KR100965836B1 - Method for preparing metal catalyst comprising fluorine functionalized carbon support - Google Patents

Method for preparing metal catalyst comprising fluorine functionalized carbon support Download PDF

Info

Publication number
KR100965836B1
KR100965836B1 KR1020080083413A KR20080083413A KR100965836B1 KR 100965836 B1 KR100965836 B1 KR 100965836B1 KR 1020080083413 A KR1020080083413 A KR 1020080083413A KR 20080083413 A KR20080083413 A KR 20080083413A KR 100965836 B1 KR100965836 B1 KR 100965836B1
Authority
KR
South Korea
Prior art keywords
carbon
metal
metal catalyst
based support
fluorine
Prior art date
Application number
KR1020080083413A
Other languages
Korean (ko)
Other versions
KR20100024724A (en
Inventor
김석
손희진
이재락
박수진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020080083413A priority Critical patent/KR100965836B1/en
Publication of KR20100024724A publication Critical patent/KR20100024724A/en
Application granted granted Critical
Publication of KR100965836B1 publication Critical patent/KR100965836B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

본 발명에 따르는 연료전지용 금속촉매 제조방법은 탄소계 담지체에 직접 불소화 처리를 수행하여 불소 관능기가 도입된 탄소계 담지체를 제조하는 단계, 및 상기 탄소계 담지체에 금속을 담지시켜 금속촉매를 제조하는 단계를 포함하는 것을 특징으로 하며, 불소화 처리 온도를 변화시켜 탄소계 담지체에 도입되는 불소함량을 조절함으로써 금속 도입 과정에서 고가의 금속 촉매를 적게 사용하면서 전기화학적 활성을 향상시킬 수 있다.In the fuel cell metal catalyst manufacturing method according to the present invention, a method of preparing a carbon-based support having a fluorine functional group introduced therein by performing fluorination treatment directly on a carbon-based support, and carrying a metal on the carbon-based support may produce a metal catalyst. It characterized in that it comprises a step of manufacturing, by controlling the fluorine content introduced into the carbon-based support by changing the fluorination treatment temperature it is possible to improve the electrochemical activity while using less expensive metal catalyst in the metal introduction process.

연료전지, 불소 처리, 촉매 담지체, 카본블랙, 혼합금속, 촉매 활성, 온도 Fuel cell, fluorine treatment, catalyst carrier, carbon black, mixed metal, catalytic activity, temperature

Description

불소 관능기가 도입된 탄소계 담지체를 포함하는 금속촉매의 제조방법{METHOD FOR PREPARING METAL CATALYST COMPRISING FLUORINE FUNCTIONALIZED CARBON SUPPORT}METHODS FOR PREPARING METAL CATALYST COMPRISING FLUORINE FUNCTIONALIZED CARBON SUPPORT}

본 발명은 담지 효율 및 전기활성이 증가된 금속촉매의 제조방법 및 상기 금속촉매를 포함하는 연료전지에 관한 것이다.The present invention relates to a method for producing a metal catalyst with increased supporting efficiency and electrical activity, and to a fuel cell including the metal catalyst.

연료전지는 화학적 에너지를 전기적 에너지로 변환시키는 전기 화학적 장치로 고효율, 고출력, 무공해의 특징을 갖는 전력 공급 장치라는 점에서 차세대 청정 에너지 발전 시스템으로 각광받고 있다. 연료전지는 화학적 반응에 의해 전기를 발생시킨다는 점에서 건전지나 축전지 같은 보통전지와 비슷하지만 반응 물질인 수소와 산소를 외부로부터 공급받으므로 보통전지와는 달리 충전이나 교환이 필요 없고, 연료가 공급되는 한 전기를 발생시키는 일종의 발전 장치이다.A fuel cell is an electrochemical device that converts chemical energy into electrical energy, and has been in the spotlight as a next-generation clean energy generation system in that it is a power supply device having characteristics of high efficiency, high output, and pollution. Fuel cells are similar to ordinary batteries such as batteries and accumulators in that they generate electricity by chemical reactions.However, unlike ordinary batteries, fuel cells do not need to be charged or exchanged because they are supplied with hydrogen and oxygen, which are reactants. It is a kind of power generation device that generates electricity.

연료전지는 사용되는 연료와 작동 온도에 따라 분류될 수 있다. 즉, AFCs(알칼리 연료전지), PAFCs(인산형 연료전지), MCFCs(용융탄산염 연료전지), SOFCs(고 체산화물 연료전지), PEMFCs(고분자전해질 연료전지), DMFCs(직접 메탄올 연료전지)가 있다. 여러가지 형태의 연료전지 중에서 이동기기의 전원으로서 응용이 가능한 것은 PEMFCs와 DMFCs라고 할 수 있다. 그 중 DMFC는 연료로써 수소 대신 메탄올을 사용하기 때문에 전지의 소형화가 가능하다. 또한, 메탄올만 공급해주면 사용시간을 얼마든지 늘릴 수 있어서 배터리와 같은 용량의 제한이나 충전시간에 따른 불편함이 해소될 수 있다. 특히 휴대폰 인구의 폭발적인 증가에 따라 이러한 장점을 갖는 배터리 대체용 DMFC를 개발하려는 노력이 전 세계적으로 활발히 이루어지고 있다.Fuel cells can be classified according to the fuel used and the operating temperature. In other words, AFCs (alkaline fuel cells), PAFCs (phosphate fuel cells), MCFCs (molten carbonate fuel cells), SOFCs (high solid oxide fuel cells), PEMFCs (polymer electrolyte fuel cells), DMFCs (direct methanol fuel cells) have. Among various types of fuel cells, PEMFCs and DMFCs can be used as power sources for mobile devices. Among them, the DMFC uses methanol instead of hydrogen as fuel, so the battery can be miniaturized. In addition, by supplying only methanol can increase the use time can be eliminated inconvenience caused by the limitation of the capacity, such as the battery or charging time. In particular, with the explosive growth of the mobile phone population, efforts are being made worldwide to develop a DMFC for battery replacement having this advantage.

일반적으로 연료전지용 전극촉매는 금속 촉매 입자 크기가 작고 담지체에 균일하게 분산되어 넓은 영역의 촉매 활성점(active site)을 제공하고 산화환원 반응이 일어나는 표면적이 넓어야 한다. 즉 전극촉매 담지체는 넓은 표면적, 큰 세공부피, 높은 전기전도도를 가져야하는데, 현재 많이 사용되고 있는 전극 촉매 담지체인 탄소 재료는 불규칙적인 광범위한 세공구조, 낮은 세공부피, 낮은 전기 전도도등의 문제점을 가지고 있다.In general, an electrocatalyst for a fuel cell has a small metal catalyst particle size and is uniformly dispersed in a support to provide a wide area of catalytic active site and a large surface area where a redox reaction occurs. That is, the electrode catalyst carrier should have a large surface area, large pore volume, and high electrical conductivity. Carbon materials, which are widely used electrode catalyst carriers, have problems such as irregular and wide pore structure, low pore volume, and low electric conductivity. .

또한, 일반적으로 연료전지의 양극과 부극 전극재료의 촉매로서 가장 많이 이용되는 것은 촉매로써 가장 많이 이용되는 것은 귀금속 촉매이다. 즉 대표적인 귀금속 촉매인 백금 금속입자를 촉매 담지체에 담지하여 촉매전극으로 사용하고 있다. 이러한 귀금속 촉매는 매우 고가이어서 전기화학적 촉매 활성을 크게 감소시키지 않으면서 담지량을 감소시킬 필요성이 있다. 이러한 촉매반응의 원료가 주로 액상이나 기상이므로 촉매활성을 향상시키기 위해서는 백금 촉매 단위 무게당 비표면 적을 최대화시켜야 한다. 이를 위해서 가장 효과적인 방법이 백금 입자의 크기를 최소화하는 것이다. 따라서 백금촉매의 활성면적에는 백금촉매를 탄소에 담지하는 방법 및 탄소재료의 특성 등이 중요하게 작용된다. In addition, in general, the most commonly used as a catalyst for the anode and anode electrode material of the fuel cell is a noble metal catalyst that is most used as a catalyst. In other words, platinum metal particles, which are representative noble metal catalysts, are supported on a catalyst carrier and used as catalyst electrodes. These precious metal catalysts are very expensive and there is a need to reduce the amount of loading without significantly reducing the electrochemical catalyst activity. Since the raw material for the catalytic reaction is mainly liquid or gaseous phase, the specific surface area per unit weight of the platinum catalyst should be maximized to improve the catalytic activity. The most effective way to do this is to minimize the size of platinum particles. Therefore, the method of supporting the platinum catalyst on carbon and the properties of the carbon material are important for the active area of the platinum catalyst.

금속 촉매를 촉매담지체에 담지하는 방법은 많은 연구와 개발이 시도되어 왔다. 촉매층 제조에 많이 사용되고 있는 탄소재료는 카본블랙, 활성탄, 카본나노튜브 등으로 전극의 성능을 향상시키고 전지수명을 늘이기 위해서는 고성능 전극 촉매층을 제조하여야 한다. 그리하여 금속촉매의 활성면적을 높이기 위해서 탄소재료의 특성, 탄소재료에 금속 촉매를 담지하는 법이 중요하게 작용하는데, 카본블랙을 활성화시켜 촉매를 제조하는 방법, 연료 전지용 탄소 담지체에 직접 촉매를 코팅하는 방법, 무수 금속 염화물을 사용하는 백금 합금으로 직접 메탄올 연료전지용 전극 촉매를 제조하는 방법 등이 최근에 연료전지용 촉매 합성에 이용되고 있다. 그러나 이들 방법으로 제조된 촉매는 활성과 분산성이 충분하지 않은 문제가 있다. 또한 연료전지용 백금 촉매가 개질 가스 중에 CO를 흡착하거나, 피독되어, 그 실용화를 어렵게 하여 금속 촉매 제작에 많은 어려움이 있다.Many researches and developments have been made on the method of supporting the metal catalyst on the catalyst support. Carbon materials that are frequently used in the production of catalyst layers include carbon black, activated carbon, carbon nanotubes, etc., in order to improve electrode performance and extend battery life, high performance electrode catalyst layers should be prepared. Therefore, in order to increase the active area of the metal catalyst, the characteristics of the carbon material and the method of supporting the metal catalyst on the carbon material are important.How to prepare the catalyst by activating the carbon black, and coating the catalyst directly on the carbon carrier for the fuel cell And a method of producing an electrode catalyst for methanol fuel cell directly from a platinum alloy using anhydrous metal chloride, etc. have recently been used in fuel cell catalyst synthesis. However, catalysts prepared by these methods have a problem in that activity and dispersibility are not sufficient. In addition, the platinum catalyst for fuel cells adsorbs or poisons CO in the reformed gas, making it difficult to put into practical use, and there are many difficulties in producing the metal catalyst.

따라서, 본 발명은 담지 효율 및 전기화학적 활성이 우수한 금속촉매를 제조하는 방법 및 이를 통해 제조된 금속촉매를 제공하고자 한다.Accordingly, the present invention is to provide a method for producing a metal catalyst having excellent supporting efficiency and electrochemical activity, and a metal catalyst prepared through the same.

본 발명은 또한 상기 금속촉매를 포함하여 성능이 향상된 연료전지를 제공하고자 한다.The present invention also provides a fuel cell having improved performance, including the metal catalyst.

본 발명의 목적에 따라, 본 발명은 연료전지의 금속촉매 제조방법에 있어서, 탄소계 담지체에 직접 불소화 처리를 수행하여 불소 관능기가 도입된 탄소계 담지체를 제조하는 단계, 및 상기 탄소계 담지체에 혼합금속을 담지시켜 금속촉매를 제조하는 단계를 포함하는 금속촉매의 제조방법 및 이를 통해 제조된 금속촉매를 제공한다.In accordance with an object of the present invention, the present invention provides a method for producing a metal catalyst of a fuel cell, by performing a fluorination treatment directly on the carbon-based support to produce a carbon-based support in which a fluorine functional group is introduced, and the carbon-based support It provides a method for producing a metal catalyst comprising the step of supporting a mixed metal on the support to produce a metal catalyst and a metal catalyst prepared through this.

본 발명의 금속촉매 제조방법에 따르면, 불소화 처리시의 온도를 변화시킴에 따라 탄소계 담지체에 대한 혼합금속의 담지량과 입자크기를 조절할 수 있다.According to the metal catalyst production method of the present invention, by changing the temperature during the fluorination treatment, it is possible to adjust the amount and particle size of the mixed metal to the carbon-based support.

본 발명의 다른 목적에 따라, 본 발명은 상기의 방법으로 제조된 금속촉매를 포함하는 연료전지를 제공한다.According to another object of the present invention, the present invention provides a fuel cell comprising a metal catalyst prepared by the above method.

이와 같이 본 발명에서는 탄소계 담지체에 불소를 도입함으로써 혼합금속 도 입 과정에서 고가의 금속 촉매를 적게 사용하면서 전기화학적 활성을 향상시킬 수 있다. 또한 탄소계 담지체에 새로운 불소 관능기를 도입하였을 경우, 촉매의 크기를 제어할 수 있을 뿐 아니라 혼합 금속의 담지 효율이 높아져 촉매의 활성을 높일 수 있고, 성능 향상에 크게 기여할 수 있다. 본 방법은 앞으로 연료전지 촉매 개발에 중요한 역할을 할 것이라 예상되며 더 나아가 연료전지의 응용으로의 활발한 연구가 진행될 것이다.As described above, in the present invention, by introducing fluorine into the carbon-based support, the electrochemical activity can be improved while using less expensive metal catalysts in the process of introducing mixed metals. In addition, when a new fluorine functional group is introduced into the carbon-based support, not only the size of the catalyst can be controlled but also the supporting efficiency of the mixed metal can be increased, thereby increasing the activity of the catalyst and greatly contributing to performance improvement. This method is expected to play an important role in the development of fuel cell catalysts in the future, and further active research into the application of fuel cells will be conducted.

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따르는 금속촉매를 제조하는 방법은Method for producing a metal catalyst according to the present invention

(a) 탄소계 담지체에 직접 불소화 처리를 수행하여 불소 관능기가 도입된 탄소계 담지체를 제조하는 단계, 및(a) performing a fluorination treatment directly on the carbon-based support to prepare a carbon-based support having a fluorine functional group introduced therein; and

(b) 상기 불소 관능기가 도입된 탄소계 담지체에 금속을 담지시켜 금속촉매를 제조하는 단계를 포함한다.(b) preparing a metal catalyst by supporting a metal on the carbon-based support into which the fluorine functional group is introduced.

본 발명에서는 불소화 처리를 통하여 탄소계 담지체에 불소를 도입함으로써 새로운 기능성을 부여하며, 표면에 금속이 도입될 수 있는 사이트를 제공하게 된다. 이에 따라 금속의 담지 효율이 높아지게 되므로, 혼합금속 도입 과정에서 고가의 금속 촉매를 적게 사용하면서도 금속의 높은 담지 효율로 인해 촉매의 전기화학적 활성을 향상시킬 수 있다.In the present invention, by introducing fluorine into the carbon-based support through the fluorination treatment, it provides new functionality and provides a site on which a metal can be introduced to the surface. As a result, the supporting efficiency of the metal may be increased, and thus, the electrochemical activity of the catalyst may be improved due to the high supporting efficiency of the metal while using less expensive metal catalyst in the mixed metal introduction process.

본 발명에 따르는 제조 방법은, 상기 (a) 단계 이전에 표면에 존재하는 불순 물을 제거하기 위하여 전처리하는 단계를 추가로 포함할 수 있다. 이와 같은 전처리 단계로는 탄소계 담지체의 표면에 존재하는 비휘발성 물질과 같은 불순물을 휘발성 용매로 추출하여 제거하는 속슬렛(Soxhlet) 추출법이 바람직하며, 탄소계 담지체를 특정 조건으로 열처리 및 산(또는 알카리)처리하는 방법도 전처리 단계로서 사용할 수 있다.The production method according to the present invention may further comprise a step of pretreatment to remove impurities present on the surface before step (a). As such a pretreatment step, a Soxhlet extraction method of extracting and removing impurities such as nonvolatile substances present on the surface of the carbon-based support with a volatile solvent is preferable, and heat-treating and acidifying the carbon-based support under specific conditions (Or alkaline) treatment can also be used as a pretreatment step.

본 발명의 바람직한 제조 방법을 좀 더 구체적으로 설명하면, 먼저 전처리 과정을 통해 표면의 불순물을 제거한 탄소계 담지체를 내부의 산소와 수분을 제거시킨 반응기에서 순수한 불소가스와 반응시켜 표면 불소화 처리를 한다. 그리고 이렇게 얻은 불소 관능기가 도입된 탄소계 담지체를 용매에 분산시킨 뒤, 혼합금속을 첨가하고 교반시킨다. 이후 환원제를 첨가하고 가열시킨뒤, 고체 분말을 여과하고 세척 및 건조하여 최종 금속 촉매를 얻는다.In more detail, the preferred method of the present invention is first subjected to surface fluorination by reacting a carbon-based carrier from which surface impurities are removed through pretreatment with pure fluorine gas in a reactor from which oxygen and moisture are removed. . After dispersing the carbon-based carrier into which the fluorine functional group thus obtained is introduced into a solvent, a mixed metal is added and stirred. After the reducing agent is added and heated, the solid powder is filtered, washed and dried to obtain the final metal catalyst.

본 발명의 제조 방법에서 탄소계 담지체에 대한 불소화 처리는 0.01 내지 1 MPa하에 1 내지 30분간 수행될 수 있으며, 0.01 내지 0.2 MPa하에 5 내지 15분간 수행되는 것이 더욱 바람직하다. In the production method of the present invention, the fluorination treatment for the carbon-based support may be performed for 1 to 30 minutes under 0.01 to 1 MPa, and more preferably for 5 to 15 minutes under 0.01 to 0.2 MPa.

이 때, 상기 탄소계 담지체에 대한 불소 처리 온도는 상온 이상 800℃ 이하인 것이 바람직하며, 상온 이상 500℃ 이하인 것이 더욱 바람직하다.At this time, the fluorine treatment temperature for the carbon-based support is preferably at least 800 ° C, more preferably at least 500 ° C.

반응압력, 온도 및 반응시간이 이보다 낮거나 적을 경우, 탄소계 담지체의 표면에 반응이 충분하게 이루어지지 않으며, 반대로 이보다 높거나 많을 경우에는 탄소계 담지체에 과다한 영향을 주며, 반응정도에 변화가 없게 된다.If the reaction pressure, temperature and reaction time is lower or less than this, the reaction is not sufficient on the surface of the carbon-based support. On the contrary, if the reaction pressure, temperature and reaction time is higher or higher, the carbon-support is excessively influenced and the reaction degree is changed. There will be no.

본 발명의 발명자들은, 불소화 처리시의 온도를 변화시킴에 따라 탄소계 담 지체에 대한 불소 도입량이 달라지게 됨을 발견하였으며, 탄소계 담지체에 새로운 기능성을 부여하는 불소 관능기 도입량의 변화를 통해 결국, 혼합금속의 담지량 및 입자크기를 조절할 수 있음을 알아내게 되었다.The inventors of the present invention found that the amount of fluorine introduced into the carbon-based support is changed by changing the temperature at the time of fluorination treatment, and finally, through the change in the amount of fluorine functional group introduced, which gives new functionality to the carbon-based support, It was found that the loading amount and particle size of the mixed metal can be controlled.

상기 탄소계 담지체에 대한 불소 도입량은, 최종적인 금속 촉매의 전기화학적인 활성을 고려할 때, 탄소계 담지체 중량을 기준으로 5 내지 40 중량%인 것이 바람직하며, 10 내지 30 중량%인 것이 더욱 바람직하다.In consideration of the electrochemical activity of the final metal catalyst, the amount of fluorine introduced into the carbon-based support is preferably 5 to 40% by weight, more preferably 10 to 30% by weight, based on the weight of the carbon-based support. desirable.

아울러, 상기 탄소계 담지체에 담지되는 금속의 입자크기는 0.1 내지 4.5nm인 것이 바람직한데, 이는 탄소계 담지체에 대한 금속의 로딩 레벨을 높여 촉매의 활성을 증가시킬 수 있는 입자크기의 범위이며, 탄소계 담지체에 담지되는 금속의 함량은 금속촉매 중량을 기준으로 2 내지 30 중량%인 것이 바람직하다.In addition, the particle size of the metal supported on the carbon-based support is preferably 0.1 to 4.5 nm, which is a range of particle sizes that can increase the activity of the catalyst by increasing the loading level of the metal to the carbon-based support. , The content of the metal supported on the carbon-based support is preferably 2 to 30% by weight based on the weight of the metal catalyst.

불소가 도입된 탄소계 담지체에 도입되는 금속은 최종적으로 금속촉매가 사용되는 용도에 따라 다양하게 선택할 수 있다. The metal to be introduced into the carbon-based support in which fluorine is introduced can be variously selected depending on the use of the metal catalyst.

예를 들어 연료전지에 사용된다면 탄소계 담지체에 Pt와 Ru의 혼합금속을 담지시킬 수 있으며, 이와 같은 혼합금속의 경우 Pt/Ru 함량에 따라 최종 촉매의 전기화학적 활성이 달라지게 되는데, 높은 촉매 활성을 얻기 위한 바람직한 함량은 최종 금속촉매의 중량을 기준으로 Pt의 함량은 5 내지 20 중량%이고 Ru의 함량은 2 내지 10 중량%인 것이 바람직하다.For example, if used in a fuel cell, it is possible to support a mixed metal of Pt and Ru in a carbon-based support, and in the case of such a mixed metal, the electrochemical activity of the final catalyst depends on the Pt / Ru content. The preferred content for obtaining the activity is preferably 5 to 20 wt% of Pt and 2 to 10 wt% of Ru based on the weight of the final metal catalyst.

그 외에도, 연료전지의 촉매로서 백금과 함께, 루테늄, 주석, 레늄, 몰리브덴, 코발트 등의 금속 원소를 사용할 경우 백금의 전자밀도를 제어하여 전극 성능을 변화시킬 수 있어서, 이들과의 조합으로 다양한 연료전지의 촉매를 제조할 수 있다.In addition, when using a metal element such as ruthenium, tin, rhenium, molybdenum and cobalt together with platinum as a catalyst of the fuel cell, it is possible to control the electron density of the platinum to change the electrode performance, and in combination with these various fuels The catalyst of the battery can be prepared.

본 발명의 금속촉매의 제조에 사용되는 탄소계 담지체는 카본블랙, 활성탄, 카본나노튜브, 카본파이버, 그라파이트, 그라파이트 나노파이버 및 이들의 혼합물인 것이 바람직하다.The carbon-based support used in the preparation of the metal catalyst of the present invention is preferably carbon black, activated carbon, carbon nanotubes, carbon fibers, graphite, graphite nanofibers, and mixtures thereof.

본 발명의 방법으로 제조된 금속촉매는 연료전지의 전극 재료로 유용하게 사용될 수 있다.The metal catalyst prepared by the method of the present invention can be usefully used as an electrode material of a fuel cell.

연료전지의 제조 공정을 간략히 설명하면, 연료전지는 고분자 전해질 막과 전극, 스택을 구성하기 위한 분리판으로 이루어져 있는데, 전극은 미세기공으로 구성된 촉매층과 이곳에 반응기체를 공급하는 거대기공으로 구성된 기체확산층으로 이루어지며, 촉매층은 촉매를 담지한 탄소계 담제체 등의 발수제 수지와 결합하여 구성하고, 기체 확산층은 발수 처리된 소수성의 탄소 종이로 이루어진다. 이 두 층을 롤링 등의 방법으로 결합하여 전극을 구성하고 전극을 고분자 전해질 막에 핫프레싱(hot-pressing) 방법으로 부착시켜 연료전지를 제조할 수 있다.Briefly describing a fuel cell manufacturing process, a fuel cell includes a polymer electrolyte membrane, an electrode, and a separator plate for constituting a stack. The electrode includes a catalyst layer composed of micropores and a gas diffusion layer composed of macropores supplying a reactor gas thereto. The catalyst layer is formed by combining with a water repellent resin such as a carbon-based carrier carrying a catalyst, and the gas diffusion layer is made of hydrophobic carbon paper that has been water-repellent. The two layers may be combined by a rolling method to form an electrode, and the electrode may be attached to the polymer electrolyte membrane by hot-pressing to manufacture a fuel cell.

이하, 본 발명의 실시예들을 기술하였다. 하기 실시예들은 본 발명의 기술적 사상에 대한 일례일 뿐 이에 의해 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, embodiments of the present invention have been described. The following examples are merely examples of the technical idea of the present invention, and the scope of the present invention is not limited thereto.

하기의 비교예 및 실시예에서 탄소계 지지체로서 카본블랙을 사용하였으며, 카본블랙은 코리아카본블랙(주)에서 구입한 것으로 평균 직경이 24nm이고, DBP 흡 유량이 153cc/g이고, 비표면적은 112m2/g인 것을 사용하였다. 본 발명에서 사용되는 카본블랙은 불순물을 제거하기 위하여 80℃에서 3시간동안 아세톤을 사용하여 속슬렛(Soxhlet)추출법으로 미리 처리하였다.Carbon black was used as the carbon-based support in the following Comparative Examples and Examples, and the carbon black was purchased from Korea Carbon Black Co., Ltd., having an average diameter of 24 nm, a DBP absorption flow rate of 153 cc / g, and a specific surface area of 112 m. 2 / g was used. Carbon black used in the present invention was previously treated with Soxhlet extraction using acetone at 80 ° C. for 3 hours to remove impurities.

비교예 1. 직접 불소화 처리를 수행하지 않은 카본블랙의 제조Comparative Example 1. Preparation of carbon black without direct fluorination treatment

불소화 처리를 하지 않고 단지 불순물 제거를 위해 속슬렛 추출법으로 처리한 카본블랙을 CB-0으로 명명하였다.Carbon black treated with Soxhlet extraction to remove impurities without fluorination was named CB-0.

실시예 1. 직접 불소화 처리를 수행한 카본블랙의 제조: 불소화 처리 온도 상온Example 1. Preparation of carbon black subjected to direct fluorination treatment: Fluorination treatment temperature Room temperature

속슬렛 추출법으로 불순물을 제거한 카본블랙에 대해 불소화 처리를 수행하였다. 불소가스는 미량의 HF와 질소를 함유한 순도 99.8% 제품을 사용하였고 불순물의 제거를 위하여 반응 전 100℃ 이상의 온도에서 가열시킨 NaF 펠렛을 통과시켜 HF를 제거하여 사용하였다. 또한 반응 후 불소 가스는 Al2O3 펠렛을 사용하여 제거하였다. 불소 가스는 일반적으로 금속재료와 반응성이 높기 때문에 반응장치의 재질은 스테인레스판을 사용하였고, 반응기로는 니켈 보트(boat)를 사용하였다. 실험 전 반응기의 산소와 수분을 제거하기 위하여 순수 질소가스로 1시간 퍼징하고 상온까지 유지시킨 후 실험을 행하였으며, 불소 가스는 완충 용기(buffer tank)에 충진한 후 균일하게 혼합되도록 1일간 두었다. 불소 가스 압력 비율을 0.1 MPa로 일정하게 유지하며 상온에서 10분 동안 유지시킴으로써 표면 불소화 처리를 하여 불소 함유 카본블랙을 제조하였다. 최종적으로 얻은 카본블랙을 CB-RT라고 명명하였다.Fluxization was performed on carbon black from which impurities were removed by Soxhlet extraction. Fluorine gas was used as a 99.8% purity product containing a small amount of HF and nitrogen, and used to remove HF by passing NaF pellet heated at a temperature of 100 ℃ or more before the reaction to remove impurities. After the reaction, fluorine gas was removed using an Al 2 O 3 pellet. Since fluorine gas is generally highly reactive with metal materials, the material of the reactor is made of stainless steel plate, and a nickel boat is used as the reactor. The experiment was performed after purging with pure nitrogen gas for 1 hour to remove oxygen and water in the reactor and maintaining it at room temperature before the experiment. The fluorine gas was filled in a buffer tank and allowed to mix uniformly for 1 day. Fluorine-containing carbon black was prepared by surface fluorination treatment by maintaining the fluorine gas pressure ratio at 0.1 MPa at a constant temperature for 10 minutes. The finally obtained carbon black was named CB-RT.

실시예 2. 직접 불소화 처리를 수행한 카본블랙의 제조: 불소화 처리 온도 100℃Example 2. Preparation of carbon black subjected to direct fluorination treatment: fluorination treatment temperature 100 캜

불소 가스 압력 비율을 0.1 MPa로 일정하게 유지하며 카본블랙의 불소화 처리 온도를 100℃로 10분 동안 유지시킴으로써 표면 불소화 처리를 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여, 최종적으로 얻은 카본블랙을 CB-100이라고 명명하였다.Fluoride Carbon obtained finally by the same method as in Example 1 except that the surface fluorination treatment by maintaining the gas pressure ratio at 0.1 MPa constant and maintaining the carbon black fluorination treatment temperature at 100 ℃ for 10 minutes Black was named CB-100.

실시예 3. 직접 불소화 처리를 수행한 카본블랙의 제조: 불소화 처리 온도 300℃Example 3. Preparation of carbon black subjected to direct fluorination treatment: fluorination treatment temperature of 300 deg.

불소 가스 압력 비율을 0.1 MPa로 일정하게 유지하며 카본블랙의 불소화 처리 온도를 300℃로 10분 동안 유지시킴으로써 표면 불소화 처리를 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여, 최종적으로 얻은 카본블랙을 CB-300이라고 명명하였다.Fluoride Carbon obtained finally in the same manner as in Example 1, except that the surface fluorination treatment by maintaining the gas pressure ratio at 0.1 MPa constant and maintaining the carbon black fluorination treatment temperature at 300 ℃ for 10 minutes Black was named CB-300.

실시예 4. 직접 불소화 처리를 수행한 카본블랙의 제조: 불소화 처리 온도 400℃Example 4 Preparation of Carbon Black Directly Fluoridated: 400 ° C. Fluorination

불소 가스 압력 비율을 0.1 MPa로 일정하게 유지하며 카본블랙의 불소화 처리 온도를 400℃로 10분 동안 유지시킴으로써 표면 불소화 처리를 한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하여, 최종적으로 얻은 카본블랙을 CB-400이라고 명명하였다.Fluoride Carbon obtained finally in the same manner as in Example 1, except that the surface fluorination treatment by maintaining the gas pressure ratio at 0.1 MPa constant and maintaining the carbon black fluorination treatment temperature at 400 ℃ for 10 minutes Black was named CB-400.

비교예 2. 직접 불소화 처리를 수행하지 않은 카본블랙을 이용하여 금속 촉매 담지 Comparative Example 2 Metal Catalyst Support Using Carbon Black Without Direct Fluorination Treatment

촉매담지체로서 카본블랙 125㎎을 증류수 25㎖에 넣고 초음파 발생기를 사용하여 20분 동안 분산시켰다. 그리고 58.3㎎의 H2PtCl6과 30㎎의 RuCl6을 증류수에 용해시킨 후, 상기 탄소 분산 용액에 서서히 도입하고 교반시켰다. 그 이후, pH 조절을 위해서 5M NaOH 용액 50㎖를 첨가한 후, 4시간동안 교반하였다. 이 용액의 환원제인 HCHO(37%, 0.75㎖)를 첨가하여 110℃에서 2시간 동안 가열하였다. 모든 제조공정은 아르곤 가스 분위기에서 수행하였으며, 고체 분말을 여과하고, 증류수로 세척한 후, 80℃에서 24시간 건조하였으며, 최종적으로 얻은 촉매를 PtRu/CB-0라고 명명하였다.125 mg of carbon black was added to 25 ml of distilled water as a catalyst carrier and dispersed for 20 minutes using an ultrasonic generator. And 58.3 mg of H 2 PtCl 6 and 30 mg of RuCl 6 were dissolved in distilled water, and then slowly introduced into the carbon dispersion solution and stirred. Thereafter, 50 ml of a 5M NaOH solution was added for pH control, followed by stirring for 4 hours. HCHO (37%, 0.75 mL), a reducing agent of this solution, was added and heated at 110 ° C. for 2 hours. All manufacturing processes were carried out in an argon gas atmosphere, the solid powder was filtered, washed with distilled water, dried at 80 ° C. for 24 hours, and the resulting catalyst was named PtRu / CB-0.

실시예 5. 상온으로 불소화 처리를 수행한 카본블랙을 이용하여 금속 촉매 담지Example 5 Metal Catalyst Support Using Carbon Black Fluorinated at Room Temperature

촉매담지체로서 상기 실시예 1의 CB-RT를 사용한 것을 제외하고는 상기 비교예 2와 동일한 방법으로 금속 촉매 담지를 실시하여, 최종적으로 얻은 촉매를 PtRu/CB-RT라고 명명하였다.Except for using the CB-RT of Example 1 as a catalyst carrier, the metal catalyst was carried in the same manner as in Comparative Example 2, and the resulting catalyst was named PtRu / CB-RT.

실시예 6. 100℃로 불소화 처리를 수행한 카본블랙을 이용하여 금속 촉매 담지Example 6 Metal Catalyst Support Using Carbon Black Fluorinated at 100 ° C

촉매담지체로서 상기 실시예 2의 CB-100을 사용한 것을 제외하고는 상기 비교예 2와 동일한 방법으로 금속 촉매 담지를 실시하여, 최종적으로 얻은 촉매를 PtRu/CB-100이라고 명명하였다.Except for using the CB-100 of Example 2 as a catalyst carrier, the metal catalyst was carried in the same manner as in Comparative Example 2, and the final catalyst was named PtRu / CB-100.

실시예 7. 300℃로 불소화 처리를 수행한 카본블랙을 이용하여 금속 촉매 담지Example 7 Metal Catalyst Support Using Carbon Blacks Fluorinated at 300 ° C

촉매담지체로서 상기 실시예 3의 CB-300을 사용한 것을 제외하고는 상기 비교예 2와 동일한 방법으로 금속 촉매 담지를 실시하여, 최종적으로 얻은 촉매를 PtRu/CB-300이라고 명명하였다.Except for using the CB-300 of Example 3 as a catalyst carrier, the metal catalyst was carried in the same manner as in Comparative Example 2, and the final catalyst was named PtRu / CB-300.

실시예 8. 400℃로 불소화 처리를 수행한 카본블랙을 이용하여 금속 촉매 담지Example 8 Metal Catalyst Support Using Carbon Black Fluorinated at 400 ° C

촉매담지체로서 상기 실시예 3의 CB-400을 사용한 것을 제외하고는 상기 비교예 2와 동일한 방법으로 금속 촉매 담지를 실시하여, 최종적으로 얻은 촉매를 PtRu/CB-400이라고 명명하였다.Except for using the CB-400 of Example 3 as a catalyst carrier, the metal catalyst was carried in the same manner as in Comparative Example 2, the final catalyst was named PtRu / CB-400.

실시예 및 비교예의 평가Evaluation of Examples and Comparative Examples

(1) 불소 처리 온도에 따른 카본블랙에 대한 불소 도입량 변화의 측정(1) Measurement of Fluorine Incorporation Change in Carbon Black According to Fluorine Treatment Temperature

상기 비교예 1 및 실시예 1 내지 4로부터 제조된 카본블랙에 대하여 불소 도입량 및 탄소와 산소의 함량을 측정하였다.For the carbon blacks prepared from Comparative Example 1 and Examples 1 to 4, the amount of fluorine introduced and the content of carbon and oxygen were measured.

불소 도입량 및 탄소와 산소의 함량은 에너지분산 X-선분광기(EDS)를 이용하여 가속된 전자빔이 시편과 반응하여 방출되는 여러 가지 물질 중에서 특성 X-선을 검출하여 시료의 화학적 성분과 양을 측정하였다.The amount of fluorine introduced and the contents of carbon and oxygen were measured using the energy dispersive X-ray spectroscopy (EDS) to measure the chemical composition and amount of the sample by detecting characteristic X-rays among various materials emitted by the accelerated electron beam in response to the specimen. It was.

결과는 첨부한 도 1에 나타난 바와 같으며, 이를 아래 표 1에 정리하였다.The results are shown in the accompanying FIG. 1, which are summarized in Table 1 below.

구 분division C 함량(중량%)C content (% by weight) O 함량(중량%)O content (% by weight) F 함량(중량%)F content (% by weight) aa CB-0CB-0 98.0798.07 1.931.93 00 bb CB-RTCB-RT 85.5185.51 1.261.26 13.2313.23 cc CB-100CB-100 82.7482.74 1.071.07 16.1916.19 dd CB-300CB-300 80.0580.05 0.970.97 18.9818.98 ee CB-400CB-400 73.1173.11 0.940.94 25.9525.95

도 1 및 표 1을 볼 때, 비교예 1과 실시예 1 내지 4의 조건으로부터 촉매담지체인 카본블랙의 표면에 직접 불소화 처리시 불소가스 처리 온도가 상온에서 400℃로 증가 할수록 카본블랙의 표면에 불소함량이 증가하는 것을 관찰할 수 있었다. 그 결과 불소가스 처리 온도가 400℃인 경우 가장 높은 불소 함량을 나타내었다. 즉, 불소가스를 이용하여 카본블랙의 표면을 처리하고자 할 때 불소가스 처리 온도를 이용하여 불소 관능기의 도입정도를 조절할 수 있음을 확인할 수 있었다. 1 and Table 1, from the conditions of Comparative Example 1 and Examples 1 to 4, when the fluorine gas treatment temperature is increased to 400 ° C. from room temperature at the surface of the carbon black, which is the catalyst carrier, the surface of the carbon black is increased. An increase in fluorine content could be observed. As a result, the highest fluorine content was shown when the fluorine gas treatment temperature was 400 ° C. That is, when the surface of the carbon black is to be treated using fluorine gas, it was confirmed that the degree of introduction of the fluorine functional group can be controlled by using the fluorine gas treatment temperature.

(2) 불소 처리 온도에 따른 최종 금속촉매에 담지된 혼합금속 입자크기와 담지량 변화의 측정(2) Measurement of particle size and loading change of mixed metal supported on final metal catalyst according to fluorine treatment temperature

상기 비교예 2 및 실시예 5 내지 8로부터 제조된 금속촉매에 담지된 혼합금속의 입자크기와 로딩레벨을 측정하였다.The particle size and loading level of the mixed metal supported on the metal catalysts prepared from Comparative Example 2 and Examples 5 to 8 were measured.

입자크기는 X-선 회절분석기(리가키(Rigaky)사, 모델명:D/Max-Ⅲ B)로 측정(도 2 참조)하여 하기의 수학식 1의 셰러 계산식(scherrer equation)을 이용하여 산출해 내었다.The particle size was measured using an X-ray diffractometer (Rigaky, model name: D / Max-III B) (see FIG. 2), and calculated using the Scherrer equation of Equation 1 below. Came out.

Figure 112008060794660-pat00001
Figure 112008060794660-pat00001

상기 식에서, d는 입자의 평균 크기, λ는 X-선 복사의 파장 (0.154056 nm), θ는 (220)피크의 각도, B는 회절피크의 1/2의 폭을 라디안으로 나타낸 값이다.Where d is the average size of the particles, λ is the wavelength of X-ray radiation (0.154056 nm), θ is the angle of (220) peak, and B is the value in radians representing half the width of the diffraction peak.

또한 혼합금속의 로딩레벨은 유도결합플라스마-원자발광분광법(ICP-AES)를 이용하여 시료용액을 고주파 유도코일에 의하여 형성된 Ar 플라스마에 도입하여 6,000~8,000 K에서 여기된 원자가 바닥상태로 이동할 때 방출하는 발광선 및 발광강도를 측정하여 혼합금속의 원소를 정량분석하였다. 결과는 아래 표 2에 정리하였다.In addition, the loading level of the mixed metal is released when the atoms excited at 6,000 to 8,000 K move to the ground state by introducing the sample solution into the Ar plasma formed by the high frequency induction coil using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The emission line and the emission intensity were measured to quantitatively analyze the elements of the mixed metal. The results are summarized in Table 2 below.

구 분division 입자평균크기(nm)Particle Average Size (nm) Pt 로딩레벨(%)Pt loading level (%) Ru 로딩레벨(%)Ru loading level (%) aa PtRu/CB-0PtRu / CB-0 4.844.84 4.744.74 1.11.1 bb PtRu/CB-RTPtRu / CB-RT 3.983.98 7.057.05 2.812.81 cc PtRu/CB-100PtRu / CB-100 2.852.85 10.510.5 4.044.04 dd PtRu/CB-300PtRu / CB-300 2.532.53 10.610.6 3.753.75 ee PtRu/CB-400PtRu / CB-400 2.102.10 12.612.6 5.815.81

상기 표 2를 통해 비교예 2 및 실시예 5 내지 8로부터 제조된 금속촉매를 볼 때, 카본블랙에 대한 불소가스 처리 온도가 증가할수록 담지되는 혼합금속의 입자크기는 4nm 미만부터 대략 2nm 정도까지 점차 감소함을 알 수 있으며, 혼합금속의 로딩레벨은 점차 증가되는 것을 확인 할 수 있었다. 이로써 불소화 처리가 되지 않은 카본블랙에 비해 불소화 처리된 카본블랙에 혼합금속이 효율적으로 담지되며, 불소 처리 온도를 이용하여 카본블랙에 담지되는 혼합금속의 양과 입자크기를 조절할 수 있음을 확인할 수 있었다.When looking at the metal catalysts prepared from Comparative Example 2 and Examples 5 to 8 through Table 2, the particle size of the mixed metal supported as the fluorine gas treatment temperature for the carbon black increases gradually from less than 4nm to about 2nm It can be seen that the loading level of the mixed metal is gradually increased. As a result, it was confirmed that the mixed metal is efficiently supported on the fluorinated carbon black compared to the carbon black which is not fluorinated, and the amount and particle size of the mixed metal supported on the carbon black can be controlled by using the fluorine treatment temperature.

(3) 금속촉매의 전기활성 측정(3) Measurement of the electrical activity of the metal catalyst

상기 비교예 2 및 실시예 5 내지 8로부터 제조된 금속촉매의 전기활성을 측정하기 위해서 순환전압전류법(cyclic voltammetry, CV)에 의해서 전압-전류 곡선을 작성하였다. 제조한 금속촉매 분말을 나피온 (Nafion®) 고분자를 이용하여 일정량을 유리상탄소전극(glassy carbon electrode, GEC)에 부착시켜 건조시키고, 상대 전극은 백금 호일을 사용하였으며, 기준전극으로 Ag/AgCl을 사용하였다. 금속촉매의 전기화학적 특성을 살펴보기 위하여 0.5M H2SO4와 1.0M CH3OH 혼합 수용액을 사용하여 300mV 내지 1100mV의 범위에서 순환전압전류법을 측정하였다. 측정결과는 도 3에 나타내었다.In order to measure the electrical activity of the metal catalysts prepared from Comparative Example 2 and Examples 5 to 8, voltage-current curves were prepared by cyclic voltammetry (CV). Nafion prepared metal catalyst powder A certain amount was attached to a glassy carbon electrode (GEC) and dried using a (Nafion ® ) polymer, and a counter electrode used platinum foil, and Ag / AgCl was used as a reference electrode. In order to examine the electrochemical characteristics of the metal catalyst, cyclic voltammetry was measured in the range of 300 mV to 1100 mV using a 0.5 MH 2 SO 4 and 1.0 M CH 3 OH mixed aqueous solution. The measurement results are shown in FIG. 3.

도 3을 볼 때, 비교예 2 및 실시예 5 내지 8(각각 a 내지 e)의 조건으로부터 제조된 금속촉매는 카본블랙의 표면에 처리된 불소가스 처리 온도가 증가할수록 메탄올 산화 활성 피크가 크고 명확하게 나타나며 전기화학적 활성이 증가함을 알 수 있었다. 이것은 혼합금속 입자가 고르게 2 내지 4nm의 크기로 뭉치지 않고, 효율적으로 담지된 것으로 해석된다. 이와 같이 불소 처리된 탄소 재료를 촉매 담지체로 사용한 경우 전기화학적 활성이 높게 나타났으며, 불소처리 온도를 400℃로 실시하였을 때 촉매의 입자 크기와 담지율이 가장 효율적으로 나타났다.3, the metal catalyst prepared from the conditions of Comparative Example 2 and Examples 5 to 8 (a to e, respectively) has a larger and clearer methanol oxidation activity peak as the fluorine gas treatment temperature increases on the surface of the carbon black. It appears that the electrochemical activity was increased. This is interpreted that the mixed metal particles are efficiently carried without being aggregated evenly in the size of 2 to 4 nm. Thus, when the fluorinated carbon material was used as the catalyst carrier, the electrochemical activity was high, and the particle size and the loading ratio of the catalyst were most efficient when the fluorine treatment temperature was performed at 400 ° C.

따라서 본 발명에 따르는 제조방법으로 카본블랙에 새로운 불소 관능기를 도입하였을 경우, 촉매의 크기를 제어할 수 있을 뿐 아니라 혼합 금속의 담지 효율이 높아져 최종 금속촉매의 활성이 높아지고 성능이 향상됨을 확인할 수 있었다.Therefore, when a new fluorine functional group was introduced into the carbon black by the production method according to the present invention, the size of the catalyst was not only controlled, but the supporting efficiency of the mixed metal was increased, thereby increasing the activity of the final metal catalyst and improving the performance. .

도 1은 본 발명의 비교예 1 및 실시예 1 내지 4에 따라 제조된 카본블랙의 표면관능기를 분석한 결과를 나타낸 도면이다 (a: CB-0, b: CB-RT, c: CB-100, d: CB-300, e: CB-400)1 is a view showing the results of analyzing the surface functional groups of the carbon black prepared according to Comparative Example 1 and Examples 1 to 4 of the present invention (a: CB-0, b: CB-RT, c: CB-100 , d: CB-300, e: CB-400)

도 2는 본 발명의 비교예 2 및 실시예 5 내지 8에 따라 제조된 금속촉매의 X-선 회절분석(XRD) 결과를 나타내는 도면이다. (a: PtRu/CB-0, b: PtRu/CB-RT, c: PtRu/CB-100, d: PtRu/CB-300, e: PtRu/CB-400)2 is a view showing the results of X-ray diffraction analysis (XRD) of the metal catalyst prepared according to Comparative Example 2 and Examples 5 to 8 of the present invention. (a: PtRu / CB-0, b: PtRu / CB-RT, c: PtRu / CB-100, d: PtRu / CB-300, e: PtRu / CB-400)

도 3은 본 발명의 비교예 2 및 실시예 5 내지 8에 따라 제조된 금속촉매의 전기화학적 활성을 전류-전위 곡선으로 나타낸 도면이다. (a: PtRu/CB-0, b: PtRu/CB-RT, c: PtRu/CB-100, d: PtRu/CB-300, e: PtRu/CB-400)Figure 3 is a diagram showing the electrochemical activity of the metal catalyst prepared according to Comparative Example 2 and Examples 5 to 8 of the present invention with a current-potential curve. (a: PtRu / CB-0, b: PtRu / CB-RT, c: PtRu / CB-100, d: PtRu / CB-300, e: PtRu / CB-400)

Claims (12)

(a) 탄소계 담지체에 직접 불소화 처리를 수행하여 불소 관능기가 도입된 탄소계 담지체를 제조하는 단계, 및(a) performing a fluorination treatment directly on the carbon-based support to prepare a carbon-based support having a fluorine functional group introduced therein; and (b) 상기 (a) 단계에서 얻은 탄소계 담지체에 금속을 담지시켜 금속촉매를 제조하는 단계를 포함하되,(b) preparing a metal catalyst by supporting a metal on the carbon-based support obtained in step (a); 상기 (b) 단계에서 탄소계 담지체에 담지되는 금속은 Pt와 Ru의 혼합금속이며, 금속촉매 중량을 기준으로 Pt의 함량은 5 내지 20 중량%이고 Ru의 함량은 2 내지 10 중량%인 것을 특징으로 하는 금속촉매 제조방법.The metal supported on the carbon-based support in step (b) is a mixed metal of Pt and Ru, the Pt content is 5 to 20% by weight based on the weight of the metal catalyst and the Ru content is 2 to 10% by weight Metal catalyst manufacturing method characterized in that. 제1항에 있어서, 상기 (a) 단계 이전에 표면에 존재하는 불순물을 제거하기 위한 전처리 단계를 추가로 포함하는 것을 특징으로 하는 금속촉매 제조방법.The method of claim 1, further comprising a pretreatment step for removing impurities present on the surface before step (a). 제1항에 있어서, 상기 (a) 단계에서 탄소계 담지체에 대한 불소화 처리는 0.01 내지 1 MPa하에 1 내지 30분간 수행되는 것을 특징으로 하는 금속촉매 제조방법.The method of claim 1, wherein the fluorination treatment for the carbon-based support in the step (a) is carried out for 1 to 30 minutes under 0.01 to 1 MPa. 제1항에 있어서, 상기 (a) 단계에서 탄소계 담지체에 대한 불소 처리 온도는 상온 이상 800℃ 이하인 것을 특징으로 하는 금속촉매 제조방법.The method of claim 1, wherein in the step (a) the fluorine treatment temperature for the carbon-based support is a metal catalyst manufacturing method, characterized in that more than room temperature 800 ℃. 제4항에 있어서, 상기 불소 처리 온도는 상온 이상 500℃ 이하인 것을 특징으로 하는 금속촉매 제조방법.The method of claim 4, wherein the fluorine treatment temperature is at least 500 ° C. or less. 제1항에 있어서, 상기 (a) 단계에서 탄소계 담지체에 대한 불소 도입량은 탄소계 담지체의 중량을 기준으로 5 내지 40 중량%인 것을 특징으로 하는 금속촉매 제조방법.The method according to claim 1, wherein the amount of fluorine introduced into the carbon-based support in step (a) is 5 to 40% by weight based on the weight of the carbon-based support. 제6항에 있어서, 상기 불소 도입량은 10 내지 30 중량%인 것을 특징으로 하는 금속촉매 제조방법.7. The method of claim 6, wherein the amount of fluorine introduced is 10 to 30% by weight. 제1항에 있어서, 상기 (b) 단계에서 탄소계 담지체에 담지되는 금속의 입자크기는 0.1 내지 4.5nm인 것을 특징으로 하는 금속촉매 제조방법.The method of claim 1, wherein the particle size of the metal supported on the carbon-based support in the step (b) is 0.1 to 4.5nm metal catalyst manufacturing method. 삭제delete 제1항에 있어서, 상기 탄소계 담지체는 카본블랙, 활성탄, 카본나노튜브, 카본파이버, 그라파이트, 그라파이트 나노파이버 및 이들의 혼합물로 이루어진 군으로부터 선택된 것임을 특징으로 하는 금속촉매 제조방법.The method of claim 1, wherein the carbon-based support is selected from the group consisting of carbon black, activated carbon, carbon nanotubes, carbon fibers, graphite, graphite nanofibers, and mixtures thereof. 제1항 내지 제8항 및 제10항 중 어느 한 항에 따르는 방법으로 제조된 금속촉매.A metal catalyst prepared by the method according to any one of claims 1 to 8 and 10. 제11항에 따르는 금속촉매를 포함하는 것을 특징으로 하는 연료전지.A fuel cell comprising the metal catalyst of claim 11.
KR1020080083413A 2008-08-26 2008-08-26 Method for preparing metal catalyst comprising fluorine functionalized carbon support KR100965836B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080083413A KR100965836B1 (en) 2008-08-26 2008-08-26 Method for preparing metal catalyst comprising fluorine functionalized carbon support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080083413A KR100965836B1 (en) 2008-08-26 2008-08-26 Method for preparing metal catalyst comprising fluorine functionalized carbon support

Publications (2)

Publication Number Publication Date
KR20100024724A KR20100024724A (en) 2010-03-08
KR100965836B1 true KR100965836B1 (en) 2010-06-25

Family

ID=42176472

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080083413A KR100965836B1 (en) 2008-08-26 2008-08-26 Method for preparing metal catalyst comprising fluorine functionalized carbon support

Country Status (1)

Country Link
KR (1) KR100965836B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181404B2 (en) * 2018-12-26 2022-11-30 コーロン インダストリーズ インク Catalyst, method for producing same, electrode containing same, membrane-electrode assembly containing same, and fuel cell containing same
KR102602436B1 (en) * 2019-02-28 2023-11-14 현대자동차주식회사 Method For Preparing Supported Metal Catalyst And Supported Metal Catalyst Prepared Therefrom

Also Published As

Publication number Publication date
KR20100024724A (en) 2010-03-08

Similar Documents

Publication Publication Date Title
Sarkar et al. Facile one step synthesis of Cu-g-C3N4 electrocatalyst realized oxygen reduction reaction with excellent methanol crossover impact and durability
KR100670267B1 (en) Pt/Ru alloy catalyst for fuel cell
Ramos-Sánchez et al. PdNi electrocatalyst for oxygen reduction in acid media
EP2822069B1 (en) Cathode electrode for fuel cell
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
Parrondo et al. Electrocatalytic performance of In2O3-supported Pt/C nanoparticles for ethanol electro-oxidation in direct ethanol fuel cells
Gangeri et al. Electrocatalytic performances of nanostructured platinum–carbon materials
EP1799342B1 (en) Platinum/ruthenium catalyst for direct methanol fuel cells
JP2002298861A (en) Fuel cell, fuel cell electrode and manufacutring method therefor
Moura Souza et al. Niobium: a promising Pd co-electrocatalyst for ethanol electrooxidation reactions
EP1808920A1 (en) Nanosized catalysts for the anode of a PEM fuel cell
KR20060052555A (en) Fuel cell, membrane-electrode assembly, and catalyst used for them and the producing method of catalyst
Viva et al. Characterization of Pt supported on commercial fluorinated carbon as cathode catalysts for Polymer Electrolyte Membrane Fuel Cell
Armstrong et al. Nanoscale titania ceramic composite supports for PEM fuel cells
Qu et al. Polymer fiber membrane-based direct ethanol fuel cell with Ni-doped SnO 2 promoted Pd/C catalyst
KR100965836B1 (en) Method for preparing metal catalyst comprising fluorine functionalized carbon support
KR100687729B1 (en) Spherical tungsten carbide catalyst and method of producing the same
JP6815918B2 (en) Silver acetylide and its manufacturing method
KR20210058062A (en) Electrode comprising composite metal oxide catalyst for water electrolysis, method for preparing same and water electrolysis comprising same
KR101391707B1 (en) Pemfc containing complex catalyst and preparing method for the complex catalyst
Hosseini et al. Cobalt-modified palladium nanocatalyst on nitrogen-doped reduced graphene oxide for direct hydrazine fuel cell
KR20090078911A (en) Palladium electrode catalyst supported by oxide-coated carbide and the preparation method thereof
Di Noto et al. Platinum-free carbon nitride electrocatalysts for PEMFCs based on Pd, Co and Ni: effect of nitrogen on the structure and electrochemical performance
Sandoval-González et al. Analysis of Redox Reactions on Pt-Sn based Nano-catalysts for Direct Methanol Fuel Cell Applications.
JP7320159B1 (en) Electrode catalyst, its manufacturing method, and fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee