KR100933149B1 - 확장성 대역폭을 지원하는 셀룰러 무선통신시스템을 위한 방송채널의 송수신 방법 및 장치 - Google Patents

확장성 대역폭을 지원하는 셀룰러 무선통신시스템을 위한 방송채널의 송수신 방법 및 장치 Download PDF

Info

Publication number
KR100933149B1
KR100933149B1 KR1020060025870A KR20060025870A KR100933149B1 KR 100933149 B1 KR100933149 B1 KR 100933149B1 KR 1020060025870 A KR1020060025870 A KR 1020060025870A KR 20060025870 A KR20060025870 A KR 20060025870A KR 100933149 B1 KR100933149 B1 KR 100933149B1
Authority
KR
South Korea
Prior art keywords
bch
band
bandwidth
modulation symbols
terminal
Prior art date
Application number
KR1020060025870A
Other languages
English (en)
Other versions
KR20070081398A (ko
Inventor
조준영
이주호
정경인
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP07002953.3A priority Critical patent/EP1819069B1/en
Priority to US11/705,558 priority patent/US8059728B2/en
Publication of KR20070081398A publication Critical patent/KR20070081398A/ko
Application granted granted Critical
Publication of KR100933149B1 publication Critical patent/KR100933149B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Abstract

본 발명은 확장성 대역폭을 지원하는 직교 주파수 분할 다중화(OFDM) 기반의 셀룰러 무선통신 시스템에서 방송채널(BCH)을 통해 시스템 정보를 송수신하는 방법 및 장치를 제시한다. 확장성 대역폭에 기반한 시스템에서는 시스템과 단말기가 각각 다양한 시스템 대역폭과 다양한 수신 대역폭을 가지는 것이 가능하다. 본 발명에서는 BCH의 적절한 자원 재활용에 의하여 오버헤드를 최소화하면서 단말기가 유휴 모드에서 초기 셀 탐색 시에 받는 BCH 정보와 데이터 송수신 서비스 시에 받는 BCH 정보를 별도로 구성함으로써, 단말기가 주변 셀로부터의 상기 BCH 정보들을 항상 정상적으로 수신할 수 있도록 한다. 이로써 단말기는 필요 시 원하는 주변 셀에 신속하게 연결할 수 있다.
OFDM, cell search, synchronization, scalable bandwidth, BCH

Description

확장성 대역폭을 지원하는 셀룰러 무선통신시스템을 위한 방송채널의 송수신 방법 및 장치{Method and Apparatus for transmitting/receiving broadcast channels in cellular communication systems supporting scalable bandwidth}
도 1은 주파수 및 시간 영역에서 OFDM 신호의 구조를 도시한 도면.
도 2는 확장성 대역폭을 지원하는 시스템에서 SCH 및 BCH의 주파수 자원 매핑 예를 도시한 도면.
도 3은 시스템 대역폭에 따라 SCH와 BCH의 전송 대역폭이 변화하는 예를 도시한 도면,
도 4는 다양한 수신 대역폭을 가지는 유휴 모드의 단말기들이 시스템 대역 내에 할당된 예를 도시한 도면.
도 5는 유휴 모드의 단말기를 포함하여 다양한 수신 대역폭을 가지는 단말기들이 시스템 대역 내에 할당된 예를 도시한 도면.
도 6은 본 발명의 제1 실시예에 따른 BCH의 주파수 영역 매핑을 도시한 도면.
도 7은 본 발명의 제1 실시예에 따른 BCH 매핑 구조 하에서 단말기가 시스템 대역폭 내에 할당된 예를 도시한 도면.
도 8은 본 발명의 제1 실시예에 따른 기지국의 송신기 절차를 도시한 도면.
도 9는 본 발명의 제1 실시예에 따른 기지국의 송신기 구조를 도시한 도면.
도 10은 본 발명의 제1 실시예에 따른 단말기의 수신 절차를 도시한 도면.
도 11은 본 발명의 제1 실시예에 따른 단말기의 수신기 구조를 도시한 도면.
도 12는 본 발명의 제2 실시예에 따른 BCH의 주파수 영역 매핑을 도시한 도면.
도 13은 본 발명의 제3 실시예에 따른 BCH의 주파수 영역 매핑을 도시한 도면.
본 발명은 셀룰러(cellular) 무선통신 시스템에 대한 것으로서, 특히 방송채널(Broadcast Channel: BCH)을 통한 시스템 정보의 송수신 방법 및 장치에 관한 것이다.
최근 방송 및 이동통신 시스템의 기술로 직교주파수분할다중화(Orthogonal Frequency Division Multiplexing: OFDM) 기술이 널리 적용되고 있다. OFDM 기술은 무선통신 채널에서 존재하는 다중경로 신호 성분들 간의 간섭을 제거하고 다중 접속 사용자들간의 직교성을 보장해 주는 장점이 있으며 주파수 자원의 효율적 사용을 가능하게 한다. 그로 인하여 OFDM 기술은 WCDMA(Wideband Code Division Multiple Access)나 cdma2000 등의 직접수열 코드분할 다중접속(DS-CDMA: Direct Sequence CDMA) 기술에 비하여 고속데이터 전송 및 광대역 시스템에 유용하다.
도 1은 주파수 및 시간 영역(domain)에서 OFDM 신호의 구조를 도시한 것이다.
도 1을 참조하면, 한 OFDM 심벌(100)은 주파수 영역에서 볼 때 N 개의 부반송파(subcarrier)(102)들을 점유한다. 상기의 각 부반송파(102)에는 전송 정보의 개개의 변조 심벌(modulation symbol)(혹은 부반송파 심벌이라 칭함)(104)이 각각 실려서 병렬로 동시에 전송된다. 상기와 같이 OFDM 기술은 다중반송파(multi―carrier) 전송 기술로서 송신할 데이터 및 제어 정보들을 여러 부반송파들에 나누어 실어서 병렬 전송할 수 있다. OFDM 기반 통신 시스템에서 개개의 물리채널(physical channel)들은 하나 이상의 상기의 부반송파 심벌(104)들이 모여서 이루어진다.
고속의 무선 데이터 서비스를 제공하기 위한 OFDM 기반 셀룰러 무선통신 시스템에서 중요한 특징 중의 하나는 확장성 대역폭(scalable bandwidth)의 지원이다. 확장성 대역폭에 기반한 시스템은 예를 들어 20/15/10/5/2.5/1.25 MHz 등의 다양한 시스템 대역폭을 가지는 것이 가능하다. 서비스 사업자들은 각 셀 별로 상기 대역폭 중에서 선택하여 서비스를 제공할 수 있으며, 단말기 또한 최대 20 MHz의 수신 대역폭(reception bandwidth)까지의 서비스가 가능한 것에서부터 1.25 MHz의 수신 대역폭만을 지원하는 것 등 여러 종류가 존재할 수 있다.
확장성 대역폭 기반 시스템 하에서, 처음 시스템에 접속하는 단말기는 시스템 대역폭에 대한 정보가 없는 상태에서 셀 탐색(cell search)에 성공할 수 있어야 한다. 단말기는 상기 셀 탐색을 통하여 데이터 및 제어 정보의 복조를 위한 송수신기 간 동기(synchronization) 및 셀 ID를 획득한다. 상기 시스템 대역폭은 상기 셀 탐색 과정에서 동기채널(Synchronization Channel: 이하 SCH라 칭함)로부터 얻거나, 상기 셀 탐색이 완료된 후에 시스템 정보 전송용 공통제어채널인 방송채널(Broadcasting Channel, 이하 BCH로 칭함)를 통하여 알 수 있다. 상기 BCH는 단말기가 접속하는 셀의 시스템 정보를 전송하는 채널로서 단말기가 셀 탐색을 끝내면 가장 먼저 복조하게 되는 채널이다. 단말기는 SCH를 통해 셀을 탐색하여 상기 셀의 초기동기를 성공적으로 획득한 후 BCH의 수신을 통하여 상기 셀에 대한 상기 시스템 정보들을 얻게 된다. 즉 단말기는 BCH를 읽어냄으로써 각 셀 별로 셀 ID, 시스템 대역폭, 채널 설정 정보 등 데이터 채널 및 기타 제어 채널들을 수신하는 데 필요한 시스템 정보를 얻는다.
도 2는 전형적인 확장성 대역폭을 지원하는 시스템에서 시스템 대역폭에 따른 SCH 및 BCH의 주파수 자원 매핑의 예를 보인 것이다.
도 2를 참조하면, 가로축(200)은 주파수 영역을 나타내며, 여기에서는1.25/2.5/5/10/15/20 MHz의 시스템 대역폭들에 따른 주파수 자원 매핑을 나타내었다. 도시한 바와 같이 SCH(204)의 시퀀스와 BCH(206)의 시스템 정보는 시스템 대역폭에 상관없이 1.25 MHz의 대역폭으로 시스템 대역의 중간에서 전송된다. 따라서, 단말기는 시스템 대역폭에 상관없이 시스템 대역의 중심 주파수인 RF(Radio Frequency) 반송파(202)를 찾아서 상기 RF 반송파(202)를 중심으로 하는 1.25 MHz의 중심 대역에 대하여 셀 탐색을 수행함으로써 상기 SCH(204)를 검출하고 시스템에 대한 초기 동기를 획득한다. 그리고, 상기 셀 탐색 후 동일한 1.25 MHz 대역에서 전송되는 상기 BCH(206)를 복조 및 복호하여 시스템 정보를 얻게 된다.
한편, 도 3에서는 시스템 대역폭에 따라 SCH와 BCH의 전송 대역폭이 변화하는 경우를 도시하고 있다. 즉, 시스템 대역폭이 2.5 MHz 이하인 경우(300)에는 1.25 MHz의 대역폭으로 SCH(304)의 시퀀스와 BCH(306)의 시스템 정보가 전송되고, 시스템 대역폭이 5 MHz 이상인 경우(302)에는 5 MHz의 대역폭으로 SCH(308)의 시퀀스와 BCH(310)의 시스템 정보가 전송된다. 상기와 같이 전송하는 주된 이유는 시스템 대역폭이 큰 경우에는 보다 넓은 대역을 사용하여 SCH 시퀀스와 BCH 시스템 정보를 전송함으로써 셀 탐색 및 시스템 정보 수신 성능을 개선하기 위해서이다.
확장성 대역폭을 지원하는 시스템에서는, 시스템 대역폭보다 더 작은 수신 대역폭을 가진 단말기가 시스템 대역의 일부 대역에서 서비스를 받고 있을 때에도 주변 셀들로부터의 SCH 탐색 및 BCH 수신을 원활히 할 수 있도록 상기 채널들을 설계할 필요가 있다.
본 발명은, 시스템 대역폭 및 단말기 수신 대역폭의 확장성(scalability)을 지원하는 시스템에서 단말기가 주변 셀들의 시스템 정보를 원활히 수신할 수 있도록 하는 방송채널(BCH) 송수신 방법 및 장치를 제공한다.
또한 본 발명은, 단말기가 유휴 모드에서 방송 서비스 데이터를 수신하고 있거나 활성 모드에 있을 시에도 주변 셀들의 시스템 정보를 원활히 수신할 수 있도록 하는 방송채널(BCH) 송수신 방법 및 장치를 제공한다.
또한 본 발명은, 단말기가 유휴 모드와 활성 모드 중 어느 모드에 있느냐에 상관없이 방송 서비스 데이터를 원활히 수신할 수 있도록 하는 방송채널(BCH) 송수신 방법 및 장치를 제공한다.
본 발명의 바람직한 실시예는, 확장성 대역폭을 지원하며 다중 접속 기술을 사용하는 셀룰러 통신 시스템에서 시스템 정보를 운반하는 방송채널의 송신 방법에 있어서,
방송채널의 전송 대역폭과 동일한 대역폭을가지는, 시스템 대역의 중심 대역에, 시스템 정보를 포함하는 BCH 변조 심벌들을 매핑하는 과정과, 여기서 상기 BCH 변조 심벌들은 2개의 리소스 블록들로 구분되며,
시스템 대역폭이 단말기의 최대 수신 대역폭의 2배 이상인 경우, 상기 BCH 변조 심벌들 중 적어도 일부를 상기 시스템 대역의 각 절반 대역 내에 추가적으로 매핑하는 과정과, 상기 리소스 블록들이 매핑된 주파수 영역의 신호를 셀 내에 위치하는 단말기들에게 전송하는 과정을 포함하는 것을 특징으로 한다.
삭제
삭제
삭제
본 발명의 다른 실시예는, 확장성 대역폭을 지원하며 다중 접속 기술을 사용하는 셀룰러 통신 시스템에서 시스템 정보를 운반하는 방송채널의 수신 방법에 있어서,
단말기가 위치하는 현재 셀의 시스템 대역폭이 단말기의 수신 대역폭의 2배보다 작거나, 상기 단말기가 상기 단말기의 수신 대역폭을 가지는 시스템 대역의 중심 대역에 캠핑하는 경우, 상기 중심 대역 내의 미리 정해지는 부반송파들을 통해서 시스템 정보를 포함하는 방송채널(BCH) 변조 심벌들을 수신하는 과정과, 여기서 상기 BCH 변조 심벌들은 2개의 방송채널(BCH) 리소스 블록들로 구분되며,
상기 시스템 대역폭이 상기 수신 대역폭의 2배보다 크거나 같고, 상기 단말기가 상기 시스템 대역의 일부인 상측 혹은 하측 대역에 캠핑하는 경우, 상기 캠핑된 대역 내의 미리 정해지는 부반송파들을 통해서 상기 BCH 변조 심벌들을 수신하는 과정과,
상기 BCH 변조 심벌들을 복호하여 시스템 정보를 획득하는 과정을 포함하는 것을 특징으로 한다.
삭제
삭제
이하 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발 명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
후술되는 본 발명의 주요한 요지는, 다중 접속 기술을 사용하며 확장성 대역폭을 지원하는 셀룰러 통신 시스템에서 동기 채널(SCH)이나 방송 채널(BCH)과 같은 공통 제어 채널이 위치하는 주파수 대역을 효율적으로 배치하는 것이다.
이하 본 발명의 실시예들을 구체적으로 설명함에 있어서, 직교 주파수 분할 다중 (Orthogonal Frequency Division Multiplex, 이하 'OFDM'이라 한다.) 전송 기술 기반 시스템을 주된 대상으로 할 것이지만, 본 발명의 주요한 요지는 유사한 기술적 배경 및 채널형태를 가지는 여타의 통신 시스템에도 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 약간의 변형으로 적용 가능하며, 이는 본 발명의 기술분야에서 숙련된 기술적 지식을 가진 자의 판단으로 가능할 것이다.
확장성 대역폭을 지원하는 시스템이 기존 시스템과 다른 주된 특징 중 하나는 시스템 내에 서로 상이한 수신 대역폭의 지원 능력(capability)을 가지는 다양한 단말기(User Equipment: UE)들이 존재한다는 것이다. 일례로서 도 4는 20 MHz 시스템 대역폭(400)의 시스템으로부터 5/10/20 MHz 수신 대역폭의 단말기들 UE#1, UE#2, UE#3, UE#4(404, 406, 408, 410)가 서비스를 받는 상황을 도시하고 있다. 참조번호 402는 시스템으로부터 전송되는 동기채널(SCH) 시퀀스를 나타내며 참조번호 412는 방송채널(BCH)에 실리는 시스템 정보를 나타낸다. 상기 BCH(412)에 실리는 물리적인 정보는 일반적으로 시스템 정보를 채널 부호화(channel coding)함으로써 생성된다.
도 4를 참조하면, SCH(402)와 BCH(412)는 시스템 내의 모든 셀들에서 시스템 대역폭의 중심 주파수인 RF 부반송파를 기준으로 하여 5 MHz의 대역폭을 가지고 전송되고 있다. 상기 단말기들(404, 406, 408, 410)은 상기 SCH(402)와 BCH(412)로부터 셀 탐색 및 시스템 정보 수신을 끝내고 각 단말기가 위치한 현재 셀의 각 해당 대역에서 데이터 서비스를 받고 있다. 상기 단말기들(404, 406, 408, 410)이 전체 시스템 대역(400) 내에서 서로 다른 대역들에 캠핑(camping)하게 되는 것은, 상기 단말기들(404, 406, 408, 410)이 사용하는 대역들을 상기 시스템 대역(400) 내에서 골고루 분산 시킴으로써 특정 대역에서 주파수 자원 요구 및 트래픽 발생이 집중되는 것을 방지하기 위함이다.
상기 도 4의 상황에서 UE#2(406), UE#3(408), UE#4(410) 등은 주변 셀로부터송출되는 SCH(402) 및 BCH(412)의 전체 혹은 일부를 수신할 수 있지만, UE#1(404)은 상기 SCH(402) 및 BCH(412)가 전송되지 않는 최하위 5 MHz 대역에 위치하고 있으므로 현재 대역에서 상기 채널들(402, 412)의 신호들을 수신할 수 없다. 그러므로 상기 UE#1(404)이 인접 셀로부터의 SCH(402) 및 BCH(412)의 신호들을 수신할 수 있도록 하기 위해서는, 일시적으로 UE1(404)가 자신의 수신 RF 반송파를 상기 SCH(402) 및 BCH(412)의 전송 대역으로 옮겨야 한다. 그리고, UE#2(406)와 UE#3(408)은 현재 위치하고 있는 5MHz 및 10MHz 대역들에서 상기 BCH(412)의 신호의 일부 대역만을 수신할 수 있으므로, 상기 BCH(412)의 신호를 정상적으로 복호하기 위해서는 마찬가지로 UE들(406, 408)이 자신들의 수신 RF 반송파를 상기 BCH(412)의 전송 대역으로 옮겨야 한다.
상기에서는 단말기가 특정 셀에 연결되어 서비스를 받는 활성 모드(active mode)에서의 동작을 고려한 것이다. 그런데, 단말기가 어떤 셀과도 접속을 이루지 않은, 즉, 유휴 모드(idle mode)에 있을 때에도 비슷한 상황이 발생할 수 있다.
도 5는 유휴 모드 단말기를 포함하여 다양한 수신 대역폭의 단말기가 전체 시스템 대역 내에 할당된 예를 도시한 것이다.
도 5를 참조하면, 시스템에 접속 가능한 단말기들의 수신 대역폭이 최소 10 MHz인 경우 MBMS(Multimedia Broadcast Multicast Service)를 위한 물리채널들인 MSMS#1(500)과 MSMS#2(502)는 전체 20 MHz의 시스템 대역(504) 내의 각 절반 대역들인 상측 및 하측 10 MHz 대역들에서 전송되고 있다. 상기 MBMS 물리채널들(500, 502)은 멀티미디어 데이터를 브로드캐스트(broadcast) 혹은 멀티캐스트(multicast) 형식으로 여러 사용자들에게 제공하기 위한 채널로서, 상기 MBMS#1(500) 및 MBMS#2(502)를 통하여 다양한 방송 서비스 채널들이 제공된다.
20MHz의 수신 대역폭을 가지는 유휴 모드의 UE#3(514)의 경우에는 MBMS 채널들(500, 502)과 상기 SCH(506) 및 상기 BCH(508)의 신호들을 모두 정상적으로 수신할 수 있다. 또한 MBMS 서비스를 수신하지 않는 유휴 모드의 UE#4(516)는 시스템 대역의 중간에 계속 위치하면서 주변 셀들로부터의 SCH(506)와 BCH(508)를 지속적으로 수신하여 셀 탐색 및 시스템 정보 수신을 수행하여 활성 모드로 들어갈 경우를 대비한다.
반면 10MHz 대역폭의 수신 능력을 가진 UE#1(510)과 UE#2(512)는 유휴 모드에 있으면서 원하는 방송 서비스 채널이 포함되어 있는 MBMS 물리채널이 전송되는 하측 및 상측 대역들에서, 각각 MBMS 물리채널들(500, 502)을 수신하고 있다. 그런데, UE#1(510)과 UE#2(512)도 유휴 모드에 있으므로 MBMS 데이터를 수신할 뿐만 아니라, 필요 시 활성 모드로 들어갈 수 있도록 대비하기 위하여 주변 셀들로부터의 SCH(506)과 BCH(508)를 수신할 필요가 있다. UE#1(510)과 UE#2(512)는 상기 SCH(506)과 BCH(508)의 일부 대역만을 수신 가능한데, SCH(506)의 경우는 일부 대역의 신호만 수신하더라도 셀 탐색을 수행하는 것이 가능하지만, BCH(508)의 경우에는 상기 BCH(508)를 구성하는 모든 부반송파 심벌을 모두 수신하지 못하면 정상적으로 전체 시스템 정보를 복호하는 것이 거의 불가능하다. BCH(508)의 정상적인 복호가 가능하도록 하기 위해서는 상기 UE#1(510)과 UE#2(512)가 가끔 자신의 수신 RF 부반송파를 상기 BCH(508)가 전송되는 대역으로 변경하여 상기 BCH(508)를 통해 시스템 정보를 수신한 후, 다시 MBMS 채널들(500, 502)이 전송되는 대역들로 돌아오는 동작이 필요하다. 따라서, 이 경우에는 MBMS 데이터의 원활한 수신 및 주변 셀의 원활한 탐색이 이루어지기 곤란하다는 문제가 발생한다.
UE#1(510)과 UE#2(512)가 상기 BCH(508)와 상기 MBMS 데이터를 동시에 수신할 수 있도록 하기 위하여 MBMS 채널들(500, 502)을 상기 BCH(508)와 같이 시스템 대역의 중간에 전송한다면, 도 4의 UE#3(408)과 같이 어느 하나의 절반 대역에 위치하는 활성 모드의 단말기가 상기 MBMS 채널들(500, 502)의 일부 대역만을 수신하게 되어 상기 MBMS 채널의 데이터를 정상적으로 복구하지 못하는 문제가 발생한다. 따라서, 확장성 대역폭을 지원하는 시스템에서는 유휴 모드 및 활성 모드의 단말기들 모두가 방송 서비스 데이터를 정상적으로 수신할 수 있도록 하기 위하여, 도 5에 도시한 UE#5(518)와 UE#6(520)와 같은 활성 모드의 단말기들이 할당되는 절반 대역들에 맞추어 MBMS 채널들(500, 502)을 전송하는 것이 필요하다. 또한 도 4로부터 기술한 바와 같이 모든 주파수 자원의 균등한 활용 및 특정 대역의 트래픽 오버로드 현상 방지를 위하여 활성 모드인 UE#5(518) 및 UE#6(520)은 전체 대역에 고루 분산되는 것이 필요하다.
하기의 실시예들을 통하여, 상기 기술한 바와 같은 단말기가 활성 모드에 있거나 유휴 모드에서 MBMS 데이터를 수신하는 경우와 같이 시스템 대역의 중심에 위치하고 있지 않을 때에도, 주변 셀들로부터의 BCH 신호를 정상적으로 수신 및 복호할 수 있도록 하는 BCH 매핑을 제시한다. 구체적으로, BCH 자원의 적절한 재배치 및 재활용에 의하여 BCH들이 정의되는데, 하나의 BCH는 대부분의 경우에서 사용되고, 부가적인 BCH는 시스템 대역폭이 단말기 수신 대역폭의 두 배 이상이 될 경우에 방송 서비스 데이터를 수신하고 있는 유휴 모드의 단말기나 활성 모드에 있는 단말기를 위해 사용된다. 그리하여, 단말기가 시스템 대역폭을 모르는 상황에서도 초기 셀 탐색을 하는데 문제를 발생시키지 않도록 하였으며, 상기 단말기가 유휴 모드에서 방송 서비스 데이터를 수신하면서 주변 셀의 시스템 정보를 수신하고자 할 시에는 상기 BCH의 자원 재활용에 의하여 정의된 부가적인 BCH를 이용하도록 하였다.
<<제1 실시예>>
제1 실시예는 시스템 대역폭 내에 허용되는 단말기의 수신 대역폭이 최소 10 MHz이며 BCH의 전송 대역폭은 시스템 대역폭에 상관없이 1.25 MHz인 경우에 관련된다. 따라서, 시스템 대역폭이 20 MHz인 경우 단말기는 10/15/20 MHz 등의 수신 대역폭을 가진다. 만일 시스템 대역폭이 10 MHz보다 작은 경우에는, 전체 시스템 대역폭이 단말기의 수신 대역폭으로 할당된다.
도 6은 본 발명의 제1 실시예에 따른 BCH의 주파수 영역 매핑을 도시하였다. 도시한 바와 같이 BCH의 시스템 정보를 구성하는 부반송파 심벌들은 2 개의 리소스 블록들(600, 602)로 나뉘어진다. 여기서 각 부반송파 심벌은 하나의 부반송파에 매핑되는 변조 심벌을 하고, 각 리소스 블록들은 1.25MHz의 BCH 대역폭에 매칭되는 변조 심벌로 이루어진다.
도 6을 참조하면, 모든 시스템 대역폭에서, 2개의 BCH 리소스 블록들(600, 602)은 각각 RF 반송파(610)에 인접한 하측 및 상측 625 kHz 대역들(612, 614)에서 전송되고 있다. 그런데, 시스템 대역폭이 20 MHz인 경우(604)에는 상기 리소스 블록들(600, 602)과 동일한 리소스 블록들(618, 616)이 상기 대역들(612, 614)에 인접한 추가적인 625 kHz 대역들(606, 608)에서 반복되어 전송된다. 상기에서 리소스 블록(602)을 구성하는 부반송파 심벌들은 상기 대역들(606, 614)에서 동일한 매핑 규칙에 따라 시간 주파수 자원에 매핑되어 전송된다. 즉, 대역(606)에 전송되는 리소스 블록(602)의 부반송파 심벌들은 대역(614)에서 전송되는 부반송파 심벌들과 동일하다. 마찬가지로, 리소스 블록(600)을 구성하는 부반송파 심벌들은 대역들(608, 612)에서 서로 동일한 매핑 규칙에 따라 반복되어 전송된다.
상기와 같이 BCH 자원을 매핑함으로써 시스템 대역폭이 20 MHz인 경우(604)에는 실질적으로 세 개의 BCH 정보들이 전송되는 효과를 거둘 수 있다. RF 반송파(610)에 인접한 625 kHz 대역들(612, 614)에 매핑되는 첫번째 BCH(626)은 다른 시스템 대역폭의 경우들에서 전송되는 BCH(628)과 동일하며, 리소스 블록들(600, 602)가 순서대로 결합되어 구성된 것이다. RF 반송파(610)를 기준으로 상위 절반 대역 내 2개의 625 KHz 대역들(614, 608)에 매핑되는 두번째 BCH(624)는 주파수 영역에서 볼 때 리소스 블록들(602, 600)이 순서대로 결합되어 구성된 것으로서, 20 MHz 시스템 대역폭 중 상위 10 MHz 대역에 캠핑하고 있는 10 MHz 수신 대역폭의 단말기를 위해 사용된다. 두번째 BCH(624)는 실질적으로 BCH(626)과 동일한 시스템 정보를 담고 있으며, 단지 주파수 영역에서 리소스 블록들(602, 600)이 매핑 된 순서가 다른 것이다. 이와 유사하게, RF 반송파(610)를 기준으로 하위 절반 대역 내 2개의 625 kHz 대역들(606, 612)에 매핑되는 세번째 BCH(630)는 하위 10 MHz 대역에 캠핑하고 있는 단말기를 위한 것으로서, 리소스 블록들(602, 600)이 순서대로 결합되어 구성된 것이다.
상기와 같이 리소스 블록들(600, 602)을 반복하여 매핑함으로써, 세 개의 BCH(626, 624, 630)가 전송되는 효과를 얻을 수 있다. 단말기가 20 MHz 시스템 대역폭을 가지는 셀에 접속하는 경우, BCH(626)은 단말기가 초기 셀 탐색 직후나 데이터를 수신하고 있지 않을 때 시스템 대역의 중심 대역에 위치해 있으면서 시스템 정보를 알기 위해 수신하게 되며, 부가적인 BCH들(624, 630)는 단말기가 양쪽 10 MHz 대역들 중 하나로 이동했을 때 주변 셀들의 시스템 정보를 알기 위해서 수신하게 된다.
한편, 도 6에서는 부가적인 BCH들(624, 630)의 리소스 블록들(616, 618)이 각각 중심 대역(612, 614)에 인접한 대역들(606, 608)에 전송되고 있지만, 이들은 양쪽 절반 대역들 내의 어느 625 kHz 대역에서도 전송될 수 있다. 일례로 상기 두 리소스 블록들(616, 618)이 각각 20 MHz 대역(604)의 하측 및 상측 끝(edge)의 625 kHz 대역들(620, 622)에서 전송되더라도, 어느 한 쪽 절반 대역에 위치하는 단말기가 방송 서비스 데이터를 수신하면서도 주변 셀로부터의 시스템 정보를 정상적으로 수신하는 것이 가능하다.
즉 실질적으로는 2개의 BCH 리소스 블록들#1,#2(600, 602)가 중심 대역(612, 614)에서 전송되고, 상기 BCH 리소스 블록들이 각 절반 대역, 즉 하측 10MHz 대역 및 상측 10MHz 대역들 내의 어느 한 위치에서 반복되어 전송된다. 그러면 각 10MHz 대역 내에는 서로 다른 2개의 리소스 블록들(600, 602)이 배치되어, 어느 한 10MHz 대역에 위치하는 단말기가 상기 2개의 리소스 블록들(600, 602)을 모두 수신하여 복호함으로써, 시스템 정보를 정상적으로 복구해낼 수 있도록 한다. 또한 중심 10 MHz 대역에 위치하는 단말기는 4개의 리소스 블록들을 모두 수신하고, 반복된 리소스 블록들을 결합하여 시스템 정보의 복호 성능을 향상시킬 수 있다.
한편, 도 6에서는 시스템 대역폭에 상관없이 BCH가 1.25 MHz의 대역폭을 가지는 경우를 도시하였지만, BCH가 1.25 MHz가 아닌 다른 대역폭을 가지는 경우에도 본 발명의 제1 실시예에서 제안하는 BCH 자원의 재활용 및 재배치를 통한 BCH 전송 방법은 마찬가지로 적용될 수 있으며, BCH 뿐만 아니라 다른 채널에도 마찬가지의 방법을 적용하여 주변 셀들로부터의 상기 다른 채널을 수신하도록 할 수 있다.
상기 기술한 바와 같이 시스템 대역폭이 20 MHz인 경우에 BCH(626)과 BCH들(624, 630)이 정의된 경우에, 상기 BCH들(626, 624, 630)이 어떻게 활용 되는지는 도 7로부터 좀더 자세히 설명될 수 있다.
도 7은 본 발명의 제1 실시예에 따라 시스템 대역폭이 20 MHz(700) 및 10 MHz(720)인 경우에 여러 수신 대역폭의 단말기들이 존재하는 상황을 도시하고 있다. 시스템 대역폭이 10 MHz인 경우(720)에는 활성 모드에 있는 단말기 UE#7(714)와 유휴 모드에 있는 단말기 UE#8(716)이 모두 전체 시스템 대역의 신호를 수신할 수 있으므로, 현재 셀로부터 데이터를 수신함과 동시에 주변 셀로부터의 BCH(728)을 수신하는 것이 항상 가능하다.
시스템 대역폭이 20 MHz인 경우(700)에는, 단말기가 속해 있는 대역과 모드에 따라서 단말기의 동작이 달라진다. 먼저 UE#4(708)는 유휴 모드에 있으면서 시스템 대역의 중간인 10 MHz 대역에 위치하고 있다. 상기 UE#4(708)는 주변 셀로부터 중심 1.25 MHz 대역에 매핑된 BCH(726)을 수신함으로써 주변 셀의 시스템 정보를 알 수 있으며, 이처럼 시스템 대역의 중심 대역에 위치하는 UE#4(708)는, 중심 1.25 MHz 대역에 BCH 리소스 블록들(734, 736)이 순서대로 매핑되어 있다는 사실을 이용하여, BCH(726)를 수신하고 복호할 수 있다.
UE#1(702)의 경우에는 유휴 모드에 있지만, 하측 10 MHz 대역(722)에 위치하고 있다. 상기와 같은 경우는 UE#1(702)이 유휴 모드에서 MBMS 데이터를 수신하는 경우에 발생할 수 있다. UE#1(702)는 주변 셀의 시스템 정보 수신 시 BCH(718)가 하측 대역(722)의 상측 끝에서 전송된다는 사실을 이용하여, 해당 1.25 MHz 대역에서 BCH 리소스 블록들(738, 734)을 수신한다. 여기서, 리소스 블록(734)은 중심 대역의 BCH(726)과 하측 대역의 BCH(718)에서 중복 사용되며, BCH(718)에서 리소스 블록들(738, 734)이 주파수 영역에서 매핑되는 순서는 BCH(726)에서 매핑된 순서와 반대이다.
상측 10 MHz 대역(724)에 위치하고 있는 UE#2(704)도 유휴 모드로서 상기 기술한 UE#1(702)과 유사하게 동작하여, 상측 10 MHz 대역(724)의 하측 끝 1.25 MHz 대역에서 BCH(730)을 수신한다. 마찬가지로, 활성 모드에 있는 UE#5(710)와 UE#6(712)은 필요할 경우 현재 셀 및 주변 셀들로부터 해당하는 BCH들(718 및 730)을 수신할 수 있다.
UE#3(706)은 20 MHz의 수신 대역폭을 가지므로, 어느 모드에 있더라도 20 MHz의 시스템 대역폭을 전부 점유하게 된다. 따라서 상기 UE#3(706)은 초기 셀 탐색 시에 시스템 대역폭을 모르는 상태에서는 BCH(726) 만을 수신하지만. 상기 BCH(726)의 수신을 통하여 시스템 대역폭을 알게 되면 현재 셀 및 주변 셀들로부터 BCH(718, 730)의 리소스 블록들을 모두 수신함으로써 시스템 정보의 복호 성능을 개선할 수 있다.
도 8은 본 발명의 제1 실시예에 따른 기지국 송신기의 동작 절차를 도시한 흐름도이다.
도 8을 참조하면, 800 단계에서 송신기는 도 6의 BCH(626; 628)과 같이 BCH 부반송파 심벌들로 구성된 2개의 리소스 블록들을 시스템 대역의 중간 대역(1.25 MHz 대역폭)에 매핑한다. 802 단계에서 송신기는 시스템 대역폭이 단말기 수신 대역폭의 2배인 20 MHz 보다 작은지를 확인하여, 20 MHz인 경우에는 804 단계에서 도 6에 나타낸 바와 같이 상기 리소스 블록들을 상/하측 절반 대역들 내의 625 kHz 대역들에 각각 추가적으로 매핑함으로써, MBMS 데이터를 수신하고 있거나 활성 모드에 있는 단말기들이 추가적으로 매핑된 리소스 블록들을 포함하는 BCH(624; 630)를 이용하여 시스템 정보를 수신할 수 있도록 한다.
806 단계에서송신기는 상기 리소스 블록들이 매핑된 주파수 영역의 신호를 해당하는 대역들을 통해 셀 내에 위치하는 단말기에게 전송한다.
도 9는 본 발명의 제1 실시예에 따른 기지국 송신기의 구조를 도시한 것이다.
도 9를 참조하면, BCH 부반송파 심벌 생성기(900)에서는 시스템 정보를 나타내는 BCH 부반송파 심벌들을 생성하며, 상기 BCH 부반송파 심벌들은 부반송파 심벌 매퍼(904)에 의해 해당하는 BCH 대역으로 매핑된 후, IFFT(Inverse Fast Fourier Transformer)(906)를 거쳐서 시간 영역의 OFDM 신호(908)로 변환된다. 이때 시스템 대역폭이 20 MHz 인 경우에는 각 BCH 부반송파 심벌은 부반송파 심벌 맵퍼(904)에 의해서 IFFT(906)의 입력 탭들 중 2개의 입력 탭들로 반복하여 매핑된다. 구체적인 예로서, 리소스 블록 #1(600)에 해당하는 BCH 부반송파 심벌들은, 2개의 대역들(612, 608)에 해당하는 IFFT 입력 탭들로 반복하여 매핑되며, 리소스 블록 #2(602)에 해당하는 BCH 부반송파 심벌들은, 2개의 대역들(606, 614)에 해당하는 IFFT 입력 탭들로 반복하여 매핑된다. 상기의 매핑 동작은 BCH 생성 및 매핑 제어기(902)의 제어에 의하여 이루어진다. 즉 BCH 생성 및 매핑 제어기(902)는 BCH를 통해 전송하고자 하는 시스템 정보를 BCH 부반송파 심벌 생성기(900)로 제공하며, 또한 시스템 대역폭에 따른 BCH 부반송파 심벌들의 매핑 위치를 결정하여 부반송파 심벌 매퍼(904)를 제어한다.
도 10은 본 발명의 제1 실시예에 따른 단말 수신기의 수신하고 동작 절차를 도시한 흐름도이다.
도 10을 참조하면, 1000단계에서 단말기는 전원을 켜거나 새로운 셀에 접속할 때 시스템 대역의 중심 대역에서 전송되는 동기채널 시퀀스를 이용하여 셀 탐색을 수행한다. 이 후 1002단계에서 단말기는 활성 모드로의 전환 혹은 MBMS 데이터의 수신 등과 같은 이유로 인해 시스템 대역 내의 특정 대역으로 이동할 필요가 있는지를 판단한다. 만일 특정 대역으로의 이동이 필요없으면 1006단계에서 단말기는 상기 중심 대역에 계속 머무르면서 주변 셀들에 대한 셀 탐색을 수행하거나 BCH 리소스 블록들을 수신한다. 1008단계에서 단말기는 상기 중심 대역에서의 BCH 자원 매핑 규칙에 기반하여 상기 BCH 리소스 블록들을 복호하여 시스템 정보를 획득한다. 여기서 BCH 자원의 매핑 규칙이라 함은, 상기 BCH를 구성하는 부반송파 심벌들이 전송되는 OFDM 심벌 구간과 부반송파 인덱스들을 지칭한다..
한편, 상기 1002단계에서 단말기가 유휴 모드에서 MBMS 데이터의 수신이 필요하거나 활성 모드로 들어가는 경우와 같이 시스템 대역 내 특정 대역으로의 이동이 필요하면, 1010단계에서 단말기는 상기 특정 대역의 중심으로 수신 RF 반송파를 변경한다. 1012단계에서 단말기는 상기 변경된 대역에서 BCH 리소스 블록들을 수신하고, 1014단계에서 상기 변경된 대역의 BCH 자원 매핑 규칙에 따라 상기 BCH 리소스 블록들을 복호하여 시스템 정보를 얻는다.
도 11은 본 발명의 제1 실시예에 따른 단말기 수신기의 구조를 도시한 것이다.
도 11을 참조하면, RF 제어기(1110)는 시스템 대역폭, 동작 모드 및 수신하고 있는 MBMS 물리채널의 대역 등에 따라 RF 수신부(1100)의 수신 RF 반송파를 조정하여, 원하는 대역의 신호를 수신한다. 상기 수신된 신호는 FFT(1102)를 거쳐서 부반송파 심벌들로 변환되고, BCH 부반송파 심벌 디맵퍼(1104)는 BCH의 자원 매핑 규칙에 따라서 상기 부반송파 심벌들 중 BCH 부반송파 심벌들을 선별하여 출력한다. BCH 복호기(1106)에서는 상기 BCH 부반송파 심벌들을 복호하여, 상기 BCH를 통하여 전송된 시스템 정보를 획득한다. 이때 필요한 경우 상기 BCH 부반송파 심벌들은 원래의 순서에 따라 재배열된다.
상기의 BCH 심벌 디매핑 및 복호 동작은 BCH 수신 제어기(1108)의 의하여 제어된다. 구체적으로 BCH 수신 제어기(1108)는 시스템 대역폭 및 수신하고 있는 MBMS 물리채널의 대역에 따라서, 수신 가능한 BCH 대역을 상기 BCH 부반송파 심벌 디맵퍼(1104)로 통지하며, 상기 BCH 부반송파 심벌들을 구성하는 리소스 블록들의 구조(특히 순서) 상기 BCH 복호기(1106)로 통지한다.
<<제2 실시예>>
제2 실시예는 시스템 대역 내에 허용되는 단말기의 수신 대역폭이 최소 5 MHz이며 BCH의 전송 대역폭은 시스템 대역폭에 상관없이 1.25 MHz인 경우에 대한 것이다. 이 경우 시스템 대역폭이 수신 대역폭의 2배 이상이더라도 단말기가 주변 셀들로부터 시스템 정보를 항상 정상적으로 받을 수 있도록 하기 위하여, BCH 리소스 블록들의 추가 전송이 필요하게 된다.
도 12는 본 발명의 제2 실시예에 따른 BCH의 주파수 영역 매핑을 도시한 것이다. 도시한 바와 같이, 모든 시스템 대역폭의 경우에 RF 반송파를 중심으로 하는 중심 1.25 MHz 대역에서 BCH 리소스 블록 #1, #2의 순서로 구성된 BCH(1208)가 전송된다. 시스템 대역폭이 10 MHz 인 경우(1200)에는 양쪽 5 MHz 대역들(1202, 1204) 내에서 추가적인 BCH(1206)이 전송된다. 이것은 도 6에서 시스템 대역폭이 20 MHz 인 경우(604)에 추가적인 BCH(630, 624)가 양측 10 MHz 대역들 내에서 전송된 것과 마찬가지이다. 초기 셀 탐색을 수행할 시, 단말기는 시스템 대역폭을 모르는 상황에서 중간 대역에 위치한 BCH(1208)을 이용하여 셀 탐색을 수행하고, 유휴 모드에서 MBMS 데이터를 수신하거나 활성 모드에 있을 때, 단말기는 어느 한쪽 5 MHz 대역(1202 혹은 1204)에서 전송되는 BCH(1206)로부터 시스템 정보를 수신할 수 있다.
한편, 시스템 대역폭이 15 MHz인 경우(1210)에 5 MHz 수신 대역폭의 단말기는 세 개의 5 MHz 대역들(1214, 1216, 1218) 중 어느 하나에 존재할 수 있다. 따라서, 상기 세 개의 5 MHz 대역(1214, 1216, 1218) 중 어느 대역에서든 BCH를 수신할 수 있도록 하기 위해서, 시스템은 양측 5 MHz 대역들(1214, 1218) 내에서 추가적인 BCH들(1220, 1222)을 전송한다. 여기에서는 추가적인 BCH들(1220, 1222)에서는, 리소스 블록#1과 리소스 블록#2의 순서로 구성된 BCH 정보(1224)를 사용하는 것으로 도시하였으나, 리소스 블록#2와 리소스 블록#1의 순서로 구성된 BCH 정보(1226)가 사용될 수도 있으며, 할당된 BCH 대역에서 사용되는 BCH 정보의 구조는, BCH 자원 매핑 규칙으로서 시스템과 단말기 간에 사전에 약속된다. 그리고, 각 5 MHz 대역(1214, 1216, 1218) 내에서 리소스 블록들은 서로 인접하지 않고 해당 5 MHz 내에 분산 전송될 수 있다.
시스템 대역폭이 20 MHz인 경우(1212)에는 4개의 5 MHz 대역들(1234, 1236, 1238, 1240)이 존재하므로, BCH는 상기 네 개의 대역들(1234, 1236, 1238, 1240) 내에서 반복 전송된다. 그리하여, 중심 2개의 대역들(1236, 1238)에 걸쳐 있는 중간 대역에서 전송되는 BCH(1228)은, 중간 1.25 MHz 대역에 매핑되는 BCH(1208)의 리소스 블록들을 반복함으로써 만들어지고, 양측 5 MHz 대역(1234, 1240) 내에서 전송되는 BCH(1230, 1232)는 BCH(1208)과 동일한 리소스 블록들을 추가적으로 할당함으로써 만들어진다. 상기 BCH(1230, 1232)의 리소스 블록들은 BCH 정보(1224) 혹은 BCH 정보(1226)의 구조를 가질 수 있으며, 각 대역(1234, 1240) 내에서 리소스 블록들은 서로 인접하지 않고 분산 전송될 수 있다.
본 발명의 제2 실시예에 따른 기지국 및 단말의 동작과 구조는 제1 실시예의 경우와 유사하므로 상세한 설명을 생략한다.
<<제3 실시예>>
제3 실시예는 시스템 대역 내에 허용되는 단말기의 수신 대역폭이 최소 10 MHz이며 BCH의 전송 대역폭은 시스템 대역폭에 상관없이 1.25 MHz인 경우에 대한 것이다.
도 13은 본 발명의 제3 실시예에 따른 BCH의 주파수 영역 매핑을 도시한 것이다. 도시한 바와 같이, 모든 시스템 대역폭의 경우에 RF 반송파를 중심으로 하는 중심 1.25 MHz 대역에서 BCH 리소스 블록 #1, #2(1310, 1312)의 순서로 구성된 BCH(1320)이 전송된다. 시스템 대역폭이 20 MHz인 경우(1300)에는 BCH 리소스 블록들(1310, 1312)이 RF 반송파에 인접한 625 kHz 대역들(1316, 1318) 및 추가적인 하나의 625 kHz 대역(1314)에서 전송된다. 제1 실시예에 대한 도 6과의 차이점은 상측 10 MHz 대역(1306) 내의 625 kHz 대역(1326)에는 어떠한 BCH 리소스 블록도 매핑되지 않는다는 것이다. 그리하여, 제3 실시예에서는 시스템 대역폭이 20 MHz인 경우(1300)에 실질적으로 2 개의 BCH들(1320,1322)이 전송된다.
첫번째 BCH(1320)은 10 MHz 수신 대역폭의 단말기가 중앙의 10 MHz 대역(1304)에 위치해 있으면서 SCH를 통해 초기 셀 탐색을 완료한 후에 수신하게 된다. 즉 상기 단말기는, 현재 셀에 대한 초기 셀 탐색 및 BCH 수신을 완료한 후에는 상기 중앙의 10 MHz 대역(1304)에 머무르면서 인접 셀에 대한 셀 탐색을 수행하고 인접 셀로부터의 BCH(1320)를 수신하여 인접 셀에 대한 시스템 정보를 획득한다. 한편, 두번째 BCH(1322)는 단말기가 유휴모드에서 하측의 10 MHz 대역(1302)에서 MBMS 데이터를 수신하고 있는 경우 인접 셀에 대한 셀 탐색 후에 수신하게 된다.
제1 실시예와 달리 상측의 10 MHz 대역(1306)에 추가적인 BCH가 매핑 되지 않는 것은, 단말기가 상기 상측의 10 MHz 대역(1306)에서는 인접 셀로부터 시스템 정보를 수신할 필요가 없기 때문이다. 즉, 상기 상측 대역(1306)에서는 MBMS 데이터가 전송되지 않아서 유휴모드 단말기가 상기 대역(1306)에 위치할 필요가 없는 경우, 혹은 활성 모드에 있는 단말기가 인접 셀로부터의 시스템 정보를 수신할 필요가 없는 경우에, 도 13의 참조번호 1324와 같이 BCH 리소스 블록들(1310, 1312)이 3개의 625 KHz 대역들(1314, 1316, 1318)에만 매핑된다. 이때 추가적인 625 kHz 대역(1314)에는 리소스 블록들(1310, 1312) 중 어느 하나가 매핑될 수 있다. 이로써 단말기가 초기 셀 탐색 및 인접 셀 탐색을 하는 경우 모두에서 원활한 BCH 수신이 가능하도록 한다
도시하지 않을 것이지만,MBMS 데이터가 상측 10 MHz 대역(1306)에서만 전송되는 경우라면, 하측 10 MHz 대역(1302) 내의 625 kHz 대역(1314)에 매핑되는 BCH 리소스 블록(1312)을 제거하고 대신 BCH 리소스 블록(1310)을 상측 10 MHz 대역(1306) 내의 625 kHz 대역(1326)에 매핑함으로써, 3개의 대역들(1316, 1318, 1326)에서 BCH를 전송한다.
본 발명의 제3 실시예에 따른 기지국 및 단말의 동작과 구조는 제1 실시예의 경우와 유사하므로 상세한 설명을 생략한다.
한편 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되지 않으며, 후술되는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.
이상에서 상세히 설명한 바와 같이 동작하는 본 발명에 있어서, 개시되는 발명 중 대표적인 것에 의하여 얻어지는 효과를 간단히 설명하면 다음과 같다.
본 발명은 확장성 대역폭을 지원하는 셀룰러 무선통신 시스템에서 시스템 대역폭보다 작은 수신 대역폭을 가진 단말기가 유휴 모드에서 방송 서비스 데이터를 수신하는 경우나 활성 모드에 있는 경우에도, 주변 셀들로부터의 BCH 정보를 항상 원활히 검출하여 원하는 셀과 신속히 연결할 수 있도록 하는 효과를 가진다. 특히, BCH의 자원 매핑 규칙이 시스템 대역폭에 따라 다르더라도 단말기는 셀 탐색 과정에서 시스템 대역폭을 미리 알 필요가 없으며 낮은 BCH 자원 오버헤드로 BCH 수신 동작을 구현할 수 있다.

Claims (16)

  1. 확장성 대역폭을 지원하며 다중 접속 기술을 사용하는 셀룰러 통신 시스템에서 시스템 정보를 운반하는 방송채널(BCH)의 송신 방법에 있어서,
    방송채널의 전송 대역폭과 동일한 대역폭을 가지는, 시스템 대역의 중심 대역에, 시스템 정보를 포함하는 방송채널(BCH) 변조 심벌들을 매핑하는 과정과, 여기서 상기 BCH 변조 심벌들은 2 개의 리소스 블록들로 구분되며,
    시스템 대역폭이 단말기의 최대 수신 대역폭의 2배 이상인 경우, 상기 BCH 변조 심벌들 중 적어도 일부를, 상기 시스템 대역의 각 절반 대역 내에 추가적으로 매핑하는 과정과,
    상기 리소스 블록들이 매핑된 주파수 영역의 신호를 셀 내에 위치하는 단말기들에게 전송하는 과정을 포함하는 것을 특징으로 하는 방송채널의 송신 방법.
  2. 제 1 항에 있어서,
    상기 시스템 대역폭이 수신 대역폭의 3배보다 크거나 같은 경우, 상기 BCH 변조 심벌들을 상기 시스템 대역의 양측 끝에 위치하고 상기 수신 대역폭과 동일한 대역폭을 가지는 전송 대역들 내에 추가적으로 매핑하는 과정을 더 포함하는 것을 특징으로 하는 방송채널의 송신 방법.
  3. 제 1 항에 있어서,
    상기 BCH 변조 심벌들을 상기 각 전송 대역 내에서 중복하지 않도록 매핑하는 것을 특징으로 하는 방송채널의 송신 방법.
  4. 제 1 항에 있어서,
    상기 BCH 변조 심벌들을 상기 중심대역에 인접한 대역들에 각각 매핑하는 것을 특징으로 하는 방송 채널의 송신 방법.
  5. 확장성 대역폭을 지원하며 다중 접속 기술을 사용하는 셀룰러 통신 시스템에서 시스템 정보를 운반하는 방송채널의 수신 방법에 있어서,
    단말기가 위치하는 현재 셀의 시스템 대역폭이 단말기의 수신 대역폭의 2배보다 작거나, 상기 단말기가 상기 단말기의 수신 대역폭을 가지는 시스템 대역의 중심 대역에 캠핑하는 경우, 상기 중심 대역 내의 미리 정해지는 부반송파들을 통해서 시스템 정보를 포함하는 방송채널(BCH) 변조 심벌들을 수신하는 과정과, 여기서 상기 BCH 변조 심벌들은 2개의 방송채널(BCH) 리소스 블록들로 구분되며,
    상기 시스템 대역폭이 상기 수신 대역폭의 2배보다 크거나 같고, 상기 단말기가 상기 시스템 대역의 일부인 상측 혹은 하측 대역에 캠핑하는 경우, 상기 캠핑된 대역 내의 미리 정해지는 부반송파들을 통해서 상기 BCH 변조 심벌들을 수신하는 과정과,
    상기 BCH 변조 심벌들을 복호하여 시스템 정보를 획득하는 과정을 포함하는 것을 특징으로 하는 방송채널의 수신 방법.
  6. 제 5 항에 있어서,
    상기 중심 대역을 통해서 상기 BCH 변조 심벌들을 반복하여 수신하고, 상기 반복된 BCH 변조 심벌들을 복호하기 이전에 결합하는 과정을 더 포함하는 것을 특징으로 하는 방송채널의 수신 방법.
  7. 제 5 항에 있어서,
    상기 BCH 변조 심벌들은 상기 캠핑된 대역 내에서 중복하지 않도록 매핑되어 있는 것을 특징으로 하는 방송채널의 수신 방법.
  8. 제 5 항에 있어서,
    상기 BCH 변조 심벌들을 상기 중심대역에서 상기 방송채널의 전송 대역폭의 적어도 2배에 해당하는 부반송파들을 통해 수신하는 것을 특징으로 하는 방송 채널의 수신 방법.
  9. 확장성 대역폭을 지원하며 다중 접속 기술을 사용하는 셀룰러 통신 시스템에서 시스템 정보를 운반하는 방송채널(BCH)의 송신 장치에 있어서,
    시스템 정보를 포함하는 방송채널(BCH) 변조 심벌들을 생성하는 BCH 부반송파 심벌 생성기와 여기서 상기 BCH 변조 심벌들은 2 개의 리소스 블록들로 구분되며,
    방송채널의 전송 대역폭과 동일한 대역폭을 가지는, 시스템 대역의 중심 대역에 상기 BCH 변조 심벌들을 매핑하고, 시스템 대역폭이 단말기의 최대 수신 대역폭의 2배 이상인 경우 상기 BCH 변조 심벌들 중 적어도 일부를 상기 시스템 대역의 각 절반 대역 내에 추가적으로 매핑하는 부반송파 심벌 매퍼와,
    상기 리소스 블록들이 매핑된 주파수 영역의 신호를 시간 영역의 신호로 변환하여 셀 내에 위치하는 단말기들에게 전송하는 역고속 퓨리에 변환기(IFFT)를 포함하는 것을 특징으로 하는 방송채널의 송신 장치.
  10. 제 9 항에 있어서, 상기 부반송파 심벌 매퍼는,
    상기 시스템 대역폭이 수신 대역폭의 3배보다 크거나 같은 경우, 상기 BCH 변조 심벌들을 상기 시스템 대역의 양측 끝에 위치하고 상기 수신 대역폭과 동일한 대역폭을 가지는 전송 대역들 내에 추가적으로 매핑하는 것을 특징으로 하는 방송채널의 송신 장치.
  11. 제 9 항에 있어서, 상기 부반송파 심벌 매퍼는,
    상기 BCH 변조 심벌들을 상기 각 전송 대역 내에서 중복하지 않도록 매핑하는 것을 특징으로 하는 방송채널의 송신 장치.
  12. 제 9 항에 있어서, 상기 부반송파 심벌 매퍼는,
    상기 BCH 변조 심벌들을 상기 중심대역에 인접한 대역들에 각각 매핑하는 것을 특징으로 하는 방송 채널의 송신 장치.
  13. 확장성 대역폭을 지원하며 다중 접속 기술을 사용하는 셀룰러 통신 시스템에서 시스템 정보를 운반하는 방송채널의 수신 장치에 있어서,
    단말기가 캠핑하고 있는 대역의 무선 신호를 수신하는 RF(Radio Frequency) 부와,
    상기 무선 신호를 복수의 부반송파들에 해당하는 주파수 영역의 신호로 변환하는 고속퓨리에 변환부(FFT)와,
    단말기가 위치하는 현재 셀의 시스템 대역폭이 단말기의 수신 대역폭의 2배보다 작거나, 상기 단말기가 상기 단말기의 수신 대역폭을 가지는 시스템 대역의 중심 대역에 캠핑하는 경우, 상기 중심 대역 내의 미리 정해지는 부반송파들을 통해서 시스템 정보를 포함하는 방송채널(BCH) 변조 심벌들을 상기 주파수 영역의 신호로부터 검출하고, 여기서 상기 BCH 변조 심벌들은 2개의 방송채널(BCH) 리소스 블록들로 구분되며,
    상기 시스템 대역폭이 상기 수신 대역폭의 2배보다 크거나 같고, 상기 단말기가 상기 시스템 대역의 일부인 상측 혹은 하측 대역에 캠핑하는 경우, 상기 캠핑된 대역 내의 미리 정해지는 부반송파들을 통해서 상기 BCH 변조 심벌들을 상기 주파수 영역의 신호로부터 검출하는 부반송파 심벌 디매퍼와,
    상기 BCH 변조 심벌들을 복호하여 시스템 정보를 획득하는 복호기를 포함하는 것을 특징으로 하는 방송채널의 수신 장치.
  14. 제 13 항에 있어서, 상기 복호기는,
    상기 중심 대역을 통해서 반복하여 수신된 상기 BCH 변조 심벌들을 복호하기 이전에 결합하는 것을 특징으로 하는 방송채널의 수신 장치.
  15. 제 13 항에 있어서, 상기 BCH 변조 심벌들은 상기 캠핑된 대역 내에서 중복하지 않도록 매핑되어 있는 것을 특징으로 하는 방송채널의 수신 장치.
  16. 제 13 항에 있어서, 상기 부반송파 심벌 디매퍼는,
    상기 BCH 변조 심벌들을 상기 중심대역에서 상기 방송채널의 전송 대역폭의 적어도 2배에 해당하는 부반송파들을 통해 수신하는 것을 특징으로 하는 방송 채널의 수신 장치.
KR1020060025870A 2006-02-11 2006-03-21 확장성 대역폭을 지원하는 셀룰러 무선통신시스템을 위한 방송채널의 송수신 방법 및 장치 KR100933149B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07002953.3A EP1819069B1 (en) 2006-02-11 2007-02-12 Method and apparatus for transmitting/receiving broadcast channels in cellular communication systems supporting scalable bandwidth
US11/705,558 US8059728B2 (en) 2006-02-11 2007-02-12 Method and apparatus for transmitting/receiving broadcast channels in cellular communication systems supporting scalable bandwidth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060013351 2006-02-11
KR1020060013351 2006-02-11

Publications (2)

Publication Number Publication Date
KR20070081398A KR20070081398A (ko) 2007-08-16
KR100933149B1 true KR100933149B1 (ko) 2009-12-21

Family

ID=38611330

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060025870A KR100933149B1 (ko) 2006-02-11 2006-03-21 확장성 대역폭을 지원하는 셀룰러 무선통신시스템을 위한 방송채널의 송수신 방법 및 장치

Country Status (1)

Country Link
KR (1) KR100933149B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101478028B1 (ko) 2008-09-23 2014-12-31 삼성전자주식회사 확장성 대역폭을 지원하는 셀룰러 무선통신시스템을 위한 하향링크채널의 송수신 방법 및 장치
US8797937B2 (en) 2009-03-06 2014-08-05 Intellectual Discovery Co., Ltd. System and method for providing multicast and broadcast service supporting macro diversity
KR102153470B1 (ko) * 2017-12-01 2020-09-08 고려대학교 산학협력단 광대역 및 산발성 트래픽의 효율적인 공존을 위한 ftn 기반 ofdm 전송 장치 및 그 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040013129A (ko) * 2001-07-13 2004-02-11 톰슨 라이센싱 에스.에이. 셀룰러 시스템에서의 디지털 오디오/비디오 브로드캐스트
KR20050029254A (ko) * 2003-09-20 2005-03-24 삼성전자주식회사 광대역 무선 통신시스템의 슬리핑 스테이트에서 모드간의상태 천이를 위한 웨이크업 채널 전송 장치 및 방법
KR20050106351A (ko) * 2004-05-04 2005-11-09 삼성전자주식회사 역방향 패킷 전송에 있어서 소프트 핸드오버 단말들의스케쥴링을 위한 최적 기지국 선정 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040013129A (ko) * 2001-07-13 2004-02-11 톰슨 라이센싱 에스.에이. 셀룰러 시스템에서의 디지털 오디오/비디오 브로드캐스트
KR20050029254A (ko) * 2003-09-20 2005-03-24 삼성전자주식회사 광대역 무선 통신시스템의 슬리핑 스테이트에서 모드간의상태 천이를 위한 웨이크업 채널 전송 장치 및 방법
KR20050106351A (ko) * 2004-05-04 2005-11-09 삼성전자주식회사 역방향 패킷 전송에 있어서 소프트 핸드오버 단말들의스케쥴링을 위한 최적 기지국 선정 방법 및 장치

Also Published As

Publication number Publication date
KR20070081398A (ko) 2007-08-16

Similar Documents

Publication Publication Date Title
US8059728B2 (en) Method and apparatus for transmitting/receiving broadcast channels in cellular communication systems supporting scalable bandwidth
US8045991B2 (en) Method and apparatus for transmitting and receiving common channel in a cellular wireless communication system supporting scalable bandwidth
US7953119B2 (en) Method and apparatus for transmitting/receiving downlink synchronization channels in a cellular communication system supporting scalable bandwidth
US9232519B2 (en) Method for transmitting and receiving signals using multi-band radio frequencies
US7860050B2 (en) Method and apparatus for transmitting/receiving broadcast channel in cellular wireless communication system supporting scalable bandwidth
US8311550B2 (en) Radio communication control method, base station apparatus and user apparatus
KR101478028B1 (ko) 확장성 대역폭을 지원하는 셀룰러 무선통신시스템을 위한 하향링크채널의 송수신 방법 및 장치
US7729313B2 (en) Handover method for OFDM wireless communication system
US9240869B2 (en) Wireless communication system
KR20130037507A (ko) 다중 대역 다중 셀의 운영 방법 및 장치
JP2003309533A (ja) 無線送信装置、無線受信装置及びその方法
JP2007194868A (ja) 基地局、移動局および通信方法
US8599818B2 (en) Apparatus and method for employing common control channel and broadcast channel in a broadband wireless communication system with frequency overlay
WO2007094319A1 (ja) 送信装置及び送信方法
KR20100052646A (ko) 반송파 결합을 지원하는 셀룰러 무선통신시스템을 위한 하향링크 전송전력 분산 방법 및 장치
KR100933149B1 (ko) 확장성 대역폭을 지원하는 셀룰러 무선통신시스템을 위한 방송채널의 송수신 방법 및 장치
KR100957222B1 (ko) 확장성 대역폭을 지원하는 셀룰러 무선통신 시스템을 위한 공통채널의 송수신 방법 및 장치
KR101365561B1 (ko) 효율적인 동기 채널 전송 방법 및 이를 위한 전송 전력할당 방법
JP5260131B2 (ja) 基地局、移動局及び共通情報通信方法
RU2455781C2 (ru) Способы и устройства для комбинирования с максимальным отношением для дублированных сигналов в ofdma-системах
Lin et al. 2.1 GHz Dynamic Spectrum Sharing Scheme for 4G/5G Mobile Network
KR20090017393A (ko) 데이터 펑처링을 이용한 전력 제어 및 이에 대한 시그널링방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121129

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131128

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141127

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151127

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161129

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee