KR100971135B1 - Hybrid Nano Structure of ZnO and Si Nano Crystals And a Manufacturing method thereof - Google Patents

Hybrid Nano Structure of ZnO and Si Nano Crystals And a Manufacturing method thereof Download PDF

Info

Publication number
KR100971135B1
KR100971135B1 KR1020080030488A KR20080030488A KR100971135B1 KR 100971135 B1 KR100971135 B1 KR 100971135B1 KR 1020080030488 A KR1020080030488 A KR 1020080030488A KR 20080030488 A KR20080030488 A KR 20080030488A KR 100971135 B1 KR100971135 B1 KR 100971135B1
Authority
KR
South Korea
Prior art keywords
zno
nanocrystals
silicon
hybrid
oxide film
Prior art date
Application number
KR1020080030488A
Other languages
Korean (ko)
Other versions
KR20090105187A (en
Inventor
최석호
김성
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020080030488A priority Critical patent/KR100971135B1/en
Publication of KR20090105187A publication Critical patent/KR20090105187A/en
Application granted granted Critical
Publication of KR100971135B1 publication Critical patent/KR100971135B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명은 산화아연(ZnO) 나노결정과 실리콘(Si) 나노결정의 하이브리드 나노구조의 제조방법에 관한 것으로, 실리콘 기판(p-type)(10)상에 실리콘 산화막(SiOx)(12)을 이온빔 스퍼터링 증착법에 의해 두께 30nm-100nm로 증착시키는 제1 단계; RF 스퍼터링 증착법에 의해 상기 실리콘 산화막(12)상에 ZnO 박막(14)을 5-20nm가 되도록 증착시키는 제2 단계; 및 상기 실리콘 산화막(12)과 Zn0 박막(14)이 증착된 실리콘 기판(10)을 질소 분위기하에서 1000℃-1100℃의 온도에서 20분-60분 동안 급속열처리(Rapid Thermal Annealing)시키는 제3 단계;를 포함하여 이루어진 것을 특징으로 한다.The present invention relates to a method for manufacturing a hybrid nanostructure of zinc oxide (ZnO) nanocrystals and silicon (Si) nanocrystals, wherein an ion beam of a silicon oxide film (SiOx) 12 is formed on a silicon substrate (p-type) 10. A first step of depositing a thickness of 30 nm-100 nm by sputter deposition; Depositing a ZnO thin film 14 on the silicon oxide film 12 so as to have a thickness of 5-20 nm by RF sputter deposition; And a third step of rapidly thermally annealing the silicon substrate 10 on which the silicon oxide film 12 and the Zn0 thin film 14 are deposited for 20 minutes to 60 minutes at a temperature of 1000 ° C.-1100 ° C. under a nitrogen atmosphere. It characterized by comprising;

본 발명에 따르면, ZnO 나노결정과 Si 나노결정이 하이브리드되어 전자나 캐리어들의 전이가 예상됨으로써 새로운 발광 및 전이적 특성을 가지며 ZnO보다 매우 긴 캐리어 수명시간(lifetime)을 나타낼 수 있게 되는 효과가 있다.According to the present invention, ZnO nanocrystals and Si nanocrystals are hybridized, and thus, transition of electrons or carriers is expected, thereby having new luminescence and transitional properties and exhibiting a much longer carrier lifetime than ZnO.

산화아연 나노결정 및 실리콘 나노결정의 하이브리드, 나노구조, 급속열처리 Hybrid, nanostructured, rapid thermal treatment of zinc oxide nanocrystals and silicon nanocrystals

Description

산화아연 나노결정과 실리콘 나노결정의 하이브리드 나노구조 및 그의 제조방법{Hybrid Nano Structure of ZnO and Si Nano Crystals And a Manufacturing method thereof}Hybrid Nano Structure of ZnO and Si Nano Crystals And a Manufacturing Method

본 발명은 산화아연 나노결정과 실리콘 나노결정의 하이브리드 나노구조 및 그의 제조방법에 관한 것으로, 더욱 상세하게는 실리콘 기판위에 Zn0 나노결정과 Si 나노결정이 하이브리드되어 전자나 캐리어들의 전이가 예상됨으로써 새로운 발광 및 전이적 특성을 가지며 ZnO보다 매우 긴 캐리어 수명시간(lifetime)을 나타낼 수 있도록 하는 실리콘 나노결정과 ZnO 나노결정을 복합형태로 구현한 산화아연 나노결정과 실리콘 나노결정의 하이브리드 나노구조 및 그의 제조방법에 관한 것이다.The present invention relates to a hybrid nanostructure of zinc oxide nanocrystals and silicon nanocrystals and a method of manufacturing the same. More specifically, Zn0 nanocrystals and Si nanocrystals are hybridized on a silicon substrate, and thus a new light emission is expected. And hybrid nanostructures of zinc oxide nanocrystals and silicon nanocrystals in which silicon nanocrystals and ZnO nanocrystals are formed in a composite form having transitional characteristics and exhibiting a longer carrier lifetime than ZnO, and methods of manufacturing the same It is about.

종래 산화아연(ZnO:Zinc Oxide)은 직접 띠간격(direct bandgap) 반도체로써 상온에서 약 3.3 eV의 에너지 띠를 가지며, 60meV의 큰 엑시톤 (exciton)의 결합에너지(binding energy)를 갖는다. 산화아연(ZnO) 나노구조들은 덩어리(bulk) 산화아연(ZnO)과 비교하여 새로운 특성이 기대됨으로써 물성 및 응용소자로써 매우 매력 적이다. 나노 입자 또는 양자점, 나노선, 나노막대, 나노리본 또는 나노벨트와 같은 ZnO 나노구조들이 이온 주입범, 열증착, 화학 기상 증착법, 레이저 증착법 등 다양한 방법으로 제작되고 있다. 이러한 ZnO 나노구조의 전형적인 광루미네센스 (photoluminescence; PL) 스펙트럼은 가시광선 및 자외선 영역에서 나타난다. 자외선 PL은 ZnO의 에너지 띠 간격 (bandgap)에 기인하며, 가시광선 PL은 물질의 결함에 기인하는 것으로 알려져 있다. 또한 PL 피크(peak) 에너지와 PL 스펙트럼의 형태는 나노구조의 종류에 강하게 의존한다.Conventional zinc oxide (ZnO) is a direct bandgap semiconductor having an energy band of about 3.3 eV at room temperature and a binding energy of a large exciton of 60 meV. Zinc oxide (ZnO) nanostructures are very attractive as physical properties and applications as they expect new properties compared to bulk zinc oxide (ZnO). ZnO nanostructures such as nanoparticles or quantum dots, nanowires, nanorods, nanoribbons or nanobelts have been fabricated by various methods such as ion implanters, thermal deposition, chemical vapor deposition, and laser deposition. Typical photoluminescence (PL) spectra of these ZnO nanostructures appear in the visible and ultraviolet regions. Ultraviolet PL is known to be due to the energy bandgap of ZnO and visible PL is known to be due to defects in the material. Also, the PL peak energy and the shape of the PL spectrum strongly depend on the type of nanostructure.

한편, 실리콘(Si)은 반도체 산업에서 집적 회로의 기본적인 물질로 사용되어 왔지만 광전소자의 응용에는 제한적이었는데 그 근본적인 이유는 실리콘(Si)이 간접 띠간격(indirect bandgap) 물질로써 광발광 효율이 매우 낮을 뿐만 아니라 양자구속효과에 기초하여 효율 증대를 위해서 제작된 실리콘 나노결정 (NC) 및 나노점, 나노와이어와 같은 나노구조들도 실용적인 광소자 응용을 위해서는 여전히 부족한 효율을 보였다. 이런 일련의 단점에도 불구하고, 한 개의 실리콘 칩위에 광전소자와 전자소자들은 집적할 수 있다면 낮은 가격, 신뢰성, 그리고 실리콘 기반의 기술을 응용할 수 있다는 매우 큰 장점들을 가지고 있어서, 실리콘은 여전히 매우 매력적인 물질이다.On the other hand, silicon (Si) has been used as a basic material for integrated circuits in the semiconductor industry, but it is limited to the application of optoelectronic devices. The fundamental reason is that silicon (Si) is an indirect bandgap material, and thus the photoluminescence efficiency is very low. In addition, nanostructures such as silicon nanocrystals (NC), nanodots, and nanowires, which are manufactured to increase efficiency based on quantum confinement effects, still show insufficient efficiency for practical optical device applications. Despite this series of shortcomings, silicon is still a very attractive material because of its low cost, reliability, and the great advantage of applying silicon-based technology if the optoelectronics and electronics can be integrated on a single silicon chip. to be.

도 1은 종래 나노결정 하이브리드구조에서의 특성을 나타내는 도면이고, 도 2는 종래 나노입자와 나노튜브 하이브리드구조에서의 특성을 나타내는 도면이다.1 is a view showing the characteristics in the conventional nanocrystalline hybrid structure, Figure 2 is a view showing the characteristics in the conventional nanoparticles and nanotube hybrid structure.

도 1 및 도 2를 참조하면, 하이브리드 나노물질 또는 나노구조는 두 물질이나 구조 사이의 전자나 에너지의 상호작용에 의해 새로운 광학적 특성이나 전기적 특성들을 보이는 것으로 알려져 있다(도 1, Nature 429,642, 2004-양자우물과 나노결정의 하이브리드구조에서 에너지 전이에 의한 발광효율의 증대, 도 2, Adv. Mater.0000,1(2008), 나노입자와 나노튜브 하이브리드 구조에서 전자의 전이). 최근 실리콘 산화막(SiO2 또는 SiOX)속에 형성된 ZnO 나노입자들로부터 발광특성이 보고된 바 있다. 즉, 도 3은 종래 실리콘 나노결정 구조에서의 투과전자현미경(TEM) 사진이고, 도 4는 종래 실리콘 나노결정 구조에서의 포토루미네슨스(PL) 스펙트럼의 형태를 나타낸 그래프이고, 도 5는 종래 실리콘 나노결정 구조에서의 PL 수명(lifetime)을 나타낸 그래프이다.1 and 2, hybrid nanomaterials or nanostructures are known to exhibit new optical or electrical properties by interaction of electrons or energy between two materials or structures (Fig. 1, Nature 429,642, 2004-). Enhancement of Luminous Efficiency by Energy Transfer in Hybrid Structure of Quantum Well and Nanocrystals, FIG. 2, Adv. Mater.0000,1 (2008), Transfer of Electrons in Nanoparticle and Nanotube Hybrid Structures). Recently, luminescence properties have been reported from ZnO nanoparticles formed in silicon oxide (SiO 2 or SiO X ). That is, FIG. 3 is a transmission electron microscope (TEM) photograph of a conventional silicon nanocrystal structure, FIG. 4 is a graph showing the shape of a photoluminescence (PL) spectrum in a conventional silicon nanocrystal structure, and FIG. 5 is a conventional It is a graph showing the PL lifetime in the silicon nanocrystal structure.

도 3을 참조하면, 이온 빔 스퍼터링 증착(Ion beam sputtering deposition:IBRD)에 의해 두께 30nm의 SiOx를 상온에서 증착하고, 1100 ℃에서 20분 동안 열처리하여(annealing) Si 나노결정이 형성된다. x값의 변위는 1.0~1.8로 Si (NC)나노결정의 크기가 조절된 것으로서, x값이 증가함에 따라 3.78nm에서 2.12nm로 Si NC크기가 감소한다.Referring to FIG. 3, SiOx having a thickness of 30 nm is deposited at room temperature by ion beam sputtering deposition (IBRD), and Si nanocrystals are formed by annealing at 1100 ° C. for 20 minutes. The displacement of the x value is 1.0 to 1.8, and the size of the Si (NC) nanocrystal is controlled. As the x value increases, the Si NC size decreases from 3.78 nm to 2.12 nm.

도 4를 참조하면, PL은 x값 증가와 함께 857nm(1.45eV)에서 711nm(1.75eV)로 청색 천이한다.Referring to FIG. 4, PL blue transitions from 857 nm (1.45 eV) to 711 nm (1.75 eV) with increasing x value.

도 5를 참조하면, PL 수명은 Si NC 크기 증가와 함께 27.1㎲에서 50㎲로 PL수명이 증가한다.Referring to FIG. 5, the PL life is increased in PL life from 27.1 ms to 50 ms with increasing Si NC size.

그러나, ZnO 나노결정과 Si 나노결정이 하이브리드된(다르게는 복합된, 또는 융합된) 시스템에 대한 연구보고는 없었다.However, there have been no reports of systems in which ZnO nanocrystals and Si nanocrystals are hybridized (or otherwise combined or fused).

본 발명의 목적은 실리콘 기판위에 ZnO 나노결정과 Si 나노결정이 하이브리드되어 전자나 캐리어들의 전이가 예상됨으로써 새로운 발광 및 전이적 특성을 가지며 ZnO보다 매우 긴 캐리어 수명시간(lifetime)을 나타낼 수 있도록 하는 실리콘 나노층과 ZnO 나노층을 복합형태로 구현한 산화아연 나노결정과 실리콘 나노결정의 하이브리드 나노구조 및 그 제조방법을 제공함에 있다.It is an object of the present invention that a ZnO nanocrystal and a Si nanocrystal are hybridized on a silicon substrate so that a transition of electrons or carriers is expected, thereby having new luminescence and transitional properties and having a much longer carrier lifetime than ZnO. The present invention provides a hybrid nanostructure of a zinc oxide nanocrystal and a silicon nanocrystal in which a nanolayer and a ZnO nanolayer are formed in a composite form, and a method of manufacturing the same.

상기한 바와 같은 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따르면, 산화아연 나노결정과 실리콘 나노결정의 하이브리드 나노구조의 제조방법은 실리콘 기판(p-type)상에 실리콘 산화막(SiOx)을 이온빔 스퍼터링 증착법에 의해 두께 30nm-100nm로 증착시키는 제1 단계; RF 스퍼터링 증착법에 의해 상기 실리콘 산화막상에 ZnO 박막을 5-20nm가 되도록 증착시키는 제2 단계; 및 상기 실리콘 산화막과 Zn0 박막이 증착된 실리콘 기판을 질소 분위기하에서 1000℃-1100℃의 온도에서 20분-60분 동안 급속열처리(Rapid Thermal Annealing)시키는 제3 단계;를 포함하여 이루어진 것을 특징으로 한다.According to a preferred embodiment of the present invention for achieving the above object, a method for producing a hybrid nanostructure of zinc oxide nanocrystals and silicon nanocrystals ion beams of silicon oxide film (SiOx) on a silicon substrate (p-type) A first step of depositing a thickness of 30 nm-100 nm by sputter deposition; A second step of depositing a ZnO thin film on the silicon oxide film by 5-20 nm by RF sputter deposition; And a third step of rapidly thermally annealing the silicon substrate on which the silicon oxide film and the Zn0 thin film are deposited for 20 minutes to 60 minutes at a temperature of 1000 ° C. to 1100 ° C. under a nitrogen atmosphere. .

바람직하게는, 상기 제3 단계에서는 ZnO와 Si의 결정화 작업에 의해서 SiO2 속에 실리콘 나노결정(Si NC)과 ZnO NC이 섞여 있는 ZnO NC/Si NC 하이브리드 나노층이 형성되는 것을 특징으로 한다.Preferably, in the third step, a ZnO NC / Si NC hybrid nanolayer in which silicon nanocrystals (Si NC) and ZnO NC are mixed in SiO 2 is formed by crystallization of ZnO and Si.

이상 설명한 바와 같이, 본 발명에 따른 산화아연 나노결정과 실리콘 나노결정의 하이브리드 나노구조 및 그 제조방법에 의하면, Zn0 나노결정과 Si 나노결정이 하이브리드되어 전자나 캐리어들의 전이가 예상됨으로써 새로운 발광 및 전이적 특성을 가지며 ZnO보다 매우 긴 캐리어 수명시간(lifetime)을 나타낼 수 있게 되는 효과가 있다.As described above, according to the hybrid nanostructure of the zinc oxide nanocrystals and the silicon nanocrystals according to the present invention and a method for manufacturing the same, the Zn0 nanocrystals and the Si nanocrystals are hybridized to predict the transition of electrons or carriers. It has the effect of having a transfer property and being able to exhibit a much longer carrier lifetime than ZnO.

이하 본 발명에 따른 산화아연(ZnO) 나노결정과 실리콘 나노결정의 하이브리드 나노구조 및 그 제조방법에 대하여 첨부도면을 참조로 상세히 설명한다.Hereinafter, a hybrid nanostructure of a zinc oxide (ZnO) nanocrystal and a silicon nanocrystal and a method for manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings.

도 6 내지 도 8은 본 발명에 따른 ZnO-Si 나노결정의 하이브리드 나노구조의 제작과정을 순차적으로 나타낸 도면이고, 도 9는 본 발명에 따른 ZnO-Si 나노결정의 하이브리드 나노구조의 투과전자현미경(TEM)사진이고, 도 10은 본 발명에 따른 ZnO-Si 나노결정의 하이브리드 나노구조의 PL 스펙트럼을 나타낸 그래프이다.6 to 8 are views sequentially showing the manufacturing process of the hybrid nanostructure of ZnO-Si nanocrystals according to the present invention, Figure 9 is a transmission electron microscope of the hybrid nanostructure of ZnO-Si nanocrystals according to the present invention ( TEM) is a photograph, Figure 10 is a graph showing the PL spectrum of the hybrid nanostructure of ZnO-Si nanocrystals according to the present invention.

도 6 내지 도 9를 참조하면, 먼저 본 발명에 따른 ZnO-Si 나노결정의 하이브리드 구조는 실리콘 기판(p-type)(10)상에 실리콘 산화막(SiOx)(12)이 이온빔 스퍼터링 증착법에 의해 두께 30nm-100nm로 증착된다. 이때 x값의 변화는 1.0~1.8이다(도 6).6 to 9, first, a hybrid structure of ZnO-Si nanocrystals according to the present invention has a silicon oxide film (SiOx) 12 formed on a silicon substrate (p-type) 10 by ion beam sputtering deposition. Deposited at 30nm-100nm. At this time, the change in x value is 1.0 to 1.8 (FIG. 6).

이후, RF 스퍼터링 증착법에 의해 상기 실리콘 산화막(12)상에 ZnO 박막(14)이 5-20nm가 되도록 증착된다(도 7).Thereafter, a ZnO thin film 14 is deposited on the silicon oxide film 12 so as to have a thickness of 5-20 nm by RF sputtering deposition (FIG. 7).

이후, 상기 실리콘 산화막(12)과 Zn0 박막(14)이 증착된 실리콘 기판(10)이 질소 분위기하에서 1000℃-1100℃의 온도에서 20분-60분 동안 급속열처리(Rapid Thermal Annealing)된다. 이에 따라, ZnO와 Si의 결정화 작업에 의해서 SiO2 속에, 즉 실리콘 나노결정(Si NC)(22,24)과 ZnO NC(23)이 섞여있는 ZnO NC/Si NC 하이브리드 나노층(20)이 형성된다.Thereafter, the silicon substrate 10 on which the silicon oxide film 12 and the Zn0 thin film 14 are deposited is subjected to rapid thermal annealing for 20 minutes to 60 minutes at a temperature of 1000 ° C.-1100 ° C. under a nitrogen atmosphere. As a result, a ZnO NC / Si NC hybrid nanolayer 20 is formed in SiO 2 , that is, silicon nanocrystals (Si NCs) 22 and 24 and ZnO NC 23 are mixed by crystallization of ZnO and Si. do.

도 10을 참조하면, x값의 변화에 따른 ZnO NC의 PL 세기의 변화를 볼 수 있는데, 모든 x값에 대하여 하이브리드 나노층의 PL 세기는 단층 ZnO의 PL세기 보다 크게 증가하며, x=1.0에서 거의 10배이상 증가한다. 이는 하이브리드 ZnO/Si NC 형성에 기인하여 Si NC의 PL세기와도 관련이 있으며, 에너지 및 캐리어의 ZnO 전이에 따른 복사결합(radiative recombination)의 증가로 여겨진다.Referring to FIG. 10, it can be seen that the PL intensity of the ZnO NC is changed according to the change of the x value. For all x values, the PL intensity of the hybrid nanolayer increases more than the PL intensity of the single layer ZnO, and at x = 1.0 Almost 10 times more. This is also related to the PL strength of Si NC due to the hybrid ZnO / Si NC formation and is believed to be an increase in the radial recombination due to the ZnO transition of energy and carrier.

이상 설명한 바와 같이, 본 발명에서는 ZnO NC/Si NC의 하이브리드 나노층을 가진 산화아연 나노결정과 실리콘 나노결정의 하이브리드 나노구조는 각각 RF 스퍼터링 증착법과 이온 빔 스퍼터링 증착법을 이용하여 Si 위에 ZnO/SiOX의 복층구조의 증착 후 열처리에 의해서 제작하였다.As described above, in the present invention, the hybrid nanostructures of the zinc oxide nanocrystals and the silicon nanocrystals having the hybrid nanolayers of ZnO NC / Si NC are respectively ZnO / SiO X on Si using RF sputtering deposition and ion beam sputtering deposition. It was produced by heat treatment after deposition of the multilayer structure.

또한 SiOX의 산소 함유량 x는 1.0부터 1.8까지 변화하였다. ZnO/SiOX 박막은 ZnO NC/Si NC 하이브리드 나노구조를 형성하기 위하여 급속 열처리에 의해서 1000oC-1100oC에서 20분-60분 동안 실행하였다.In addition, the oxygen content x of SiO X changed from 1.0 to 1.8. ZnO / SiO X thin films were run for 20-60 minutes at 1000 o C-1100 o C by rapid heat treatment to form ZnO NC / Si NC hybrid nanostructures.

또한 고분해능 전자현미경 사진을 이용해서 x값의 변화에 따라서 4~5nm의 ZnO NC 과 2~10nm의 Si NC의 크기 변화를 관찰하였다.In addition, the size of ZnO NC of 4-5 nm and Si NC of 2-10 nm was observed according to the change of x value using high resolution electron micrograph.

하이브리드 나노층인 ZnO NC/Si NC의 모든 x값에서 하이브리드 나노층을 가진 하이브리드 나노구조의 PL 세기는 단층 ZnO의 PL 세기보다 크며, x=1.0에서 가장 큰 PL세기를 나타낸다.At all x values of the ZnO NC / Si NC, the hybrid nanolayer, the PL strength of the hybrid nanostructure with the hybrid nanolayer is greater than the PL strength of the single layer ZnO, and represents the largest PL strength at x = 1.0.

이러한 결과들은 ZnO와 SiOX의 하이브리드 나노층에 의해서 ZnO의 발광효율을 증대시키며, 나아가서 광전자소자로써의 Si기반의 공정 기술에 쉽게 접목시킬 수 있다.These results increase the luminous efficiency of ZnO by the hybrid nanolayer of ZnO and SiO X , and can be easily incorporated into Si-based process technology as an optoelectronic device.

그러나 본 발명의 적용분야는 이에 제한되는 것은 아니며 기타 메모리소자에도 적용될 수 있음은 물론이다.However, the field of application of the present invention is not limited thereto and may be applied to other memory devices.

도 1은 종래 나노결정 하이브리드구조에서의 특성을 나타내는 도면이다.1 is a view showing the characteristics of the conventional nanocrystalline hybrid structure.

도 2는 종래 나노입자와 나노튜브 하이브리드구조에서의 특성을 나타내는 도면이다.2 is a view showing the characteristics in the conventional nanoparticles and nanotube hybrid structure.

도 3은 종래 실리콘 나노결정 구조에서의 투과전자현미경(TEM) 사진이다.3 is a transmission electron microscope (TEM) image of a conventional silicon nanocrystal structure.

도 4는 종래 실리콘 나노결정 구조에서의 포토루미네슨스(PL) 스펙트럼을 나타낸 그래프이다.Figure 4 is a graph showing the photoluminescence (PL) spectrum in the conventional silicon nanocrystal structure.

도 5는 종래 실리콘 나노결정 구조에서의 PL 수명(lifetime)을 나타낸 그래프이다.5 is a graph showing the PL lifetime in the conventional silicon nanocrystal structure.

도 6 내지 도 8은 본 발명에 따른 ZnO-Si 나노결정의 하이브리드 나노구조의 제작과정을 순차적으로 나타낸 도면이다.6 to 8 are views sequentially showing the manufacturing process of the hybrid nanostructure of ZnO-Si nanocrystals according to the present invention.

도 9는 본 발명에 따른 ZnO-Si 나노결정의 하이브리드 나노구조의 투과전자현미경(TEM)사진이다.9 is a transmission electron microscope (TEM) photograph of a hybrid nanostructure of ZnO-Si nanocrystals according to the present invention.

도 10은 본 발명에 따른 ZnO-Si 나노결정의 하이브리드 나노구조의 PL 스펙트럼을 나타낸 그래프이다.10 is a graph showing the PL spectrum of the hybrid nanostructure of ZnO-Si nanocrystals according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10: 실리콘 기판10: silicon substrate

12: 실리콘 산화막12: silicon oxide film

14: ZnO 박막14: ZnO thin film

20: 하이브리드 나노층20: hybrid nanolayer

Claims (3)

실리콘 기판(p-type)(10)상에 실리콘 산화막(SiOx)(12)을 이온빔 스퍼터링 증착법에 의해 두께 30nm-100nm로 증착시키는 제1 단계와, RF 스퍼터링 증착법에 의해 상기 실리콘 산화막(12)상에 ZnO 박막(14)을 5-20nm가 되도록 증착시키는 제2 단계 및, 상기 실리콘 산화막(12)과 Zn0 박막(14)이 증착된 실리콘 기판(10)을 질소 분위기하에서 1000℃-1100℃의 온도에서 20분-60분 동안 급속열처리(Rapid Thermal Annealing)시키는 제3 단계로 이루어지는 산화아연 나노결정과 실리콘 나노결정의 하이브리드 나노구조의 제조방법에 있어서,A first step of depositing a silicon oxide film (SiOx) 12 on a silicon substrate (p-type) 10 with a thickness of 30 nm-100 nm by ion beam sputtering deposition, and on the silicon oxide film 12 by RF sputtering deposition A second step of depositing the ZnO thin film 14 to be 5-20 nm, and a silicon substrate 10 on which the silicon oxide film 12 and the Zn0 thin film 14 are deposited under a nitrogen atmosphere at a temperature of 1000 ° C.-1100 ° C. In the method of manufacturing a hybrid nanostructure of zinc oxide nanocrystals and silicon nanocrystals comprising a third step of rapid thermal annealing for 20 minutes to 60 minutes at 상기 제3 단계의 ZnO와 Si의 결정화 작업에 의해서 상기 실리콘 산화막(12; SiO2) 속에 실리콘 나노결정층(Si NC)(22,24)과 ZnO NC층(23)이 섞여있는 ZnO NC/Si NC 하이브리드 나노층(20)이 형성되는 것을 특징으로 하는 산화아연 나노결정 및 실리콘 나노결정의 하이브리드 나노구조의 제조방법.ZnO NC / Si in which silicon nanocrystalline layers (Si NCs) 22 and 24 and ZnO NC layers 23 are mixed in the silicon oxide film 12 (SiO 2 ) by the crystallization of ZnO and Si in the third step. Method for producing a hybrid nanostructure of zinc oxide nanocrystals and silicon nanocrystals, characterized in that the NC hybrid nanolayer 20 is formed. 삭제delete 삭제delete
KR1020080030488A 2008-04-01 2008-04-01 Hybrid Nano Structure of ZnO and Si Nano Crystals And a Manufacturing method thereof KR100971135B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080030488A KR100971135B1 (en) 2008-04-01 2008-04-01 Hybrid Nano Structure of ZnO and Si Nano Crystals And a Manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080030488A KR100971135B1 (en) 2008-04-01 2008-04-01 Hybrid Nano Structure of ZnO and Si Nano Crystals And a Manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20090105187A KR20090105187A (en) 2009-10-07
KR100971135B1 true KR100971135B1 (en) 2010-07-20

Family

ID=41534918

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080030488A KR100971135B1 (en) 2008-04-01 2008-04-01 Hybrid Nano Structure of ZnO and Si Nano Crystals And a Manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100971135B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113032A1 (en) * 2013-01-21 2014-07-24 Hewlett-Packard Development Company, L.P. Thin film stack
WO2014116208A1 (en) * 2013-01-23 2014-07-31 Hewlett-Packard Development Company, L.P. Thin film stack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101558801B1 (en) * 2014-08-21 2015-10-12 경희대학교 산학협력단 Photo diode using hybrid structure of graphene-silicon quantum dots and method of manufacturing the same
KR102230355B1 (en) * 2019-09-27 2021-03-22 강원대학교산학협력단 Synthesis of white-luminescence material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jpn. J. Appl. Phys. vol. 41(2002) pp. L543

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113032A1 (en) * 2013-01-21 2014-07-24 Hewlett-Packard Development Company, L.P. Thin film stack
WO2014116208A1 (en) * 2013-01-23 2014-07-31 Hewlett-Packard Development Company, L.P. Thin film stack

Also Published As

Publication number Publication date
KR20090105187A (en) 2009-10-07

Similar Documents

Publication Publication Date Title
Sun et al. Efficient quantum dot light-emitting diodes with a Zn 0.85 Mg 0.15 O interfacial modification layer
Zhao et al. Growth and device application of CdSe nanostructures
Sharma et al. Two-dimensional CdSe-based nanoplatelets: their heterostructures, doping, photophysical properties, and applications
Richters et al. Enhanced surface-excitonic emission in ZnO/Al2O3 core–shell nanowires
US7714317B2 (en) Assembly of ordered carbon shells on semiconducting nanomaterials
Wang et al. A highly efficient white quantum dot light-emitting diode employing magnesium doped zinc oxide as the electron transport layer based on bilayered quantum dot layers
US20100289003A1 (en) Making colloidal ternary nanocrystals
Li et al. Carrier Dynamics in Alloyed Chalcogenide Quantum Dots and Their Light‐Emitting Devices
Maeda Luminescence properties of β-FeSi2 and its application to photonics
KR100971135B1 (en) Hybrid Nano Structure of ZnO and Si Nano Crystals And a Manufacturing method thereof
Wageh Light emitting devices based on CdSe nanoparticles capped with mercaptoacetic acid
Mohammed et al. Synthesis of ZnS quantum dots for QDs-LED hybrid device with different cathode materials
TWI477441B (en) Nano particle complex and method of fabricating the same
JP2009298689A (en) Passivation method of non-radiative recombination center of zno sample and passivated zno sample prepared by the method
Mandal et al. Progressive advancement of ZnS-based quantum dot LED
Do Chung et al. Investigation of polymeric composite films using modified TiO2 nanoparticles for organic light emitting diodes
Amini et al. High-performance solution processed inorganic quantum-dot LEDS
Jin et al. Luminescence properties of MgO-sheathed and annealed ZnO nanowires
Pérez-Díaz et al. Study of silicon rich oxide light emitter capacitors using textured substrates by metal assisted chemical etching
Chung et al. Green Light Emission of ZnxCd1− xSe Nanocrystals Synthesized by One‐Pot Method
KR101633451B1 (en) Tunable light emitting diode using core-shell structured metal oxide-fullerene quantum dots and its preparing method
KR20030071914A (en) ZnO based quantum well and/or superlattice nanowires
Uddin et al. Fabrication of high efficient organic/CdSe quantum dots hybrid OLEDs by spin-coating method
KR101227575B1 (en) Method for improving light emitting efficiency of zinc oxide nanorod
KR100567395B1 (en) Multi-layered silicon compound films with nano-sized silicon grain and fabrication method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130705

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140617

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee