메타크릴레이트(hydroxyethyl methacrylate, HEMA), 아크릴산(acrylic acid), 메타크릴산(methacrylic acid) 및 스티렌(styrene)으로 구성된 군에서 선택되는 친수성 단량체를 사용하는 것이 바람직하다.In the present invention, the basic monomer refers to a starting material or a basic unit capable of making a polymer by polymerization, acrylonitrile, acrylamide, methacrylamide, hydroxyethyl meta It is preferable to use a hydrophilic monomer selected from the group consisting of acrylate (hydroxyethyl methacrylate, HEMA), acrylic acid (methrylic acid), methacrylic acid (methacrylic acid) and styrene (styrene).

본 발명에 있어서, 상기 가교제는 CH2=CR1-R2-CR1=CH2으로 표시되는 화합물이며, 여기서, R1은 수소 또는 메틸기이고, R2는 연결그룹으로서 -(CH2)n-, C6 -10 아릴, COO-(CH2)n-OOC, -O-(CH2)n-O- 및 -CONH-(CH2)n-NHCO- (여기서, n은 1~10인 자연수)으로 구성된 군에서 선택되는 것을 특징으로 할 수 있고, 바람직하게는, UDMA [1,6-bis(carbonyloxyethyl- methacryloyl)-2,2,4-trimethylhaxane], 디비닐벤젠 (divinylbenzene), 비스(bis)-GMA (diglycidylether methacrylate of bisphenol A), 2,2-비스[4-(2-히드록시-3-메타크릴옥시-프로폭시)-페닐]프로판 (2,2-bis[4-(2-hydroxy-3-methacryloxy-propoxy)-phenyl]propane) 및 트리에틸렌글리콜 디메타크릴레이트(triethyleneglycol dimethacrylate)으로 구성되는 군에서 선택된다. In the present invention, the crosslinking agent is a compound represented by CH 2 = CR 1 -R 2 -CR 1 = CH 2 , wherein R 1 is hydrogen or a methyl group, and R 2 is-(CH 2 ) n as a linking group. -, C 6 -10 aryl, COO- (CH 2) n -OOC , -O- (CH 2) n -O- and -CONH- (CH 2) n -NHCO- (wherein, n is 1 to 10 Natural water), preferably, UDMA [1,6-bis (carbonyloxyethyl-meththacryloyl) -2,2,4-trimethylhaxane], divinylbenzene, or bis ( bis) -GMA (diglycidylether methacrylate of bisphenol A), 2,2-bis [4- (2-hydroxy-3-methacryloxy-propoxy) -phenyl] propane (2,2-bis [4- (2 -hydroxy-3-methacryloxy-propoxy) -phenyl] propane) and triethyleneglycol dimethacrylate.

본 발명에서 가교제란 고분자의 사슬과 사슬을 이어주는 역할을 하는 물질로써, 고분자막의 굳기[硬度]나 탄력성 등 기계적 강도와 화학적 안정성을 부여한다. In the present invention, the crosslinking agent is a substance that plays a role of connecting the chain of the polymer, and imparts mechanical strength and chemical stability such as firmness or elasticity of the polymer membrane.

본 발명에 있어서, 광중합 개시제는 벤조인 알킬 에테르(benzoin alkyl ether), 벤조인 이소부틸에테르(benzoin isobutyl ether), 벤조페논(benzophenone), 아세토페논(acetophenone) 및 벤조페논/아민(benzophenone/amine)으로 구성된 군에서 선택되나 이에 국한되는 것은 아니다. In the present invention, the photopolymerization initiator is benzoin alkyl ether, benzoin isobutyl ether, benzophenone, acetophenone and benzophenone / amine It is selected from a group consisting of, but not limited to.

일반적으로, 개시제란 단량체가 포함되어 있는 매질에서, 활성 라디칼을 형성하면서 중합반응을 일으키는 물질을 일컫는 것으로, 주로 고분자 합성반응에 사용되며, 본 발명에서 사용된 광중합 개시제는 조사된 자외선의 에너지를 흡수하여 광중합 반응을 개시하는데 이용된다.In general, an initiator refers to a substance that generates a polymerization reaction while forming an active radical in a medium containing monomers. The initiator is mainly used in polymer synthesis, and the photopolymerization initiator used in the present invention absorbs energy of irradiated ultraviolet rays. To initiate the photopolymerization reaction.

본 발명에서는 광화학적인 방법을 이용하여 공유결합에 의해 고분자막을 제조함으로써, 종래기술에서 형광물질을 고정시키기 위하여 사용하였던 졸-겔 방법의 단점인 침출과 제조방법의 까다로움을 피할 수 있다.In the present invention, by preparing a polymer film by covalent bonding using a photochemical method, it is possible to avoid the drawback of the sol-gel method used to fix the fluorescent material in the prior art and the difficulty of the manufacturing method.

또한, 본 발명에서 고분자막이 형성되는 기질은 유리, 나무, 세라믹, 플라스틱 및 실리콘 웨이퍼를 사용하는 것이 바람직하나, 고분자막이 형성될 수 있는 기질이라면 제한없이 사용할 수 있다. In the present invention, the substrate on which the polymer film is formed is preferably glass, wood, ceramic, plastic, and silicon wafers, but any substrate may be used as long as the substrate on which the polymer film is formed.

본 발명에 있어서, 상기 광중합 반응은 200 ~ 400 nm 범위의 자외선을 빛의 세기에 따라 1분~4시간 동안 조사하여 수행되는 것을 특징으로 할 수 있다.In the present invention, the photopolymerization reaction may be performed by irradiating ultraviolet rays in the range of 200 to 400 nm for 1 minute to 4 hours depending on the light intensity.

상기에 제시된 자외선 영역으로서 200 ~ 400 nm는 통상적인 자외선 영역이며, 자외선의 파장이 200 nm 미만이면 분해반응이 일어나는 문제가 있고, 400 nm를 초과하면 광중합 반응이 일어나지 않는 문제가 있다.As the above-described ultraviolet region, 200 to 400 nm is a conventional ultraviolet region, and if the wavelength of the ultraviolet ray is less than 200 nm, there is a problem that decomposition reaction occurs, and if it exceeds 400 nm, there is a problem that the photopolymerization reaction does not occur.

또한, 상기 광중합 반응에서, 자외선 조사시간이 1분 미만이면 중합 반응이 일어나지 않는 문제가 있고, 4시간을 초과하면 조사시간이 길어져 광분해반응이 일어나는 문제가 있다.In addition, in the photopolymerization reaction, if the ultraviolet irradiation time is less than 1 minute, there is a problem that the polymerization reaction does not occur, and if it exceeds 4 hours, the irradiation time is long and there is a problem that the photolysis reaction occurs.

본 발명은 다른 관점에서, 상기 방법에 의해 제조되고, 안티파울링 유도체, 플루오레세인 유도체의 단량체, 기본 단량체를 함유하며, 안티 파울링 특성을 가지는 광학 pH 센서용 고분자막을 제공하고, 상기 고분자막은 pH 3~11에서 pH가 증가할수록 형광세기가 선형적으로 감소하는 방식으로 민감하게 반응한다.In another aspect, the present invention provides a polymer film for an optical pH sensor prepared by the above method, containing an antifouling derivative, a monomer of a fluorescein derivative, a basic monomer, and having an antifouling property. As the pH increases from pH 3 to 11, the fluorescence intensity decreases linearly.

반면, 일정한 pH하에서 상기 광학 pH 센서용 고분자막의 형광세기는 온도, 방해이온, 장기간 보존 등과 같은 다른 외부요인의 변화에 대해서 안정적이다.On the other hand, under a constant pH, the fluorescence intensity of the polymer film for optical pH sensors is stable against changes in other external factors such as temperature, interference ions, and long term storage.

따라서, 본 발명에 따른 안티 파울링 특성을 가지는 광학 pH 센서용 고분자막은 종래기술에 비하여 넓은 pH 범위에서 선형적으로 반응하되, pH를 제외한 다른 외부요인의 변화에 대해서는 일정한 형광세기를 나타내는 안정성을 가진다.Therefore, the polymer membrane for optical pH sensor having anti-fouling properties according to the present invention reacts linearly in a wide pH range compared to the prior art, but has stability exhibiting a constant fluorescence intensity against changes in external factors except pH. .

본 발명에 있어서, 상기 고분자는 0.1~200㎛의 두께를 가지는 것을 특징으로 하는데, 고분자막의 두께가 0.1㎛미만이면 고분자막의 안정성이 떨어지는 문제가 있고, 200㎛를 초과하면 고분자막의 두께 증가에 따른 실익이 없다. In the present invention, the polymer is characterized in that it has a thickness of 0.1 ~ 200㎛, if the thickness of the polymer membrane is less than 0.1㎛ there is a problem that the stability of the polymer membrane is lowered, if it exceeds 200㎛ the profit from the increase of the thickness of the polymer membrane There is no

본 발명은 또 다른 관점에서, 상기 고분자막을 이용한 광학 pH 센서를 제공한다.In another aspect, the present invention provides an optical pH sensor using the polymer membrane.

상기 광학 pH센서는 통상적인 광학 pH센서 제조방법을 사용하되, 본 발명에 따른 고분자막을 이용하여 광섬유 끝부분에 코팅시켜 제조할 수 있다.The optical pH sensor uses a conventional optical pH sensor manufacturing method, it can be prepared by coating the end of the optical fiber using the polymer film according to the present invention.

본 발명에 따른 고분자막은 상술한 바와 같이 pH 민감성, 안정성, 재현성이 뛰어나므로, pH를 민감하게 측정할 수 있는 센싱막으로서 의료, 환경, 식품 등의 여러 분야에서 장기간 pH를 측정할 수 있는 형광 인디케이터(indicator)로 적용될 수 있다. 또한, MPC에 의한 안티 파울링효과에 의하여 미생물 점착방지의 특성을 지니고 있어, 종래에 비하여 센서의 수명이 연장되고, 민감도가 저하되지 않는 장점이 있다.Since the polymer membrane according to the present invention has excellent pH sensitivity, stability, and reproducibility as described above, it is a sensing membrane that can measure pH sensitively, and a fluorescent indicator capable of measuring pH for a long time in various fields such as medical, environment, and food. It can be applied as an indicator. In addition, the anti-fouling effect by the MPC has the characteristics of anti-microbial adhesion, there is an advantage that the life of the sensor is extended compared to the conventional, the sensitivity does not decrease.

이하, 실시예를 참고하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예 1: MPC 의 제조 (J. E. Brown, M. J. Driver, J. C. Russel, J. Chem. Soc., Perkin Trans, 653) Example 1 Preparation of MPC (JE Brown, MJ Driver, JC Russel, J. Chem. Soc., Perkin Trans, 653)

1.1 Ethylene diisopropylphosphoramidite 합성1.1 Synthesis of Ethylene diisopropylphosphoramidite

Scheme 1 Scheme 1

Figure 112008055717568-pat00001
Figure 112008055717568-pat00001

circulator의 온도를 -10 oC 로 낮춘 후 250mL 삼구플라스크를 장착한다. 질소대기 하에서 dry dichloromethane 50mL를 넣어 준 후 용매의 온도를 떨어뜨린다. 2-chloro-1,3,2-dioxaphospholane 2.8mL(4g, 0.03mol)를 용매에 넣어준 다음 분별깔대기를 이용하여 diisopropylamine 22.3mL(16g, 0.16mol)를 넣어준 후 2시간에 걸쳐 조금씩 적하시켜준다. 반응 혼합물을 상온에서 24시간 동안 반응물이 평형상태가 될 때까지 교반해준다. 반응이 끝난 후 염 (diisopropylammonium chloride)을 제거시켜 주기 위해 여과한 후 여과된 용액은 회전증발기를 이용하여 용매가 절반 정도 남을 때까지 응축시킨다. 이 용액을 얼음중탕에서 다시 차갑게 해준 후 거른 다음, 여과된 용액은 다시 회전증발기로 용매를 날린 후 냉각하고 다시 거른다(염을 완전히 제거시켜주기 위해 cooling과 filtering을 세 번 반복). 여과된 용액을 회전증발기로 용매를 완전히 제거시켜준 후 상온, 진공 건조한다. 합성된 물질은 60에서 진공 증류를 통해 순수한 ethylene diisopropylphosphoramidite을 얻는다.Lower the temperature of the circulator to -10 o C and install a 250 mL three-neck flask. Add 50 mL of dry dichloromethane under nitrogen atmosphere and lower the temperature of the solvent. 2.8mL (4-g, 0.03mol) of 2-chloro-1,3,2-dioxaphospholane was added to the solvent, and diisopropylamine 22.3mL (16g, 0.16mol) was added dropwise using a separatory funnel. give. The reaction mixture is stirred at room temperature for 24 hours until the reaction is in equilibrium. After completion of the reaction, the filtered solution was filtered to remove salt (diisopropylammonium chloride), and the filtered solution was condensed by using a rotary evaporator until half of the solvent remained. The solution is cooled again in an ice bath and filtered, then the filtered solution is again blown off with a rotary evaporator, cooled and refiltered (cooling and filtering three times to remove salt completely). The filtered solution was completely removed by solvent using a rotary evaporator, followed by vacuum drying at room temperature. The synthesized material is pure ethylene diisopropylphosphoramidite by vacuum distillation at 60.

1.2 1.2 EthylenedioxyEthylenedioxy -2-(-2-( methacryloyloxymethacryloyloxy )) ethoxyphosphineethoxyphosphine 합성 synthesis

Scheme 2 Scheme 2

Figure 112008055717568-pat00002
Figure 112008055717568-pat00002

질소 대기 하에서 drying tube를 장착한 100mL 삼구 플라스크에 4,5-dichloroimidazole 0.716g(5.2 mmol)을 무수 아세토니트릴 20mL에 넣어 준 다음 상온에서 교반시켜준다. 여기에 HEMA 0.716g(5.2mmol)을 넣어 준다. 상온에서 2시간 동안 교반시켜 준 다음, 적하깔대기를 장착한 후, 상기 22번 물질 1g을 무수 아세토니트릴 5mL에 녹인 후 조금씩 적하시킨다. 상온에서 3시간 동안 반응시킨다. 반응 시 생기는 염(diisopropylammonium dichloroimidazolide)은 걸러 제거시킨다. 여과된 용액은 회전증발기를 이용하여 용매를 제거시켜 준 다음 상온 진공 건조한다.In a 100 mL three-necked flask equipped with a drying tube under nitrogen atmosphere, add 0.716 g (5.2 mmol) of 4,5-dichloroimidazole to 20 mL of anhydrous acetonitrile and stir at room temperature. Add 0.716 g (5.2 mmol) of HEMA. After stirring for 2 hours at room temperature, a dropping funnel was installed, and 1 g of the No. 22 material was dissolved in 5 mL of anhydrous acetonitrile and then dropwise added little by little. The reaction is carried out at room temperature for 3 hours. The salt produced during the reaction (diisopropylammonium dichloroimidazolide) is filtered out. The filtered solution is removed by using a rotary evaporator and then vacuum dried at room temperature.

1.3 Ethylene 2-(methacryloyl)ethyl phosphate (24) 합성1.3 Synthesis of Ethylene 2- (methacryloyl) ethyl phosphate (24)

Scheme 3 Scheme 3

Figure 112008055717568-pat00003
Figure 112008055717568-pat00003

100mL 삼구 플라스크에 무수 아세토니트릴 10mL와 trimethylamine-N-oxide 0.373g(4.9mmol)을 넣어 준 다음 상온에서 교반시켜 준다. 삼구 플라스크에 적하깔대기를 장착하고 상기 23번 물질 1.09g(4.9mmol)과 acetonitrile 10mL를 넣은 후 조금씩 적하시켜준다. 상온에서 3시간 동안 교반시켜 준 후 회전증발기를 이용하여 용매를 제거시킨 후 상온 진공 건조한다.In a 100 mL three-necked flask, add 10 mL of anhydrous acetonitrile and 0.373 g (4.9 mmol) of trimethylamine- N -oxide, and then stir at room temperature. Install a dropping funnel in a three-necked flask, add 1.09 g (4.9 mmol) of substance No. 23 and 10 mL of acetonitrile, and then dropwise dropwise. After stirring at room temperature for 3 hours, the solvent was removed using a rotary evaporator, followed by vacuum drying at room temperature.

1.4 1.4 HEMAHEMA -- PCPC 4. 합성 4. Synthesis

Scheme 4 Scheme 4

Figure 112008055717568-pat00004
Figure 112008055717568-pat00004

압력병의 온도를 -20 oC로 낮춘 후 합성한 24번 물질(2.7g, 11.4mmol)에 차가운 무수 아세토니트릴을 20mL 넣어 녹인 용액을 넣어 준다. trimethylamine을 과량으로 7.0mL 넣어준 후 50 incubator에서 48시간 동안 반응시킨다. 회전증발기를 이용하여 용매를 제거시켜준다. After reducing the temperature of the pressure bottle to -20 o C, add 20 mL of cold anhydrous acetonitrile to the synthesized substance No. 24 (2.7g, 11.4mmol) and add the dissolved solution. After adding 7.0mL of trimethylamine in excess, react for 50 hours in a 50 incubator. The solvent is removed using a rotary evaporator.

실시예Example 2:  2: pHpH 센서용 고분자막 제조 Polymer film for sensor

2개의 test tube에 2-히드록시에틸 메타크릴레이트(hydroxyethyl methacrylate, HEMA) 0.65mL (5.4mmol), 우레탄디메타크릴레이트(urethanedimethacrylate, UMDA) 0.72g (6.6mmol)를 첨가하고 메탄올 2.35mL를 첨가시켜 전체 용액이 3mL가 되게 하였다. 여기에, 2-메타크롤옥시에틸 포스포릴콜린(methacryoloxyethyl phosphorycholine, MPC) 4.8mg (0.016mmol), 벤조인 이소부틸 에테르(benzoin isobuthyl ether) 24㎕를 첨가한 다음, 각각의 test tube에 플루오레세인 메타크릴레이트(fluorescein methacrylate, FM) 21.6mg(0.054mmol), 43.2mg (0.108mmol)을 첨가하고, 질소가스를 15분간 불어넣어 용액 중의 산소를 제거하였다(하기 표 1 참고). To the two test tubes, add 0.65 mL (5.4 mmol) of 2-hydroxyethyl methacrylate (HEMA), 0.72 g (6.6 mmol) of urethanedimethacrylate (UMDA), and add 2.35 mL of methanol. The total solution was made to 3 mL. To this, 4.8 mg (0.016 mmol) of 2-methacryloloxyethyl phosphorycholine (MPC) and 24 µl of benzoin isobuthyl ether were added, followed by fluorescein in each test tube. 21.6 mg (0.054 mmol) and 43.2 mg (0.108 mmol) of methacrylate (fluorescein methacrylate, FM) were added, and nitrogen gas was blown for 15 minutes to remove oxygen from the solution (see Table 1 below).

[표 1] 고분자막 Ⅰ 및 II의 제조조건[Table 1] Manufacturing Conditions of Polymer Membranes I and II

가교결합된 고분자막Crosslinked polymer membrane FA
mg (mmol)
FA
mg (mmol)
HEMA
g (mmol)
HEMA
g (mmol)
UDMA
g (mmol)
UDMA
g (mmol)
MPC
mg (mmol)
MPC
mg (mmol)
Benzoin
isobutyl ether
(mmol)
Enzoin
isobutyl ether
(mmol)

Adhesion

Adhesion
I 21.6 (0.054)21.6 (0.054) 0.7 (5.4)0.7 (5.4) 0.72 (6.6)0.72 (6.6) 4.8 (0.016)4.8 (0.016) 24 (0.094)24 (0.094) 4B4B IIII 43.2 (0.108)43.2 (0.108) 0.7 (5.4)0.7 (5.4) 0.72 (6.6)0.72 (6.6) 4.8 (0.016)4.8 (0.016) 24 (0.094)24 (0.094) 4B4B

상기 제조된 용액을 24-well plate에 각각 60㎕ 씩 넣은 다음 질소로 충진된 glove box에 넣고 310 nm파장의 자외선(UV)을 15분간 조사하여 고분자막을 제조한 후, 3차 증류수에 하루 정도 담궈 안정화시킨 후 건조시켰다. 상기 과정을 반응식으로 나타내면 다음과 같다.60 μl of the prepared solution was put into a 24-well plate, and then put into a glove box filled with nitrogen and irradiated with UV light of 310 nm for 15 minutes to prepare a polymer membrane, and then dipped in tertiary distilled water for about 1 day. After stabilization it was dried. The process is represented by the following scheme.

Figure 112008055717568-pat00005
Figure 112008055717568-pat00005

상기 제조된 광중합된 고분자막의 두께는 4.99㎛ 이었으며, UV/Vis 스펙트럼을 이용하여 투과율을 측정한 결과 400nm 이상에서 100%에 가까운 투과율을 보였다. cross hatch cutter로 고분자막의 경도를 측정한 결과 4B로 나타나 비교적 고분자막의 강도가 우수함을 알 수 있었다. 여기서, cross hatch cutter는 6개의 날이 있는 cutter를 코팅재료의 표면에 가로와 세로로 두 번 선을 그어 25개의 정사각형의 패턴을 만든 다음 끊어진 패턴의 모양과 벗겨짐 정도로 표면의 강도를 측정하는 방법이다. 패턴의 모양이 모두 완전한 사각형을 이루고 모서리가 떨어지지 않으면 ASTM(American Society of Testing Materials) 방법의 5B에 해당되고, 4B에 속하는 것은 가로와 세로가 교차된 부분이 5% 이내에서 영향을 받았을 때에 해당된다.The thickness of the prepared polymerized polymer membrane was 4.99 μm, and the transmittance was measured using UV / Vis spectrum. As a result of measuring the hardness of the polymer membrane with a cross hatch cutter, it was found to be 4B. Here, the cross hatch cutter is a method of measuring the strength of the surface to the extent of the shape of the broken pattern and peeling after making a pattern of 25 squares by cutting the six-blade cutter horizontally and vertically twice on the surface of the coating material. . If the shape of the pattern is completely square and does not fall off, it falls under 5B of the American Society of Testing Materials (ASTM) method, and in 4B when the cross and vertical cross sections are affected within 5%. .

실험예Experimental Example 1:  One: pHpH 에 따른 In accordance 형광세기Fluorescence intensity 측정 Measure

24-well plate 상에 광가교된 고분자막 위에 pH 3 ~ pH 12 순으로 완충용액을 차례대로 1.0mL 씩 넣은 다음, 형광 스펙트럼을 이용하여 λex(여기파장)/λem(방출파장) = 395 nm / 530 nm에서 형광의 세기를 측정하였다. 측정 후 완충용액을 제거 한 다음 반대로 pH 12 ~ pH 3 순으로 완충용액을 넣고 동일한 방법으로 측정하 였다. 동일한 방법으로 10회 반복 측정하여 평균값을 구한 후, 표준편차를 이용하여 오차범위를 측정하였다. 1.0 mL of buffer solution was added sequentially in the order of pH 3 to pH 12 on the light-crosslinked polymer membrane on the 24-well plate, and λ ex (excitation wavelength) / λ em (emission wavelength) = 395 nm The intensity of fluorescence was measured at / 530 nm. After the measurement, the buffer solution was removed, and then the buffer solution was added in the order of pH 12 to pH 3 and measured in the same manner. After repeating the measurement 10 times in the same manner to obtain the average value, the error range was measured using the standard deviation.

그 결과 도 1(a)에 나타난 바와 같이 pH 3 ~ 12의 범위에서 고분자막 II의 pH에 따른 형광변화가 더 민감하게 나타났으며, 도 1(b)에 나타낸 바와 같이 고분자막 II의 pH 6에서 11까지의 선형도 R2(correlation coefficient)의 값은 0.9928로 나타났다. 따라서, pH에 대해서 형광세기의 선형도가 우수한 고분자막 II를 이용하면 pH의 측정오차를 줄일 수 있다는 것을 알 수 있었다. As a result, as shown in FIG. 1 (a), the fluorescence change according to the pH of the polymer membrane II was more sensitive in the range of pH 3 to 12, and as shown in FIG. Of linearity R 2 (correlation coefficient) The value was found to be 0.9928. Therefore, it was found that the measurement error of pH can be reduced by using the polymer membrane II having excellent linearity of fluorescence intensity with respect to pH.

실험예Experimental Example 2. 접촉시간에 따른 고분자막의 안정성 측정 2. Measurement of Stability of Polymer Membrane According to Contact Time

실시예 1에서 제조된 고분자막 I, II 중 실험예 1에서 pH 변화에 대한 형광세기의 선형도가 우수한 것으로 확인된 고분자막 II을 이용하여 완충용액과의 접촉시간에 따른 pH에 대한 고분자막의 안정성을 조사하였다. 24-well plates 상에 광가교된 고분자막 II 위에 pH 6의 완충용액 1.0mL를 넣고, 형광 스펙트럼을 이용하여 λex em = 395nm / 530nm의 파장에서 7초 간격으로 형광세기를 80회 반복 측정한 후 완충용액을 버리고 다시 pH 7의 완충용액을 넣고 동일한 방법으로 측정하였다. 전술한 바와 같은 방법으로 각각 pH 8 ~ pH 11인 완충용액에 대해서도 형광세기를 측정하였다.Investigation of the stability of the polymer membrane with respect to pH according to the contact time with the buffer solution using the polymer membrane II of the polymer membrane I, II prepared in Example 1 was confirmed that the linearity of the fluorescence intensity with respect to the pH change in Experimental Example 1 It was. Put 1.0 mL of buffer solution of pH 6 on the photocrosslinked polymer membrane II on the 24-well plates and λ ex using a fluorescence spectrum / λ em After fluorescence intensity was measured 80 times at 7 second intervals at a wavelength of 395 nm / 530 nm, the buffer solution was discarded, and the pH 7 buffer solution was added again. Fluorescence intensity was also measured for buffers having a pH of 8 to 11, respectively, as described above.

그 결과 도 2에 나타난 바와 같이, 측정 결과 pH가 산성에서 염기성으로 변화함에 따라 형광세기는 증가하였으며, pH가 일정하게 유지될 때에는 상기 고분자 막 II와 완충용액과의 접촉시간이 길어지더라도 고분자막 II의 형광세기도 거의 일정하게 안정적으로 나타났다. As a result, as shown in FIG. 2, the measurement result showed that the fluorescence intensity increased as the pH was changed from acidic to basic, and when the pH was kept constant, the polymer membrane II was increased even if the contact time between the polymer membrane II and the buffer solution was increased. The fluorescence intensity of was also almost constant.

실험예Experimental Example 3: 재현성 측정 3: Reproducibility Measurement

형광염료를 매트릭스에 고정화시키는 것은 pH 감지막을 장기적으로 사용할 수 있고, 형광염료가 침출되지 않도록 하는데에 있어 가장 중요하다. 24-well plates 상에 광가교된 고분자막 II 위에 pH 6의 완충용액을 1.0mL 넣고, 형광 스펙트럼을 이용하여 λex / λem = 395nm / 530nm의 파장에서 7초 간격으로 30회 동안 형광세기를 측정한 후 완충용액을 버린 다음, 다시 pH 11의 완충용액 1.0mL를 넣어 같은 방법으로 210초 동안 형광세기를 측정하였다. 전술한 바와 같은 방법으로 pH 6 과 pH 11의 완충용액을 번갈아 사용하여 5회 반복 측정하였다. Immobilization of the fluorescent dye on the matrix is most important for the long-term use of the pH sensing film and to prevent the fluorescent dye from leaching. Put 1.0 mL of buffer solution of pH 6 on the photocrosslinked polymer membrane II on the 24-well plates and λ ex using the fluorescence spectrum After measuring fluorescence intensity for 30 times at intervals of 7 seconds at a wavelength of λ em = 395 nm / 530 nm, the buffer solution was discarded, and then the fluorescence intensity was measured for 210 seconds by adding 1.0 mL of pH 11 buffer solution. . In the same manner as described above, repeated measurements were repeated five times using alternating buffers of pH 6 and pH 11.

그 결과 도 3에 나타난 바와 같이, pH 변화에 따른 고분자막 II의 응답시간은 7초 정도로 비교적 빠르게 나타났으며, 각각의 pH에서 안정적인 형광세기 값이 나타났다. 이와 같이 고분자막 II에 양성자의 침투가 빠르게 일어나 pH 변화에 따른 형광의 변화가 안정적이면서 빠르고 재현성 있게 나타나므로, 상기 고분자막 II를 pH 측정용 형광센서로서 유용하게 사용할 수 있을 것으로 사료된다.As a result, as shown in Figure 3, the response time of the polymer membrane II according to the pH change appeared to be relatively fast as about 7 seconds, the stable fluorescence intensity value at each pH appeared. As the protons penetrate into the polymer membrane II rapidly, the fluorescence change is stable and quick and reproducible according to the pH change. Therefore, the polymer membrane II may be usefully used as a fluorescence sensor for pH measurement.

실험예Experimental Example 4: 온도  4: temperature 영향성Impact 측정 Measure

24-well plate 상에 광가교된 고분자막 II를 25℃, 28℃, 31℃, 34℃, 37℃ 의 온도에서 pH 6 ~ pH 11의 완충용액 1.0mL 넣고, 형광 스펙트럼을 이용하여 λex / λem = 395nm / 530nm의 파장에서 20회 동안 형광세기의 변화를 측정하였다. 측정시 고분자막 II의 온도가 기기내부의 온도와 일정하도록 30분 정도 유지시킨 후 측정하였다.Put 1.0 mL of the buffer solution of pH 6 to pH 11 at 25 ° C., 28 ° C., 31 ° C., 34 ° C., and 37 ° C. on a 24-well plate, and then use fluorescence spectra to measure λ ex / λ. The change in fluorescence intensity was measured for 20 times at a wavelength of em = 395nm / 530nm. During the measurement, the temperature of the polymer membrane II was maintained for about 30 minutes so as to be constant with the temperature inside the apparatus.

그 결과 도 4에 나타난 바와 같이, 온도가 변함에 따라 형광 세기 값의 변화가 거의 없으므로 광가교된 고분자막 II는 온도변화에도 안정한 것을 알 수 있었다. 따라서 광가교된 고분자막 II는 이 범위의 온도에 대해 큰 영향을 받지 않는다는 것을 알 수 있었다. As a result, as shown in FIG. 4, it was found that the photocrosslinked polymer membrane II was stable even with temperature change because there was almost no change in fluorescence intensity value as the temperature was changed. Therefore, it was found that the photocrosslinked polymer membrane II was not significantly affected by the temperature in this range.

실험예Experimental Example 5: 이온 선택성 측정 5: Ion Selectivity Measurement

실시예 1에서 제조된 고분자막이 양성자 이외의 이온들에 의해서 영향을 받지 않고 양성자 이온에만 민감하게 반응하는지를 확인하기 위하여, 상기 고분자막의 이온 선택성 측정실험을 하였다. 광가교된 고분자막 II의 이온 종류에 따른 형광세기의 변화 측정을 위하여 중성인 pH 7과 pH 10의 완충용액을 사용하여 각각 다른 종류의 이온을 포함하는 무기화합물의 50mM 농도의 이온용액을 제조하였다. 상기 이온용액은 각각의 무기화합물을 MeOH 1.0mL에 녹여 제조하였다. 이 때, 사용될 수 있는 무기화합물은 KI, KCl, NaCl, NaBr, Na2SO4, cupric nitrate, CuSO4, CaCl2, MgSO4, BaCl2, NH4Cl, nickel(II), sulfate hexahydrate, tetraethyl ammonium bromide, urea 및 cobalt nitrate이나, 이에 제한되는 것은 아니다. In order to determine whether the polymer membrane prepared in Example 1 is not affected by ions other than protons and reacts only to proton ions, an ion selectivity measurement experiment of the polymer membrane was performed. In order to measure the change in fluorescence intensity according to the type of ions of the photocrosslinked polymer membrane II, a buffer solution of neutral pH 7 and pH 10 was used to prepare a 50 mM concentration of an inorganic compound containing different types of ions. The ion solution was prepared by dissolving each inorganic compound in 1.0 mL of MeOH. At this time, inorganic compounds that can be used are KI, KCl, NaCl, NaBr, Na 2 SO 4 , cupric nitrate, CuSO 4 , CaCl 2 , MgSO 4 , BaCl 2 , NH 4 Cl, nickel (II), sulfate hexahydrate, tetraethyl ammonium bromide, urea and cobalt nitrate, but are not limited to these.

24-well plate에 광가교된 고분자막 II 위에 pH 7의 완충용액을 0.98mL 넣고, 형광 스펙트럼을 이용하여 λex / λem = 395nm / 530nm 에서의 형광세기(F0)를 20회 반복측정하였다. 여기에 50mM의 이온용액 차례로 20㎕씩 넣어 1.0mM의 이온농도가 되게 한 다음 다시 형광세기(F)를 20회 반복측정하였다. pH 10 완충용액도 동일한 방법으로 측정하였다. 각각의 실험 측정값의 평균을 구하여 상대적인 형광변화치(Relative fluorescence change value)(%)를 구하였다. Put 0.98 mL of pH 7 buffer solution on the photocrosslinked polymer membrane II in a 24-well plate and use fluorescence spectrum to λ ex The fluorescence intensity (F 0 ) at / λ em = 395 nm / 530 nm was measured 20 times. 20 μl each of 50mM ionic solution was added thereto so as to have an ion concentration of 1.0 mM, and the fluorescence intensity (F) was repeated 20 times. pH 10 buffer was also measured in the same manner. Relative fluorescence change value (%) was calculated by averaging each measured value.

Relative fluorescence change value (%) = △F / F0 ×100Relative fluorescence change value (%) = ΔF / F 0 × 100

여기서, △F = F-Fo 이고, F0 는 이온을 첨가하지 않았을 때의 완충용액에서 측정한 형광세기이며, F는 완충용액에 이온을 첨가했을 때의 형광세기이다. 상기 각각의 이온용액 내에 이온들이 존재할 때, 고분자막 II의 상대적인 형광세기 변화값(%)을 형광 스펙트럼을 이용하여 pH 7 및 pH 10에서 측정하였다. 그 결과, 표 2에 나타난 바와 같이, pH 7 및 pH 10에서 일부 무기 화합물들이 녹지 않았으며, 고분자막 II의 상대적인 형광세기 변화값은 4% 이내로 여러 이온들에 의해 거의 영향을 받지 않고 수소 이온에만 선택적으로 영향을 받는 것을 알 수 있었다. Where ΔF = FF o ego, F 0 is the fluorescence intensity measured in the buffer solution when no ions are added, and F is the fluorescence intensity when the ion is added to the buffer solution. When ions were present in the respective ionic solutions, the relative fluorescence intensity change (%) of the polymer membrane II was measured at pH 7 and pH 10 using fluorescence spectra. As a result, as shown in Table 2, some inorganic compounds did not dissolve at pH 7 and pH 10, and the relative fluorescence intensity change of the polymer membrane II was within 4%, almost unaffected by various ions and selective only to hydrogen ions. It was found to be affected.

[표 2]TABLE 2

Interference a Interference a Relative fluorescence
change value (%) b
at pH 7.00
Relative fluorescence
change value (%) b
at pH 7.00
Relative fluorescence
change value (%) b
at pH 10.02
Relative fluorescence
change value (%) b
at pH 10.02
KIKI -3.22-3.22 -1.33-1.33 KClKCl 0.940.94 3.973.97 NaClNaCl -2.22-2.22 -3.04-3.04 NaBrNaBr -3.90-3.90 1.361.36 Na2SO4 Na 2 SO 4 2.912.91 2.452.45 Cupiric NitrateCupiric nitrate -- -- CuSO4 CuSO 4 -- -- CaCl2 CaCl 2 -- -- MgSO4 MgSO 4 -2.65-2.65 -- BaCl2 BaCl 2 -- -- NH4ClNH 4 Cl -3.85-3.85 -0.35-0.35 Nickel() sulfate hexahydrateNickel () sulfate hexahydrate -- -- Tetraethyl ammonium bromideTetraethyl ammonium bromide 0.320.32 2.622.62 UreaUrea -2.22-2.22 3.423.42 Cobalt nitrateCobalt nitrate -
-

a농도(1×10-3 mol L-1) a concentration (1 × 10 -3 mol L -1 )

b(△F/F)×100, 이 때, Fo와 F는 형광막이 각각 pH 7과 pH 10의 인산칼륨(photassium phosphate) 완충용액과 접촉했을 때의 형광세기이다. b (ΔF / F) × 100, wherein F o and F are the fluorescence intensities when the fluorescent film is in contact with a potassium phosphate buffer solution at pH 7 and pH 10, respectively.

결국, 실시예 1에서 제조한 고분자막 II는 양성자에 대해서만 형광의 변화가 크게 나타나고, 다른 방해 이온들이 존재할 경우에는 형광세기의 변화가 크게 나타나지 않으므로, 방해 이온은 pH 측정에 있어 영향을 미치지 않음을 알 수 있었다. 이 결과로부터, 실시예 2에서 제조한 고분자막은 여러 무기이온이 존재하여도 pH를 측정하는데 있어 방해를 받지 않음을 알 수 있었다.As a result, the polymer membrane II prepared in Example 1 showed a large change in fluorescence only for protons, and a change in fluorescence intensity did not appear significantly in the presence of other interfering ions, so that the interfering ions did not affect pH measurement. Could. From this result, it was found that the polymer membrane prepared in Example 2 was not disturbed in measuring the pH even if various inorganic ions were present.

실험예Experimental Example 6: 안정성 측정 6: stability measurement

24-well plate 상에 광가교된 고분자막 II 위에 상온에서 pH 10의 완충용액 1.0mL를 넣고 λex / λem = 395nm/ 530nm 파장에서 형광 스펙트럼을 이용하여 형광세기를 측정한다. 측정한 후 사용한 pH 10 완충용액은 버리고 일정기간 동안 상온, 공기 중에서 보관한 후 다시 pH 10의 완충용액을 이용하여 λex / λem = 395nm / 530nm 파장에서 형광세기를 측정하였다. 광중합된 고분자막 를 상온에서 pH 10의 완충용액을 이용하여 장기적으로 형광세기 측정을 하였으며 처음 측정한 형광세기 값으로 normalization 하였다. Put 1.0 mL of buffer solution of pH 10 at room temperature on the photocrosslinked polymer membrane II on the 24-well plate and apply λ ex The fluorescence intensity is measured using the fluorescence spectrum at a wavelength of λ em = 395 nm / 530 nm. PH 10 buffer solution used was measured after a storage in room temperature air for a period of time to discard again using a buffer solution of pH 10 λ ex Fluorescence intensity was measured at a wavelength of λ em = 395 nm / 530 nm. The photopolymerized polymer membrane was measured for a long time using a buffer solution of pH 10 at room temperature and normalized to the initial measured fluorescence intensity value.

그 결과 도 5에 나타난 바와 같이, 초기의 형광세기 값과 시간이 경과했을 때의 형광세기 값이 거의 일정하게 유지되는 것을 확인할 수 있었다.As a result, as shown in FIG. 5, it was confirmed that the initial fluorescence intensity value and the fluorescence intensity value over time were maintained substantially constant.

실험예Experimental Example 7: 미생물 점착도 측정 7: Microbial Adhesion Measurement

실시예 2에서 제조된 고분자막의 미생물 점착방지 점착도 실험을 하였다. 실란화시킨 유리판 상의 고분자 필름을 UV 램프로 멸균시킨다. LB 배지 3mL에 균주를 접종하여 37℃, 180rpm으로 24 시간 동안 활성화시켰다. 유리관에 활성화시킨 균주 50㎕, 배양액 5mL, 2개의 유리판 상의 고분자막을 넣고 37℃, 180rpm으로 15시간 동안 배양시켰다. 배양시킨 고분자막을 증류수로 1회 세척하고 건조하였다. crystal violet로 1분간 염색시키고 증류수로 깨끗이 세척 후 건조시키고, 다시 매염제인 iodine을 1분간 처리하고 건조시켰다. 95% 에탄올로 30초 동안 탈색 후 건조시키고 다시 safranin O에 30초 동안 염색시켜 건조시킨 후, 현미경으로 관찰하 였다. 그 결과 도 6에 나타난 바와 같이, MPC가 없는 고분자막은 미생물 점착정도가 많다는 것을 확인할 수 있었으며(도 6(a)), MPC를 포함한 고분자막은 미생물 점착정도가 매우 낮다는 것을 확인할 수 있었다(도 6(b)). 따라서 MPC를 함유한 고분자막이 MPC를 넣지 않는 고분자막보다 확연히 미생물 점착도가 낮다는 것을 확인할 수 있었다.Antimicrobial adhesion adhesion experiment of the polymer film prepared in Example 2 was performed. The polymer film on the silanized glass plate is sterilized with a UV lamp. The strain was inoculated with 3 mL of LB medium and activated at 37 ° C. and 180 rpm for 24 hours. 50 μl of activated strain, 5 mL of culture solution, and a polymer membrane on two glass plates were added to a glass tube, and the cells were incubated at 37 ° C. and 180 rpm for 15 hours. The cultured polymer membrane was washed once with distilled water and dried. Dyeing with crystal violet for 1 minute, washed thoroughly with distilled water and dried, and then treated with iodine, a mordant for 1 minute and dried. After destaining with 95% ethanol for 30 seconds and dried, and dyed again with safranin O for 30 seconds, and observed under a microscope. As a result, as shown in Figure 6, it was confirmed that the polymer membrane without MPC has a high degree of microbial adhesion (Fig. 6 (a)), the polymer membrane containing MPC was confirmed that the microbial adhesion is very low (Fig. 6). (b)). Therefore, it was confirmed that the polymer film containing MPC was significantly lower in microbial adhesion than the polymer film containing no MPC.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific parts of the present invention in detail, it will be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1(a)는 본 발명에 따른 고분자막 I, II의 pH에 따른 형광세기 측정결과를 나타낸 그래프이고, 도 1(b)는 pH 6~11 에서 고분자막 II의 pH에 따른 형광세기의 변화를 도시한 그래프이다Figure 1 (a) is a graph showing the measurement results of the fluorescence intensity according to the pH of the polymer membranes I, II according to the present invention, Figure 1 (b) shows the change in fluorescence intensity according to the pH of the polymer membrane II at pH 6 ~ 11 A graph

도 2는 본 발명에 따른 고분자막 II의 접촉시간에 따른 안정성 측정결과를 나타낸 그래프이다.2 is a graph showing the stability measurement results of the contact time of the polymer membrane II according to the present invention.

도 3은 본 발명에 따른 고분자막 II의 재현성 측정결과를 나타낸 그래프이다.3 is a graph showing the measurement results of reproducibility of the polymer membrane II according to the present invention.

도 4는 본 발명에 따른 고분자막 II의 온도 영향성 측정결과를 나타낸 그래프이다.4 is a graph showing the results of measuring the temperature influence of the polymer membrane II according to the present invention.

도 5는 본 발명에 따른 고분자막 II의 안정성 측정결과를 나타낸 그래프이다.5 is a graph showing the stability measurement results of the polymer membrane II according to the present invention.

도 6의 (a)는 MPC가 없는 고분자막의 미생물 점착도 측정결과를 나타낸 것이고, (b)는 MPC를 포함하는 본 발명에 따른 고분자막의 미생물 점착도 측정결과를 나타낸 것이다. Figure 6 (a) shows the microbial adhesion measurement results of the polymer membrane without MPC, (b) shows the microbial adhesion measurement results of the polymer membrane according to the present invention containing MPC.

Claims (15)

다음의 단계를 포함하는, 안티파울링(antifouling) 특성을 가지고, pH 3~11범위에서 선형적 형광변화를 나타내는 광학 pH센서용 고분자막의 제조방법:A method for producing a polymer membrane for an optical pH sensor, which has the antifouling property, and exhibits a linear fluorescence change in a pH range of 3 to 11, comprising the following steps: (a) 아크릴로니트릴(acrylonitrile), 아크릴아마이드(acrylamide), 메타크릴 아마이드(methacrylamide), 히드록시에틸메타크릴레이트(hydroxyethyl methacrylate, HEMA), 아크릴산(acrylic acid), 메타크릴산(methacrylic acid) 및 스티렌(styrene)으로 구성된 군에서 선택되는 기본 단량체 100 중량부에 대하여, 플루오레세인 그룹을 가진 단량체 0.01 ~ 30 중량부, 2-메타크롤옥시에틸 포스포릴콜린(2-methacryoloxyethylphosphorycholine, MPC) 단량체 0.1 ~ 10 중량부, 가교제 1 ~ 100 중량부, 광중합 개시제 0.001 ~ 20 중량부 및 용매 1 ~ 100 중량부를 혼합하여 혼합물을 제조하는 단계; 및(a) acrylonitrile, acrylamide, methacrylamide, hydroxyethyl methacrylate (HEMA), acrylic acid, methacrylic acid and 0.01 to 30 parts by weight of a monomer having a fluorescein group, 2-methacryoloxyethylphosphorycholine (MPC) monomers 0.1 to about 100 parts by weight of a basic monomer selected from the group consisting of styrene Preparing a mixture by mixing 10 parts by weight, 1 to 100 parts by weight of a crosslinking agent, 0.001 to 20 parts by weight of a photopolymerization initiator, and 1 to 100 parts by weight of a solvent; And (b) 상기 혼합물을 기질의 표면에 도포한 후, 자외선을 조사하는 광중합 반응을 수행하여 고분자막을 제조하는 단계.(b) applying the mixture to the surface of the substrate, and then performing a photopolymerization reaction that irradiates ultraviolet rays to produce a polymer membrane. 삭제delete 제1항에 있어서, 상기 (a)단계의 용매는 테트라히드로퓨란 (tetrahydrofuran), 아세톤(acetone), 메탄올(methanol), 에탄올(ethanol), 프로판올(propanol), 아세토니트릴(acetonitrile), 클로로포름(chloroform), 에틸 아세테 이트(ethyl acetate) 및 메틸에틸 케톤(methylethyl ketone)으로 구성된 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the solvent of step (a) is tetrahydrofuran (acetra), acetone (acetone), methanol (methanol), ethanol (ethanol), propanol, acetonitrile (acetonitrile), chloroform (chloroform ), Ethyl acetate and methyl ethyl ketone, the production method characterized in that any one or more selected from the group consisting of. 삭제delete 제1항에 있어서, 상기 (a)단계의 플루오레세인 그룹을 가진 단량체는 플루오레세인 메타크릴레이트 (fluorescein methacrylate)인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the monomer having a fluorescein group in step (a) is fluorescein methacrylate (fluorescein methacrylate). 삭제delete 제1항에 있어서, 상기 (a) 단계의 가교제는 CH2=CR1-R2-CR1=CH2 화합물이며, 여기서, R1은 수소 또는 메틸기이고, R2는 연결그룹으로서 -(CH2)n-, C6 -10 아릴, COO-(CH2)n-OOC, -O-(CH2)n-O- 및 CONH-(CH2)n-NHCO- (여기서, n은 1~10인 자연수)으로 구성된 군에서 선택되는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the crosslinking agent of step (a) is CH 2 = CR 1 -R 2 -CR 1 = CH 2 compound, wherein R 1 is hydrogen or methyl group, R 2 is-(CH) 2) n -, C 6 -10 aryl, COO- (CH 2) n -OOC , -O- (CH 2) n -O- , and CONH- (CH 2) n -NHCO- (wherein, n is 1 to 10) natural water). 제7항에 있어서, 상기 가교제는 UDMA[1,6-bis(carbonyloxyethyl- methacryloyl)-2,2,4-trimethylhaxane], 디비닐벤젠(divinylbenzene), 비스(bis)-GMA(diglycidylether methacrylate of bisphenol A), 2,2-비스[4-(2-히드록시-3-메타크릴옥시-프로폭시)-페닐]프로판 (2,2-bis[4-(2-hydroxy-3-methacryloxy-propoxy)- phenyl]propane) 및 트리에틸렌글리콜 디메타크릴레이트 (triethyleneglycol dimethacrylate)으로 구성되는 군에서 선택되는 것을 특징으로 하는 제조방법.The method of claim 7, wherein the crosslinking agent is UDMA [1,6-bis (carbonyloxyethyl-meththacryloyl) -2,2,4-trimethylhaxane], divinylbenzene, bis (bis) -diglycidylether methacrylate of bisphenol A ), 2,2-bis [4- (2-hydroxy-3-methacryloxy-propoxy) -phenyl] propane (2,2-bis [4- (2-hydroxy-3-methacryloxy-propoxy)- phenyl] propane) and triethyleneglycol dimethacrylate. 제1항에 있어서, 상기 (a) 단계의 광중합 개시제는 벤조인 알킬 에테르(benzoin alkyl ether), 벤조인 이소부틸에테르(benzoin isobutyl ether), 벤조페논(benzophenone), 아세토페논(acetophenone) 및 벤조페논/아민(benzophenone/amine)으로 구성된 군에서 선택되는 것을 특징으로 하는 제조방 법.The method of claim 1, wherein the photopolymerization initiator of step (a) is benzoin alkyl ether, benzoin isobutyl ether, benzophenone, acetophenone and benzophenone / Amine (benzophenone / amine) characterized in that the manufacturing method selected from the group consisting of. 제1항에 있어서, 상기 (b) 단계의 기질은 유리, 나무, 세라믹, 플라스틱 및 실리콘 웨이퍼로 구성된 군에서 선택되는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the substrate of step (b) is selected from the group consisting of glass, wood, ceramic, plastic, and silicon wafers. 제1항에 있어서, 상기 (b) 단계의 광중합 반응은 200 ~ 400nm 범위의 자외선을 1분 ~ 4시간 동안 조사하여 수행되는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the photopolymerization reaction of step (b) is performed by irradiating ultraviolet rays in the range of 200 to 400 nm for 1 minute to 4 hours. 제1항, 제3항, 제5항, 제7항 및 제8항 내지 제11항 중 어느 한 항의 방법에 의해 제조되고, 2-메타크롤옥시에틸 포스포릴콜린(2-methacryoloxyethylphosphorycholine, MPC) 단량체, 플루오레세인 (fluorescein) 그룹을 가진 단량체, 아크릴로니트릴(acrylonitrile), 아크릴아마이드(acrylamide), 메타크릴 아마이드(methacrylamide), 히드록시에틸메타크릴레이트(hydroxyethyl methacrylate, HEMA), 아크릴산(acrylic acid), 메타크릴산(methacrylic acid) 및 스티렌(styrene)으로 구성된 군에서 선택되는 기본 단량체를 함유하며, 안티 파울링 특성을 가지고, pH 3~11범위에서 선형적 형광변화를 나타내는 광학 pH 센서용 고분자막.A 2-methacryoloxyethylphosphorycholine (MPC) monomer prepared by the method of any one of claims 1, 3, 5, 7, and 8-11. , Monomers with fluorescein groups, acrylonitrile, acrylamide, methacrylamide, hydroxyethyl methacrylate (HEMA), acrylic acid Polymer membrane for optical pH sensor containing a basic monomer selected from the group consisting of, methacrylic acid (methacrylic acid) and styrene, has anti-fouling properties, and shows a linear fluorescence change in the pH range 3-11. 제12항에 있어서, 상기 고분자막은 pH 3 ~ 11에서 선형적으로 반응하는 것을 특징으로 하는 고분자막.The polymer membrane of claim 12, wherein the polymer membrane reacts linearly at pH 3-11. 제12항의 있어서, 상기 고분자막의 두께는 0.1 ~ 200㎛ 인 것을 특징으로 하는 고분자막.The polymer membrane of claim 12, wherein the polymer membrane has a thickness of 0.1 μm to 200 μm. 제12항의 고분자막을 함유하는 안티파울링 특성을 가지고, pH 3~11범위에서 선형적 형광변화를 나타내는 광학 pH 센서.Has antifouling properties containing the polymer membrane of claim 12, in the pH range 3-11 Optical pH sensor showing linear fluorescence change.
KR1020080075633A 2008-08-01 2008-08-01 Optical pH Sensing Polymeric Film Having Anti-fouling Property and Method for Preparing the Same KR100973055B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080075633A KR100973055B1 (en) 2008-08-01 2008-08-01 Optical pH Sensing Polymeric Film Having Anti-fouling Property and Method for Preparing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080075633A KR100973055B1 (en) 2008-08-01 2008-08-01 Optical pH Sensing Polymeric Film Having Anti-fouling Property and Method for Preparing the Same

Publications (2)

Publication Number Publication Date
KR20100013893A KR20100013893A (en) 2010-02-10
KR100973055B1 true KR100973055B1 (en) 2010-07-29

Family

ID=42087825

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080075633A KR100973055B1 (en) 2008-08-01 2008-08-01 Optical pH Sensing Polymeric Film Having Anti-fouling Property and Method for Preparing the Same

Country Status (1)

Country Link
KR (1) KR100973055B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101638106B1 (en) * 2014-07-02 2016-07-11 충남대학교 산학협력단 Fluorescent Poly(N-isopropyl acrylamide) Microgel, method for preparing of the same and sensor including the same
KR102541962B1 (en) * 2020-04-27 2023-06-14 주식회사 이너센서 DEVICE OF ELECTRODE AND pH SENSOR INCLUDING THE SAME

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970702991A (en) * 1994-05-02 1997-06-10 Optical sensor system for determining pH values and ionic strengths

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970702991A (en) * 1994-05-02 1997-06-10 Optical sensor system for determining pH values and ionic strengths

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문2;Analytical SCI*

Also Published As

Publication number Publication date
KR20100013893A (en) 2010-02-10

Similar Documents

Publication Publication Date Title
Li et al. New lanthanide ternary complex system in electrospun nanofibers: Assembly, physico-chemical property and sensor application
US5922612A (en) Optical sensor system for determining pH values and ionic strengths
Li et al. A novel fluorescence ratiometric pH sensor based on covalently immobilized piperazinyl-1, 8-napthalimide and benzothioxanthene
EP1960779B1 (en) Optical determination of glucose utilizing boronic acid adducts-ii
Xu et al. A highly selective fluorescent sensor for Fe3+ based on covalently immobilized derivative of naphthalimide
EP2181160B1 (en) Hpts-mono cys-ma polymerizable fluorescent dyes for use in analyte sensors
Dang et al. Tunable white-light emission hybrids based on lanthanide complex functionalized poly (ionic liquid): Assembly and chemical sensing
NZ526787A (en) Optical determination of glucose utilizing boronic acid adducts
CN106854286A (en) A kind of sulfydryl silver cluster coordination polymer, its preparation method and its application
Hisamoto et al. Molecular design, characterization, and application of multiinformation dyes for multidimensional optical chemical sensings. 2. Preparation of the optical sensing membranes for the simultaneous measurements of pH and water content in organic media
Yang et al. Photocontrolled proton transfer in solution and polymers using a novel photoacid with strong C–H acidity
DeGraff et al. Luminescence-based oxygen sensors
CN107245334A (en) A kind of water soluble polymer fluoresceins fluorescence probe for detecting mercury ion and preparation method thereof
KR100973055B1 (en) Optical pH Sensing Polymeric Film Having Anti-fouling Property and Method for Preparing the Same
CN106589400B (en) A kind of application of sulfydryl silver cluster coordination polymer in oxygen detection
Zhang et al. Biodegradable film enabling visible light excitation of Hexanuclear Europium (Ⅲ) complex for various applications
JPH01244362A (en) Light emitting probe complex for measuring ph and ph measuring method
CN115605760A (en) For CO 2 Sensing polymer matrix
Yu et al. Dual‐mode color‐changing pH sensor based on fluorescent MOF embedded photonic crystal hydrogel
Mohr Tailoring the sensitivity and spectral properties of a chromoreactand for the detection of amines and alcohols
Bian et al. Dissolved oxygen sensing characteristics of plastic optical fiber coated with hydrogel film
Shi et al. Polymerizable Oxygen Probe Derived from Platinum-Based Porphyrins for Oxygen Sensing and Pressure-Sensitive Paints
CN110483573B (en) Mitochondrial targeting hypochlorous acid ratio type two-photon fluorescent probe and preparation method and application thereof
CN111171807B (en) Dye/metal-organic framework composite material with second-order and third-order nonlinear optical properties and preparation method and application thereof
CN109142304B (en) pH visual ratio fluorescence sensor based on bimetallic organic framework and application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130515

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140430

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150818

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee