KR100931099B1 - DFC CO Entry / Exit Control Method - Google Patents

DFC CO Entry / Exit Control Method Download PDF

Info

Publication number
KR100931099B1
KR100931099B1 KR1020070114715A KR20070114715A KR100931099B1 KR 100931099 B1 KR100931099 B1 KR 100931099B1 KR 1020070114715 A KR1020070114715 A KR 1020070114715A KR 20070114715 A KR20070114715 A KR 20070114715A KR 100931099 B1 KR100931099 B1 KR 100931099B1
Authority
KR
South Korea
Prior art keywords
dfco
entry
way catalyst
rpm
correction constant
Prior art date
Application number
KR1020070114715A
Other languages
Korean (ko)
Other versions
KR20090048721A (en
Inventor
정희돈
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070114715A priority Critical patent/KR100931099B1/en
Publication of KR20090048721A publication Critical patent/KR20090048721A/en
Application granted granted Critical
Publication of KR100931099B1 publication Critical patent/KR100931099B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

본 발명은 차량의 DFCO 구간을 확대하여 연비를 개선하면서도 차량의 삼원촉매의 배기가스 정화 효율의 감소를 방지할 수 있는 DFCO 진출입 조건 제어 방법에 관한 것이다.The present invention relates to a DFCO entry and exit condition control method that can prevent the reduction of the exhaust gas purification efficiency of the three-way catalyst of the vehicle while improving fuel economy by expanding the DFCO section of the vehicle.

감속, DFCO, 삼원촉매, NOx, 연비 Deceleration, DFCO, Three-way Catalyst, NOx, Fuel Economy

Description

DFCO 진출입 조건 제어 방법{Controlling method for DFCO in-out condition}Controlling method for DFCO in-out condition

본 발명은 DFCO 진출입 조건 제어 방법에 관한 것으로, 특히 차량의 DFCO 구간을 확대하여 연비를 개선하면서도 차량의 삼원촉매의 배기가스 정화 효율의 감소를 방지할 수 있는 DFCO 진출입 조건 제어 방법에 관한 것이다. The present invention relates to a method for controlling DFCO entry and exit conditions, and more particularly, to a method for controlling DFCO entry and exit conditions, which can prevent reduction of exhaust gas purification efficiency of a three-way catalyst of a vehicle while improving fuel efficiency by expanding a DFCO section of a vehicle.

차량 ECU는 운전자가 브레이크 페달을 밟는다거나, 저단 기어를 사용하면 운전자에게 가속의지가 없는 것으로 판단하여 DFCO(Deceleration Fuel Cut-Off)를 실시한다. 도 1을 참조하면, DFCO는 엔진 RPM이 히스테리시스(Hysteresis) RPM 이상에서 히스테리시스 RPM 이하로 떨어지는 때부터 시작되어 엔진 RPM이 설정된 임계(Threshold) RPM 이하로 떨어질 때까지 실시된다. 그리고, 차량 ECU는 이후 운전자가 브레이크 페달에서 발을 떼거나 고단 기어를 사용하는 등의 가속의지가 있으면 DFCO를 해제하고 엔진에 연료를 공급한다.The vehicle ECU executes DFCO (Deceleration Fuel Cut-Off) when the driver presses the brake pedal or uses the lower gear and determines that the driver is not willing to accelerate. Referring to FIG. 1, the DFCO starts from when the engine RPM falls below the hysteresis RPM above the hysteresis RPM and runs until the engine RPM falls below the set threshold RPM. The vehicle ECU then releases the DFCO and fuels the engine if the driver is willing to accelerate, such as releasing the brake pedal or using a high gear.

임계 RPM의 설정치를 낮추어 차량의 DFCO 실시 구간이 확대되면 차량의 연비 는 개선될 수 있다. 하지만, DFCO 실시 구간이 확대되어 차량이 자주 DFCO를 실시하면, 삼원촉매 내에 산소 축적이 과다해져 삼원촉매의 산화/환원 반응의 균형이 깨어짐으로써, 차량의 삼원촉매의 배기가스 정화 효율은 급격하게 감소된다. 따라서, 차량은 배기가스 규제 정책을 만족하기 위해서 DFCO 실시 구간을 확대시킬 수 없다.The fuel economy of the vehicle can be improved by lowering the threshold RPM and increasing the vehicle's DFCO range. However, if the DFCO implementation is extended and the vehicle frequently performs DFCO, the oxygen accumulation in the three-way catalyst will be excessive, and the balance of the oxidation / reduction reaction of the three-way catalyst will be broken, thereby reducing the exhaust gas purification efficiency of the three-way catalyst of the vehicle. do. Therefore, the vehicle cannot extend the DFCO implementation section in order to satisfy the exhaust gas regulation policy.

따라서, 본 발명의 목적은 차량의 DFCO 구간을 확대하여 연비를 개선하면서도 차량의 삼원촉매의 배기가스 정화 효율의 감소를 방지할 수 있는 DFCO 진출입 조건 제어 방법을 제공하는 것이다. Accordingly, it is an object of the present invention to provide a method for controlling the DFCO entry and exit conditions that can prevent the reduction of the exhaust gas purification efficiency of the three-way catalyst of the vehicle while improving fuel efficiency by enlarging the DFCO section of the vehicle.

상기 목적을 달성하기 위하여, 본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법은 삼원촉매의 산소 저장능력을 갱신하는 제1 단계와; 갱신된 상기 삼원촉매의 산소 저장능력과 반비례하는 제1 보정 상수(K)를 갱신하는 제2 단계와; 엔진 RPM이 히스테리시스 RPM 이상에서 떨어져 상기 히스테리시스 RPM부터 종래 설정된 임계 RPM에 상기 제1 보정 상수(K)를 곱한 RPM 사이인가를 판단하는 제3 단계와; 상기 제3 단계를 만족하면, DFCO를 실시하는 단계를 포함한다.In order to achieve the above object, the DFCO entry and exit condition control method according to an embodiment of the present invention includes a first step of updating the oxygen storage capacity of the three-way catalyst; Updating a first correction constant (K) inversely proportional to the updated oxygen storage capacity of the three-way catalyst; A third step of determining whether an engine RPM is separated from the hysteresis RPM and is between the hysteresis RPM and the RPM multiplied by the first correction constant (K); If the third step is satisfied, the method includes performing DFCO.

상기 DFCO 진출입 조건 제어 방법은 상기 제3 단계의 판단 결과의 만족이 처음인가를 판단하는 제31 단계와; 상기 제31 단계를 만족하면, 상기 DFCO를 실시하는 단계와; 상기 제3 단계의 판단 결과의 만족이 처음이 아니면, 상기 제3 단계의 만족이 이전 DFCO의 실시 후 종래 설정된 일정시간에 제2 보정 상수(P)를 곱한 시간이 경과한 후인가를 판단하는 제32 단계와; 상기 제32 단계를 만족하면, 상기 DFCO를 실시하는 단계 더 포함한다.The DFCO entry / exit condition control method includes step 31 of determining whether satisfaction of the determination result of the third step is first; Performing the DFCO if the thirty-first step is satisfied; If the satisfaction of the determination result of the third step is not the first time, the first step of judging whether the satisfaction of the third step is after the time multiplied by the second correction constant (P) at a predetermined time after the execution of the previous DFCO has elapsed; 32 steps; If the step 32 is satisfied, the method may further include performing the DFCO.

본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법은 삼원촉매의 산소 저장능력이 높은 초기에는 작은 제1 보정 상수(K)를 종래 설정된 임계 RPM에 곱함으로써 차량의 DFCO 구간을 확대하여 연비를 개선하고, 삼원촉매의 열화가 진행된 후기일수록 큰 제1 보정 상수(K)를 종래 설정된 임계 RPM에 곱함으로써 차량의 삼원촉매의 배기가스 정화 효율의 감소를 방지할 수 있다. In the method of controlling the DFCO entry / exit condition according to the embodiment of the present invention, the fuel efficiency is improved by expanding the DFCO section of the vehicle by multiplying a small first correction constant (K) by the previously set threshold RPM at the beginning of the high oxygen storage capacity of the three-way catalyst. In the late stage of deterioration of the three-way catalyst, it is possible to prevent the reduction of the exhaust gas purification efficiency of the three-way catalyst of the vehicle by multiplying a large first correction constant K by a previously set threshold RPM.

그리고, 본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법은 이전에 DFCO을 실시되었으면, 엔진 RPM이 DFCO 진출입 조건을 만족하더라도 이전의 DFCO의 실시 후 종래 설정된 일정시간에 제2 보정 상수(P)를 곱한 시간이 경과한 후에 엔진 RPM이 DFCO 진출입 조건을 만족하여야 DFCO를 실시하도록 한다. 따라서, 본 발명의 DFCO 진출입 조건 제어 방법은 삼원촉매가 열화될수록 DFCO의 진출입을 줄임으로써 삼원촉매의 배기가스 정화 효율의 감소를 더욱 방지할 수 있다.In the DFCO entry / exit condition control method according to an embodiment of the present invention, if the DFCO has been previously performed, even if the engine RPM satisfies the DFCO entry / exit condition, the second correction constant P is set at a predetermined time after the execution of the previous DFCO. After the multiplication time has elapsed, the engine RPM must meet the DFCO entry and exit conditions to ensure DFCO. Therefore, the method for controlling the DFCO entry / exit condition of the present invention can further prevent the reduction of the exhaust gas purification efficiency of the three-way catalyst by reducing the entry / exit of the DFCO as the three-way catalyst deteriorates.

이하, 도 2 내지 도 6을 참조하여, 본 발명의 바람직한 실시 예에 대하여 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to FIGS. 2 to 6.

도 2는 본 발명의 실시 예에 따른 DFCO 진출입 조건을 설명하기 위한 도면이다.2 is a view for explaining the DFCO entry and exit conditions according to an embodiment of the present invention.

도 2를 참조하면, 본 발명의 DFCO는 엔진 RPM이 히스테리시스 RPM 이상에서 히스테리시스 RPM 이하로 떨어지는 때부터 시작되어, 엔진 RPM이 종래 설정된 임계 RPM에 삼원촉매의 산소 저장능력과 반비례하는 제1 보정 상수(K)를 곱한 RPM 이하로 떨어질 때까지 실시된다.2, the DFCO of the present invention starts when the engine RPM falls from the hysteresis RPM to less than the hysteresis RPM, so that the engine RPM is a first correction constant (inversely proportional to the oxygen storage capacity of the three-way catalyst to the previously set threshold RPM) It runs until it falls below RPM multiplied by K).

삼원촉매의 배기가스 정화 효율은 초기에 최대이며, 열화가 진행될수록 감소된다. 이는, 삼원촉매의 산소 저장능력이 초기에 최대에서 열화가 진행될수록 감소하기 때문이다. 반면에, 차량의 연비는 구동계의 마찰이 차량의 초기 상태에 최대임에 따라 초기에 최소이며, 차량이 열화될수록 증가한다.The exhaust gas purification efficiency of the three-way catalyst is initially maximum, and decreases as the deterioration progresses. This is because the oxygen storage capacity of the three-way catalyst decreases as the deterioration progresses at the initial maximum. On the other hand, the fuel economy of the vehicle is initially minimal as the friction of the drive system is maximum in the initial state of the vehicle, and increases as the vehicle deteriorates.

따라서, 본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법에 따른 DFCO는 예를 들어 도 3과 같이, 삼원촉매의 산소 저장능력이 높은 초기에는 작은 제1 보정 상수(K=1.1)가 종래 설정된 임계 RPM에 곱해짐으로써 도 4a에 도시된 바와 같이 DFCO 구간이 넓어져 차량의 연비가 개선된다. 그리고, 본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법에 따른 DFCO는 삼원촉매의 열화가 진행된 후기일수록 큰 제1 보정 상수(K=1.2)를 종래 설정된 임계 RPM에 곱함으로써 도 4b에 도시된 바와 같이 DFCO 구간을 줄여 차량이 DFCO를 자주 실시하지 않도록 함으로써 차량의 삼원촉매의 배기가스 정화 효율은 증가시킬 수 있다.Accordingly, in the DFCO according to the method for controlling the DFCO entry / exit condition according to the embodiment of the present invention, for example, as shown in FIG. 3, a small first correction constant (K = 1.1) is previously set at the initial stage when the oxygen storage capacity of the three-way catalyst is high By multiplying by the RPM, the DFCO section is widened as shown in FIG. 4A to improve fuel economy of the vehicle. In addition, the DFCO according to the DFCO entry / exit condition control method according to an exemplary embodiment of the present invention multiplies a previously set threshold RPM by multiplying a larger first correction constant (K = 1.2) as the late stage of deterioration of the three-way catalyst as shown in FIG. 4B. Likewise, by reducing the DFCO section so that the vehicle does not frequently perform DFCO, the exhaust gas purification efficiency of the three-way catalyst of the vehicle can be increased.

이와 같이, 본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법은 삼원촉매의 산소 저장능력이 높은 초기에는 작은 제1 보정 상수(K)를 종래 설정된 임계 RPM에 곱함으로써 차량의 DFCO 구간을 확대하여 연비를 개선함과 아울러, 삼원촉매의 열화가 진행된 후기일수록 큰 제1 보정 상수(K)를 종래 설정된 임계 RPM에 곱함으로써 차량의 삼원촉매의 배기가스 정화 효율의 감소를 방지할 수 있다. As described above, the method for controlling the DFCO entry / exit condition according to the embodiment of the present invention extends the fuel efficiency by expanding the DFCO section of the vehicle by multiplying a small first correction constant K by a previously set threshold RPM at the beginning of the high oxygen storage capacity of the three-way catalyst. In addition, the reduction of the exhaust gas purification efficiency of the three-way catalyst of the vehicle can be prevented by multiplying the first first correction constant K by a larger first correction constant K as the late stage in which the three-way catalyst deteriorates.

한편, 종래의 DFCO는 도 5a에 도시된 같이 엔진 RPM이 DFCO 진출입 조건을 만족하더라도 이전의 DFCO의 실시 후 설정된 일정시간이 경과한 후에 엔진 RPM이 DFCO 진출입 조건을 만족하여야 DFCO를 실시한다. 이는, DFCO에 자주 진출입하면 삼원촉매의 열화가 가속화되기 때문이다.Meanwhile, in the conventional DFCO, even if the engine RPM satisfies the DFCO entry / exit condition as shown in FIG. 5A, the engine RPM satisfies the DFCO entry / exit condition after a predetermined time elapses after the execution of the previous DFCO. This is because deterioration of the three-way catalyst is accelerated by entering and entering DFCO frequently.

따라서, 도 5b에 도시된 바와 같이 금번의 DFCO 진출입 조건의 만족이 처음으로 DFCO 진출입 조건을 만족하는 것이 아니면 즉, 이전에 DFCO가 실시되었으면, 엔진 RPM이 DFCO 진출입 조건을 만족하더라도 이전의 DFCO의 실시 후 종래 설정된 일정시간에 삼원촉매의 산소 저장능력과 반비례하는 제2 보정 상수(P)를 곱한 시간이 경과한 후에 엔진 RPM이 DFCO 진출입 조건을 만족하여야 DFCO를 실시한다. 이에 따라, 본 발명의 DFCO 진출입 조건 제어 방법은 삼원촉매가 열화될수록 DFCO의 진출입을 줄임으로써 삼원촉매의 배기가스 정화 효율의 감소를 더욱 방지할 수 있다.Therefore, as shown in FIG. 5B, if the satisfaction of the current DFCO entry / exit condition does not satisfy the DFCO entry / exit condition for the first time, that is, if DFCO has been carried out previously, the implementation of the previous DFCO even if the engine RPM satisfies the DFCO entry / exit condition. Thereafter, after a predetermined time is multiplied by a second correction constant P which is inversely proportional to the oxygen storage capacity of the three-way catalyst, the engine RPM must satisfy the DFCO entry / exit condition after the DFCO is performed. Accordingly, the method for controlling the DFCO entry / exit condition of the present invention can further prevent the reduction of the exhaust gas purification efficiency of the three-way catalyst by reducing the entry / exit of the DFCO as the three-way catalyst deteriorates.

도 6은 본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법을 나타내는 순서도이다.6 is a flowchart illustrating a method for controlling DFCO entry / exit conditions according to an exemplary embodiment of the present invention.

도 6을 참조하면, 본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법은 열화가 진행된 삼원촉매의 산소 저장능력을 갱신하고(S110), 갱신된 삼원촉매의 산소 저장능력과 반비례하는 제1 보정 상수(K) 및 제2 보정 상수(P)를 갱신한다(S120). 그리고, 본 발명의 DFCO 진출입 조건 제어 방법은 엔진 RPM이 DFCO 진출입 조건을 만족하는가를 판단한다(S130). 여기서, DFCO는 엔진 RPM이 히스테리시스 RPM 이상에서 히스테리시스 RPM 이하로 떨어지는 때부터 시작되어 엔진 RPM이 종래 설정된 임계 RPM에 제1 보정 상수(K)를 곱한 RPM까지 실시된다. 그런 다음, 본 발명의 DFCO 진출입 조건 제어 방법은 금번의 DFCO 진출입 조건을 만족이 처음으로 DFCO 진출입 조건을 만족하는 것인지를 판단한다(S140). 상기 S140 단계의 판단 결과, 금번의 DFCO 진출입 조건의 만족이 처음으로 DFCO 진출입 조건을 만족하는 것이면, 본 발명의 DFCO 진출입 조건 제어 방법은 DFCO를 실시한다(S160). 하지만, 본 발명의 DFCO 진출입 조건 제어 방법은 상기 S140 단계의 판단 결과, 금번의 DFCO 진출입 조건을 만족이 처음으로 DFCO 진출입 조건을 만족하는 것이 아니면, DFCO 진출입 조건의 만족 시점이 이전의 DFCO의 실시 후 종래 설정된 일정시간에 제2 보정 상수(P)를 곱한 시간이 경과한 후인가를 판단한다(S150). 상기 S150 단계의 판단 결과, DFCO 진출입 조건의 만족 시점이 이전의 DFCO의 실시 후 종래 설정된 일정시간에 제2 보정 상수(P)를 곱한 시간이 경과한 후이면, 본 발명의 DFCO 진출입 조건 제어 방법은 DFCO를 실시한다(S160).Referring to FIG. 6, in the DFCO entry / exit condition control method according to an embodiment of the present invention, the oxygen storage capacity of the deteriorated three-way catalyst is updated (S110), and the first correction constant is inversely proportional to the oxygen storage capacity of the updated three-way catalyst. (K) and the second correction constant P are updated (S120). In addition, the DFCO entry and exit condition control method of the present invention determines whether the engine RPM satisfies the DFCO entry and exit conditions (S130). Here, the DFCO starts when the engine RPM falls below the hysteresis RPM from above the hysteresis RPM, and then runs until the engine RPM multiplies the previously set threshold RPM by the first correction constant K. Then, the method for controlling the DFCO entry and exit conditions of the present invention determines whether the current DFCO entry and exit conditions satisfy the DFCO entry and exit conditions for the first time (S140). As a result of the determination in step S140, if the satisfaction of the current DFCO entry / exit condition satisfies the DFCO entry / exit condition for the first time, the DFCO entry / exit condition control method of the present invention performs DFCO (S160). However, in the method of controlling the DFCO entry / exit condition of the present invention, if the satisfactory DFCO entry / exit condition does not satisfy the DFCO entry / exit condition for the first time as a result of the determination in step S140, the point of time when the DFCO entry / exit condition is satisfied after the execution of the previous DFCO In operation S150, it is determined whether a time obtained by multiplying the second correction constant P by a predetermined time has elapsed (S150). As a result of the determination in step S150, when the time point of satisfying the DFCO entry / exit condition is a time after multiplying the second correction constant P by a predetermined time after the execution of the previous DFCO, the DFCO entry / exit condition control method of the present invention is DFCO is performed (S160).

도 1은 종래의 DFCO 진출입 조건을 설명하기 위한 도면.1 is a view for explaining a conventional DFCO entry and exit conditions.

도 2는 본 발명의 실시 예에 따른 DFCO 진출입 조건을 설명하기 위한 도면.2 is a view for explaining the DFCO entry and exit conditions according to an embodiment of the present invention.

도 3은 삼원촉매의 산소 저장능력과 보정 상수(K)의 일례를 나타내는 도면.3 shows an example of an oxygen storage capacity and a correction constant (K) of a three-way catalyst.

도 4a는 본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법에 따른 초기 DFCO 진출입 조건을 나타내는 도면,4A is a diagram illustrating an initial DFCO entry and exit condition according to a method for controlling DFCO entry and exit conditions according to an embodiment of the present invention;

도 4b는 본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법에 따른 후기 DFCO 진출입 조건을 나타내는 도면,Figure 4b is a view showing the late DFCO entry and exit conditions according to the DFCO entry and exit condition control method according to an embodiment of the present invention,

도 5a는 종래의 DFCO의 재진출입 조건을 설명하기 위한 도면.5A is a diagram for explaining reentry conditions of a conventional DFCO.

도 5b는 본 발명의 실시 예에 따른 DFCO의 재진출입 조건을 설명하기 위한 도면.5B is a view for explaining the re-entry conditions of the DFCO according to an embodiment of the present invention.

도 6은 본 발명의 실시 예에 따른 DFCO 진출입 조건 제어 방법을 나타내는 순서도.Figure 6 is a flow chart illustrating a method for controlling the DFCO entry and exit conditions according to an embodiment of the present invention.

Claims (2)

삼원촉매의 산소 저장능력을 갱신하는 제1 단계와;Updating the oxygen storage capacity of the three-way catalyst; 갱신된 상기 삼원촉매의 산소 저장능력과 반비례하는 제1 보정 상수(K) 및 제2 보정 상수를 갱신하는 제2 단계와;Updating a first correction constant (K) and a second correction constant in inverse proportion to the updated oxygen storage capacity of the three-way catalyst; 엔진 RPM이 히스테리시스 RPM 이상에서 떨어져 상기 히스테리시스 RPM부터 종래 설정된 임계 RPM에 상기 제1 보정 상수(K)를 곱한 RPM 사이인가를 판단하는 제3 단계와;A third step of determining whether an engine RPM is separated from the hysteresis RPM and is between the hysteresis RPM and the RPM multiplied by the first correction constant (K); 상기 제3 단계를 만족하면, DFCO를 실시하는 단계를 포함하는 것을 특징으로 하는 DFCO 진출입 조건 제어 방법.If the third step is satisfied, the method comprising the step of performing the DFCO. 청구항 1에 있어서,The method according to claim 1, 상기 제3 단계의 판단 결과의 만족이 처음인가를 판단하는 제31 단계와;A thirty-first step of determining whether satisfaction of the determination result of the third step is first; 상기 제31 단계를 만족하면, 상기 DFCO를 실시하는 단계와;Performing the DFCO if the thirty-first step is satisfied; 상기 제3 단계의 판단 결과의 만족이 처음이 아니면, 상기 제3 단계의 만족이 이전 DFCO의 실시 후 종래 설정된 일정시간에 제2 보정 상수(P)를 곱한 시간이 경과한 후인가를 판단하는 제32 단계와;If the satisfaction of the determination result of the third step is not the first time, the first step of judging whether the satisfaction of the third step is after the time multiplied by the second correction constant (P) at a predetermined time after the execution of the previous DFCO has elapsed; 32 steps; 상기 제32 단계를 만족하면, 상기 DFCO를 실시하는 단계 더 포함하는 것을 특징으로 하는 DFCO 진출입 조건 제어 방법.And if the step 32 is satisfied, further comprising the step of: performing the DFCO.
KR1020070114715A 2007-11-12 2007-11-12 DFC CO Entry / Exit Control Method KR100931099B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070114715A KR100931099B1 (en) 2007-11-12 2007-11-12 DFC CO Entry / Exit Control Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070114715A KR100931099B1 (en) 2007-11-12 2007-11-12 DFC CO Entry / Exit Control Method

Publications (2)

Publication Number Publication Date
KR20090048721A KR20090048721A (en) 2009-05-15
KR100931099B1 true KR100931099B1 (en) 2009-12-10

Family

ID=40857635

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070114715A KR100931099B1 (en) 2007-11-12 2007-11-12 DFC CO Entry / Exit Control Method

Country Status (1)

Country Link
KR (1) KR100931099B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046827A (en) * 2002-11-28 2004-06-05 현대자동차주식회사 Fuel cut control apparatus of vehicle and method thereof
US20050193722A1 (en) 2004-03-03 2005-09-08 Toyota Jidosha Kabushiki Kaisha Fuel cut control apparatus of internal combustion engine
KR20060003755A (en) * 2004-07-07 2006-01-11 현대자동차주식회사 A catalyst activate control method of vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046827A (en) * 2002-11-28 2004-06-05 현대자동차주식회사 Fuel cut control apparatus of vehicle and method thereof
US20050193722A1 (en) 2004-03-03 2005-09-08 Toyota Jidosha Kabushiki Kaisha Fuel cut control apparatus of internal combustion engine
KR20060003755A (en) * 2004-07-07 2006-01-11 현대자동차주식회사 A catalyst activate control method of vehicle

Also Published As

Publication number Publication date
KR20090048721A (en) 2009-05-15

Similar Documents

Publication Publication Date Title
JP2007038933A (en) Vehicle travel control device
JP2007064137A (en) Cruise control device
JP6040519B2 (en) Vehicle control device
JP6210704B2 (en) LNT control method for vehicle
US20090105926A1 (en) Control method for improving fuel efficiency of hybrid electric vehicle
JP2009228578A (en) Torque control device for internal combustion engine
US9868440B2 (en) Auto cruise controller of vehicle and method thereof
JP2007159171A (en) Vehicle and its control method
JP4539428B2 (en) Responsiveness correction for accelerator pedal operation amount in vehicles
KR100931099B1 (en) DFC CO Entry / Exit Control Method
JP5678427B2 (en) Vehicle control device
JP7006707B2 (en) Vehicle control method and vehicle control device
JP5500311B2 (en) Vehicle control device
JP7172837B2 (en) Braking force controller
JP6323080B2 (en) Vehicle control device
JP4480752B2 (en) Control device for vehicle engine
US8798884B2 (en) Method for clutch control
JP2006142963A (en) Driving force control device for vehicle
JP2008247152A (en) Power control device and power control method
JP4852172B2 (en) Vehicle engine control device
JP4892456B2 (en) Vehicle fuel supply restriction device
JP4385944B2 (en) Vehicle travel control device
US11788619B2 (en) Method and device for controlling a transmission of a vehicle
JP5257244B2 (en) Vehicle control device
KR100867798B1 (en) Method for controling fuel rewet of hybrid car

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141128

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191127

Year of fee payment: 11