KR100934993B1 - Stand for wafer defect inspection - Google Patents

Stand for wafer defect inspection Download PDF

Info

Publication number
KR100934993B1
KR100934993B1 KR1020070138477A KR20070138477A KR100934993B1 KR 100934993 B1 KR100934993 B1 KR 100934993B1 KR 1020070138477 A KR1020070138477 A KR 1020070138477A KR 20070138477 A KR20070138477 A KR 20070138477A KR 100934993 B1 KR100934993 B1 KR 100934993B1
Authority
KR
South Korea
Prior art keywords
wafer
pedestal
inspection
defect inspection
thermal expansion
Prior art date
Application number
KR1020070138477A
Other languages
Korean (ko)
Other versions
KR20090070460A (en
Inventor
최용섭
Original Assignee
아이엘공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이엘공업 주식회사 filed Critical 아이엘공업 주식회사
Priority to KR1020070138477A priority Critical patent/KR100934993B1/en
Publication of KR20090070460A publication Critical patent/KR20090070460A/en
Application granted granted Critical
Publication of KR100934993B1 publication Critical patent/KR100934993B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

본 발명에 따른 웨이퍼의 불량검사용 받침대는 내측의 상부에 웨이퍼의 가장자리가 배치되는 안치대가 형성되며 외측의 가장자리에는 검사장비에 고정되는 홈이 형성되며 니켈(Ni) 30 ~ 38 wt%, 코발트(Co) 3 ~ 5 wt%, 규소(Si) 0.3 ~ 1 wt%, 망간(Mn) 0.2 ~ 0.4 wt%, 탄소(C) 0.01 ~ 0.07 wt%, 잔량 Fe 로 구성되어, 가혹시험의 시험결과 열팽창계수가 1.61로 나타나 국내의 삼성전자와 하이닉스에서 사용되고 있는 동종의 일본제품의 열팽창계수가 5.5보다도 월등히 낮게 되어 전량을 수입으로 해결되었던 웨이퍼의 불량검사용 받침대를 국산화하여 귀중한 외화의 낭비를 줄여서 외화를 절약할 수 있게 됨은 물론이고 필요한 형태에 가깝게 주물로 원재료를 제조하고 이를 가공함으로서 칩의 발생량을 최소로 하여 불필요하고 소재의 제조시에 전량수입에 의존하는 니켈과 같은 구성요소에 대한 자원의 낭비를 최소로 하여 보다 귀중한 자원을 효율적으로 사용할 수 있게 되며 소재의 제조와 가공을 국내에서 수행할 수 있게 되어 사용가능한 인력자원 및 장비를 사용할 수 있게 되므로서 인력과 장비의 사용효율을 제고할 수 있는 등의 여러가지 우수한 효과가 있다.For the defect inspection pedestal of the wafer according to the present invention is formed on the top of the inner set the edge of the wafer is arranged and the outer edge is formed with a groove fixed to the inspection equipment and nickel (Ni) 30 ~ 38 wt%, cobalt ( Co) 3 ~ 5 wt%, silicon (Si) 0.3 ~ 1 wt%, manganese (Mn) 0.2 ~ 0.4 wt%, carbon (C) 0.01 ~ 0.07 wt%, residual Fe, thermal expansion of the test results of the harsh test The coefficient was 1.61, which shows that the coefficient of thermal expansion of similar Japanese products used by Samsung Electronics and Hynix in Korea is much lower than 5.5, and localized the pedestal for inspection of wafer defects, which was solved by importing the whole quantity. As well as saving, the raw material is manufactured by casting and processing the material close to the required shape, minimizing the amount of chips generated and unnecessary and relying on the total amount of imports during the manufacturing of the material. By minimizing the waste of resources for the components, more valuable resources can be used efficiently, and the manufacture and processing of materials can be carried out domestically, and the use of available human resources and equipment can be used. There are various excellent effects, such as improving the efficiency.

Description

웨이퍼의 불량검사용 받침대 { A prop }Stand for wafer defect inspection {A prop}

본 발명은 웨이퍼의 불량검사용 받침대에 관한 것으로, 더욱 구체적으로 설명하면, 표면상에 전자부품이 실장된 다수의 집적회로가 제조된 상태의 웨이퍼를 올려 놓고 상기 웨이퍼 내의 다수의 집적회로에 대한 불량상태를 검사하는 받침대를 영하 40℃의 혹한에서부터 170℃의 고열상태까지의 가혹시험에 대한 검사시에 이러한 가혹시험상의 커다란 온도의 편차에도 불구하고 거의 열수축이나 열팽창의 변화가 거의 없는 열팽창계수가 최대한 낮은 상태로 유지하는 것이 가능한 웨이퍼의 불량검사용 받침대에 관한 것이다.The present invention relates to a pedestal for defect inspection of a wafer. More specifically, the wafer is placed on a surface where a plurality of integrated circuits having electronic components mounted thereon are manufactured, and the defects of the plurality of integrated circuits in the wafer are increased. When the pedestal to inspect the condition is tested for the harsh test from the cold temperature of minus 40 ° C. to the high heat condition of 170 ° C., the thermal expansion coefficient with almost no change in thermal contraction or thermal expansion despite the large temperature variation in the harsh test A pedestal for defect inspection of a wafer which can be kept low.

일반적으로, 반도체산업에서 기본적인 반도체를 제조하는 기초소재로 사용되는 웨이퍼는 실리콘을 성장시켜 규소봉을 형성시키고 이를 일정한 간격으로 절단하여 웨이퍼를 제조한다. 반도체공정은 높은 정확도가 요구되기 때문에 한번의 실수로 웨이퍼는 완전히 못쓰게 되는 경우가 많이 발생되고 있다. 이러한 이유로 스펙을 벗어나는 웨이퍼나 낮은 수율의 웨이퍼는 즉시 골라내야 한다. 그러므로 웨이퍼가 각 공정을지날 때마다 여러 가지의 테스트와 평가를 받아야 한다. 일반적으로 상기 테스트 중에서 웨이퍼의 오염검지는 웨이퍼의 높은 수율과 오염조절에 필수적 이고 이러한 오염은 육안이나 현미경을 통해 볼 수 있으며, 현재 제조라인에서 가장 일반적으로 쓰이는 간단한 검사방법으로는 웨이퍼를 육안으로 검사하는 방법이다.In general, a wafer used as a basic material for manufacturing a basic semiconductor in the semiconductor industry produces silicon by growing silicon to form silicon rods and cutting them at regular intervals. Since semiconductor processes require high accuracy, many wafers are completely unused in one mistake. For this reason, out-of-spec wafers or low yield wafers should be picked out immediately. Therefore, as the wafer passes through each process, various tests and evaluations are required. In general, the contamination detection of the wafer during the test is essential for high yield and contamination control of the wafer, and such contamination can be seen through the naked eye or through a microscope. The most common simple test method in the current manufacturing line is the visual inspection of the wafer. That's how.

상기 웨이퍼 육안검사는 먼지입자가 평행 백색광에서 특정한 각도일 때 특히 빛나는 성질을 이용하거나, 빛의 짧은 파장과, 단색특성을 이용하여 아주 작은 조각의 오염을 확인할 수 있다.상기 육안검사로 확인할 수 없는 웨이퍼의 오염은 금속현미경이나 전자현미경을 통하여 더욱 정확하게 확인하여 더 많은 정보를 얻을 수 있다.The wafer visual inspection can check the contamination of a very small piece by using a particularly shiny property when the dust particles at a particular angle in parallel white light, or by using a short wavelength of light and a monochromatic characteristic. Contamination of the wafer can be confirmed more accurately through a metal microscope or an electron microscope to obtain more information.

이러한 검사과정을 통과한 웨이퍼는 여러가지 공정을 거치면서 다수의 전자부품이 실장된 다수의 직접회로가 형성되며, 이와 같이 다수의 집적회로가 형성된 웨이퍼는 웨이퍼의 불량검사용 받침대상에 올려져 영하 40℃의 혹한과 170℃의 고열상태의 가혹시험을 거쳐서 각 집적회로의 불량발생의 유무를 판단하게 되므로 이러한 웨이퍼가 탑재되어 가혹시험을 진행시키는 웨이퍼의 불량검사용 받침대는 열팽창계수가 극히 적어야 하므로 현재까지는 일본에서 제조된 제품들이 사용되고 있었다. 이러한 일본 제품들은 가격이 대단히 고가이므로 국산화가 대단히 절실한 실정이고, 이러한 일본 제품들은 사용되는 소재의 성분이 거의 공개되지 않아 소재의 성분이 비밀로 취급되고 있어 제조가 거의 불가능하다. 이러한 일본 제품중에서 가부시기가이샤 에노모또 추고우쇼에서 '노비나이트(nobinite)'라는 상품명으로 판매되고 있는 웨이퍼의 불량검사용 받침대의 재질은 C 2.52 wt%, Si 2.35 wt%, Mn 0.13 wt%, P 0.015 wt%, S 0.029 wt%, Ni 29.57 wt%, Mg 0.08 wt%, 잔량 Fe가 제안된 바가 있느나, 상기 받침대는 열팽창계수가 약 5.5 X 10-6/℃가 되고, 점점 웨이퍼의 크기가 확대되면서 더욱 열팽창계수가 작은 웨이퍼의 불량검사용 받침대의 출현이 절실하게 요구되고 있는 실정이다. 또한, 이러한 받침대의 재질을 국내로 수입하여 가공처리를 한다고 하여도 실제로 제품의 형태와 관계없는 4각형의 괴형상의 재질을 수입하여 가공하게 되므로 괴형상의 원재료의 가격도 높은데다가 가공과정에서 거의 절반에 가까운 재료들이 가공과정중에서 칩으로 소요되므로 아까운 원재료가 낭비되어 국가적으로도 자원이 불필요하게 낭비되는 문제점이 있었다.The wafer that passes the inspection process undergoes various processes to form a plurality of integrated circuits in which a plurality of electronic components are mounted. Thus, the wafer on which the plurality of integrated circuits are formed is placed on a wafer inspection stand for freezing. Since it is judged whether the failure of each integrated circuit is caused by the harsh test of the severe temperature of 170 ℃ and the high temperature of 170 ℃, the stand for the defect inspection of the wafer to be subjected to the harsh test by mounting such a wafer must have a very low coefficient of thermal expansion. Until now, products made in Japan were used. Since these Japanese products are very expensive, localization is very urgent, and these Japanese products are almost impossible to manufacture because the ingredients of the materials used are not disclosed and the ingredients of the materials are kept secret. Among the Japanese products, the material for the defect inspection support for wafers sold under the trade name 'nobinite' at Enomoto Chugo Show is C 2.52 wt%, Si 2.35 wt%, Mn 0.13 wt%, P 0.015 wt%, S 0.029 wt%, Ni 29.57 wt%, Mg 0.08 wt%, residual Fe has been proposed, but the pedestal has a coefficient of thermal expansion of about 5.5 X 10 -6 / ℃, gradually increasing the size of the wafer Increasingly, the emergence of a pedestal for defect inspection of wafers having a smaller thermal expansion coefficient is urgently required. In addition, even if the material of such support is imported into Korea and processed, the square material is imported and processed irrespective of the shape of the product. Since nearly half of the materials are consumed as chips in the process, wasteful raw materials are wasted and resources are wasted unnecessarily in the country.

본 발명의 목적은 이러한 문제점을 해결하고 전량을 수입으로 해결되었던 웨이퍼의 불량검사용 받침대를 국산화하여 귀중한 외화의 낭비를 줄여서 외화를 절약할 수 있게 됨은 물론이고 필요한 형태에 가깝게 주물로 원재료를 제조하고 이를 가공함으로서 칩의 발생량을 최소로 하여 불필요하고 소재의 제조시에 전량수입에 의존하는 니켈과 같은 구성요소에 대한 자원의 낭비를 최소로 하여 보다 귀중한 자원을 효율적으로 사용할 수 있게 되며 소재의 제조와 가공을 국내에서 수행할 수 있게 되어 사용가능한 인력자원 및 장비를 사용할 수 있게 되므로서 인력과 장비의 사용효율을 제고할 수 있는 등의 여러가지 우수한 효과를 제공할 수 있는 웨이퍼의 불량검사용 받침대를 제공하는 것이다. The object of the present invention is to solve such problems and localize the defect inspection pedestal of the wafer, which has been solved by importing the whole quantity, thereby saving valuable foreign currency and saving foreign currency. By processing this, it is possible to use more valuable resources efficiently by minimizing the amount of chips generated and minimizing the waste of resources for components such as nickel, which are unnecessary and relying on total imports during the manufacture of materials. Since the processing can be performed in Korea, the available manpower resources and equipment can be used, thus providing a stand for wafer defect inspection that can provide various excellent effects such as improving the use efficiency of manpower and equipment. It is.

본 발명의 이러한 목적은 내측의 상부에 웨이퍼의 가장자리가 배치되는 안치대가 형성되며 외측의 가장자리에는 검사장비에 고정되는 홈이 형성되며 니켈(Ni) 30 ~ 38 wt%, 코발트(Co) 3 ~ 5 wt%, 규소(Si) 0.3 ~ 1 wt%, 망간(Mn) 0.2 ~ 0.4 wt%, 탄소(C) 0.01 ~ 0.07 wt%, 잔량 Fe 로 구성된 본 발명에 따른 웨이퍼의 불량검사용 받침대에 의하여 달성된다.This object of the present invention is formed on the upper side of the inner edge of the wafer is formed is formed and the outer edge is formed grooves fixed to the inspection equipment and nickel (Ni) 30 ~ 38 wt%, cobalt (Co) 3 ~ 5 Achieved by the defect inspection pedestal according to the present invention consisting of wt%, silicon (Si) 0.3-1 wt%, manganese (Mn) 0.2-0.4 wt%, carbon (C) 0.01-0.07 wt%, balance Fe do.

본 발명에 따른 웨이퍼의 불량검사용 받침대는 내측의 상부에 웨이퍼의 가장자리가 배치되는 안치대가 형성되며 외측의 가장자리에는 검사장비에 고정되는 홈 이 형성되며 니켈(Ni) 30 ~ 38 wt%, 코발트(Co) 3 ~ 5 wt%, 규소(Si) 0.3 ~ 1 wt%, 망간(Mn) 0.2 ~ 0.4 wt%, 탄소(C) 0.01 ~ 0.07 wt%, 잔량 Fe 로 구성되어, 가혹시험의 시험결과 열팽창계수가 1.61로 나타나 국내의 삼성전자와 하이닉스에서 사용되고 있는 동종의 일본제품의 열팽창계수가 5.5보다도 월등히 낮게 되어 전량을 수입으로 해결되었던 웨이퍼의 불량검사용 받침대를 국산화하여 귀중한 외화의 낭비를 줄여서 외화를 절약할 수 있게 됨은 물론이고 필요한 형태에 가깝게 주물로 원재료를 제조하고 이를 가공함으로서 칩의 발생량을 최소로 하여 불필요하고 소재의 제조시에 전량수입에 의존하는 니켈과 같은 구성요소에 대한 자원의 낭비를 최소로 하여 보다 귀중한 자원을 효율적으로 사용할 수 있게 되며 소재의 제조와 가공을 국내에서 수행할 수 있게 되어 사용가능한 인력자원 및 장비를 사용할 수 있게 되므로서 인력과 장비의 사용효율을 제고할 수 있는 등의 여러가지 우수한 효과가 있다.The defect inspection pedestal of the wafer according to the present invention is formed on the top of the inner set the edge of the wafer is arranged and the outer edge is formed with a groove fixed to the inspection equipment and nickel (Ni) 30 ~ 38 wt%, cobalt ( Co) 3 ~ 5 wt%, silicon (Si) 0.3 ~ 1 wt%, manganese (Mn) 0.2 ~ 0.4 wt%, carbon (C) 0.01 ~ 0.07 wt%, residual Fe, thermal expansion of the test results of the harsh test The coefficient was 1.61, which shows that the coefficient of thermal expansion of similar Japanese products used by Samsung Electronics and Hynix in Korea is much lower than 5.5, and localized the pedestal for inspection of wafer defects, which was solved by importing the whole quantity. As well as saving, the raw material is manufactured by casting and processing the material close to the required shape, minimizing the amount of chips generated and unnecessary and relying on the total amount of imports during the manufacturing of the material. By minimizing the waste of resources for the components, more valuable resources can be used efficiently, and the manufacture and processing of materials can be carried out domestically, and the use of available human resources and equipment can be used. There are various excellent effects, such as improving the efficiency.

본 발명의 일 실시예에 따른 웨이퍼의 불량검사용 받침대(A)는, 도 1 및 도 2에 도시된 바와 같이, 웨이퍼(B)의 가장자리가 배치되는 안치대(11)가 하부평면(10)을 기준으로 상부의 내측에 형성되며, 외측의 가장자리에는 검사장비에 고정되는 홈(12)이 형성되어 있다.As shown in FIGS. 1 and 2, the pedestal A for inspecting a defect of a wafer according to an exemplary embodiment of the present invention includes a lower stand 10 having an edge 11 on which an edge of the wafer B is disposed. It is formed on the inner side of the upper side, the outer edge of the groove 12 is fixed to the inspection equipment is formed.

상기 웨이퍼의 불량검사용 받침대(A)는 니켈(Ni) 30 ~ 38 wt%, 코발트(Co) 3 ~ 5 wt%, 규소(Si) 0.3 ~ 1 wt%, 망간(Mn) 0.2 ~ 0.4 wt%, 탄소(C) 0.01 ~ 0.07 wt%, 잔량 Fe 로 구성되어 있다.Pedestal (A) for defect inspection of the wafer is nickel (Ni) 30 ~ 38 wt%, cobalt (Co) 3 ~ 5 wt%, silicon (Si) 0.3 ~ 1 wt%, manganese (Mn) 0.2 ~ 0.4 wt% , Carbon (C) 0.01 to 0.07 wt%, the balance Fe.

니켈은 강도나 세기에 있어 철과 비슷하지만, 산화와 부식에 강한 정도는 구 리에 더 가까우며, 이러한 이중성 때문에 다양한 용도로 이용되고 있다. 생산된 니켈의 약 1/2 정도는 철과의 합금에 사용되고, 1/4 정도는 모넬 금속과 같이 구리와의 내식성(耐蝕性) 합금이나 크롬과의 내열합금과 같은 고급 니켈 합금에 사용되고 있다. 본 발명에서 니켈은 열팽창계수를 낮추는 가장 중요한 성분으로서, 상기 Ni가 30wt% 이하이면 열팽창계수가 높아져서 본 발명의 용도로 사용할 수 없으며, 상기 Ni가 38wt% 이상이면 비용이 높아져서 제조가가 높아지게 됨은 물론이고 역시 열팽창계수가 높아져서 본 발명의 용도로 사용할 수 없게 되어 본 발명에서는 Ni의 성분함량을 30 ~ 38 wt%로 제한하였다.Nickel is similar to iron in strength and strength, but its resistance to oxidation and corrosion is closer to copper, and due to its duality, it is used for various purposes. About 1/2 of the nickel produced is used in alloys with iron, and about 1/4 is used in high-quality nickel alloys, such as corrosion-resistant alloys with copper and heat-resistant alloys with chromium, such as monel metal. In the present invention, nickel is the most important component for lowering the coefficient of thermal expansion. If the Ni is 30 wt% or less, the coefficient of thermal expansion is high and cannot be used for the present invention. If the Ni is 38 wt% or more, the cost is high and the manufacturing cost is high. In addition, the coefficient of thermal expansion is high so that it cannot be used for the purposes of the present invention, the content of Ni in the present invention was limited to 30 to 38 wt%.

상기 코발트는 철이나 니켈과 비슷한 은백색의 금속으로 실온에서는 표면만 녹슬 뿐 오랫동안 안정하다. 백열(白熱)하면 연소하여 산화코발트가 된다. 모스굳기는 5.6, 전성과 연성은 철과 같은 정도이며 강자성으로, 합금으로는 대단히 중요한 용도가 있다. 고속으로 절삭할 수 있는 고속도강, 주조한 그대로 사용할 수 있는 경질공구용합금(스텔라이트 등), 코발트와 탄화텅스텐과 같은 경질 탄화물의 소결(燒結)로 생기는 소결탄화물합금(텅갈로이 등), 영구자석재료 등으로 사용되고 있다. 본 발명에서 상기 코발트는 열팽창계수를 저하시키는데 사용되고 있으며, 코발트는 3 wt%이하에서는 1700℃에서는 기화되기때문에 충분한 수치로 열팽창계수를 저하시키지 못하며, 5 wt% 이상을 사용할 경우에는 제조원가가 높아지게 되어 본 발명에서는 코발트의 함유범위를 3 ~ 5 wt%의 범위로 제한하였다.The cobalt is a silvery white metal similar to iron or nickel, and is stable for only a long time at room temperature. Incandescent (白熱) burns and becomes cobalt oxide. Moss firmness is 5.6, and malleability and ductility are about the same as iron and ferromagnetic. High-speed steel capable of cutting at high speeds, hard tool alloys (such as stellite) that can be used as they are cast, sintered carbide alloys (tongue alloys, etc.) resulting from the sintering of hard carbides such as cobalt and tungsten carbide, and permanent magnets It is used as a material. In the present invention, the cobalt is used to lower the coefficient of thermal expansion, and cobalt is vaporized at 1700 ° C. below 3 wt%, so that the coefficient of thermal expansion is not lowered to a sufficient value. In the present invention, the content of cobalt was limited to a range of 3 to 5 wt%.

상기 규소는 용탕내에 소함되어 기포를 생성시키는 수소로 인한 기포발생의 우려를 방지하기 위한 것으로 0.3 wt% 이하로 첨가되면 수소로 인한 기포가 발생되 어 강도가 저하되게 되고 1 wt% 이상이 첨가되면 수소와 과잉반응하여 수소화물이 과잉생산되어 제품의 강도가 취약하게 되어, 본 발명에서는 규소의 함량을 0.3 ~ 1.0 wt% 로 제한하였다.The silicon is contained in the molten metal to prevent the air bubbles caused by the hydrogen generating bubbles. If the amount is less than 0.3 wt%, bubbles are generated due to hydrogen, and the strength is lowered. The excessive reaction with and the hydride is overproduced, the strength of the product is weak, in the present invention, the silicon content was limited to 0.3 ~ 1.0 wt%.

상기 망간은 탈수소효과와 경도를 높이는데 사용되는 것으로, 0.2 wt% 이하에서는 탈수소효과가 떨어지게 되고 0.4 wt% 이상에서는 경도가 너무 높게 되어 가공성이 저하되게 되므로, 본 발명에서는 망간의 함량을 0.2 ~ 0.4 wt%로 제한하였다.The manganese is used to increase the dehydrogenation effect and hardness, the dehydrogenation effect is lowered at 0.2 wt% or less and the hardness is too high at 0.4 wt% or more, so that the workability is lowered, the content of manganese is 0.2 to 0.4 Limited to wt%.

상기 탄소는 쇳물을 유동성을 위하여 포함된 것이나, 0.01 wt% 이하로는 거의 제조가 어려우며 극약도 약이다는 원칙에 따라 0.01 wt% 이상으로 설정하였으며, 0.07 wt% 이상에서는 쇳물의 유동성이 높아지게 되어 제품의 경도가 낮아지게 되므로 본 발명에서는 탄소의 함량을 0.01 ~ 0.07 wt% 로 제한하였다.The carbon is contained in the fluid for fluidity, but it is set to 0.01 wt% or more according to the principle that it is almost difficult to manufacture and extremely low at less than 0.01 wt%, and the fluidity of the product is increased at 0.07 wt% or more. Since the hardness of the lower the content of the carbon in the present invention was limited to 0.01 ~ 0.07 wt%.

실시예 1Example 1

본 발명에서는 Ni 32.6wt%, Co 4.18wt%, Si 0.31wt%, Mn 0.24wt%, C 0.046wt%, 잔량 Fe 인 웨이퍼의 불량검사용 받침대의 시료를 제조하였다.In the present invention, a sample of a pedestal for defect inspection of a wafer having Ni 32.6 wt%, Co 4.18 wt%, Si 0.31 wt%, Mn 0.24 wt%, C 0.046 wt%, and residual Fe was prepared.

이와 같은 시료를 40 ~ 200℃의 온도에서 사용한 결과, 도 3a,3b 및 3c에서 알 수 있듯이, 열팽창계수가 1.61 X 10-6/℃로 나타나 동종의 일본제품보다도 열팽창계수가 1/3~1/4정도로 낮아지게 되었다. 즉, 동일한 조건에서 종래기술에서 기재된 에노모또 추고오쇼사의 노비나이트제품의 열팽창계수가 약 5.5 X 10-6/℃가 되어, 동종의 일본제품보다도 열팽창계수가 1/3~1/4정도로 낮아지게 되었다. 따라서, 일본제품은 웨이퍼의 검사매수가 약 5만장정도일 경우 본 발명에 따른 웨이퍼 불량검사용 받침대의 경우에는 검사매수가 약 10만장에서 15만장은 가능하게 된 것이다.As a result of using such a sample at a temperature of 40 to 200 ° C., as shown in FIGS. 3A, 3B, and 3C, the coefficient of thermal expansion was 1.61 × 10 −6 / ° C., indicating that the coefficient of thermal expansion was 1/3 to 1 than that of similar Japanese products. It became low as / 4. That is, under the same conditions, the thermal expansion coefficient of the nobinite product of Enomoto Chugo-Osho Co., Ltd. described in the prior art is about 5.5 X 10 -6 / ° C, which is 1/3 to 1/4 lower than that of similar Japanese products. I lost. Therefore, in the case of a Japanese inspection product having a wafer inspection quantity of about 50,000 sheets, the inspection quantity of the wafer defect inspection pedestal according to the present invention is about 100,000 to 150,000 sheets.

본 발명에 따른 웨이퍼의 불량검사용 받침대는 반복적으로 재생산이 가능하게 되므로 산업상 이용가능성이 있다고 할 것이다.The pedestal for defect inspection of the wafer according to the present invention will be said to be industrially available because it can be repeatedly reproduced.

도 1은 본 발명에 따른 웨이퍼의 불량검사용 받침대의 사시도1 is a perspective view of a pedestal for defect inspection of a wafer according to the present invention

도 2는 본 발명에 따른 웨이퍼의 불량검사용 받침대의 도 1의 I-I선을 따라 취한 개략적인 종단면도2 is a schematic longitudinal cross-sectional view taken along line I-I of FIG. 1 of a pedestal for defect inspection of a wafer according to the present invention;

도 3a, 3b, 및 3c는 본 발명에 따른 웨이퍼의 불량검사용 받침대의 시험성적서의 성분표, 열팽창계수, 및 시험당시의 그래프3A, 3B, and 3C are a table of components, a thermal expansion coefficient, and a graph at the time of a test report of a pedestal for defect inspection of a wafer according to the present invention;

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

A. 웨이퍼 불량검사용 받침대 B. 웨이퍼A. Wafer defect inspection base B. Wafer

11. 안치대 12. 홈11.Braces 12. Home

Claims (1)

웨이퍼의 불량검사용 받침대(A)에 있어서,In the pedestal A for defect inspection of a wafer, 상기 웨이퍼(B)의 불량검사용 받침대는 하부평면(10)의 상부의 내측에 웨이퍼의 가장자리가 배치되는 안치대(11)가 형성되며 외측의 가장자리에는 검사장비에 고정되는 홈(12)이 형성되며, 니켈(Ni) 30 ~ 38 wt%, 코발트(Co) 3 ~ 5 wt%, 규소(Si) 0.3 ~ 1 wt%, 망간(Mn) 0.2 ~ 0.4 wt%, 탄소(C) 0.01 ~ 0.07 wt%, 잔량 Fe 로 구성된 것을 특징으로 하는 웨이퍼의 불량검사용 받침대.The pedestal for defect inspection of the wafer (B) is formed on the inside of the upper portion of the lower plane 10, the support base 11 is formed with the edge of the wafer is formed, the outer edge is formed with a groove 12 fixed to the inspection equipment Nickel (Ni) 30 to 38 wt%, Cobalt (Co) 3 to 5 wt%, Silicon (Si) 0.3 to 1 wt%, Manganese (Mn) 0.2 to 0.4 wt%, Carbon (C) 0.01 to 0.07 wt Pedestal for defect inspection of the wafer, characterized in that the remaining amount, Fe.
KR1020070138477A 2007-12-27 2007-12-27 Stand for wafer defect inspection KR100934993B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070138477A KR100934993B1 (en) 2007-12-27 2007-12-27 Stand for wafer defect inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070138477A KR100934993B1 (en) 2007-12-27 2007-12-27 Stand for wafer defect inspection

Publications (2)

Publication Number Publication Date
KR20090070460A KR20090070460A (en) 2009-07-01
KR100934993B1 true KR100934993B1 (en) 2009-12-31

Family

ID=41322000

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070138477A KR100934993B1 (en) 2007-12-27 2007-12-27 Stand for wafer defect inspection

Country Status (1)

Country Link
KR (1) KR100934993B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970017989A (en) * 1995-10-12 1997-04-30 윤영세 Method for forming gas injection device for semiconductor production equipment and susceptor for wafer mounting and composition
JP2002356382A (en) * 2001-05-31 2002-12-13 Kyocera Corp BRAZING FILLER BETWEEN ALUMINUM NITRIDE BASED SINTERED COMPACT AND Fe-Ni-Co ALLOY AND WAFER SUPPORTING MEMBER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970017989A (en) * 1995-10-12 1997-04-30 윤영세 Method for forming gas injection device for semiconductor production equipment and susceptor for wafer mounting and composition
JP2002356382A (en) * 2001-05-31 2002-12-13 Kyocera Corp BRAZING FILLER BETWEEN ALUMINUM NITRIDE BASED SINTERED COMPACT AND Fe-Ni-Co ALLOY AND WAFER SUPPORTING MEMBER

Also Published As

Publication number Publication date
KR20090070460A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
Eghlimi et al. Effect of current type on microstructure and corrosion resistance of super duplex stainless steel claddings produced by the gas tungsten arc welding process
US20090053090A1 (en) Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy
KR20140128227A (en) Cu-DIAMOND BASED SOLID PHASE SINTERED BODY HAVING EXCELLENT HEAT RESISTANCE, HEAT SINK USING THE SAME, ELECTRONIC DEVICE USING THE HEAT SINK, AND METHOD FOR PRODUCING Cu-DIAMOND BASED SOLID PHASE SINTERED BODY HAVING EXCELLENT HEAT RESISTANCE
JP5214282B2 (en) Copper alloy plate for QFN package with excellent dicing workability
Lan et al. Interfacial microstructure and mechanical characterization of silicon nitride/nickel-base superalloy joints by partial transient liquid phase bonding
CN103469011B (en) Nickel chromium high-temperature alloy and preparation method thereof
Shi et al. Influence of pre-alloying on Fe-Cu based metal matrix composite
KR100934993B1 (en) Stand for wafer defect inspection
CN110462077B (en) Cu-Ni-Si copper alloy strip
KR20160133440A (en) Iron-nickel alloy having improved weldability
Blank et al. Low temperature silver sinter processes on ENIG surfaces
TW201923109A (en) Repair-welding material for die
CN109609804B (en) A kind of Cu-Ni-Si-Mn alloy and preparation method thereof
Viitala et al. Initial oxidation behaviour of niobium stabilized TP347H austenitic stainless steel–Effect of grain size and temperature
CN105479037B (en) A kind of nickel-based boron-free solder and preparation method thereof
JP2011236499A (en) Stainless steel and method of manufacturing the same
KR102173626B1 (en) Ni-based alloy with excellent hardness, electric conductivity and magnetic properties for a semiconductor test socket and alloy powder comprising the same
CN111235426A (en) Multi-element copper alloy, preparation method thereof and application thereof in additive manufacturing
Mishra et al. Brazing of hot isostatically pressed-Al 2 O 3 to stainless steel (AlSl 304L) by Mo-Mn route using 72Ag-28Cu braze
JPS582583B2 (en) Fe-Ni alloy with excellent stress corrosion cracking resistance
Zhang et al. Wetting behaviors of nickel-based alloys on sintered silicon carbide ceramics
Xia et al. Microstructural investigation of W-Cu composite and 1Cr18Ni9 stainless steel brazed joint with Ag-Cu filler metal
Santra et al. Phase evolution in the AuCu/Sn system by solid-state reactive diffusion
JP6601031B2 (en) Reed switch wire, reed switch lead piece and reed switch
JP6372952B2 (en) Probe pin material composed of a Pt-based alloy and method for manufacturing the probe pin

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121023

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160107

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee