KR100953104B1 - A Novel plasmid from Leuconostoc sp. and Shuttle Vector comprising the plasmid - Google Patents

A Novel plasmid from Leuconostoc sp. and Shuttle Vector comprising the plasmid Download PDF

Info

Publication number
KR100953104B1
KR100953104B1 KR1020070086052A KR20070086052A KR100953104B1 KR 100953104 B1 KR100953104 B1 KR 100953104B1 KR 1020070086052 A KR1020070086052 A KR 1020070086052A KR 20070086052 A KR20070086052 A KR 20070086052A KR 100953104 B1 KR100953104 B1 KR 100953104B1
Authority
KR
South Korea
Prior art keywords
plasmid
shuttle vector
host cell
vector
leuconostoc
Prior art date
Application number
KR1020070086052A
Other languages
Korean (ko)
Other versions
KR20090021496A (en
Inventor
엄현주
한남수
Original Assignee
충북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충북대학교 산학협력단 filed Critical 충북대학교 산학협력단
Priority to KR1020070086052A priority Critical patent/KR100953104B1/en
Publication of KR20090021496A publication Critical patent/KR20090021496A/en
Application granted granted Critical
Publication of KR100953104B1 publication Critical patent/KR100953104B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/746Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for lactic acid bacteria (Streptococcus; Lactococcus; Lactobacillus; Pediococcus; Enterococcus; Leuconostoc; Propionibacterium; Bifidobacterium; Sporolactobacillus)

Abstract

본 발명은 류코노스톡에서 유래된 신규 플라스미드 및 이를 이용하여 제조된 셔틀 벡터에 관한 것으로 더욱 상세하게는 젖산 발효식품의 우점종으로 알려진 류코노스톡에서 분리된 플라스미드 pCB42를 이용하여 대장균에서 상호복제가 가능한 셔틀벡터를 제조하는 것에 관한 것이다. The present invention relates to a novel plasmid derived from leuconosstock and a shuttle vector prepared using the same. More specifically, the plasmid pCB42 isolated from leuconosstock known as the dominant species of lactic acid fermented food is capable of mutual replication in Escherichia coli. It relates to producing a shuttle vector.

셔틀벡터, 류코노스톡, 대장균 Shuttle vector, leukono stock, coliform

Description

류코노스톡에서 유래된 신규 플라스미드 및 이를 포함하는 셔틀 벡터{A Novel plasmid from Leuconostoc sp. and Shuttle Vector comprising the plasmid}Novel plasmids derived from leukonostock and shuttle vectors comprising the same {A Novel plasmid from Leuconostoc sp. and Shuttle Vector comprising the plasmid}

본 발명은 류코노스톡에서 유래된 신규 플라스미드 및 이를 이용하여 제조된 셔틀 벡터에 관한 것으로 더욱 상세하게는 젖산발효식품의 우점종으로 알려진 류코노스톡에서 분리된 플라스미드 pCB42를 이용하여 대장균에서 상호복제가 가능한 셔틀벡터를 제조하고 또한 세포 내 유용한 단백질을 발현한 것에 관한 것이다. The present invention relates to a novel plasmid derived from leuconosstock and a shuttle vector prepared using the same. More specifically, the plasmid pCB42 isolated from leuconosstock known as the dominant species of lactic acid fermented food is capable of mutual replication in Escherichia coli. The preparation of the shuttle vector and also the expression of useful proteins in cells.

최근 들어 생명공학 기법 등을 이용하여 유산균 원래의 특성 이외에 새로운 기능을 가진 유산균을 개발하기 위한 연구가 계속해서 진행되고 있다. 가장 활발한 유산균의 분야는 유산 구균인 Lactococcus lactis에 집중되어 있으며, 현재 대장균과 견줄만한 수준까지 와있다. 그 외에도 유산 간균인 Lactobacillus 등도 활발한 연구가 진행되고 있으나 Leuconostoc 연구는 플라스미드가 분리된 1982년(O`Sullivan and Daly) 이래 여전히 플라스미드 분리, 셔틀벡터의 제조 수준에 머물러 있다.In recent years, research to develop lactic acid bacteria having new functions in addition to the original characteristics of lactic acid bacteria by using biotechnology techniques is continuously conducted. The most active field of lactic acid bacteria is Lactococcus Concentrated in lactis , currently comparable to Escherichia coli. In addition, Lactobacillus , a lactobacillus bacillus, is being actively researched, but Leuconostoc research has remained at the level of plasmid separation and shuttle vector production since 1982 (O`Sullivan and Daly).

일반적으로 세균이 가지고 있는 플라스미드는 생육에 절대적으로 필요한 요 소는 아니지만, 1) 단백질의 가수분해, 2) 탄수화물, 아미노산 그리고 시트르산의 대사, 3) 박테리오신, 세포 외 다당, 색소의 생산 및 4) 항생제, 중금속 및 파지의 저항성이 플라스미드에 관련이 있다고 보고되고 있다. 그러나 아직까지 유산균에서 분리되는 대부분의 플라스미드는 신비하고, 애매한(cryptic)한 것으로, 그 기능이 명백하지 않다.In general, bacterial plasmids are not absolutely necessary for growth, but 1) hydrolysis of proteins, 2) metabolism of carbohydrates, amino acids and citric acid, 3) production of bacteriocins, extracellular polysaccharides, pigments, and 4) antibiotics. It has been reported that the resistance of heavy metals and phages is related to plasmids. Yet most plasmids isolated from lactic acid bacteria are mysterious and cryptic and their function is not clear.

우수한 셔틀벡터 및 발현벡터를 구축하기 위해서는 우선 플라스미드의 분리과정이 필요하다. 그람양성 박테리아에서 분리되는 플라스미드는 주로 2가지의 복제기작을 따른다고 보고되고 있다. 먼저 로마글자 중 sigma(δ) 모양처럼 복제를 한다고 해서 붙여진 시그마복제 혹은 rolling-circle replication (RCR)이 존재하는데 가장 많은 박테리아의 플라스미드가 여기에 속하고 주로 작은 사이즈이며, 멀티로 복제하고, 다양한 숙주에서도 복제함이 특징이다. 그러나 ssDNA를 축적하는 특징으로 말미암아 숙주 내로 전이 시 안정성이 떨어지는 크나큰 단점이 있으며, 그곳에 삽입 DNA(예를들면, 이형의 단백질)가 있을 때에는 더 안전성이 떨어진다고 보고되고 있다.(Gruss and Ehrlich, 1989, Microbiol. Rev. 53:231-241). 또 다른 메카니즘으로는 로마글자 theta(θ)처럼 복제한다고 하여 붙혀진 theta 복제기작이 존재한다. 주로 큰 플라스미드는 이 복제기작을 따른다고 보고되었지만 최근에는 작은 크기의 플라스미드도 보고되고 있다. 또 다른 특징으로는 다양한 숙주내로 도입이 안되는 단점을 가지고 있지만 일단 숙주내로 들어가면 높은 안정성을 나타낸다고 보고되고 있고, 삽입된 DNA가 16.8kb 이상일때도 높은 안정성을 나타내었다고 보고되고 있다(Kiewiet et al., 1993, Mol.Microbiol. 10:319-327). In order to construct an excellent shuttle vector and expression vector, first, separation of the plasmid is required. Plasmids isolated from Gram-positive bacteria have been reported to mainly follow two replication mechanisms. Sigma replication or rolling-circle replication (RCR) attached by replicating like sigma (δ) in Roman letters is the most common plasmid of bacteria belonging to it, mainly small size, multiplication, and various host. It also features a clone. However, due to the accumulation of ssDNA, there is a big disadvantage that stability is poor when transferring into the host, and it is reported that it is less safe when there is inserted DNA (eg, heterologous protein) (Gruss and Ehrlich, 1989, Microbiol. Rev. 53: 231-241). Another mechanism is the theta replication mechanism, attached by copying like the Roman letter theta (θ). Larger plasmids have been reported to follow this replication mechanism, but recently small plasmids have also been reported. Another feature is that it has a disadvantage of not being introduced into various hosts, but it is reported to show high stability once entered into the host, and also to show high stability even when the inserted DNA is 16.8 kb or more (Kiewiet et. al ., 1993, Mol. Microbiol. 10: 319-327).

이에 본 발명자들은 류코노스톡 속 유산균이 앞으로 식품산업에서 기능성을 부여하는 시스템 및 면역단백질 발현, 각종 질병 치료 시스템에 유용하게 쓰일 산업적으로 중요한 균주로 간주하고 류코노스톡 시트럼에서 플라스미드 pCB42를 분리하였고 류코노스톡과 대장균에서 모두 복제가 가능한 셔틀벡터 pLeuCM42을 제작하였다. 이 셔틀벡터가 류코노스톡 속에서 100세대 이상 안정하게 복제됨을 확인하고, 본 발명을 완성하게 되었다.Therefore, the present inventors regarded the lactic acid bacteria of leuconosstock as an industrially important strain that would be useful for the system that provides functionality in the food industry, immunoprotein expression, and various disease treatment systems, and isolated plasmid pCB42 from leuconosstock column. A shuttle vector pLeuCM42 was constructed that was able to replicate in both leukonostock and Escherichia coli. It was confirmed that this shuttle vector is stably replicated for more than 100 generations in the leukonostock, and completed the present invention.

따라서 본 발명의 목적은 류코노스톡과 대장균 속에서 안정하게 복제되는 셔틀벡터를 제공하는 것이다.Therefore, it is an object of the present invention to provide a shuttle vector that is stably replicated in leukonostock and E. coli.

상기의 목적을 달성하기 위하여 본 발명은 류코노스톡과 대장균에서 상호 복제가 가능한 셔틀벡터를 구축하기 위하여, 대장균에서 작용하는 복제원점(ori) 및 암피실린(ampicillin)과 클로람페니콜(chroamphenicol) 항생제 저항 유전자를 가지고 있는 pUC19 유도체인 4kb의 벡터 pEK104와 류코노스톡 시트륨 95로부터 분리한 플라스미드 pCB42를 이용하여 만든 셔틀벡터 pLeuCM42을 제공한다. In order to achieve the above object, the present invention is to establish a shuttle vector capable of mutual replication in leukonostock and E. coli, the origin of replication (ori) and ampicillin and chloramphenicol antibiotic resistance genes in Escherichia coli Shuttle vector pLeuCM42 made using the plasmid pCB42 isolated from 4kb vector pEK104 which is a pUC19 derivative, and leuconosstock citrate 95 is provided.

즉 본 발명은 대장균의 DNA 복제 원점; 류코노스톡의 DNA 복제 원점; 대장균에서 발현되고 선택표지인 암피실린 저항유전자; 및 류코노스톡에서 작용되는 선택표지인 클로람페니콜 저항유전자(클로람페니콜 아세틸 트랜스퍼레이즈, CAT), 다양한 제한효소 인식부위를 갖는 복합 클로닝 사이트(Multiple Cloning Sites)를 포함 하며, 류코노스톡과 대장균에서 상호 복제되는 셔틀벡터 pLeuCM42를 제공한다. That is, the present invention is a DNA replication origin of E. coli; Origin of DNA replication of leukonostock; An ampicillin resistance gene expressed in E. coli and a selectable marker; And chloramphenicol resistance genes (chloramphenicol acetyl transferase, CAT), which are selective markers acting on leuconosstock, and multiple cloning sites having various restriction enzyme recognition sites, which are mutually replicated in leuconosstock and E. coli. The shuttle vector pLeuCM42 is provided.

상기 다양한 제한 효소는 Hind III, Pst I, Xab I, BamH I, Sma I, Kpn I, 및 EcoR I으로 구성된 군으로부터 선택되는 효소인 것이 바람직하나 이에 한정되지 아니한다.The various restriction enzymes are preferably enzymes selected from the group consisting of Hind III, Pst I, Xab I, Bam H I, Sma I, Kpn I, and Eco R I, but are not limited thereto.

또 본 발명은 본 발명의 셔틀벡터를 포함하는 숙주세포를 제공한다.In another aspect, the present invention provides a host cell comprising the shuttle vector of the present invention.

본 발명의 숙주세포는 세균인 것이 바람직하고, 다양한 유산균 또는 대장균인 것이 더욱 바람직하나 이에 한정되지 아니하고, 상기에서 유산균은 락토바실러스, 락토코커스, 스트렙토코커스, 또는 류코노스톡인 것이 더욱 바람직하며, 류코노스톡이 가장 바람직하나 이에 한정되지 아니한다.The host cell of the present invention is preferably a bacterium, more preferably a variety of lactic acid bacteria or Escherichia coli, but is not limited thereto, wherein the lactic acid bacteria is more preferably Lactobacillus, Lactococcus, Streptococcus, or Leukonostock, Conostock is most preferred but not limited thereto.

본 발명의 셔틀벡터를 포함하는 류코노스톡 세포는 2007년 8월 17일 대한민국 수원시 권선구 서둔동 농업생명공학연구원 소재 한국농업미생물자원센터에 기탁번호 (KACC-95063P)로 기탁하였으며, 특징으로 하며, 도 4에 기재된 셔틀벡터가 바람직하다.The leukonostock cell containing the shuttle vector of the present invention was deposited with the Korea Agricultural Microbiological Resource Center (KACC-95063P) located at Seodun-dong, Seodun-dong, Gwonseon-gu, Suwon, Korea, on August 17, 2007. The shuttle vector described in 4 is preferred.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

Leuconostoc 속 유산균은 김치, sauerkraut, cabbage pickle과 같은 침채류와 우유 및 유제품 및 silage, herbage, 포도주 등에서 분리할 수 있으며, 침채류에서는 발효초기에 왕성하게 증식하여 이상발효 억제와 저장성에 영향을 주면서, 방향성 C4 화합물인 diacetyl과 acetoin을 생산하면서 풍미를 증진시키는 것으로 알려져 있다. 그 외에도 본 미생물은 설탕(sucrose) 존재 시 dextransucrase(EC 2.4.1.5) 를 분비하여 과당(fructose)을 유리하고 dextran이라는 점질의 다당을 생성하여 발효식품의 점도를 높이게 한다. 설탕으로부터 dextran을 생산하는 이외에, 다른 당을 첨가할 경우 설탕의 구성당인 포도당을 다른 당에 전달하는 반응을 촉매하여 새로운 구조의 올리고당을 생성한다. 이때 첨가해준 탄수화물을 수용체(acceptor)라 부르며, 이 반응기작을 수용체 반응(acceptor reaction)이라 한다. 수용체의 종류는 상당히 광범위하여 단당류, 이당류, 올리고당류 그리고 작은 크기의 텍스트란들이 포함되는데 이중 맥아당(maltose)이 가장 효율적인 수용체이며 판노스(panose, 62-α-D-glucopyranosylmaltose) 올리고당을 생성한다. 이소말토올리고당의 주요한 성분인 판노스는 낮은 칼로리(≤2kcal/g)와 유용 장내미생물의 성장을 증진시키는 이유 때문에 기능성식품 첨가물로 이용되며, 높은 흡습성, 낮은 점도 그리고 낮은 빙점은 식품에 다양한 물리적 특성을 부여한다. 그 외의 Leuconostoc의 표현형에 따른 다양한 특성은 다음 표 1과 같다.Lactobacillus of the genus Leuconostoc can be separated from kimchi, sauerkraut, cabbage pickle and milk and dairy products, silage, herbage, wine, etc., and it grows vigorously in the early stage of fermentation, affecting abnormal fermentation and storage, It is known to enhance flavor while producing aromatic C4 compounds, diacetyl and acetoin. In addition, the microorganisms secrete dextransucrase (EC 2.4.1.5) in the presence of sugar to release fructose and produce a viscous polysaccharide called dextran to increase the viscosity of fermented foods. In addition to producing dextran from sugar, the addition of other sugars catalyzes the transfer of glucose, the constituent sugar of sugar, to other sugars, producing a new oligosaccharide. The carbohydrate added at this time is called an acceptor, and this reaction mechanism is called an acceptor reaction. The types of receptors are quite broad, including monosaccharides, disaccharides, oligosaccharides, and small textboxes, of which maltose is the most efficient receptor and produces panose (6 2 -α-D-glucopyranosylmaltose) oligosaccharides. . Panos, a major component of isomaltooligosaccharide, is used as a functional food additive because of its low calorie content (≤2 kcal / g) and because it promotes the growth of useful intestinal microorganisms. To give. Various characteristics of other Leuconostoc phenotypes are shown in Table 1 below.

일반적인 특성General characteristics G(+), 구형, 비운동성, 무포자형성 Facultative anaerobic, catalase(-) Vancomycin 저항성 가짐 포도당으로부터 가스 생성 arginine 가수분해 하지 못함 포도당으로부터 D-lactate 생성G (+), spherical, non-motile, spore-forming Facultative anaerobic, catalase (-) Vancomycin resistant Gas generation from glucose Arginine not hydrolyzed D-lactate production from glucose 부가적인 특성Additional properties 저온(8℃)에서는 생육가능하나 고온(45℃)에서는 생육하지 못함 pH4이하에서 생육이 저해됨 7% NaCl에서도 생육가능 H2S 생성하지 않음 모든 strain에서 포도당으로부터 산을 생성함 arabinose, arbutin, cellulose, cellobiose, fructose, galactose, lactose, maltose, mannitol, mannose, melibiose, raffinose, ribose, salicin, sucrose, trehalose, and xylose로부터는 종 및 아종마다 다양함Can grow at low temperature (8 ℃) but not at high temperature (45 ℃) Growth is inhibited below pH 4 Possible to grow at 7% NaCl H 2 S No acid Generates acid from glucose in all strains arabinose, arbutin, cellulose varies by species and subspecies from cellobiose, fructose, galactose, lactose, maltose, mannitol, mannose, melibiose, raffinose, ribose, salicin, sucrose, trehalose, and xylose 어떤 종, 아종의 특징What species, subspecies Ln . mesenteroides subsp. cremoris , Ln . lactis , Ln . argentinum는 설탕으로부터 슬림(다당)을 생산하지않음 Ln . mesenteroides subsp. cremoris는 과당과 맥아당으로부터 산을 생성하지않음 Ln . fallax는 malate decarboxylation을 하지않음 Ln . mesenteroides subsp. cremoris , Ln . lactis , Ln . argentinum does not produce slim (polysaccharide) from sugar Ln . mesenteroides subsp. cremoris does not produce acid from fructose and maltose Ln. fallax does not malate decarboxylation

특히, 이들 Leuconostoc 유산균은 전통적으로 과거에서부터 식품의 소재로 사용되어 GRAS(Generally recognized as safe)로 분류되어 식품에 사용될 수 있고, 혐기성과 호기성 배지에서 모두 생육이 가능하며 생육속도도 대장균만큼 빠르다. 또한 dextransucrase 효소 단백질을 세포질 외부로 배출하므로 본 효소의 signal peptide와 원하는 단백질을 융합시킬 때 외부로 배출시켜 생산할 수 있으며, 단백질 가수분해효소(protease)를 분비하지 않으므로 생성된 단백질을 안정하게 분리할 수 있어 새로운 단백질 발현 시스템으로 개발될 수 있다.In particular, these Leuconostoc lactic acid bacteria have traditionally been used as food materials in the past and classified as GRAS (Generally recognized as safe), and can be used in foods. They can grow in both anaerobic and aerobic media and are as fast as E. coli. In addition, since the dextransucrase enzyme protein is discharged to the outside of the cytoplasm, it can be produced by releasing the signal peptide and the desired protein to the outside when it is fused, and the produced protein can be stably separated because it does not secrete protease. Can be developed into a new protein expression system.

상기에서 살펴본 바와 같이, 본 발명에서 얻어진 류코노스톡 속 셔틀벡터는 식품용 소재 또는 의약용으로 이용되는 단백질을 안정적을 발현시킬수 있는 효율성 높고 편리한 발현시스템으로 이용될 것이다. 또 기존의 벡터와는 다르게 삽입 DNA 의 크기에 상관없이 형질전환 후 높은 안정성을 보였으며, 또한 식품등급용의 다양한 효소 및 유용단백질을 바로 식품에 첨가할 수 있어 식품첨가물로 이용될 수 있는 장점이 있다. 또한 이러한 셔틀벡터를 비롯한 발현벡터들의 개발은 류코노스톡을 이용한 스타터 산업 뿐 만 아니라 다양한 분야의 적용가능 할 것으로 기대된다As described above, the leuconostalk shuttle vector obtained in the present invention will be used as an efficient and convenient expression system capable of stably expressing a protein used for food materials or medicaments. Unlike the existing vector, it showed high stability after transformation regardless of the size of the inserted DNA. Also, various enzymes and useful proteins for food grade can be added directly to food, which can be used as a food additive. have. In addition, the development of such expression vectors, including the shuttle vector is expected to be applicable not only to the starter industry using the leukonostock, but also in various fields.

이하, 비한정적인 실시예를 통하여 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail through non-limiting examples.

실험재료Experimental material

대장균 MC1061은 셔틀벡터 제작 및 이형단백질을 셔틀벡터에 클로닝하기 위하여 사용하였고, Leuconostoc citreum 95 균주는 본 발명의 플라스미드인 pCB42를 가지고 있는 숙주균주로써 김치발효 초기에 야생에서 분리한 균주이다. 예비실험에서 다른 Leuconostoc 균주에 비해 외부 벡터를 잘 받아들이는 우수한 수용체 균주(recepient strain)로 사용되었다. 대조구 플라스미드로 사용한 pLeuCM 셔틀벡터는 대장균과 Leuconostoc에서 상호 복제가 가능한 벡터로서 암피실린과 클로람페니콜 저항 유전자를 가지며, 류코노스톡에서 성공적으로 형질전환 됨으로써 특허 제0721140호로 등록되었다. 본 발명에서 사용된 세균 균주 및 플라스미드의 리스트가 표 2에 나열되어 있다. E. coli MC1061 was used to construct shuttle vector and clone heterologous protein into shuttle vector, Leuconostoc The citreum 95 strain is a host strain having pCB42, the plasmid of the present invention, isolated from the wild at the beginning of kimchi fermentation. In preliminary experiments, it was used as a superior receptor strain that accepts external vectors better than other Leuconostoc strains. The pLeuCM shuttle vector, used as a control plasmid, is a vector capable of mutual replication in Escherichia coli and Leuconostoc , and has the ampicillin and chloramphenicol resistance genes. A list of bacterial strains and plasmids used in the present invention is listed in Table 2.

균주 또는 플라스미드Strain or plasmid 지노타입/관련 특성Genotype / Related Characteristics StrainsStrains E. coli MC1061(뉴 잉글랜드 바이오랩) E. coli MC1061 (New England Biolab) F- frr(wild-type (Wt)) araD139 (ara-leu)7679 (lacIPOZYA)X74 galU galK hsdR2 mcrB1 rpsL (Smr)F - frr (wild-type (Wt)) araD139 ( ara-leu ) 7679 ( lacIPOZYA ) X74 galU galK hsdR2 mcrB1 rpsL (Sm r ) Ln . citreum 95 Ln . citreum 95 김치로부터 분리된 야생 균주Wild Strains Isolated from Kimchi PlasmidsPlasmids pUC19(뉴 잉글랜드 바이오랩)pUC19 (New England Biolab) E. coli vector, 2.7kb, AmpR, lacZ E. coli vector, 2.7 kb, Amp R , lacZ pCB42pCB42 Ln . citreum 95로부터 온 4.2kb 크립틱 플라스미드 Ln . 4.2kb crypto plasmid from citreum 95 pLeuC42pLeuC42 pUC19의 Kpn I 자리로 크론닝된 Kpn I을 가지는 pCB42, 6.7 kbpCB42, 6.7 kb Kpn I have a cron Turning to the seat of the Kpn I pUC19 pEK104pEK104 1.3kb CATR 를 가지는 pUC19 PUC19 with 1.3kb CAT R pLeuCMpLeuCM pEK104의 Sac I 자리로 클로닝된Sac I를 가지는 pCB18, 5.8kbpCB18 with Sac I cloned into Sac I site of pEK104, 5.8 kb pLeuCM42pLeuCM42 pEK104의 Kpn I 자리로 크론닝된 Kpn I을 가지는 pCB42, 8.2kbpCB42 with Kpn I place the Crohn's turning into a Kpn I pEK104, 8.2kb

실시예 1: Leuconostoc citreum 95로부터 pCB42분리Example 1 pCB42 Separation from Leuconostoc citreum 95

Ln. citreum 95를 MRS 액체배지를 이용하여 28℃에서 하루동안 정치배양하였다. 13,000rpm에서 2분간 원심분리 하여 균체를 모은 후 500uL TES buffer(30mM Tris-HCl, 50mM NaCl, 5mM EDTA, pH8.0)에서 2번 세척하였다. 다시 13,000rpm에서 2분간 원심분리하여 상징액을 버리고 200 uL의 lysozyme(20mg/mL)을 함유한 sucrose 용액[25% sucrose, 50mM Tris-HCl, 1mM EDTA pH8)에 현탁하였다. 37℃에서 1시간 동안 충분히 반응한 후 3% SDS와 0.2% NaOH를 포함하는 용액을 400uL 첨가하여 상온에서 10분간 방치하였다. 차가운 3M sodium acetate(pH4.8)를 300uL를 첨가하여 천천히 섞어준 후 4℃, 15,000rpm에서 15분간 원심분리하였다. 상징액을 새 튜브에 옮기고 650uL isopropanol를 첨가하여 4℃, 15,000rpm 15분간 원심분리하였다. 상징액은 제거하고 70% ethanol 200uL로 세척한 후 37℃에서 에탄올이 없어질 때 까지 말린다. 10uL RNase(10mg/mL)와 310uL 증류수를 첨가하여 37℃에서 30분간 반응시킨 후, 동량의 페놀을 넣고 강렬하게 voltexing 해준 후 4℃, 15,000rpm, 15분간 원심분리하였다. 원심분리 후 튜브 안에서 3개의 층이 형성되는데 아래층은 페놀, 중간층은 단백질등이 들어있는 하얀색 층이 있고 제일 윗층을 조심스럽게 새 튜브에 옮긴 후 2배의 에탄올과 1/10배의 3M sodium acetate(pH4.8)를 넣고 다시 4℃, 15,000rpm 15분간 원심분리하고, 70% ethanol 200uL로 세척한 후 37℃에서 에탄올이 없어질 때 까지 말린다. 이렇게 농축시킨 뒤, 최종적으로 20uL TE buffer를 첨가하여 현탁하였다. Ln. citreum 95 was incubated at 28 ° C. for one day using MRS liquid medium. Cells were collected by centrifugation at 13,000 rpm for 2 minutes and washed twice in 500 uL TES buffer (30 mM Tris-HCl, 50 mM NaCl, 5 mM EDTA, pH8.0). The supernatant was discarded by centrifugation at 13,000 rpm for 2 minutes and suspended in a sucrose solution (25% sucrose, 50 mM Tris-HCl, 1 mM EDTA pH8) containing 200 uL of lysozyme (20 mg / mL). After fully reacting at 37 ° C. for 1 hour, 400 uL of a solution containing 3% SDS and 0.2% NaOH was added thereto and left at room temperature for 10 minutes. 300 μL of cold 3M sodium acetate (pH4.8) was added slowly, followed by centrifugation at 4 ° C. and 15,000 rpm for 15 minutes. The supernatant was transferred to a new tube and centrifuged at 4 ° C., 15,000 rpm for 15 minutes with the addition of 650 uL isopropanol. The supernatant is removed, washed with 200 uL of 70% ethanol and dried at 37 ° C until ethanol is gone. After 10uL RNase (10mg / mL) and 310uL distilled water was added and reacted at 37 ° C for 30 minutes, the same amount of phenol was added thereto, followed by intense voltexing, followed by centrifugation at 4 ° C, 15,000 rpm and 15 minutes. After centrifugation, three layers are formed in the tube. The lower layer has a white layer containing phenol, the middle layer contains protein, and the top layer is carefully transferred to a new tube, followed by 2 times ethanol and 1/10 times 3M sodium acetate ( pH4.8) and again centrifuged at 4 ° C. and 15,000 rpm for 15 minutes, washed with 200 uL of 70% ethanol, and dried at 37 ° C. until ethanol disappears. After concentrating as such, the suspension was finally added by adding 20 uL TE buffer.

1) pCB42의 분석1) Analysis of pCB42

실시예 1에서 분리한 플라스미드 pCB42를 여러 가지 제한효소 처리한 결과, Kpn I, Pst I, Sal I 그리고 Hind III에 의해 절단되었다. 또한 pCB42의 염기서열을 결정하기 위하여 대장균 벡터인 pUC19의 Kpn I 자리에 본 플라스미드를 삽입하였고 Auto-read sequencing kit(Pharmacia)를 사용하여 염기서열를 결정하였고, 플라스미드 맵을 그릴 수 있었다(도 1, 도 2). 염기서열을 DNASIS(HITACHI software Engineering Co. Japan) 프로그램으로 분석한 결과, pCB42의 전체염기서열은 4,235bp이고, G+C 함량은 34.8%로 나타났다. 본 플라스미드는 두 개의 ORF(open reading frame)를 가지고 있으며, 첫 번째 ORF(304 amino acids, pI 10.45, 35649.98 dalton)의 경우는 대부분의 유산균에서 발견되는 트랜스포제이즈 단백질과 높은 상동성(70% 이상)을 보였다(표 3). ORF의 스타트 코돈(start codon) 앞쪽 4∼7bp에 라이보좀 결합 부위(ribosome binding site)로 예상되는 GCAG 서열이 존재하며, 222-227bp에는 프로모터 -35서열 (TTATCT)이, 242-247bp에는 -10서열 (TATAAT)이 존재했다. 그러나 두 번째 ORF(194 amino acids, pI 9.22, 22141.33 dalton)는 높은 상동성은 아니지만 Lb . sakei 유래 DNA-binding protein으로 나왔다(data not shown). 또한 라이보좀 결합부위나 프로모터로 추정되는 부분을 발견할 수 없었다. pCB42의 염기서열을 BLASTN으로 GenBank의 다른 유전자와의 상동성을 알아본 결과, 본 플라스미드 서열과 Ln . mesenteroides에서 분리한 pTXL1 (Franck Biet 등, Appl. Environ. Microbiol., 68: 6451-6456, 2002)과 Ln . mesenteroides에서 분리한 pFMBL1 (Jeong등, Plasmid, 57(3):314-23, 2007)와 일부 유사서열(약 1kb)이 검색되긴 했지만, 두 개의 플라스미드엔 트랜스포제이즈 유전자를 가지고 있지 않았으며, 더 이상 검색된 플라스미드가 없으므로 본 플라스미드는 처음으로 보고되는 신규한 플라스미드이다. 또한 위의 pTXL1과 pFMBL1의 플라스미드는 Theta 기작으로 복제하는 것으로 보고되고 있으므로, 본 발명의 플라스미드인 pCB42의 경우 같은 기작으로 Leuconostoc 세포 안에서 복제할 것으로 추정된다.Example 1 a plasmid pCB42 the process a number of restriction enzymes results in the separation, was cleaved by Kpn I, Pst I, Sal I and Hind III. In addition, in order to determine the base sequence of pCB42, the plasmid was inserted into the Kpn I site of pUC19, an E. coli vector, and the base sequence was determined using an auto-read sequencing kit (Pharmacia), and a plasmid map could be drawn (FIG. 1, FIG. 1). 2). The base sequence was analyzed by DNASIS (HITACHI software Engineering Co. Japan) program, and the total base sequence of pCB42 was 4,235bp and G + C content was 34.8%. The plasmid has two open reading frames (ORFs), and the first ORF (304 amino acids, p I 10.45, 35649.98 dalton) has high homology (70%) to transpoise proteins found in most lactic acid bacteria. Above) (Table 3). The GCAG sequence is expected to be a ribosome binding site at 4 to 7 bp in front of the start codon of the ORF. The promoter -35 sequence is at 222-227 bp and -10 at 242-247 bp. Sequence (TATAAT) was present. However, the second ORF (194 amino acids, p I 9.22, 22141.33 dalton) with high homology, but Lb. sakei origin DNA-binding protein (data not shown). Also, no ribosome binding sites or promoters could be found. The out homology with other genes in the GenBank nucleotide sequence of the pCB42 BLASTN results, the plasmid sequences and Ln. pTXL1 (Franck Biet et al., Appl. Environ. Microbiol., 68: 6451-6456, 2002) isolated from mesenteroides and Ln . pFMBL1 from mesenteroides (Jeong et al., Plasmid, 57 (3): 314-23, 2007) and some similar sequences (approximately 1 kb) were found, but the two plasmids did not carry transpoise genes and no longer had plasmids detected. This plasmid is the first reported plasmid. In addition, since the above plasmids of pTXL1 and pFMBL1 are reported to be replicated by the Theta mechanism, the plasmid pCB42 of the present invention may be replicated in Leuconostoc cells by the same mechanism.

동질성 단백질Homologous protein 일치성 (%)Consistency (%) 유사성 (%)Similarity (%) 레퍼런스reference ORF1 of pCB42 from Ln. citreum 95ORF1 of pCB42 from Ln. citreum 95 100100 100100 본 발명Invention Transposase and inactivated derivatives, IS30 family from Ln. mesenteroides subsp. mesenteroides ATCC 8293Transposase and inactivated derivatives, IS30 family from Ln. mesenteroides subsp. mesenteroides ATCC 8293 7777 9090 ABJ 62229 (Makarova et al., P.N.A.S. 103(42) 15611-15616.2006)ABJ 62229 (Makarova et al ., PNAS 103 (42) 15611-15616.2006) Transposase from Lb. brevis Transposase from Lb. brevis 7676 8888 BAD 81050 (Fujii et al., J.Appl.Microbiol. 98(5):1209-1220. 2005)BAD 81050 (Fujii et al ., J. Appl. Microbiol. 98 (5): 1209-1220. 2005) Putative transposase from Pediococcus damnosus Putative transposase from Pediococcus damnosus 7777 8888 BAD 34520 (Suzuki et al., Lett. Appl.Microbiol. 39(3) 240-245. 2004)BAD 34520 (Suzuki et al ., Lett. Appl.Microbiol. 39 (3) 240-245. 2004) Putative transposase from Lb . brevis Putative transposase from Lb. brevis 7777 8888 BAD 24808 (Iijima et al ., J.Appl,Mircobiol, 100(6) 1282-1288. 2006)BAD 24808 (Iijima et al ., J. Appl, Mircobiol, 100 (6) 1282-1288. 2006) Putative transposase from Lb . paracollinoides Putative transposase from Lb. paracollinoides 7676 8888 BAD 34521 (Suzuki et al., Lett. Appl.Microbiol. 39(3) 240-245. 2004)BAD 34521 (Suzuki et al ., Lett. Appl.Microbiol. 39 (3) 240-245. 2004) Putative transposase from Leuc. lactis Putative transposase from Leuc. lactis 7575 8989 CAA 58055 (Vaughan & de Vos, Gene 155(1):95-100. 1995)CAA 58055 (Vaughan & de Vos, Gene 155 (1): 95-100. 1995)

실시예 2: 셔틀벡터 pLeuCM42 제작Example 2: Preparation of shuttle vector pLeuCM42

셔틀벡터를 제조하기 위하여, 먼저 대장균에서 작용하는 복제원점(ori) 및 암피실린 저항 유전자와 류코노스톡에서 작용하는 스타필로코코스(Staphylococcus)유래의 클로람페니콜 아세틸 트랜스퍼라제(CAT) 유전자를 가진 pEK104를 제한효소 Kpn I으로 절단한 후, 동일한 제한효소로 절단한 실시예1에서 분리한 pCB42와 연결하여 셔틀벡터 pLeuCM42를 제조하였다(도 4). To prepare the shuttle vector, pEK104, which has the origin of replication (ori) and ampicillin resistance in Escherichia coli and the chloramphenicol acetyl transferase (CAT) gene derived from Staphylococcus , which acts on leukonostock, After cutting with Kpn I, the shuttle vector pLeuCM42 was prepared by connecting with pCB42 isolated in Example 1 cut with the same restriction enzyme (FIG. 4).

실시예 3: Leuconostoc citreum 95에 셔틀벡터의 형질전환Example 3: Transformation of Shuttle Vector into Leuconostoc citreum 95

실시예 2에서 제조한 셔틀벡터의 복제여부를 조사하기 위하여, Ln . citreum 95에 셔틀벡터를 형질전환시켰다. Leuconostoc 균주를 50mL의 MRS에서 OD600가 0.5가 될 때까지 배양한 후 4℃, 6,000rmp에서 10분간 원심분리하고, 25mL ice-cold 증류수로 2회 세척하였다. 이때 균체의 회수률이 급격히 감소하므로 신속하게 처리햐야 한다. 이 회수한 균체를 5mL ice-cold EPS(EPS: 1mM K2HPO4 KH2PO4, pH7.4, contaning 1mM MgCl2 and 0.5M sucrose)로 1회 세척하고, 1mL ice-cold EPS에 현탁하여 전기천공법(Electroporation)에 쓰일 류코노스톡 컴피턴트 세포(competent cell)를 제조하여 -80℃ deep freezer에 보관하였다. 류코노스톡 컴피턴트 세포 40uL과 셔틀벡터(1ug/uL) DNA를 큐벳에 옮기고 5분간 얼음에 방치하였다. 25uF, 8kV/cm, 400ohms 조건에서 pulse를 준 후, 즉시 1mL MRS 액체배지를 첨가하고 30℃에서 1시간가량 배양하였다. 10ug/ml 클로람페니콜이 포함된 MRS배지에 도말한 후 48시간동안 30℃에서 배양하였다. 이틀 뒤 자란 콜로니 중 일부를 실시예2-1의 방법으로 플라스미드를 분리하였고 전기영동하여 원래의 균주에서 보이지않는 밴드를 확인하였고, 재확인을 위해 분리한 플라스미드를 다시 대장균 DH5α에 형질전환하여 일반적인 대장균 플라스미드 키트로 분리한 결과 셔틀벡터가 확인됨에 따라 류코노스톡에 형질전환한 셔틀벡터가 안정적으로 복제하였음을 알 수 있었다. In order to investigate whether the shuttle vector prepared in Example 2 was replicated, Ln . The shuttle vector was transformed into citreum 95. Leuconostoc The strain was incubated in 50mL of MRS until the OD 600 became 0.5 and then centrifuged at 4 ° C and 6,000 rmp for 10 minutes, and washed twice with 25mL ice-cold distilled water. At this time, the recovery rate of the cells rapidly decreases, so it must be processed quickly. The recovered cells were washed once with 5 mL ice-cold EPS (EPS: 1 mM K 2 HPO 4 KH 2 PO 4 , pH7.4, contaning 1 mM MgCl 2 and 0.5 M sucrose) and suspended in 1 mL ice-cold EPS. Leukonostock competent cells were prepared for electroporation and stored in a -80 ° C deep freezer. 40 uL of leukonostock competent cells and shuttle vector (1ug / uL) DNA were transferred to a cuvette and left on ice for 5 minutes. After pulsed at 25uF, 8kV / cm, 400ohms condition, immediately added 1mL MRS liquid medium and incubated for 1 hour at 30 ℃. After staining with MRS medium containing 10ug / ml chloramphenicol and incubated at 30 ℃ for 48 hours. Some of the colonies grown two days later were separated from the plasmid by the method of Example 2-1 and electrophoresed to confirm the invisible band in the original strain, and the isolated plasmid was transformed back into E. coli DH5α for reconfirmation. As a result of the separation of the kit, as confirmed by the shuttle vector, it was found that the shuttle vector transformed to leukonostock was stably replicated.

실시예 4: 셔틀벡터의 안정성 실험Example 4 Stability Test of Shuttle Vector

벡터의 안정성 실험은 먼저 클로람페니콜이 함유된 MRS 배지에서 하룻동안 배양을 하고 그 다음 100 세대동안 항생제가 없는 MRS 배지에서 배양을 하게 된다. 20세대(24시간)후 배양액을 십진법으로 희석하여 MRS 배지와 MRS에 클로람페니콜이 함유된 배지에 스프레딩을 하고 하룻동안 배양을 한다. 똑같은 방법으로 100세대까지 반복한 후 자란 콜로니들을 계수하여 다음의 식에 적용한다.The stability test of the vector is first incubated in MRS medium containing chloramphenicol for one day and then in MRS medium without antibiotics for 100 generations. After 20 generations (24 hours), the culture solution is diluted by the decimal method, spreaded on the MRS medium and the medium containing chloramphenicol and cultured for one day. In the same way, the colonies grown after 100 generations are counted and applied to the following equation.

이때 대조군으로 사용된 pLeuCM 셔틀벡터는 E. coli 용 상업적인 벡터인 pUC19와 Ln. citreum 유래 pNS75의 Sac I 사이트로 융합시켜 구성된 셔틀벡터이다. 본 벡터는 5.8kb 사이즈로, 암피실린과 클로람페니콜 저항성 유전자를 가지며 E. coliLeuconostoc 모두 안정적으로 형질전환되어 특허로 등록되었다. 도 3에서 보듯이 대조구인 pLeuCM은 100 세대 동안 80% 이상의 높은 안정성을 보여주었고, pLeuCM42의 경우도 100세대가 지나는 동안 60~70% 이상의 높은 안정성을 보여주었다. 이는 앞으로 다양한 후보단백질들은 오랜시간 동안 안정적으로 발현할 수 있음을 기대할 수 있다.At this time, pLeuCM shuttle vector used as a control is a commercial vector for E. coli pUC19 and Ln. Shuttle vector constructed by fusing to the Sac I site of citreum- derived pNS75. The vector is 5.8kb in size, has ampicillin and chloramphenicol resistance genes, and E. coli and Leuconostoc have been stably transformed and registered as patents. As shown in Figure 3, the control pLeuCM showed a high stability of more than 80% for 100 generations, pLeuCM42 also showed a high stability of more than 60 ~ 70% over 100 generations. It can be expected that various candidate proteins can be stably expressed for a long time in the future.

실시예 5: pLeuCM42의 host range 실험Example 5: host range experiment of pLeuCM42

실시예 2에서 만든 셔틀벡터를 다양한 host(숙주)세포에 형질전환하였다. 일반적으로 플라스미드의 복제 형태에 따라서 시그마형태의 복제 형태를 따르는플라스미드는 숙주의 범위는 넓으나 안정성이 낮고, 쎄타폼의 형태로 복제하는 플라스미드는 반대로 숙주의 범위는 좁지만 안정성이 높다고 보고되고 있다. Electroporation 용 competent cell은 실시예 3의 방법을 사용하였으며 사용한 숙주세포는 Leuconostoc lactis, Ln . mesenteroides B-512F, Lactobacillus . plantarum, Lb . reuteri, Lactococcus . lactis, Streptococcus thermophilus, 및 Bacillus subtilis 등이다. 형질전환의 효율은 1) 균체의 회수시기, 2)세척시 사용되는 버퍼와 전기천공시 사용되는 버퍼의 성분, 3) 전기충격시 전압의 세기, 전압의 충격시간 등의 조건, 그리고 4) 외래 플라스미드 DNA의 성질, 5) 모세포의 특이서 등의 변화에 따라서 크게 달라진다고 하지만, 그다지 최적의 조건을 명확하게 확립한 보고는 없으므로, 본 특허에서는 Leuconostoc에 사용한 모든 조건을 다양한 숙주세포에도 동일하게 적용하였고, 효율의 차이는 있으나 셔틀벡터가 숙주세포로 잘 도입되었다(도 5). 결론적으로 본 벡터는 숙주세포 속에서 안정적으로 복제를 하며, 다양한 호스트에서 복제가 가능하다.The shuttle vector prepared in Example 2 was transformed into various host (host) cells. In general, plasmids that follow a sigma form of replication according to the replication form of the plasmid have a wide range of hosts but have low stability, and plasmids that replicate in theta form have a narrow range of hosts but have high stability. The competent cell for electroporation was used in the method of Example 3 and the host cell used was Leuconostoc. lactis , Ln . mesenteroides B-512F, Lactobacillus . plantarum, Lb. reuteri , Lactococcus . lactis , Streptococcus thermophilus , and Bacillus subtilis And so on. The efficiency of transformation was determined by 1) the time of recovery of the cells, 2) the components of the buffer used for washing and electroporation, 3) the conditions of voltage strength and the impact time of the electric shock, and 4) foreign Although it varies greatly depending on the properties of the plasmid DNA, 5) the specificity of the parental cell, etc., there are no reports that clearly establish the optimal conditions. Therefore, in this patent, all the conditions used for Leuconostoc are applied to various host cells. , But the efficiency of the shuttle vector was well introduced into the host cell (Fig. 5). In conclusion, the vector replicates stably in host cells and can replicate in various hosts.

실시예 6: pLeuCM42에 Lactobacillus plantarum 유래 베터-갈락토시데이즈 유전자의 클로닝Example 6: Lactobacillus in pLeuCM42 plantarum Cloning of Derived Better-galactosidase Genes

실시예 2에서 만든 셔틀벡터에 이형의 단백질을 클로닝하였다. 다양한 목적을 위한 단백질이 있을수 있지만, 알파 아밀레이즈나 베타 갈락토시데이즈 효소단백질은 일단 클로닝이 되면 형질전환체의 표현형으로 클로닝의 성공 여부 뿐 만아니라 발현 유무도 알 수 있으므로 가장 폭넓게 사용하는 유전자이다. 본 실험에는 Lactobacillus 유래 동일한 효소는 대조구 벡터인 pLeuCM에도 클로닝하여 사용하였다.The heterologous protein was cloned into the shuttle vector prepared in Example 2. Although there may be proteins for various purposes, alpha amylase or beta galactosidase enzyme proteins are the most widely used genes since they can be expressed as well as whether or not the cloning is successful as the phenotype of the transformant. In this experiment, the same enzyme derived from Lactobacillus was cloned into the control vector pLeuCM.

1) 염색체 DNA 준비1) Chromosome DNA Preparation

Lb . plantarum의 염색체 DNA는 바이오니아사의 AccuPrep Genomic DNA Extraction Kit의 일부분 변형하여 이용하였다. Lb . plantarum 균은 MRS 배지에 접종하여, 하룻동안 배양하고, 그 뒤에 13,000 rpm에서 2분간 원심분리하여 세포를 수집하였다. 모은 세포는 TES (30 mM Tris-HCl, 50 mM NaCl, 5 mM EDTA, pH 8.0) 용액으로 씻어준 후, 6.7% sucrose (50mM Tris, 1mM EDTA, pH 8.0) 용액 100 ㎕를 첨가하여 현탁하였고, 37℃에서 30분간 배양하였다. 여기에 lysozyme (10 ㎎/㎖ lysozyme, 25 mM Tris, pH 8.0) 용액 100 ㎕을 첨가하고, 다시 37℃에서 30분간 배양하였다. 다음부터는 프로토콜의 내용대로 실험하였고, 최종 50 ㎕의 정제물을 얻을 수 있었다. Lb. The chromosomal DNA of plantarum was used as part of Bioneer's AccuPrep Genomic DNA Extraction Kit. Lb. Plantarum bacteria were inoculated in MRS medium, cultured for one day, and then cells were collected by centrifugation at 13,000 rpm for 2 minutes. The collected cells were washed with TES (30 mM Tris-HCl, 50 mM NaCl, 5 mM EDTA, pH 8.0) solution, and then suspended by adding 100 µl of 6.7% sucrose (50 mM Tris, 1 mM EDTA, pH 8.0) solution. Incubated for 30 minutes at 37 ℃. 100 µl of a solution of lysozyme (10 mg / ml lysozyme, 25 mM Tris, pH 8.0) was added thereto, followed by further incubation at 37 ° C for 30 minutes. Next, experiments were carried out as described in the protocol, and a final 50 μl of purified product was obtained.

2) 베타-갈락토시데이즈의 클로닝2) Cloning of Beta-Galactosides

Lb . plantarum에서 유래한 베타-갈락토시데이즈 유전자를 벡터에 클로닝하기 위하여 PCR를 수행하였다. 실시예 5-1에서 준비한 염색체 DNA를 주형으로 사용하였고, 사용된 프라이머는 다음과 같다. Lb. PCR was performed to clone the beta-galactosidase gene from plantarum into the vector. The chromosomal DNA prepared in Example 5-1 was used as a template, and the primers used were as follows.

정방향 프라이머:Forward primer:

(Gal-For;서열번호 2):5'-AAATTGGATCCGTAGTTGTTGTCATTTAGT-3'(Gal-For; SEQ ID NO: 2): 5'-AAATT GGATCC GTAGTTGTTGTCATTTAGT -3 '

역방향 프라이머:Reverse primer:

(Gal-Re;서열번호 3):5'-AATTGGATCCTTTAGAAATGAATGTTAAAGC-3'(Gal-Re; SEQ ID NO: 3): 5'-AATT GGATCC TTTAGAAATGAATGTTAAAGC -3 '

위의 두 개의 프라이머에는 BamHI 제한효소 사이트가 존재하고, PCR 반응물은 염색체 DNA를 주형으로 하여 PCR를 수행하였고, 반응 혼합물 (50 ㎕)은 Taq DNA 중합효소 0.5 ㎕, 10X buffer, 250 uM dNTPs, 위의 프라이머로 구성되었다. PCR 조건은 변성 94℃, 5분, 표준 PCR 30 주기(94℃, 30초, 55℃, 30초, 72℃, 3분) 및 최종반응(72℃, 5분)이었다. PCR 후 바이오니사의 PCR purification kit를 사용하여 정제하였고, BamH I 을 처리하였다. 또한 pLeuCM과 pLeuCM42도 같은 제한효소로 처리하고, 겔 purification kit를 이용하여 정제한 후 알칼라인 포스파타제를 사용하여 탈인산화반응을 시켰다. 이렇게 준비한 벡터(pLeuCM, pLeuCM42) DNA 1uL, 삽입 DNA(베타-갈락토시데이즈) 3uL, T4 DNA 라이게이즈(TaKaRa) 0.5uL, 완충용액 1uL에 증류수 5.5uL를 채워 총 부피를 10uL로 한 후 16℃에서 12시간 반응을 결합 반응을 수행하였고, 이를 대장균 MC1061에 삼브룩 등의 방법(Sambrook et al ., Molecular Cloning: A Laboratory Manual, 2nd edn, 1989)으로 형질전환시켰다. 50㎍/㎖ 암피실린(ampicillin)과 40mg/ml X-gal 용액 40㎕가 첨가된 플레이트에 도말하여, 베타-갈락토시데이즈 활성을 갖는 푸른색을 띄는 콜로니로부터 당업계에서 공지된 방법으로 플라스미드를 분리하고, 이를 pLeuCMgal, pLeuCM42gal로 명명하였다. 실시예 3과 같은 방법으로 류코노스톡 컴페턴트 세포(competent cell)를 제조하여 앞에서 준비한 벡터를 각각 전기천공법으로 형질전환 하였고, 각각의 형질전환체는 10ug/ml 클로람페니콜과 40mg/ml X-gal 용액 40㎕이 포함된 MRS배지에 도말한 후 48시간동안 30℃에서 배양하였다. 이틀 뒤 모든 콜로니에서 푸른색을 띄는 것을 확인하였고, 이에 실시예 4의 방법으로 각각의 벡터들의 안정성을 실험을 수행였다. 모든 방법은 실시예 4와 다르지않았고 그 결과를 도 6에 나타내었다. BamHI restriction site was present in the above two primers, PCR reaction was carried out PCR using the chromosomal DNA as a template, the reaction mixture (50 μl) was 0.5 μl Taq DNA polymerase, 10X buffer, 250 uM dNTPs, stomach It consisted of the primer of. PCR conditions were denaturation 94 ℃, 5 minutes, standard PCR 30 cycles (94 ℃, 30 seconds, 55 ℃, 30 seconds, 72 ℃, 3 minutes) and the final reaction (72 ℃, 5 minutes). After PCR, the product was purified using Bionis' PCR purification kit, and treated with Bam H I. In addition, pLeuCM and pLeuCM42 were also treated with the same restriction enzyme, and purified using a gel purification kit, followed by dephosphorylation using alkaline phosphatase. 1uL of vector (pLeuCM, pLeuCM42) DNA, 3uL of inserted DNA (beta-galactosidase), 0.5uL of T4 DNA ligase (TaKaRa), and 5.5uL of distilled water were added to 1uL of buffer solution to make a total volume of 10uL. The reaction was carried out for 12 hours at 16 ° C. and the reaction was carried out using E. coli MC1061 (Sambrook et al. ). al ., Molecular Cloning: A Laboratory Manual , 2nd edn, 1989). Plasmids were plated in a plate containing 50 μg / ml ampicillin and 40 μl 40 mg / ml X-gal solution to obtain plasmids from the blue colonies with beta-galactosidase activity by methods known in the art. It was isolated and named pLeuCMgal, pLeuCM42gal. In the same manner as in Example 3, leukonostock competent cells were prepared, and the previously prepared vectors were transformed by electroporation, respectively, and each transformant was 10 ug / ml chloramphenicol and 40 mg / ml X-. After plating on MRS medium containing 40ul gal solution was incubated at 30 ℃ for 48 hours. Two days later, all colonies were found to have a blue color. Thus, the stability of each vector was tested by the method of Example 4. All methods were not different from Example 4 and the results are shown in FIG. 6.

도 6에서 보듯이 pLeuCM42에 베터-갈락토시데이즈 유전자가 클로닝된 pLeuCM42gal의 경우는 100세대까지 약 70% 이상의 안정성을 보이지만 pLeuCMgal의 경우는 셔틀벡터일 때와는 다르게 이형의 단백질을 클로닝한 후 안정성을 알아본 결과 20 세대 이후부터 급격하게 안정성이 떨어지는 것을 알 수 있었다. 이것은 이미 보고된 대로 플라스미드의 복제 기작에 기인하는 것으로 RCR로 복제되는 pCB18과는 달리 Theta 기작으로 복제할것으로 기대되는 pCB42는 숙주의 범위는 좁은 반면에, 일단 숙주세포 내로 형질전환이 되면 안정적으로 복제하고 또한 이형의 단백질로 안정적으로 발현하는 것으로 나타났다.As shown in FIG. 6, the pLeuCM42gal cloned with the beta-galactosidase gene in pLeuCM42 showed about 70% or more stability up to 100 generations, but the pLeuCMgal was stable after cloning a heterologous protein unlike the shuttle vector. As a result, it can be seen that since 20 generations, the stability sharply drops. This is due to the replication mechanism of the plasmid as reported previously. Unlike pCB18, which is replicated by RCR, pCB42, which is expected to replicate by Theta mechanism, has a narrow host range, but is stably replicated once transformed into the host cell. And also stably expressed as a heterologous protein.

도 1은 플라스미드 pCB42의 제한효소지도이다.1 is a restriction map of plasmid pCB42.

도 2는 플라스미드 pCB42의 염기서열이다. 2 is the nucleotide sequence of plasmid pCB42 .

도 3은 pLeuCM42의 플라스미드 안정성을 나타낸 그림으로, 대조구로서 pLeuCM과 본 발명의 pLeuCM42 벡터를 숙주세포 Leuconostoc citreum 95에 형질전환 한 후 항생제 저항이 없는 조건에서 플라스미드가 안정적으로 복제하는가를 나타낸 그림이다.3 is a diagram showing the plasmid stability of pLeuCM42, showing that the plasmid replicates stably in the absence of antibiotic resistance after transforming pLeuCM and pLeuCM42 vector of the present invention as a control in the host cell Leuconostoc citreum 95.

도 4는 플라스미드 pCB42와 대장균 벡터인 pEK104로 셔틀벡터 pLeuCM42를 형성하는 방법을 설명하는 도면이다.4 is a view for explaining a method of forming a shuttle vector pLeuCM42 with the plasmid pCB42 and the E. coli vector pEK104.

도 5는 pLeuCM42의 숙주세포의 range(범위)를 나타낸 그림으로, pLeuCM42를 숙주세포 Lb. plantarum, Ln, lactis 그리고 Ln. mesenteroides B-512F에 각각 삽입한 후, 원래의 숙주는 가지고 있지 않지만, pLeuCM42만 가지고 있는 CM 유전자의 일부분(약 800bp)를 PCR로 증폭하여 제대로 삽입이 되었는가를 나타낸 그림이다. 사진에서 M, size marker, 1, Lb . plantarum; 2, Ln , lactis ; 3, Ln . mesenteroides B-512F를 나타낸다.5 is a diagram showing the range (range) of pLeuCM42 host cells, pLeuCM42 to the host cell Lb. plantarum, Ln, lactis and Ln. After inserting each of mesenteroides B-512F, a portion of the CM gene (about 800bp) which does not have the original host but has only pLeuCM42 (approximately 800bp) was amplified by PCR. M, size marker, 1, Lb in the picture . plantarum ; 2, Ln , lactis ; 3, Ln . mesenteroides B-512F.

도 6은 pLeuCM42gal의 플라스미드 안정성을 나타낸 그림으로, 대조구로서 pLeuCMgal과 본 발명의 pLeuCM42gal 벡터를 숙주세포 Leuconostoc citreum 95에 형질전환 한 후 항생제 저항이 없는 조건에서 플라스미드가 안정적으로 복제하는가를 나타낸 그림이다. Figure 6 is a diagram showing the plasmid stability of pLeuCM42gal, pLeuCMgal and pLeuCM42gal vector of the present invention host control Leuconostoc After transfection to citreum 95, the plasmid replicates stably in the absence of antibiotic resistance.

<110> CHUNGBUK NATIONAL UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION <120> A Novel plasmid from Leuconostoc sp. and Shuttle Vector comprising the plasmid <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 4235 <212> DNA <213> Artificial Sequence <220> <223> Shuttle vector pLeuCM42 <400> 1 ggtacctagg ctttttgtat ttgtgaaaac ttagctcatg tgtgatttat gagtggacga 60 actacctaaa agcatttgtg agtgttggga taagccaaga caagaaacca ccgattggaa 120 aaattaccca ccaataatta gctaaaaagg cccaaatgtt gtctatcttt tccgtttcct 180 tttgtttttt ttcaacaagg cccactgttt taggatactt tttatctaac ctttcgactc 240 ctataatacg ataaacggca gattgtaaaa ttaaaccgaa caccttgcat aaaaaaactg 300 cagcttatgt cttctagttt atcagctcac gaacgttctg tcattgaaac aatgatcaaa 360 cttaatcatt caactcgaga aatagcccgt ttcttaaagc gttctcctgc aactattacc 420 tacgagttaa atcgaattaa accatacaat gcacaacagg ctcatcattt agcccagtgt 480 aatcggcaca aacacggtcg ccatccgacc ctaacacctg aaatatcagc ttttttgaac 540 catcacattg gtatcttgaa gtggtcacca gaaacggctg ctcatgtatt gggtattgct 600 ttcaagacca tctacaactg gattcatcat ggtttgctta aaattaagtt atcagattta 660 cctgataaag gtattcgacg taaacgtcaa tctgacggcc gtagacgtgt ttttgctcat 720 ggccgttcaa ttgaaaaacg accaaaagct gtccaattaa gacaagaatt tggtcatttt 780 gaagttgata cgatgcaatc tggtaaaaca cgtggcgacg ttttagtgac catcacagaa 840 cgattgagtc gacaacatat catgagacat gtcagtgggc gcaatagtca ggcagtgaca 900 ccagctatta ttaggttttt caagggtata aaaaatgcta aatcaattac agttgatcac 960 ggtcgagagt ttgcaaaata tgatgaaata gaagaacagc taggcatacc gatgtatttt 1020 gcacacccat attcaccaga agaacgtggt agtaatgaag tgctaaatcg atatgtccgt 1080 cgttttatcc caaaagaacg caaaattgaa accatcagtc acaaagaatt agatcaaatt 1140 aatcattgga ttaatgccag gccaatgaaa acgctcaact ggcaatctcc acgaaaagtc 1200 tttcagaaac atgcggtgtt cggatgattc ttgcaatctg ccaaacatat aaagatcctg 1260 ctattaacaa gaacaaaagt aataaccaaa tgattccgaa tatagcttgc tcattttcag 1320 gttgttgacc aatccagtag ccataaaatg ataacactga tatatctatg gctattagta 1380 taagacttaa aacggctgac tcgttttttc gtcgatatag ttgagaaact tgttgttgtg 1440 agtaatctaa aatttcttgc tctttttctt tttgctctat atcatcaaaa aggccgctta 1500 tagggacaga tagcgcattt gctatggcac ttaaactact taagctgaca tcttcgcctg 1560 cttctaatcg ttggactgtt cgaatagtaa cgtaagattt atctgctagc tcttgttgcg 1620 ttaagccatg ttgttttcta agttgtgata catttgtttt attcataatt tcaatataat 1680 gctttggtga aataaagtat acgacagtct tatgacagtt atctgacagc aagtattttc 1740 taaattgcat gtaaaacttt tttcttgtcg ggatcttttt cgtttaaagc attatccatt 1800 aaaacctgta agttcgtatt ttcagcttcc caaaacaact tttcaaaaat atttttatca 1860 gccataattt aagctcctta ttgcatttaa atgtgtctct agcctaatta tactaataag 1920 caaaataatc cgtcagcgaa acgacataaa atgagtttaa tgcgcactta cactccactt 1980 ctaaaatgga gttgtttgcg ctcaaaaata tgtatcagaa gtcgctgtta tcgacaactt 2040 gaaaaacaac aaaagttctt gttgcgagca tactatgtgt ggtcacacat gaggtaaaaa 2100 tatatctaaa ttgatatgtt tttgtttggg aaattcccaa tccctttttt aattaaaatc 2160 aattttgata agcggacggt tgatgaacga aaaatactaa caaacaaaac ggacgctata 2220 aaagtactat tagaaaacta tttaaataac ctttgccaga atcctttctt tggctgattt 2280 ctttttcttg atctcaatta ggggttattg tctctgtatc tttttcttta atttgtgatt 2340 ttaaataatt aattaaatca tctttttcag ctagttgttg cgctgtaaaa gtgtcaacat 2400 agttacttga agttgacttt ttgggtttac gtttgtttga cactaaaagt tgccattctt 2460 tatcggtgaa tgacttttta gataaatcta tattaaggcg tttagccttt ctatttaagg 2520 cttgacgaga tatttctagt tcgtctgcta tcgcgataat ggtatcaaat tcgtgtgtca 2580 tcagtctctc caaacgtaaa cttaagcgat gtaaagttta cgttttaagt ttactatatt 2640 gttgacgttt taagtttact atattgttga cgttttaagt tggtcgttta attattaaaa 2700 cataagatta tttgtttgtt tattgtcatg tatagttctt aatgctatac tcatatcaac 2760 atttaaatac aaataaaaag acctcaaccc ctgcaagggt taggacttgg tgacctagat 2820 attacaacta tcagggtttt gccattacag aattagacct ctgcaatggc ttagaatact 2880 tactattata caaacttata gactcagagt aaacagcttt actcaaaaaa gaactataaa 2940 cgactatgaa agcgtatcct ccagcctaac taagcacgag gatacgcttt ttacgtctgt 3000 tcaatcgttg tcggacgtta tcctaacaac taatacggaa caggcgtgta tccgtcaaga 3060 gggctgaaag gtcgtctaaa ccacgtccaa agcaatcaaa gcgagattgt ggggaatgaa 3120 caattcgatt atgggtaggc tcgcccgcaa gtaattggca aagaagtggc atatagaatt 3180 agcactctat atggtttaaa tcgcatataa agcgatttaa gcggtgtctg acgtgttcta 3240 accttattga cttataaaag taagggtttc tattgggcag acgatagaag agaaattaga 3300 gcgatatacg tggttgatac aagcgatatg attctgaatt ataccttgaa caatcttaaa 3360 agtcctaaat acttagggct ttctctgctc aaatcaaact gattgccctt gttatcattg 3420 ctaaatgaac aatgcaagaa atatttgcta gaaataaatt tgttgtcaaa gtaatataat 3480 ggcgtaggaa gggaacaaat atggaactat ctactatttt agttgaacaa cgaaagaaaa 3540 aagatgaaac acagcaaaaa gttgcagata atctctttat cactaggcaa tctttgtcaa 3600 attgggaaaa tggaaaaaat tttccagata ttcccatgct tatagaatta agcaactatt 3660 ataacttttc tttggatatc atcaaaggag atacagaatt gatgaataaa gtacaaaagg 3720 attatgaatt gattaacacg aaaaaggcta ataagaagta ttctgtctta ttgattgtat 3780 tgactgtgct tattgtactt atggcagtag taattatacc tttagtaact agcaataaaa 3840 gcttaacaaa gtttgttaca gtatttattt taatgctgtc tatcatttta attcatgtta 3900 ctgtcaaatt cgataaggtt gtttatcaaa attatgaagg aatgccaaat cctccactat 3960 gggtgccgaa agcttttggc tatggtataa gtgttaaccc ttacaacaaa gtaggtaaaa 4020 taataattat cgcactagat ctctttttta ttggtacagg tatagcaata ttatatttta 4080 gctaacaaat catagtagtc atatatgaac ttaacataat ccatcttatg acaagtgaaa 4140 agcgccaaac cttattcgaa taggttttgg cgctttttat gggattgggg tttgtgaatt 4200 tagctcaaat aaattggtct agctctcaca atcgc 4235 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Gal forward primer <400> 2 aaattggatc cgtagttgtt gtcatttagt 30 <210> 3 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Gal reverse primer <400> 3 aattggatcc tttagaaatg aatgttaaag c 31 <110> CHUNGBUK NATIONAL UNIVERSITY INDUSTRY ACADEMIC COOPERATION FOUNDATION <120> A Novel plasmid from Leuconostoc sp. and Shuttle Vector          configuring the plasmid <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 4235 <212> DNA <213> Artificial Sequence <220> <223> Shuttle vector pLeuCM42 <400> 1 ggtacctagg ctttttgtat ttgtgaaaac ttagctcatg tgtgatttat gagtggacga 60 actacctaaa agcatttgtg agtgttggga taagccaaga caagaaacca ccgattggaa 120 aaattaccca ccaataatta gctaaaaagg cccaaatgtt gtctatcttt tccgtttcct 180 tttgtttttt ttcaacaagg cccactgttt taggatactt tttatctaac ctttcgactc 240 ctataatacg ataaacggca gattgtaaaa ttaaaccgaa caccttgcat aaaaaaactg 300 cagcttatgt cttctagttt atcagctcac gaacgttctg tcattgaaac aatgatcaaa 360 cttaatcatt caactcgaga aatagcccgt ttcttaaagc gttctcctgc aactattacc 420 tacgagttaa atcgaattaa accatacaat gcacaacagg ctcatcattt agcccagtgt 480 aatcggcaca aacacggtcg ccatccgacc ctaacacctg aaatatcagc ttttttgaac 540 catcacattg gtatcttgaa gtggtcacca gaaacggctg ctcatgtatt gggtattgct 600 ttcaagacca tctacaactg gattcatcat ggtttgctta aaattaagtt atcagattta 660 cctgataaag gtattcgacg taaacgtcaa tctgacggcc gtagacgtgt ttttgctcat 720 ggccgttcaa ttgaaaaacg accaaaagct gtccaattaa gacaagaatt tggtcatttt 780 gaagttgata cgatgcaatc tggtaaaaca cgtggcgacg ttttagtgac catcacagaa 840 cgattgagtc gacaacatat catgagacat gtcagtgggc gcaatagtca ggcagtgaca 900 ccagctatta ttaggttttt caagggtata aaaaatgcta aatcaattac agttgatcac 960 ggtcgagagt ttgcaaaata tgatgaaata gaagaacagc taggcatacc gatgtatttt 1020 gcacacccat attcaccaga agaacgtggt agtaatgaag tgctaaatcg atatgtccgt 1080 cgttttatcc caaaagaacg caaaattgaa accatcagtc acaaagaatt agatcaaatt 1140 aatcattgga ttaatgccag gccaatgaaa acgctcaact ggcaatctcc acgaaaagtc 1200 tttcagaaac atgcggtgtt cggatgattc ttgcaatctg ccaaacatat aaagatcctg 1260 ctattaacaa gaacaaaagt aataaccaaa tgattccgaa tatagcttgc tcattttcag 1320 gttgttgacc aatccagtag ccataaaatg ataacactga tatatctatg gctattagta 1380 taagacttaa aacggctgac tcgttttttc gtcgatatag ttgagaaact tgttgttgtg 1440 agtaatctaa aatttcttgc tctttttctt tttgctctat atcatcaaaa aggccgctta 1500 tagggacaga tagcgcattt gctatggcac ttaaactact taagctgaca tcttcgcctg 1560 cttctaatcg ttggactgtt cgaatagtaa cgtaagattt atctgctagc tcttgttgcg 1620 ttaagccatg ttgttttcta agttgtgata catttgtttt attcataatt tcaatataat 1680 gctttggtga aataaagtat acgacagtct tatgacagtt atctgacagc aagtattttc 1740 taaattgcat gtaaaacttt tttcttgtcg ggatcttttt cgtttaaagc attatccatt 1800 aaaacctgta agttcgtatt ttcagcttcc caaaacaact tttcaaaaat atttttatca 1860 gccataattt aagctcctta ttgcatttaa atgtgtctct agcctaatta tactaataag 1920 caaaataatc cgtcagcgaa acgacataaa atgagtttaa tgcgcactta cactccactt 1980 ctaaaatgga gttgtttgcg ctcaaaaata tgtatcagaa gtcgctgtta tcgacaactt 2040 gaaaaacaac aaaagttctt gttgcgagca tactatgtgt ggtcacacat gaggtaaaaa 2100 tatatctaaa ttgatatgtt tttgtttggg aaattcccaa tccctttttt aattaaaatc 2160 aattttgata agcggacggt tgatgaacga aaaatactaa caaacaaaac ggacgctata 2220 aaagtactat tagaaaacta tttaaataac ctttgccaga atcctttctt tggctgattt 2280 ctttttcttg atctcaatta ggggttattg tctctgtatc tttttcttta atttgtgatt 2340 ttaaataatt aattaaatca tctttttcag ctagttgttg cgctgtaaaa gtgtcaacat 2400 agttacttga agttgacttt ttgggtttac gtttgtttga cactaaaagt tgccattctt 2460 tatcggtgaa tgacttttta gataaatcta tattaaggcg tttagccttt ctatttaagg 2520 cttgacgaga tatttctagt tcgtctgcta tcgcgataat ggtatcaaat tcgtgtgtca 2580 tcagtctctc caaacgtaaa cttaagcgat gtaaagttta cgttttaagt ttactatatt 2640 gttgacgttt taagtttact atattgttga cgttttaagt tggtcgttta attattaaaa 2700 cataagatta tttgtttgtt tattgtcatg tatagttctt aatgctatac tcatatcaac 2760 atttaaatac aaataaaaag acctcaaccc ctgcaagggt taggacttgg tgacctagat 2820 attacaacta tcagggtttt gccattacag aattagacct ctgcaatggc ttagaatact 2880 tactattata caaacttata gactcagagt aaacagcttt actcaaaaaa gaactataaa 2940 cgactatgaa agcgtatcct ccagcctaac taagcacgag gatacgcttt ttacgtctgt 3000 tcaatcgttg tcggacgtta tcctaacaac taatacggaa caggcgtgta tccgtcaaga 3060 gggctgaaag gtcgtctaaa ccacgtccaa agcaatcaaa gcgagattgt ggggaatgaa 3120 caattcgatt atgggtaggc tcgcccgcaa gtaattggca aagaagtggc atatagaatt 3180 agcactctat atggtttaaa tcgcatataa agcgatttaa gcggtgtctg acgtgttcta 3240 accttattga cttataaaag taagggtttc tattgggcag acgatagaag agaaattaga 3300 gcgatatacg tggttgatac aagcgatatg attctgaatt ataccttgaa caatcttaaa 3360 agtcctaaat acttagggct ttctctgctc aaatcaaact gattgccctt gttatcattg 3420 ctaaatgaac aatgcaagaa atatttgcta gaaataaatt tgttgtcaaa gtaatataat 3480 ggcgtaggaa gggaacaaat atggaactat ctactatttt agttgaacaa cgaaagaaaa 3540 aagatgaaac acagcaaaaa gttgcagata atctctttat cactaggcaa tctttgtcaa 3600 attgggaaaa tggaaaaaat tttccagata ttcccatgct tatagaatta agcaactatt 3660 ataacttttc tttggatatc atcaaaggag atacagaatt gatgaataaa gtacaaaagg 3720 attatgaatt gattaacacg aaaaaggcta ataagaagta ttctgtctta ttgattgtat 3780 tgactgtgct tattgtactt atggcagtag taattatacc tttagtaact agcaataaaa 3840 gcttaacaaa gtttgttaca gtatttattt taatgctgtc tatcatttta attcatgtta 3900 ctgtcaaatt cgataaggtt gtttatcaaa attatgaagg aatgccaaat cctccactat 3960 gggtgccgaa agcttttggc tatggtataa gtgttaaccc ttacaacaaa gtaggtaaaa 4020 taataattat cgcactagat ctctttttta ttggtacagg tatagcaata ttatatttta 4080 gctaacaaat catagtagtc atatatgaac ttaacataat ccatcttatg acaagtgaaa 4140 agcgccaaac cttattcgaa taggttttgg cgctttttat gggattgggg tttgtgaatt 4200 tagctcaaat aaattggtct agctctcaca atcgc 4235 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Gal forward primer <400> 2 aaattggatc cgtagttgtt gtcatttagt 30 <210> 3 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Gal reverse primer <400> 3 aattggatcc tttagaaatg aatgttaaag c 31  

Claims (9)

류코노스톡 시트륨 95로부터 분리한 플라스미드 pCB42와 대장균 유래 형질전환용 벡터를 연결하여 제조된, 대장균 및 류코노스톡에서 상호 복제가 가능한 도 4에 나타낸 개열 지도를 갖는 셔틀벡터pLeuCM42.A shuttle vector pLeuCM42 having a cleavage map shown in FIG. 4 capable of mutual replication in Escherichia coli and leuconostock, prepared by linking a plasmid pCB42 isolated from leuconostock citrum 95 with an E. coli-derived transformation vector. 삭제delete 삭제delete 제 1항의 셔틀벡터를 포함하는 숙주세포.A host cell comprising the shuttle vector of claim 1. 제 4항에 있어서, 상기의 숙주세포는 대장균인 것을 특징으로 하는 숙주세포.The host cell according to claim 4, wherein the host cell is Escherichia coli. 제 4항에 있어서, 상기의 숙주세포는 유산균인 것을 특징으로 하는 숙주세포.The host cell according to claim 4, wherein the host cell is a lactic acid bacterium. 제 6항에 있어서, 상기의 유산균은 류코노스톡인 것을 특징으로 하는 숙주세포.The host cell according to claim 6, wherein the lactic acid bacterium is leukonostock. 제 7항에 있어서, 상기의 류코노스톡은 류코노스톡 KACC-95063P인 것을 특징으로 하는 숙주세포.8. The host cell according to claim 7, wherein the leukonostock is leuconostock KACC-95063P. 제 6항에 있어서, 상기의 유산균은 락토바실러스, 락토코커스 및 스트렙토코커스로 구성된 군으로부터 선택된 것을 특징으로 하는 숙주세포.The host cell according to claim 6, wherein the lactic acid bacteria is selected from the group consisting of Lactobacillus, Lactococcus and Streptococcus.
KR1020070086052A 2007-08-27 2007-08-27 A Novel plasmid from Leuconostoc sp. and Shuttle Vector comprising the plasmid KR100953104B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070086052A KR100953104B1 (en) 2007-08-27 2007-08-27 A Novel plasmid from Leuconostoc sp. and Shuttle Vector comprising the plasmid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070086052A KR100953104B1 (en) 2007-08-27 2007-08-27 A Novel plasmid from Leuconostoc sp. and Shuttle Vector comprising the plasmid

Publications (2)

Publication Number Publication Date
KR20090021496A KR20090021496A (en) 2009-03-04
KR100953104B1 true KR100953104B1 (en) 2010-04-19

Family

ID=40691532

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070086052A KR100953104B1 (en) 2007-08-27 2007-08-27 A Novel plasmid from Leuconostoc sp. and Shuttle Vector comprising the plasmid

Country Status (1)

Country Link
KR (1) KR100953104B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249460B1 (en) 2011-06-21 2013-04-03 아주대학교산학협력단 A novel plasmid from lactic acid bacteria and LAB-E.coli shuttle vector comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688683A (en) 1991-02-22 1997-11-18 Meiji Milk Products Company Limited Plasmid pBUL1 derived from a lactobacillus and derivatives thereof
JP2003235565A (en) 2002-02-20 2003-08-26 Yakult Honsha Co Ltd Shuttle vector for lactobacillus
KR20050022669A (en) * 2003-08-29 2005-03-08 주식회사 비피도 Shuttle vectors for Leuconostoc and E. coli
KR100786514B1 (en) 2007-01-03 2007-12-17 주식회사한국야쿠르트 - Development of E.coli-lactobacillus shuttle vector and it's application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688683A (en) 1991-02-22 1997-11-18 Meiji Milk Products Company Limited Plasmid pBUL1 derived from a lactobacillus and derivatives thereof
JP2003235565A (en) 2002-02-20 2003-08-26 Yakult Honsha Co Ltd Shuttle vector for lactobacillus
KR20050022669A (en) * 2003-08-29 2005-03-08 주식회사 비피도 Shuttle vectors for Leuconostoc and E. coli
KR100786514B1 (en) 2007-01-03 2007-12-17 주식회사한국야쿠르트 - Development of E.coli-lactobacillus shuttle vector and it's application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249460B1 (en) 2011-06-21 2013-04-03 아주대학교산학협력단 A novel plasmid from lactic acid bacteria and LAB-E.coli shuttle vector comprising the same

Also Published As

Publication number Publication date
KR20090021496A (en) 2009-03-04

Similar Documents

Publication Publication Date Title
EP0691405B1 (en) Materials and methods for hypersecretion of amino acids
US8802403B2 (en) Method of preparation of a compound using a genetically modified homolactic thermophilic bacilli
Fu et al. Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker
EP0603416A1 (en) METHOD OF INTEGRATING GENE INTO CHROMOSOME OF $i(LACTOBACILLUS DELBRUECKII) SPECIES AND PRODUCT OF GENE INTEGRATION
KR100953104B1 (en) A Novel plasmid from Leuconostoc sp. and Shuttle Vector comprising the plasmid
US7026162B2 (en) Lac shuttle vectors
JP3746556B2 (en) Plasmids and plasmid vectors
US7241610B2 (en) Lactic acid bacteria overproducing exopolysaccharides
US5747310A (en) Gene integration into chromosomes of lactobacillus delbrueckii species and integrants thereof
JP6017514B2 (en) Intracellular DNA amplification method
EP1117799B1 (en) Novel strains of the bacillus subtilis group for food fermentation
Yun et al. Development of a novel vector system for programmed cell lysis in Escherichia coli
Le et al. Properties of β-Galactosidase from Lactobacillus zymae GU240, an Isolate from Kimchi, and Its Gene Cloning
JP4275383B2 (en) Novel plasmid and shuttle vector containing the plasmid
JP6757008B2 (en) Bifidobacterium genus bacteria transformation method
JPH05176777A (en) Transformation of lactobacillus lactis and transformant therefrom
AU743215B2 (en) Food-grade cloning vector and their use in lactic acid bacteria
Paik et al. Heterologous expression of α-amylase gene of Bifidobacterium adolescentis Int57 in Bacillus polyfermenticus SCD
JP6160814B2 (en) Genetically modified Rhodococcus spp. Mutant and method for producing the same
JPH10262670A (en) Shuttle vector for bifidobacteria and replication protein gene of bifidobacteria plasmid
JP2005237335A (en) Recombinant plasmid for streptomyces bacteria
Yunchalard Molecular analysis of the lactose metabolising genes from Lactococcus lactis: a thesis presented in partial fulfilment of the requirement for the degree of PhD in Biotechnology at Massey University, New Zealand

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment

Payment date: 20180109

Year of fee payment: 8

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190320

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200227

Year of fee payment: 11