KR100954205B1 - Preparation method of complex catalyst for ozone deodorization - Google Patents

Preparation method of complex catalyst for ozone deodorization Download PDF

Info

Publication number
KR100954205B1
KR100954205B1 KR1020080057050A KR20080057050A KR100954205B1 KR 100954205 B1 KR100954205 B1 KR 100954205B1 KR 1020080057050 A KR1020080057050 A KR 1020080057050A KR 20080057050 A KR20080057050 A KR 20080057050A KR 100954205 B1 KR100954205 B1 KR 100954205B1
Authority
KR
South Korea
Prior art keywords
ozone
catalyst
activated carbon
composite metal
weight
Prior art date
Application number
KR1020080057050A
Other languages
Korean (ko)
Other versions
KR20090131194A (en
Inventor
서정호
박진도
Original Assignee
울산과학대학 산학협력단
태화환경주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학대학 산학협력단, 태화환경주식회사 filed Critical 울산과학대학 산학협력단
Priority to KR1020080057050A priority Critical patent/KR100954205B1/en
Publication of KR20090131194A publication Critical patent/KR20090131194A/en
Application granted granted Critical
Publication of KR100954205B1 publication Critical patent/KR100954205B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

본 발명은 설파이드 화합물을 고효율로 분해할 수 있는 복합오존촉매 및 이의 제조방법에 관한 것으로, 보다 상세하게는 코발트, 니켈 및 철로 구성되는 복합금속을 활성탄에 담지시킨 복합오존촉매를 사용한 오존촉매반응은 촉매를 사용하지 않고 오존을 단독으로 사용한 유기오염물질 분해반응에 비해 현저히 산화력이 증가하여 악취를 유발하는 설파이드 화합물을 경제적이면서도 환경친화적으로 분해할 수 있다. The present invention relates to a complex ozone catalyst capable of decomposing sulfide compounds with high efficiency and a method for preparing the same. More specifically, the ozone catalyst reaction using a complex ozone catalyst in which a composite metal composed of cobalt, nickel and iron is supported on activated carbon is Compared to the decomposition of organic pollutants using ozone alone without using a catalyst, the oxidizing power is significantly increased, and thus the sulfide compound causing odor can be economically and environmentally friendly.

복합오존촉매, 코발트, 니켈, 철, 활성탄, 설파이드 Complex ozone catalyst, cobalt, nickel, iron, activated carbon, sulfide

Description

오존 탈취반응용 복합촉매의 제조방법{Preparation method of complex catalyst for ozone deodorization}Preparation method of complex catalyst for ozone deodorization reaction

본 발명은 오존을 단독으로 사용한 유기오염물질 분해반응에 비해 현저히 산화력이 증가하여 악취를 유발하는 설파이드 화합물을 경제적이면서도 환경친화적으로 분해할 수 있는 복합오존촉매 및 이의 제조방법에 관한 것이다. The present invention relates to a complex ozone catalyst capable of economically and environmentally friendly decomposition of sulfide compounds that cause odor due to a significant increase in oxidizing power compared to decomposition of organic pollutants using ozone alone, and a method for preparing the same.

악취를 유발하는 설파이드 물질은 다른 대기오염물질들과 달리 인간에게 불쾌감을 주는 감각성 오염물질이며, 그 자체가 유해 대기오염물질이기도 하다. 설파이드 화합물은 생활환경에 직접적으로 영향을 미치는 대기오염물질로서 법으로 규제하고 있는 주요 오염항목이다. 그러나, 설파이드 화합물은 발생원과 유발물질의 종류가 광범위하고 발생원 또한 다양하다.Odor-induced sulfides are sensory pollutants that are unpleasant to humans, unlike other air pollutants, and are themselves harmful air pollutants. Sulphide compounds are the major pollutants regulated by law as air pollutants that directly affect the living environment. However, sulfide compounds have a wide range of sources and types of triggers and a variety of sources.

또한, 설파이드 화합물은 최근 산업시설에서 인체유해성 등에 대한 논란 등 사회적 문제를 야기하고 있으며 다른 물질과의 낮은 반응성으로 화학적 변환이나 대류권의 자체적인 정화과정으로 소멸되지 않고 대기 중에 오래 잔류한다. In addition, sulfide compounds have recently caused social problems such as controversy about human hazards in industrial facilities, and they remain in the atmosphere for a long time without being destroyed by chemical conversion or self-purification of the troposphere due to low reactivity with other substances.

일반적으로 규모의 산업시설에서 발생되는 설파이드 화합물은 연소, 흡착, 흡수, 저온응축에 의한 처리방법 및 바이오필터, RTO, RCO, 활성탄 흡착, 세정법 등의 방지시설로 제거하고 있지만 영세사업장, 축산농가, 세탁소 등과 같이 악취물질을 다량 배출하면서도 처리시설을 갖지 못하는 발생원이 상당수 있다.In general, sulfide compounds generated in industrial facilities of scale are removed by treatment methods such as combustion, adsorption, absorption, and low temperature condensation and prevention facilities such as biofilters, RTO, RCO, activated carbon adsorption, and cleaning methods. Many sources of odorous substances, such as laundry, can not have a treatment facility.

축산농가의 경우 다른 오염물질보다 유기물과 질소, 인 등의 영양염류를 고농도로 함유하고 있어 악취의 강도도 다른 여타의 배출시설보다 강하다. 이러한 악취를 저감하기 위해서 현재 사용되어지고 있는 방법으로는 약액처리법, 흡착법, 마스킹법, 생물학적탈취법 등이 있으며, 다른 한편으로는 오염물질에 탈취제 또는 미생물제제를 가하여 처리하는 방법이 있으나 이들 방법의 처리효율은 그다지 높지 않다. Livestock farmers contain higher concentrations of organic matter, nutrients such as nitrogen and phosphorus than other pollutants, and the odor intensity is stronger than that of other emission facilities. The methods currently used to reduce such odors include chemical treatment, adsorption, masking, and biological deodorization. On the other hand, there is a method of adding a deodorant or a microbial agent to contaminants. Processing efficiency is not very high.

또한 수세나 액-액세정을 사용한 습식탈취 장치는 처리 성능을 향상시키기 위해 복잡한 시스템으로 구성되는 동시에 배수나 배출액의 처리 등이 필요하고 운전 조작이 반드시 용이하다고는 말할 수 없다. 이에 이러한 소규모 및 영세사업장의 발생원을 처리하기 위해서는 장치가 간단하면서 경제성 있는 방지시설이 필요하다.In addition, the wet deodorization apparatus using water washing or liquid-liquid cleaning is composed of a complex system to improve the treatment performance, it is necessary to treat the drainage or discharge liquid, and the operation operation is not necessarily easy. Therefore, in order to deal with the sources of these small and small businesses, a simple and economical prevention facility is needed.

오존은 모든 화학물질과 반응하여 오존 자체가 가지는 높은 산화력에 의해 이론적으로는 물질을 완벽하게 물과 이산화탄소로 산화시킨다. 하지만 모든 물질에 대해서 반응성이 뛰어난 것은 아니며, 일부 물질들은 오존과의 반응성이 약한 것도 있다. Ozone reacts with all chemicals and, in theory, the high oxidizing power of ozone itself oxidizes the material completely to water and carbon dioxide. However, not all substances are highly reactive, and some are less reactive with ozone.

오존을 이용한 악취제거 및 유기휘발성물질(VOCs) 제거에 최근 고체 촉매를 이용하여 주요 악취물질을 제거하는 건식 오존 탈취 장치에 대해 연구 개발 중에 있으나 특정 화합물에 대한 분해능은 크지 않아 특정 화합물 특히 악취의 원인물질 로 인정되는 설파이드 화합물을 선택적으로 분해할 수 있는 촉매의 개발이 시급하다. While the research and development of the dry ozone deodorizer which removes major odors by using solid catalysts to remove odors and remove organic volatile substances (VOCs) using ozone, the resolution of a particular compound is not so large, the cause of certain compounds, especially odor There is an urgent need to develop catalysts that can selectively decompose sulfide compounds that are recognized as substances.

특히, 설파이드 화합물들은 오존과의 반응속도가 느리기 때문에 짧은 접촉 시간에서는 충분한 탈취효과를 얻을 수 없어 일반적인 악취제거장치에서는 잘 제거되지 않는 것으로 알려져 있다. In particular, since sulfide compounds have a slow reaction rate with ozone, sufficient deodorizing effects cannot be obtained in a short contact time, and thus, they are not easily removed in a general odor removing apparatus.

이에, 본 발명자는 소규모 공장 및 축사, 음식물자원화시설 등에서 발생하는 악취물질 특히 설파이드 화합물을 경제적이면서도 환경친화적으로 처리할 수 있는 콤펙트화된 복합오존촉매를 개발하여 본 발명을 완성한 것이다. Accordingly, the present inventors have completed the present invention by developing a compacted complex ozone catalyst capable of economically and environmentally friendly treatment of odorous substances, particularly sulfide compounds, generated in small-scale factories, barns, and food resource recycling facilities.

따라서, 본 발명의 목적은 설파이드 화합물을 경제적이면서도 환경친화적으로 분해할 수 있는 복합오존촉매를 제공하는 데에 있다.Accordingly, an object of the present invention is to provide a complex ozone catalyst capable of economically and environmentally friendly decomposition of sulfide compounds.

상기 목적을 달성하기 위하여, 본 발명은 코발트, 니켈 및 철로 구성되는 복합금속을 활성탄에 담지시킨 것을 특징으로 하는 복합오존촉매를 제공한다.In order to achieve the above object, the present invention provides a composite ozone catalyst, characterized in that the composite metal consisting of cobalt, nickel and iron supported on the activated carbon.

오존은 자연계에서 불소에 이어 산화력이 강한 물질이다. 이러한 산화력으로 악취를 분해할 수 있으며 쉽게 탈취장치를 구성할 수 있는데 악취공해가 문제가 되는 저농도 영역에서는 반응속도가 매우 늦다. Ozone is a highly oxidizing substance after fluoride in nature. Odor can be decomposed by the oxidizing power and easily deodorizing device can be configured, but the reaction rate is very slow in the low concentration area where odor pollution is a problem.

예를 들면 오존과 유화수소를 각각 1ppm으로 반응시키며 그 반감기는 9,000분이 되고 비교적 반응속도가 빠른 메틸메르캅탄에서도 반감기가 220분 정도 소요된다. For example, ozone and hydrogen sulfide are each reacted at 1 ppm, and the half-life is 9,000 minutes, and the half-life is about 220 minutes in methyl mercaptan, which is relatively fast.

그러나 탈취반응 속도를 촉진하기 위해서 오존촉매를 병용하면 극히 짧은 시간에 충분한 반응을 하여 탈취의 효과를 얻을 수 있다는 점을 착안하여 본 발명을 완성하였다.However, the present invention has been completed in view of the fact that when the ozone catalyst is used together to accelerate the deodorization reaction, sufficient reaction can be obtained in a very short time to obtain the effect of deodorization.

이러한 오존을 이용한 탈취 기전은 다음과 같은 경로로 진행된다.The deodorization mechanism using ozone proceeds as follows.

O3 + M(촉매) ----> O2 + MO(활성화된 촉매)O 3 + M (catalyst) ----> O 2 + MO (activated catalyst)

MO + 유기물(악취물질) ----> M + 악취물질의 산화생성물MO + organic matter (odorous substance) ----> oxidation product of M + odorous substance

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 복합오존촉매에서 상기 복합금속은 코발트, 니켈 및 철을 1 내지 2: 1 내지 2: 1 내지 2의 중량비율로 포함하는 것이 바람직하며, 코발트, 니켈 및 철을 2:2:1의 중량비율로 포함하는 것이 보다 바람직하다. 만약, 상기 범위를 벗어나 금속을 포함하게 되면 제거효율이 저하되는 문제가 야기될 수 있다. In the composite ozone catalyst of the present invention, the composite metal preferably contains cobalt, nickel, and iron in a weight ratio of 1 to 2: 1 to 2: 1 to 2, and includes cobalt, nickel, and iron in a 2: 2: 1 ratio. It is more preferable to include by weight ratio. If the metal is out of the above range, the removal efficiency may be lowered.

본 발명은 코발트, 니켈 및 철을 염산 수용액에 용해시키는 단계; 상기 얻어진 복합금속 용액을 활성탄에 침지시키는 단계; 상기 활성탄에 침지된 복합금속을 환원시키는 단계; 및 활성탄을 제거한 복합금속을 세척하고 건조하는 단계를 포함하여 구성되는 것을 특징으로 하는 복합오존촉매의 제조방법을 제공한다.The present invention comprises the steps of dissolving cobalt, nickel and iron in an aqueous hydrochloric acid solution; Immersing the obtained composite metal solution in activated carbon; Reducing the composite metal immersed in the activated carbon; And it provides a method for producing a composite ozone catalyst characterized in that it comprises a step of washing and drying the composite metal from which activated carbon has been removed.

상기 용해 단계는 염산 수용액 100 중량부에 대하여, 코발트 0.01-0.1 중량부, 니켈 0.01-0.1 중량부 및 철 0.01-0.1 중량부, 바람직하게는 코발트 0.03-0.06 중량부, 니켈 0.02-0.04 중량부 및 철 0.03 중량부를 용해시킨다. The dissolving step is based on 100 parts by weight of aqueous hydrochloric acid, 0.01-0.1 parts by weight of cobalt, 0.01-0.1 parts by weight of nickel and 0.01-0.1 parts by weight of iron, preferably 0.03-0.06 parts by weight of cobalt, 0.02-0.04 parts by weight of nickel and Dissolve 0.03 parts by weight of iron.

또한, 상기 침지 단계는 진공 펌프로 감압시켜 활성탄 기공에 존재하는 가스를 뽑아내면서 복합금속을 침지시킨다.In addition, the immersion step is to decompress the composite metal while decompressing the gas present in the activated carbon pores by reducing the pressure with a vacuum pump.

이때, 활성탄 100 중량부에 대하여 복합금속을 0.1 내지 1.0 중량부, 바람직하게는 0.46 내지 0.75 중량부로 침지시킨다. 만약, 상기 범위를 벗어나 소량으로 복합금속을 침지시키면 오존의 탈취반응 속도가 매우 늦으며, 다량으로 복합금속을 침지시키면 오존의 탈취반응 속도가 포화되어 비경제적인 문제가 있다. At this time, the composite metal is immersed in 0.1 to 1.0 parts by weight, preferably 0.46 to 0.75 parts by weight based on 100 parts by weight of activated carbon. If the complex metal is immersed in a small amount out of the above range, the deodorization reaction rate of ozone is very slow, and if the complex metal is immersed in a large amount, the deodorization reaction rate of ozone is saturated and there is an uneconomic problem.

본 발명의 복합오존촉매는 황화수소, 황화메틸, 이황화메틸 등과 같은 설파이드 화합물을 효율적으로 처리할 수 있다.The composite ozone catalyst of the present invention can efficiently treat sulfide compounds such as hydrogen sulfide, methyl sulfide, methyl disulfide and the like.

본 발명에 따른 복합오존촉매를 이용한 오존촉매반응은 촉매를 사용하지 않고 오존을 단독으로 사용한 유기오염물질 분해반응에 비해 현저히 산화력이 증가하여 악취를 유발하는 설파이드 화합물을 경제적이면서도 환경친화적으로 분해할 수 있다. The ozone catalyst reaction using the complex ozone catalyst according to the present invention is capable of economically and environmentally friendly decomposition of sulfide compounds that cause odor due to a significant increase in oxidizing power compared to the decomposition of organic pollutants using ozone alone without using a catalyst. have.

이하 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시예 1 내지 4> 복합오존촉매 제조<Examples 1 to 4> Preparation of complex ozone catalyst

실험에 사용한 촉매는 조립활성탄(SZ-35, Φ 3.5, 신기화학공업(주))을 담체로 사용하여 제조하였다. 활성탄 담지촉매의 제조과정은 CoCl2, FeCl3 및 NiCl3를 1:1:1몰비, 2:1:1몰비, 1:2:1몰비 및 2:2:1몰비로 각각 20%-HCl 수용액 20L에 용해시켰고, 원형의 조립활성탄 3500g과 함께 밀폐용기에 투입하고 진공펌프로 감압시켜 활성탄 마크로포어(macro pore)에 존재하는 가스를 뽑아내면서 각 금속을 침지시켰다. The catalyst used in the experiment was prepared using granulated activated carbon (SZ-35, Φ 3.5, Shin Ki Chemical Co., Ltd.) as a carrier. The process of preparing activated carbon supported catalyst was carried out with 20% -HCl aqueous solution of CoCl 2 , FeCl 3 and NiCl 3 in 1: 1: 1 molar ratio, 2: 1: 1 molar ratio, 1: 2: 1 molar ratio, and 2: 2: 1 molar ratio, respectively. It was dissolved in 20 L, put into a sealed container with 3500 g of circular granular activated carbon, and decompressed with a vacuum pump to immerse each metal while extracting the gas present in the activated carbon macropore.

침지된 금속이온을 환원시키기 위하여 환원제인 NaBH4를 이용하여 금속으로 환원시켰다. 제조된 촉매 중 미분상태의 활성탄 및 기타 이물질을 제거하기 위해 증류수로 충분히 세척하고, 100±5℃에서 2시간 동안 건조하여 복합금속촉매를 제조하였다. In order to reduce the immersed metal ions it was reduced to metal using NaBH 4 as a reducing agent. In order to remove the activated carbon and other foreign matter in the fine powder of the prepared catalyst, it was sufficiently washed with distilled water, and dried at 100 ± 5 ℃ for 2 hours to prepare a composite metal catalyst.

본 실시예에서 제조된 복합오존촉매를 도 2에 나타내었다.The composite ozone catalyst prepared in this example is shown in FIG. 2.

<실험예 1> 촉매 분석Experimental Example 1 Catalyst Analysis

실시예에서 제조한 촉매의 표면관찰은 주사전자현미경(Scanning electron microscopy, SEM, S-3000N, HITACHI)을 이용하였다(도 3 참조). Surface observation of the catalyst prepared in Example was performed by scanning electron microscopy (Scanning electron microscopy, SEM, S-3000N, HITACHI) (see Fig. 3).

그 결과, 도 4는 코발트, 니켈, 철을 침지시키기 전의 활성탄 표면을 나타낸 것이며, 도 5는 코발트, 니켈, 철을 담지시킨 후 SEM 이미지를 나타낸 것이다. As a result, Figure 4 shows the surface of the activated carbon before immersing cobalt, nickel, iron, Figure 5 shows the SEM image after supporting the cobalt, nickel, iron.

그리고, 실시예에서 제조한 복합오존촉매의 금속 함량 및 담체표면에서의 금속 농도를 표 1에 나타내었다.In addition, the metal content of the composite ozone catalyst prepared in Example and the metal concentration at the carrier surface are shown in Table 1.

구성성분 Ingredient CoNiF1CoNiF1 CoNiF2CoNiF2 CoNiF3CoNiF3 CoNiF4CoNiF4 1:1:11: 1: 1 2:1:12: 1: 1 1:2:11: 2: 1 2:2:12: 2: 1 CC 89.0389.03 88.4388.43 89.5689.56 89.4289.42 OO 7.427.42 7.337.33 7.027.02 7.047.04 MgMg 0.600.60 0.320.32 0.090.09 0.050.05 SiSi 0.590.59 0.280.28 0.110.11 0.050.05 KK 0.370.37 0.700.70 0.690.69 0.220.22 CaCa 0.150.15 0.610.61 0.170.17 0.050.05 CoCo 0.620.62 1.11.1 0.620.62 1.321.32 NiNi 0.610.61 0.620.62 1.131.13 1.241.24 FeFe 0.610.61 0.610.61 0.610.61 0.610.61 totaltotal 100100 100100 100100 100100

<< 실험예Experimental Example 2> 촉매활성 검토 2> Review of catalytic activity

실시예에서 제조한 복합오존촉매의 설파이드 화합물과의 반응성 및 처리효율을 검토하기 위해서는 목적물질인 황화수소(Hydrogen sulfide), 황화메틸(Dimethylsulfide), 이황화메틸(Dimethyldisulfide)을 직접 사용하여 실험을 하여야 하나, 위 3가지 물질은 모두 상온에서 기체상태로 존재하며, 적절한 농도로 시판되지 않으며, 실험 장치를 세팅하기도 쉽지 않은 조건을 가지고 있다. In order to examine the reactivity and treatment efficiency of the sulfide compound of the composite ozone catalyst prepared in Example, experiments should be directly performed using hydrogen sulfide, methyl sulfide, and methyl disulfide as target substances. All three materials exist in the gaseous state at room temperature, are not commercially available at appropriate concentrations, and have conditions that are not easy to set up an experimental device.

따라서 순수한 설파이드 화합물로 촉매의 효율 테스트를 실시하기는 거의 불가능하다고 판단되어, 유입가스로 벤젠과 톨루엔을 사용하기로 결정하였다. Therefore, it was judged that it was almost impossible to test the efficiency of the catalyst with pure sulfide compound, and it was decided to use benzene and toluene as inflow gas.

벤젠과 톨루엔은 VOCs 물질로 규정되어 있는 화합물 중에서 가장 많이 발생하며, 사용하기 간편하며 측정도 쉽게 할 수 있으므로 촉매의 효율을 간접적으로 파악하기에 적합한 물질이라 판단되었다. Benzene and toluene were considered to be the most suitable compounds to identify indirectly the efficiency of catalysts because they are the most frequently generated, simple to use and easy to measure.

따라서 본 실험에서는 벤젠과 톨루엔을 시료가스로 사용하여 복합오존촉매의 공탑체류시간에 따른 제거효율을 측정하였다. 이때, 제거효율 측정분석은 GC/MS(Varian Saturn 2200, USA)를 이용하였다(도 6 참조).Therefore, in this experiment, benzene and toluene were used as sample gas and the removal efficiencies of the complex ozone catalysts were measured according to the tower column residence time. At this time, the removal efficiency measurement analysis was used GC / MS (Varian Saturn 2200, USA) (see Figure 6).

활성탄의 흡착에 의한 제거효율오차를 없애기 위해 먼저 시료가스를 공급하여 활성탄의 파과점을 확인한 후 오존을 공급하여 실험하였다. 측정 결과는 도 7 내지 10과 같다.In order to eliminate the removal efficiency error due to the adsorption of activated carbon, the experiment was performed by first supplying a sample gas to check the breakthrough point of activated carbon and then supplying ozone. Measurement results are as shown in Figs.

보다 구체적으로는, 도 7은 벤젠 초기농도 48-52ppm 및 공탑체류시간 14-144초이고, 도 8은 벤젠 초기농도 97-102ppm 및 공탑체류시간 14-144초이고, 도 9는 톨루엔 초기농도 47-52ppm 및 공탑체류시간 14-144초이며, 도 10은 톨루엔 초기농도 97-103ppm 및 공탑체류시간 14-144초이었다. More specifically, FIG. 7 shows an initial concentration of 48-52 ppm of benzene and a 14-144 second ballast retention time, FIG. 8 shows an initial concentration of 97-102 ppm of benzene and a 14-144 second tower length of benzene, and FIG. 9 shows an initial concentration of toluene 47 -52ppm and tower residence time 14-144 seconds, Figure 10 was toluene initial concentration 97-103ppm and tower residence time 14-144 seconds.

도 7 내지 10에 도시된 바와 같이, 본 실험에 사용된 복합오존촉매 4종류(CoNiF1, CoNiF2, CoNiF3, CoNiF4) 중 코발트 함량이 가장 높은 CoNiF4의 제거 효율이 가장 우수한 것으로 나타났다. As shown in FIGS. 7 to 10, it was found that the removal efficiency of CoNiF4 having the highest cobalt content was the highest among the four types of complex ozone catalysts (CoNiF1, CoNiF2, CoNiF3, CoNiF4) used in the present experiment.

또한 같은 조건에서 실험하였을 때 벤젠에 비해 톨루엔의 제거 효율이 더 높은 것을 알 수 있었다. 또한 제거 효율은 벤젠과 톨루엔 모두에서 초기농도가 50 ppm 일 때 보다 100 ppm 일 때가 높게 나오는 것을 알 수 있었다. In addition, it was found that the removal efficiency of toluene was higher than that of benzene when tested under the same conditions. In addition, the removal efficiency was found to be higher at 100 ppm than at 50 ppm in both benzene and toluene.

따라서 본 실험을 통해, 본 실험에서 사용한 복합오존촉매의 경우에는 코발트 함량이 높을수록, 초기 악취 농도가 높을수록 제거 효율이 높게 나온다는 것을 예측할 수 있었다. Therefore, through this experiment, the composite ozone catalyst used in this experiment was predicted that the higher the cobalt content, the higher the initial odor concentration, the higher the removal efficiency.

도 1은 본 발명의 복합금속촉매의 제조공정을 나타낸 순서도이고,1 is a flow chart showing the manufacturing process of the composite metal catalyst of the present invention,

도 2는 본 발명의 일실시예에 따라 제조된 복합금속촉매를 나타낸 것이고,Figure 2 shows a composite metal catalyst prepared according to an embodiment of the present invention,

도 3은 본 발명의 복합금속촉매의 표면관찰을 위해 사용된 주사전자현미경을 나타낸 것이고,Figure 3 shows a scanning electron microscope used for the surface observation of the composite metal catalyst of the present invention,

도 4 및 도 5는 복합금속을 침지하기 전 또는 침지한 후 활성탄 표면을 분석한 SEM 사진이고,4 and 5 are SEM pictures of the surface of the activated carbon before or after the immersion of the composite metal,

도 6은 본 발명의 촉매활성 검토를 위해 사용된 GC-MS를 나타낸 것이고,Figure 6 shows the GC-MS used for the catalytic activity review of the present invention,

도 7 내지 도 10은 벤젠 또는 톨루엔에 대한 본 발명의 복합금속촉매의 성능 실험결과를 나타낸 것이다.7 to 10 show the results of the performance test of the composite metal catalyst of the present invention for benzene or toluene.

Claims (5)

삭제delete 삭제delete 코발트, 니켈 및 철을 염산 수용액에 용해시키는 단계;Dissolving cobalt, nickel and iron in an aqueous hydrochloric acid solution; 상기 얻어진 복합금속 용액을 활성탄에 침지시키는 단계;Immersing the obtained composite metal solution in activated carbon; 상기 활성탄에 침지된 복합금속을 환원시키는 단계; 및Reducing the composite metal immersed in the activated carbon; And 활성탄을 제거한 복합금속을 세척하고 건조하는 단계 Washing and drying the composite metal from which activated carbon has been removed 를 포함하여 구성되는 것을 특징으로 하는 오존 탈취반응용 복합촉매의 제조방법.Method for producing a composite catalyst for ozone deodorization reaction comprising a. 제 3항에 있어서, 상기 용해 단계는 염산 수용액 100 중량부에 대하여, 코발트 0.01-0.1 중량부, 니켈 0.01-0.1 중량부 및 철 0.01-0.1 중량부를 용해시키는 것을 특징으로 하는 오존 탈취반응용 복합촉매의 제조방법.The complex catalyst for ozone deodorization according to claim 3, wherein the dissolving step dissolves 0.01-0.1 parts by weight of cobalt, 0.01-0.1 parts by weight of nickel and 0.01-0.1 parts by weight of iron with respect to 100 parts by weight of an aqueous hydrochloric acid solution. Manufacturing method. 제 3항에 있어서, 상기 침지 단계는 진공 펌프로 감압시켜 활성탄 기공에 존재하는 가스를 뽑아내면서 복합금속을 침지시키는 것을 특징으로 하는 오존 탈취반응용 복합촉매의 제조방법.The method of claim 3, wherein the immersion step is to decompress the composite metal while decompressing the gas present in the activated carbon pores by reducing the pressure with a vacuum pump.
KR1020080057050A 2008-06-17 2008-06-17 Preparation method of complex catalyst for ozone deodorization KR100954205B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080057050A KR100954205B1 (en) 2008-06-17 2008-06-17 Preparation method of complex catalyst for ozone deodorization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080057050A KR100954205B1 (en) 2008-06-17 2008-06-17 Preparation method of complex catalyst for ozone deodorization

Publications (2)

Publication Number Publication Date
KR20090131194A KR20090131194A (en) 2009-12-28
KR100954205B1 true KR100954205B1 (en) 2010-04-21

Family

ID=41690470

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080057050A KR100954205B1 (en) 2008-06-17 2008-06-17 Preparation method of complex catalyst for ozone deodorization

Country Status (1)

Country Link
KR (1) KR100954205B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689977A (en) * 2012-06-01 2012-09-26 浙江清华长三角研究院 Waste water purification method and reactor adopting ozone oxidation catalysis and using compound suspended carrier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111437818B (en) * 2020-04-28 2023-06-02 盐城师范学院 Novel heterogeneous ozone catalyst for treating wastewater and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0221598A2 (en) * 1985-11-08 1987-05-13 Shell Internationale Researchmaatschappij B.V. Supported metal catalysts and use thereof
JPH0780299A (en) * 1993-09-14 1995-03-28 Kuraray Chem Corp Metal oxide added activated carbon catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0221598A2 (en) * 1985-11-08 1987-05-13 Shell Internationale Researchmaatschappij B.V. Supported metal catalysts and use thereof
JPH0780299A (en) * 1993-09-14 1995-03-28 Kuraray Chem Corp Metal oxide added activated carbon catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102689977A (en) * 2012-06-01 2012-09-26 浙江清华长三角研究院 Waste water purification method and reactor adopting ozone oxidation catalysis and using compound suspended carrier

Also Published As

Publication number Publication date
KR20090131194A (en) 2009-12-28

Similar Documents

Publication Publication Date Title
Li et al. Experimental study on ozone photolytic and photocatalytic degradation of H2S using continuous flow mode
Govindan et al. A single catalyst of aqueous CoIII for deodorization of mixture odor gases: a development and reaction pathway study at electro-scrubbing process
KR101243849B1 (en) Odor removal apparatus for a waste or a sewagedisposal treatment plant and method of the same
KR100954205B1 (en) Preparation method of complex catalyst for ozone deodorization
CN201564831U (en) Biochemical-physical combined type deodorization device
Das et al. Adsorption of p-cresol on granular activated carbon
CN109433272A (en) A kind of preparation method of the catalysis material of room temperature removal ozone
KR100442703B1 (en) Catalytic compound for purification of air and water and method for purification of air and water using the same
JP3802161B2 (en) Biological treatment of malodorous gases
CN104524950A (en) Plant type deodorant for refuse landfill
JP3634263B2 (en) Method for producing deodorant
KR101258092B1 (en) Deodorant agent
JP2006026194A (en) Organic matter removing apparatus
KR20200056343A (en) Adsorbent for offensive order removal and method to manufacture thereof
JP4278495B2 (en) Compound odor deodorant
CN208194079U (en) A kind of odor treatment device
JP2982661B2 (en) Deodorizing and sterilizing components
Kasper et al. Regenerative one-stage catalytic absorption process with cupric ions for removal of reduced sulfur compounds in polluted air
CN111249880A (en) Treatment process and equipment for tail gas in polyphenylene sulfide resin production
CN103252156A (en) Biochemistry-physicochemistry combined deodorization device
JP2007136252A (en) Deodorization method and apparatus for odor gas
CN110523242A (en) A kind of contactless stench gas with foreign flavor processing method and processing device
JP3624156B2 (en) Method for producing deodorant
KR102332223B1 (en) an odor removing equipment using both natural essences oils and porous medias and the odor removing method
JP2003210931A (en) Method for deodorization treatment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130411

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140404

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150313

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160411

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190403

Year of fee payment: 10