KR100955804B1 - 갈락토리파제 활성을 갖는 옥시리핀 생합성 관련 유전자dgl - Google Patents

갈락토리파제 활성을 갖는 옥시리핀 생합성 관련 유전자dgl Download PDF

Info

Publication number
KR100955804B1
KR100955804B1 KR1020070098847A KR20070098847A KR100955804B1 KR 100955804 B1 KR100955804 B1 KR 100955804B1 KR 1020070098847 A KR1020070098847 A KR 1020070098847A KR 20070098847 A KR20070098847 A KR 20070098847A KR 100955804 B1 KR100955804 B1 KR 100955804B1
Authority
KR
South Korea
Prior art keywords
dgl
leu
ser
activity
oxylipin
Prior art date
Application number
KR1020070098847A
Other languages
English (en)
Other versions
KR20090033691A (ko
Inventor
이일하
현유봉
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020070098847A priority Critical patent/KR100955804B1/ko
Publication of KR20090033691A publication Critical patent/KR20090033691A/ko
Application granted granted Critical
Publication of KR100955804B1 publication Critical patent/KR100955804B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • C12P7/38Cyclopentanone- or cyclopentadione-containing products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01026Galactolipase (3.1.1.26)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01032Phospholipase A1 (3.1.1.32)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 갈락토리파제 활성을 갖는 옥시리핀(oxylipin) 생합성 관련 유전자 DONGLE (DGL)에 관한 것으로서, 더욱 상세하게는 본 발명의 DGL은 엽록체에 존재하며, 엽록체막의 주요 구성성분인 갈락토리피드(galactolipid)를 sn-1 위치에서 가수분해함으로써 자스몬산의 전구체인 옥시리핀들의 제공을 가능하게 한 내용에 관한 것이다.
본 발명의 애기장대 유래의 DGL은 포스포리파제 A1(phospholipase A1) 활성을 가지고 있어 인지질로부터 지방산을 sn-1 위치에서 가수분해하는 특성을 가지고 있다. 이러한 DGL이 PC(phosphatidylcholine)를 기질로 했을 때보다 DGDG(digalactosyldiacylglycerol)를 기질로 하였을 때 세 배의 활성을 나타내고, MGDG(monogalactosyldiacylglycerol)를 기질로 하였을 때는 약 25%의 활성을 나타내는 것을 확인함으로써 다양한 식물 및 이끼류, 미세조류에서 높은 수준의 상동성을 보이는 갈락토리파제 유전자의 동정을 가능하게 한 내용에 관한 것이다.
DGL, 갈락토리파제, 옥시리핀, DAD1

Description

갈락토리파제 활성을 갖는 옥시리핀 생합성 관련 유전자 DGL{Oxylipin biosynthesis-related gene DGL having galactolipase activity}
본 발명은 갈락토리파제 활성을 갖는 옥시리핀(oxylipin) 생합성 관련 유전자 DGL에 관한 것이다.
자스몬산(jasmonic acid; JA)은 식물계 내에 폭넓게 분포하고 있는 식물 생장 조절 물질의 새로운 집단으로 간주되며, 다양한 생리적 활성을 지니고 있을 뿐만 아니라 병원균 침입, 상처 혹은 삼투 스트레스와 같은 생물적 스트레스와 무생물적 스트레스 기간 동안에도 발현되는 신호 전달 물질로 알려져 있다.
JA 생합성의 시작은 엽록체에서 일어나는 것으로 보고되어 왔으며, 엽록체의 지질막을 분해하는 포스포리파제 A(phospholipase A)의 작용에 의하여 발생한 리놀렌산(linolenic acid)이라는 지방산이 최초의 전구물질로서 작용하게 된다고 알려져 있다. 이렇게 생성된 JA의 전구물질은 LOX(lipoxygenase), AOS(allene oxide synthase), AOC(allene oxide cyclase) 효소들의 연쇄반응을 통하여 OPDA로 합성되게 되고, 이렇게 생성된 OPDA는 엽록체에서 퍼록시좀(peroxisome)이라는 세포내 소 기관으로 전달된다. 엽록체로부터 전해 받은 OPDA는 OPR3(OPDA reductase 3)에 의한 환원반응에 이은 세 번의 β-옥시데이션(β-oxidation) 반응을 거쳐 비로소 JA로 생성된다.
DGL 유전자는 지질을 분해하는 것으로 알려진 리파제(lipase) 단백질을 암호화하는 것으로 데이터베이스 검색결과 밝혀졌으며, 식물호르몬 JA (jasmonic acid)의 생합성에 관련된 것으로 알려진 포스포리파제 A1 (phospholipase A1) 단백질 DAD1 (Defective in Anther Dehiscence 1)과 아미노산 서열상으로 높은 유사성을 갖는다. 애기장대 DAD1 단백질은 엽록체막 지질로부터 α-linolenic acid의 합성을 촉매하는 포스포리파제로 알려져 있다 (Ishiguro et al.,(2001) Plant Cell 13, 2191-2209.).
엽록체의 틸라코이드 지질(thylakoid lipid)의 주요 구성물질은 인지질(phospholipids) 대신 갈락토리피드(galactolipids)로써 약 50%의 MGDG, 약 30%의 DGDG, 약 10%의 diacylphosphatidylglycerol로 구성되는 특이한 점이 있다 (Douce, R. and Joyard, J. (1990) Annu. Rev. Cell Biol. 6, 173-216.). 많은 식물체에서 이러한 갈락토리피드들을 분해하는 갈락토리파제 활성(galactolipase activity)이 다양한 생리현상에 필수적인 것으로 보고되었지만 실제 엽록체에서 기능하는 갈락토리파제의 규명은 아직까지 이루어지지 않았다(Lo et al.,(2004) Plant Physiol. 135, 947-958.).
본 발명에서는 JA생합성에 관련된 엽록체에 존재하는 리파제의 일종인 DONGLE (DGL)에 관한 것으로 DGL이 포스포리파제 A1 활성을 가짐과 동시에 이보다 훨씬 더 높은 갈락토리파제 활성을 가지며, 이를 통하여 DGL 이 엽록체에서 작용하는 갈락토리파제를 암호화하는 유전자이며 JA 생합성의 전구물질과 식물의 기능성 분자인 옥시리핀의 생성을 유도한다는 내용에 관한 것이다.
본 발명에서는 갈락토리파제의 생화학적 활성(galactolipase activity)이 많은 식물 및 미세조류의 엽록체에서 보고되었지만 그 유전자가 아직 밝혀지지 않고 있는 과제를 해결하고자 한다.
본 발명에서는 DGL:GFP 재조합 단백질이 엽록체로 수송된다는 것을 애기장대의 원형질체(protoplast)에서 확인함으로써 DGL 단백질이 엽록체에 존재함을 규명하였고, MBP:DGL 재조합 단백질이 PC(phosphatidylcholine)를 기질로 했을 때보다 DGDG(digalactosyldiacylglycerol)를 기질로 하였을 때 세 배의 활성을 나타내며 MGDG(monogalactosyldiacylglycerol)를 기질로 하였을 때는 약 25%의 활성을 나타내는 것을 확인함으로써 DGL 단백질의 갈락토리파제 활성을 규명하였다.
애기장대 유래의 DGL이 엽록체에서 갈락토리파제 활성을 갖는 것을 확인함으로써 엽록체와 연관된 갈락토리파제 유전자의 정체성이 확인되었고, 이는 다양한 식물 및 미세조류의 엽록체와 연관된 갈락토리파제 유전자를 DGL 유전자와의 염기서열 비교, DGL 유전자 DNA를 probe로 하는 유전자 라이브러리 스크리닝 등을 통해 동정하는데 활용할 수 있다. 이러한 과정으로 새롭게 규명된 갈락토리파제 또는 DGL 단백질의 유전공학적 활용을 통하여 유용물질의 대량 생산을 추구할 수 있다.
본 발명자가 출원한 대한민국 특허출원 제2006-0062552호에서는 재조합 DNA로부터 발현된 DGL:GFP 단백질이 어떠한 세포내 소기관에 축적되는지를 확인한 결과 GFP 단백질에 의해 발현되는 녹색 형광이 추출한 원형질체(protoplast)의 엽록체 내부에 특이적으로 발현된다는 것을 확인할 수 있었고 이것으로써 DGL 단백질이 엽록체에 특이적으로 축적된다는 것을 알 수 있었다.
옥시리핀(oxylipin)은 생체막의 주요 구성성분인 포스포리피드(phospholipid) 등과 같은 지질(lipid)에서 분해되어 나온 유리 지방산(free fatty acid)이 산화되어 생성되는 물질들을 총괄한다. 대표적 식물호르몬 중 하나인 자스몬산(JA) 역시 포괄적 의미의 옥시리핀 중 하나이며, 자스몬산 생합성 과정에서 발생하는 다양한 종류의 중간대사물질 모두 옥시리핀이다. 이러한 옥시리핀들은 식물의 방어와 스트레스 저항성 등에 관여하고 있는 것으로 보고되어 왔다. 뿐만 아니라 동물에서 잘 알려 진 국소호르몬인 프로스타글란딘(prostaglandin) 역시 유리 지방산으로부터 유도되는 옥시리핀 중 하나이며, 효모와 미세조류에서도 이러한 옥시리핀에 의한 생리현상들이 보고되어 있다.
미세조류는 총 지질 조성의 70% 이상이 엽록체의 틸라코이드 막에서 유래된다. 따라서 미세조류의 엽록체는 지방산의 풍부한 공급원으로 활용할 수 있다. DGL 유전자 혹은 DGL 유전자의 염기서열을 이용하여 클로닝한 미세조류의 갈락토리파제를 상처처리 등의 적절한 유도를 통하여 엽록체에서 발현시키면 대량의 지방산을 미세조류에서 수확할 수 있다. 따라서 미세조류에서 DGL 혹은 유사 유전자를 활용한 바이오디젤 생산이 가능할 것이다.
본 발명에 따른 DGL 단백질의 범위는 애기장대로부터 분리된 서열번호2로 표시되는 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호2로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호2로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. "실질적으로 동질의 생리활성"이란 식물체의 엽록체 내에서 갈락토리파제 활성을 의미한다.
또한, 본 발명은 상기 DGL 단백질을 코딩하는 유전자를 제공한다. 본 발명의 유전자는 DGL 단백질을 코딩하는 게놈 DNA와 cDNA를 모두 포함한다. 바람직하게는, 본 발명의 유전자는 서열번호 1로 표시되는 염기서열을 포함할 수 있다.
또한, 상기 염기 서열의 변이체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 유전자는 서열번호 1의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실험방법
실험방법1. DGL의 리파제 활성분석
MBP:DGL와 MBP:DAD1의 제작은 DGL(Ser71에서 정지코돈)과 DAD1(Glu74에서 정지코돈) 의 transit peptide sequences를 제외한 단백질 코딩 시퀀스를 PCR로 증폭하였다. DAD1 유전자는 HYB135F (5'-GGATCCGAATTCTCACCCACTGGTTCG-3', 서열번호3) / HYB135R (5'-GGATCCTCATCTATGGAGAACTCTCCG-3', 서열번호4)인 프라이머 세트를 사용하여 PCR 증폭을 수행하였고, DGL 유전자는 HYB136F (5'-GGATCCTCTCGAGCACCTGCAGTGACT-3', 서열번호5) / HYB136R (5'-GGATCCCTAAAATATATTATAATACAA-3', 서열번호6)인 프라이머 세트를 사용하여 PCR 증폭을 수행하여 얻었다. 증폭된 PCR산물은 BamHI으로 자르고 pMALC2TM (New England Biolabs)에 서브클로닝하였다. 융합단백질은 E. coli BL21에서 발현시켰고, 제조사의 지시에 따라 MBP 융합단백질 정제 시스템(MBP fusion protein purification system, New England Biolabs)을 이용하여 정제하였다. 포스포리파제 A1의 활성 측정은 비대칭 지방산(asymmetric fatty acids)을 가진 phosphatidylcholine (PC)에 방사성 동위원소로 표지하여 분석하였다. 15 pmol의 1-palmitoyl-2-14C-linoleoyl-PC (1.96 GBq/mmol; Amersham Bioscience)은 20 μg MBP-DGL과 함께 30℃에서 30분 동안 반응시켰다. 100 mM NaCl과 0.2% Triton X-100을 포함하는 반응물에 50 mM 소디움 포스페이트 버퍼(sodium phosphate buffer, pH 7.2)를 넣어 최종부피가 500 μl가 되게 하였다. 지질은(Lipids) 추출하고 얇은 막 크로마토 그래피(thin layer chromatography, Silica Gel 60; Merck)로 분리하여 chloroform/methanol/CH3COOH/water (85:15:12.5:3.5, v/v/v/v)으로 developed하였 다. 14C-PC, 14C-lysoPC와 14C-free fatty acid product의 방사선 표지밴드를 조사하였고 Bio-Imaging Analyzer (BAS2500; Fuji Photo Film)을 이용하여 정량하였다. DGL의 기질특이성을 결정하기 위해, 기질로부터 분리된 유리 지방산(free fatty acid)의 수준을 분석하였다. 20 μg의 MBP-DGL과 MBP-DAD1은 다양한 지질성 물질들과 반응하였고, 50 mM sodium phosphate buffer (pH 7.2)에 100 mM NaCl과 0.2% Triton X-100이 포함된 용액에 30℃에서 30분 동안 반응시킨 후 풀려난 유리 지방산을 Ishiguro et al. (Ishiguro et al., (2001) Plant Cell 13, 2191-2209.)가 설명한 방법으로 NEFA colorimetric kit (Wako PureChemicals)을 이용하여 측정하였다.
실험방법2. 조류와 이끼류에서의 DGL 유사단백질 검색방법
미세조류 및 이끼류의 DGL 유사단백질 검색은 각각 Chlamydomonas reinhardtii 게놈 데이터베이스(http://genome.jgi-psf.org/Chlre3/Chlre3.home.html)와 Physcomitrella patens 게놈 데이터베이스(http://genome.jgi-psf.org//Phypha1_1/Phypa1_1.home.html)를 이용하여 진행하였다. DGL과 DAD1 단백질의 아미노산 서열을 검색조건(query)으로 하여 아미노산 유사도 비교 검색도구인 BlastP 검색을 수행하였다. 각각의 검색결과 추정된 유사 단백질 중 통계적 신뢰도가 가장 높은 단백질들을 DGL과 DAD1의 유사 단백질로 가정하였으며 이들 단백질 서로 간의 아미노산 서열 유사도(similarity)와 동일성(identity)을 분석하였다. 검색된 유사 단백질들과 DGL 및 DAD1의 계통 분석은 SDSC Biology WorkBench(http://workbench.sdsc.edu/)의 계통 분석 프로그램인 ClustalW를 이용하여 수행하였다.
<실시예1. DGL 단백질의 갈락토리파제(galactolipase) 활성 분석 실험>
DGL 단백질이 리파제 활성을 가지고 있는지를 결정하기 위해서 maltose binding protein (MBP)의 C-말단에 transit peptide를 제외한 DGL 유전자 부위를 유전자재조합을 통하여 결합시켰다. MBP:DGL 융합 단백질은 pH 7.0에서 가장 높은 활성을 나타내면서 sn-1 위치에 특이적으로 작용하여 효과적으로 PC(phosphatidylcholine)를 LPC(lysophosphatidylcholine)와 유리 지방산(free fatty acid)으로 가수분해하였고, 이를 토대로 DGL이 포스포리파제 A1활성을 가지고 있는 것을 확인할 수 있었다. 갈락토리피드는 틸라코이드 막(Douce, R. and Joyard, J. (1990) Annu. Rev. Cell Biol. 6, 173-216.)의 대부분을 차지하는 지질(약 80%)이기 때문에, MBP:DGL와 MBP:DAD1은 기질로써 갈락토리피드를 사용하는 지 확인하였다(도 2D). 갈락토리파제와 포스포리파제로 각각 시판되는 리파제의 일종인 R. miehei 리파제와 C. rugosa 리파제를 대조구(양성 대조구)로 사용하였다 (Lo et al.,(2004) Plant Physiol. 135, 947-958.). C. rugosa 리파제는 PC를 기질로 사용하였을 때 가장 높은 활성을 나타내며 R. miehei 리파제는 DGDG를 기질로 사용하였을 때 가장 높은 활성을 나타낸다. DGL은 PC를 기질로 했을 때보다 DGDG를 기질로 하였을 때 세 배 의 활성을 나타내었고, MGDG를 기질로 하였을 때는 약 25%의 활성을 나타내었다. 반면 애기장대에서 DGL의 homolog이며, 식물호르몬 JA의 생합성을 담당하는 것으로 알려진 DAD1의 경우 PC를 기질로 했을 때가 가장 높은 활성을 나타내었으며 이에 비해 DGDG를 사용하였을 경우 약 50%, MGDG를 시용하였을 경우 약 30%의 활성을 나타내었다. 따라서 이 실험은 DGL이 높은 갈락토리파제 활성을 가지고 있음을 보여주며, 그 동안 다양한 식물 및 미세조류에서 효소활성만 보고되고 그 유전자가 확인되지 못하고 있던 바로 그 유전자임을 확인시켜준 결과이다.
<실시예2. 조류와 이끼류에서의 DGL 유사단백질 검색>
DGL과 DAD1 단백질의 유사단백질을 외떡잎식물인 벼와, 이끼 (Physcomitrella patens), 조류 (Chlamydomonas reinhardtii)의 게놈 데이터베이스(genome database)에서 검색한 결과를 도2에 나타내었다. 붉은색으로 표시된 리파제 도메인(lipase domain)이 각 단백질에서 잘 보존되어 있음을 알 수 있다. 흥미로운 점은 조류에서는 DGL의 유사단백질만이 검출되었고, 이끼에서는 DGL과 DAD1이 모두 하나의 유전자를 유사단백질로서 검출해 내었다는 점이다. 이러한 결과들은 DGL이 DAD1에 비해서 옥시리핀 생합성 (식물에서는 호르몬 JA 등)에 관여하는 보다 원시적인 형태의 리파제이며, DAD1은 보다 나중에 분화되어 나왔을 것이라는 점을 암시한다. 이러한 결과를 지지하듯 오른쪽 그림의 계통수에서 DAD1 타입의 리파제 군과 조류와 이끼류에서 검출한 리파제 군이 가장 먼 계통 관계를 갖는 것으로 분석되었다. 이를 보다 면밀히 검토하기 위하여 각 단백질과의 아미노산 서열 유사도를 계 산해 본 결과 DGL이 DAD1보다 높은 유사도를 갖고 있음을 알 수 있었다.
Algae_lipase Moss_lipase OsDGL OsDAD1
동일성 유사성 동일성 유사성 동일성 유사성 동일성 유사성
DGL 37% 52% 51% 69% 59% 69% 분석안함
DAD1 유사단백질 무 34% 63% 분석안함 44% 57%
미세조류의 엽록체는 지방산의 풍부한 공급원으로 활용할 수 있어 본 발명의 DGL 유전자 혹은 DGL 유전자의 염기서열을 이용하여 클로닝한 미세조류의 갈락토리파제를 상처처리 등의 적절한 유도를 통하여 엽록체에서 발현시키면 대량의 지방산을 미세조류에서 수확할 수 있기 때문에 미세조류를 이용한 바이오디젤 생산방법을 제공할 수 있다.
도1은 DGL 단백질의 갈락토리파제 활성 분석 실험 결과를 나타내는 그림이고,
도2는 조류와 이끼류에서의 DGL 유사단백질 검색을 한 결과를 나타내는 그림이다.
<110> Seoul National University Industry Foundation <120> Oxylipin biosynthesis-related gene DGL having galactolipase activity <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 1416 <212> DNA <213> Arabidopsis thaliana <400> 1 atggcggcca aagtcttcac tcagaaccct atctattctc aatctctagt tagagacaaa 60 actcctcaac agaaacacaa tcttgaccat ttctctatat cccagcacac ctctaaaaga 120 ctcgttgtct cttcttctac aatgtcccct ccgatttcat cttctccact ctctcttcct 180 tcttcttctt cttctcaggc cattcctcct tctcgagcac ctgcagtgac tctaccgttg 240 tctcgggttt ggagagagat acaagggagc aataactggg aaaatctcat tgaacctcta 300 agccctattc tccaacaaga gatcactcgc tacgggaact tactctccgc ttcttacaaa 360 gggtttgatc taaaccctaa ctccaaacgt tacttgagtt gcaagtatgg aaaaaagaac 420 ttgcttaaag aatccggaat ccatgaccct gatggctacc aagtcaccaa gtatatctac 480 gccacaccag acatcaacct caaccctatc aagaacgagc ctaaccgtgc acgttggatc 540 ggttatgtag cggtttcttc tgatgaatcg gtgaaacgtt tgggaaggag ggatattttg 600 gtgacgtttc gtggcactgt caccaaccat gagtggttag ctaacctaaa gagctctttg 660 actccggcta ggcttgatcc tcataaccct cgtcctgatg tcaaggtcga atccgggttc 720 ttaggtttat acacatccgg tgagagcgag agcaaattcg ggctagaaag ctgccgtgag 780 cagcttctct ccgagatctc gaggcttatg aacaagcaca aaggcgagga aataagcata 840 acacttgcgg gacatagtat ggggagttct ctagctcagc ttctagctta cgacatagcg 900 gaactcggta tgaaccagag aagggacgaa aaacctgttc cggtgaccgt gttttcgttt 960 gctggtccta gagttggtaa cttggggttc aaaaaacggt gtgaggagct aggagttaaa 1020 gtcttgagga tcacgaatgt aaacgatccg atcaccaaac ttccaggttt cttatttaat 1080 gagaatttca gatctttagg tggtgtttac gagcttcctt ggagctgttc ttgctacact 1140 cacgtgggag tcgaactcac cctcgatttc ttcgatgttc aaaacatttc ttgtgtccat 1200 gacctcgaga cttacatcac tctagtaaac cgtccgagat gctcgaaatt ggcggttaat 1260 gaagacaatt ttggcggcga gtttttgaac agaacaagtg aactgatgtt cagtaaggga 1320 cgacgtcaag cgttgcattt tacaaacgca gcgaccaatg cggcatatct actttgttct 1380 atatccaacc atatgttgta ttataatata ttttag 1416 <210> 2 <211> 471 <212> PRT <213> Arabidopsis thaliana <400> 2 Met Ala Ala Lys Val Phe Thr Gln Asn Pro Ile Tyr Ser Gln Ser Leu 1 5 10 15 Val Arg Asp Lys Thr Pro Gln Gln Lys His Asn Leu Asp His Phe Ser 20 25 30 Ile Ser Gln His Thr Ser Lys Arg Leu Val Val Ser Ser Ser Thr Met 35 40 45 Ser Pro Pro Ile Ser Ser Ser Pro Leu Ser Leu Pro Ser Ser Ser Ser 50 55 60 Ser Gln Ala Ile Pro Pro Ser Arg Ala Pro Ala Val Thr Leu Pro Leu 65 70 75 80 Ser Arg Val Trp Arg Glu Ile Gln Gly Ser Asn Asn Trp Glu Asn Leu 85 90 95 Ile Glu Pro Leu Ser Pro Ile Leu Gln Gln Glu Ile Thr Arg Tyr Gly 100 105 110 Asn Leu Leu Ser Ala Ser Tyr Lys Gly Phe Asp Leu Asn Pro Asn Ser 115 120 125 Lys Arg Tyr Leu Ser Cys Lys Tyr Gly Lys Lys Asn Leu Leu Lys Glu 130 135 140 Ser Gly Ile His Asp Pro Asp Gly Tyr Gln Val Thr Lys Tyr Ile Tyr 145 150 155 160 Ala Thr Pro Asp Ile Asn Leu Asn Pro Ile Lys Asn Glu Pro Asn Arg 165 170 175 Ala Arg Trp Ile Gly Tyr Val Ala Val Ser Ser Asp Glu Ser Val Lys 180 185 190 Arg Leu Gly Arg Arg Asp Ile Leu Val Thr Phe Arg Gly Thr Val Thr 195 200 205 Asn His Glu Trp Leu Ala Asn Leu Lys Ser Ser Leu Thr Pro Ala Arg 210 215 220 Leu Asp Pro His Asn Pro Arg Pro Asp Val Lys Val Glu Ser Gly Phe 225 230 235 240 Leu Gly Leu Tyr Thr Ser Gly Glu Ser Glu Ser Lys Phe Gly Leu Glu 245 250 255 Ser Cys Arg Glu Gln Leu Leu Ser Glu Ile Ser Arg Leu Met Asn Lys 260 265 270 His Lys Gly Glu Glu Ile Ser Ile Thr Leu Ala Gly His Ser Met Gly 275 280 285 Ser Ser Leu Ala Gln Leu Leu Ala Tyr Asp Ile Ala Glu Leu Gly Met 290 295 300 Asn Gln Arg Arg Asp Glu Lys Pro Val Pro Val Thr Val Phe Ser Phe 305 310 315 320 Ala Gly Pro Arg Val Gly Asn Leu Gly Phe Lys Lys Arg Cys Glu Glu 325 330 335 Leu Gly Val Lys Val Leu Arg Ile Thr Asn Val Asn Asp Pro Ile Thr 340 345 350 Lys Leu Pro Gly Phe Leu Phe Asn Glu Asn Phe Arg Ser Leu Gly Gly 355 360 365 Val Tyr Glu Leu Pro Trp Ser Cys Ser Cys Tyr Thr His Val Gly Val 370 375 380 Glu Leu Thr Leu Asp Phe Phe Asp Val Gln Asn Ile Ser Cys Val His 385 390 395 400 Asp Leu Glu Thr Tyr Ile Thr Leu Val Asn Arg Pro Arg Cys Ser Lys 405 410 415 Leu Ala Val Asn Glu Asp Asn Phe Gly Gly Glu Phe Leu Asn Arg Thr 420 425 430 Ser Glu Leu Met Phe Ser Lys Gly Arg Arg Gln Ala Leu His Phe Thr 435 440 445 Asn Ala Ala Thr Asn Ala Ala Tyr Leu Leu Cys Ser Ile Ser Asn His 450 455 460 Met Leu Tyr Tyr Asn Ile Phe 465 470 <210> 3 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 ggatccgaat tctcacccac tggttcg 27 <210> 4 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 ggatcctcat ctatggagaa ctctccg 27 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ggatcctctc gagcacctgc agtgact 27 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 ggatccctaa aatatattat aatacaa 27

Claims (7)

  1. 갈락토리파제 활성을 갖는 서열번호 2로 표시되는 아미노산 서열로 이루어진 DGL(DONGLE) 단백질을 코딩하는 유전자를 유효성분으로 포함하는, 옥시리핀 생산용 조성물.
  2. 제1항에 있어서, 상기 DGL 단백질은 엽록체에 존재하는 것을 특징으로 하는 조성물.
  3. 삭제
  4. 제1항에 있어서, 상기 유전자는 서열번호 1로 표시되는 염기서열로 이루어진 것을 특징으로 하는 조성물.
  5. 삭제
  6. 삭제
  7. 제1항에 기재된 DGL 단백질을 코딩하는 유전자를 미세조류에 형질전환시켜 엽록체에서 발현시키는 단계를 포함하는 옥시리핀 연료를 생산하는 방법.
KR1020070098847A 2007-10-01 2007-10-01 갈락토리파제 활성을 갖는 옥시리핀 생합성 관련 유전자dgl KR100955804B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070098847A KR100955804B1 (ko) 2007-10-01 2007-10-01 갈락토리파제 활성을 갖는 옥시리핀 생합성 관련 유전자dgl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070098847A KR100955804B1 (ko) 2007-10-01 2007-10-01 갈락토리파제 활성을 갖는 옥시리핀 생합성 관련 유전자dgl

Publications (2)

Publication Number Publication Date
KR20090033691A KR20090033691A (ko) 2009-04-06
KR100955804B1 true KR100955804B1 (ko) 2010-05-06

Family

ID=40759893

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070098847A KR100955804B1 (ko) 2007-10-01 2007-10-01 갈락토리파제 활성을 갖는 옥시리핀 생합성 관련 유전자dgl

Country Status (1)

Country Link
KR (1) KR100955804B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315838B2 (en) 2012-11-07 2016-04-19 Board Of Trustees Of Michigan State University Method to increase algal biomass and enhance its quality for the production of fuel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527394A (ja) * 1997-04-10 2001-12-25 ビオプロドゥクテ プロフェッサー シュタインベルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 光合成を用いたバイオマスの製造のための方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527394A (ja) * 1997-04-10 2001-12-25 ビオプロドゥクテ プロフェッサー シュタインベルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 光合成を用いたバイオマスの製造のための方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GenBank: AAF29385(2000.2.1)

Also Published As

Publication number Publication date
KR20090033691A (ko) 2009-04-06

Similar Documents

Publication Publication Date Title
Logan et al. Cloning of a cDNA Encoded by a Member of the Arabidopsis thaliana ATP Sulfurylase Multigene Family: EXPRESSION STUDIES IN YEAST AND IN RELATION TO PLANT SULFUR NUTRITION (∗)
Veljanovski et al. Biochemical and molecular characterization of AtPAP26, a vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings
Cheng et al. White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases
Ghelis et al. Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells
Aronsson et al. Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis thaliana
Helm et al. Localization of small heat shock proteins to the higher plant endomembrane system
Murillo et al. Adenosine-5′-Triphosphate-Sulfurylase fromArabidopsis thalianaandEscherichia coliAre Functionally Equivalent but Structurally and Kinetically Divergent: Nucleotide Sequence of Two Adenosine-5′-Triphosphate-Sulfurylase cDNAs fromArabidopsis thalianaand Analysis of a Recombinant Enzyme
Ahn et al. Scopolin-hydrolyzing β-glucosidases in roots of Arabidopsis
US20110212504A1 (en) Recombinant expression of carboxylesterases
Cao et al. Non‐specific phospholipase C1 affects silicon distribution and mechanical strength in stem nodes of rice
Bascom et al. Peroxisome biogenesis occurs in an unsynchronized manner in close association with the endoplasmic reticulum in temperature-sensitive Yarrowia lipolytica Pex3p mutants
EP2914726B1 (en) Improved acyltransferase polynucleotides, polypeptides, and methods of use
Liu et al. A pair of phospho‐base methyltransferases important for phosphatidylcholine biosynthesis in Arabidopsis
Zhou et al. Identification and characterization of a plastidial phosphatidylglycerophosphate phosphatase in Arabidopsis thaliana
Edqvist et al. Fusion and fission, the evolution of sterol carrier protein-2
O’Gallagher et al. Arabidopsis PAP17 is a dual-localized purple acid phosphatase up-regulated during phosphate deprivation, senescence, and oxidative stress
Lin et al. Cloning, expression and characterisation of a human Nudix hydrolase specific for adenosine 5′-diphosphoribose (ADP-ribose)
Ying et al. A stress-inducible protein regulates drought tolerance and flowering time in Brachypodium and Arabidopsis
Marshall et al. Isolation and characterization of four genes encoding pyruvate, phosphate dikinase in the oomycete plant pathogen Phytophthora cinnamomi
KR100955804B1 (ko) 갈락토리파제 활성을 갖는 옥시리핀 생합성 관련 유전자dgl
EP2635105B1 (en) Acyl-coa: diacylglycerol acyltransferase 1-like gene (ptdgat1) and uses thereof
Prijatelj et al. Mapping the structural determinants of presynaptic neurotoxicity of snake venom phospholipases A2
Heintz et al. Phosphoproteome exploration reveals a reformatting of cellular processes in response to low sterol biosynthetic capacity in Arabidopsis
Yamamoto et al. Characterization of trimeric acetylcholinesterase from a legume plant, Macroptilium atropurpureum Urb.
Bai et al. Enhanced hydrolysis of β‐cypermethrin caused by deletions in the glycin‐rich region of carboxylesterase 001G from Helicoverpa armigera

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130429

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140416

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150226

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170403

Year of fee payment: 8