KR100925798B1 - Rice transgenic plants having enhanced ability of phosphate acquisition and methods of preparing the same - Google Patents

Rice transgenic plants having enhanced ability of phosphate acquisition and methods of preparing the same Download PDF

Info

Publication number
KR100925798B1
KR100925798B1 KR1020080051031A KR20080051031A KR100925798B1 KR 100925798 B1 KR100925798 B1 KR 100925798B1 KR 1020080051031 A KR1020080051031 A KR 1020080051031A KR 20080051031 A KR20080051031 A KR 20080051031A KR 100925798 B1 KR100925798 B1 KR 100925798B1
Authority
KR
South Korea
Prior art keywords
rice
phosphate
ospt1
phosphoric acid
soil
Prior art date
Application number
KR1020080051031A
Other languages
Korean (ko)
Inventor
남재성
서현미
남민희
송송이
김도훈
김경태
정순재
이기환
이영병
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority to KR1020080051031A priority Critical patent/KR100925798B1/en
Application granted granted Critical
Publication of KR100925798B1 publication Critical patent/KR100925798B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • B09C1/105Reclamation of contaminated soil microbiologically, biologically or by using enzymes using fungi or plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8259Phytoremediation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Soil Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

PURPOSE: A rice plant transformant with enhanced absorption of phosphoric acid is provided to remove phosphate which excessively exists in a river and prevent eutrophication of soil or river. CONSTITUTION: A rice plant transformant with enhanced absorption of phosphoric acid overexpresses OsPT1 which is a phosphoric acid carrier gene of rice plant of the sequence number 1. The OsPT1 always expresses in all tissues of rice plant regardless of variation of phosphoric acid concentration.

Description

인산 흡수력이 증강된 벼 형질전환체 및 그의 제조 방법{Rice transgenic plants having enhanced ability of phosphate acquisition and methods of preparing the same}Rice transgenic plants having enhanced ability of phosphate acquisition and methods of preparing the same}

본 발명은 인산 농도에 무관하게 항상 발현하는 벼의 고친화성 인산운반체 유전자를 과발현하여 인산흡수력이 강화된 벼 형질전환체, 벼에서 상기 고친화성 인산운반체를 과발현시킴으로서 인산 흡수력이 강화된 벼 형질전환체를 제조하는 방법, 및 상기의 벼 형질전환체를 이용하여 토양 또는 수질을 정화시키는 방법과 관련된 것이다.The present invention is an over-expression of a high affinity phosphate carrier gene of rice, which is always expressed irrespective of the phosphate concentration, a rice transformant having enhanced phosphate absorption capacity, a rice transformant having enhanced phosphate absorption capacity by overexpressing the high affinity phosphate carrier in rice. It relates to a method for producing a, and a method for purifying soil or water quality using the rice transformant.

식물체의 분화 발달에 필요한 많은 양의 인산이 비료로 식물체에 공급되고 있으나, 대부분의 인산은 토양에서 유기물이나 금속이온 등에 결합하여 식물체가 직접 흡수할 수 없는 형태로 고정화된다. 매년 전체 영농비용의 상당부분이 토양의 유효인산 농도를 증가시키기 위한 비료구입비로 지출되고 있으며, 토양에 고정화된 인산이 지하수 또는 하천의 부영양화를 초래하고 있다. 한편, 농업 환경오염은 농업 생산의 질적 저하뿐만 아니라 환경파괴에 따른 국민건강을 위협하므로 오염원의 제거는 매우 중요한 문제이다. A large amount of phosphoric acid required for the development of differentiation of plants is supplied to plants as fertilizers, but most of the phosphoric acid is immobilized in a form that the plant cannot directly absorb by binding to organic matter or metal ions in the soil. Each year, a significant portion of the total farming costs are spent on fertilizer purchases to increase the effective phosphorus concentration in the soil, and phosphoric acid immobilized in the soil causes eutrophication of groundwater or rivers. On the other hand, the pollution of the agricultural environment is not only a qualitative decrease in agricultural production, but also a threat to the public health due to environmental destruction, so the removal of pollutants is a very important problem.

세계적으로 산업화, 도시화에 따른 토양의 황폐화와 오랜 경작으로 인하여 토양중 유효 무기영양이 극도로 제한된 경지가 증가하는 추세인 반면, 친환경형 농업경영의 중요성으로 향후 과다한 화학비료 사용에 의한 토양, 수질 오염에 대한 규제는 더욱 강화될 것으로 예상된다. 국내에서는 시설하우스 장기 재배에 따른 화학비료 과다사용으로 토양 내 인산 등이 다량 집적되어 하천 부영양화의 주요인으로 작용하고 있다. 미래의 농업생명과학 발전과 산업화는 유용한 유전자원의 확보, 유용 유전자들의 분리 및 기능 해석, 및 이들 유전자들의 응용기술 개발에 좌우될 것이므로, 선진국과 비교해 경쟁력을 가질 수 있는 연구 분야의 선택과 집중을 통한 새로운 유용 우전자들의 확보와 기능분석을 위한 체계적인 노력이 필요하다.Globally, the deterioration of soil due to industrialization and urbanization and the long-term cultivation have increased the limit of effective inorganic nutrients in the soil, while the importance of eco-friendly agricultural management has caused soil and water pollution due to the excessive use of chemical fertilizers. Regulations are expected to be tightened further. In Korea, excessive use of chemical fertilizers due to long-term cultivation of facility houses has resulted in the accumulation of large amounts of phosphoric acid in the soil, which is a major factor in stream nutrient nourishment. The future development and industrialization of agricultural life science will depend on securing useful genetic resources, separating and analyzing useful genes, and developing application technologies for these genes, thus selecting and concentrating research areas that can be competitive compared to developed countries. It is necessary to make systematic efforts to secure new useful right actors and analyze their functions.

현재 애기장대, 토마토, 감자, 벼, 보리, 담배, 옥수수 등에서 DNA 염기서열의 유사성을 기반으로 하는 유전체학적 연구로 고친화성 인산 운반체 유전자들이 분리되었고 그 기능들이 연구되고 있다. 특히 신젠타를 비롯한 세계적 관련 연구팀들은 균근(Mycorrhiza)에 특이적으로 반응하면서 균근으로부터 인산 흡수에 관여하는 벼와 감자 유래의 특이적 고친화성 인산 운반체에 대한 연구가 집중되고 있다. Genomic studies based on the similarity of DNA sequences in Arabidopsis, tomatoes, potatoes, rice, barley, tobacco, and corn are now used to isolate high-affinity phosphate carrier genes and their functions. In particular, Syngenta and other global teams of researchers are focusing on specific high-affinity phosphate carriers derived from rice and potatoes that specifically react to Mycorrhiza and participate in phosphate absorption from the mycorrhiza.

애기장대의 고친화성 인산 운반체를 과발현하는 담배 현탁 배양세포가 인산 흡수력의 증진이 보고된 이후 식물체의 고친화성 인산 운반체를 이용한 인산 흡수력이 강화된 형질전환체의 개발이 시도되었으나 현재까지 성공사례는 없다. 실례로, DNA 염기서열의 유사성을 기반으로 보리의 인산 고친화성 운반체 유전자군을 분리하고 일부 유잔자들을 보리에서 과발현하였으나 예상되었던 인산 흡수력이 증 진되는 표현의 변화는 관찰되지 않았다(Rae, et al.(2004) Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rate. Functional Plant Biology 31, 141-148). 이러한 결과는 비록 염기서열의 유사성이 고친화성 인산 운반체 유전자들 간에 존재하지만 이들의 발현 양상과 특이적 기능적인 면에서 매우 다양함이 존재한다는 것을 의미한다. 상기와 유사한 결과로 본연구팀은 지금까지 벼에서 분리한 4종의 고친화성 인산운반체 유전자들을 각각 과발현하는 형질전환체를 제작하였으나, 본 명세서에서 명시한 OsPT1을 포함한 두 종류만이 벼의 인산 흡수력에 직접적인 영향을 미치는 것으로 확인되었다. 따라서 지금까지 분리된 많은 고친화성 인산 운반체를 비롯한 많은 양분 운반체 유전자들을 유용 작물에 직접 응용하기 위해서 많은 기초연구들이 선행되어야 할 것으로 생각된다. After reports of tobacco cultivation cells overexpressing Arabidopsis high affinity phosphate carriers have been reported to improve phosphate uptake, development of transformants with enhanced phosphate uptake using plant high affinity phosphate carriers has been attempted. . For example, based on the similarity of DNA sequences, barley phosphate high affinity carrier gene families were isolated and some residues were overexpressed in barley, but no expected changes in the expression of enhanced phosphate uptake were observed (Rae, et al. (2004) Over-expression of a high-affinity phosphate transporter in transgenic barley plants does not enhance phosphate uptake rate.Functional Plant Biology 31, 141-148). These results indicate that although similarity of sequences exists between high affinity phosphate carrier genes, there are a great variety of expression patterns and specific functionalities. As a result similar to the above, the team has produced a transformant overexpressing each of the four high-affinity phosphate carrier genes isolated from rice, but only two types including OsPT1 specified in the present specification are directly related to rice phosphate absorption ability. It was found to affect. Therefore, it is thought that many basic studies should be preceded in order to directly apply many nutrient carrier genes, including many high-affinity phosphate carriers, which have been isolated so far to useful crops.

최근엔 중국 연구팀이 인산 결핍에 특이적으로 발현하는 전사조절 유전자(OsPTF1)를 이용한 인산 이용성이 향상된 벼 형질전환체의 개발 성공 사례가 보고되었으나 직접적으로 인산 흡수력을 강화시킨 것이 아니라 인산 결핍조건에서의 적응 대사조절 기능이 강화되어 인산 결핍에 저항성을 보이는 것으로 보고되었다. 고친화성 인산 운반체를 이용한 농업적으로 중요한 작물의 인산 흡수력 강화와 관련한 연구가 필요하다.Recently, a Chinese research team reported successful development of rice phosphate transformants using the transcriptional regulatory gene (OsPTF1) that specifically expresses phosphate deficiency, but did not directly enhance phosphate uptake but adapted to phosphate deficiency conditions. Metabolic regulation has been reported to be resistant to phosphate deficiency. Research on the enhancement of phosphate uptake of agriculturally important crops using high affinity phosphate carriers is needed.

본 발명의 목적은 인산 농도에 무관하게 항상 발현하는 벼의 고친화성 인산운반체 유전자 OsPT1을 과발현하여 인산 흡수성이 증진된 벼 형질전환체를 제공하는 것이다. It is an object of the present invention to provide a rice transformant with enhanced phosphoric acid uptake by overexpressing the highly affinity phosphate carrier gene OsPT1 of rice, which is always expressed regardless of phosphoric acid concentration.

본 발명의 또 다른 목적은 벼에서 인산 농도에 무관하게 항상 발현하는 고친화성 인산운반체 유전자 OsPT1을 과발현시킴으로써 인산 흡수성이 증진된 벼 형질전환체를 제조하는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for preparing a rice transformant having enhanced phosphoric acid uptake by overexpressing a high affinity phosphate carrier gene OsPT1, which is always expressed regardless of phosphoric acid concentration in rice.

본 발명의 또 다른 목적은 상기와 같은 인산 흡수성이 증진된 벼 형질전환체를 이용하는 수질 정화 방법을 제공하는 것이다.Still another object of the present invention is to provide a water purification method using a rice transformant having improved phosphoric acid absorption.

본 발명은 인산농도의 변화에 무관하게 벼의 모든 조직에서 발현하는 벼 유래의 고친화성 인산 운반체 유전자를 벼 재배 품종인 동진 벼에 과발현시킴으로써 인산 흡수력이 강화된 새로운 벼 형질전환체를 제작하고, 그 기능을 농업적으로 검정함으로써 향후 친환경적인 새로운 벼 품종 개발을 위한 유용한 유전자원의 확보를 목적으로 한다. The present invention provides a new rice transformant with enhanced phosphate uptake by overexpressing a rice-derived high affinity phosphate carrier gene expressed in all tissues of rice regardless of phosphate concentration in Dongjin rice, a rice cultivation variety. By agriculturally testing the function, it aims to secure useful genetic resources for developing new environmentally friendly rice varieties.

유한한 생물자원과 산업화에 따른 경지 및 농업환경의 황폐화에 의한 농업생산성의 급감으로 인한 식량자원의 부족은 향후 인류가 당면할 중요한 과제다. 최근에 발달한 유전체학적 연구를 바탕으로 식물체의 인산 흡수에 관여하는 중요 유전자들이 분리되고 기초연구를 통해서 그 응용성 연구가 진행되고 있다. Lack of food resources due to the declining agricultural productivity due to deterioration of agricultural land and finite biological resources and industrialization is an important task for humanity. Based on recent genomic studies, important genes involved in plant phosphate uptake have been isolated and its application is being conducted through basic research.

이에 본 발명자들은 인산농도의 변화에 무관하게 벼의 모든 조직에서 발현하는 벼 유래의 고친화성 인산 운반체 유전자를 벼에서 분리하고 그 특성을 규명하여 국내특허등록을 한 바 있으며(등록특허 제 10-0640284호), 본 발명에서는 상기 벼의 인산농도 변화에 무관하게 항상 발현하는 특이한 고친화성 인산 운반체 유전자를 CaMV 35S 프로모터를 이용하여서 재배 벼 품종 (동진벼)에 과발현하는 형질전환체를 제작하였다. 이들 형질전환체들 중에서 도입된 OsPT1 유전자의 과다발현이 확인된 형질전환체 라인을 2년 동안 세대를 진전시키면서 도입 유전자의 안전성과 순계 라인을 선별하였고 이들 라인을 영남농업 연구소의 GMO 재배 논에서 대조군인 야생형과 함께 재배하면서 인산 흡수력 및 중요 농업 형질을 비교분석 하였다. 그 결과, 제작된 벼 형질전환체의 인산 흡수력이 야생형에 비해서 2배 이상 증가된다는 사실을 확인하여 본 발명을 완성하였다. Therefore, the present inventors have separated the rice-derived high affinity phosphate carrier genes expressed in all tissues of rice regardless of the phosphate concentration from the rice and characterized the characteristics and registered the domestic patent (Registration No. 10-0640284) In the present invention, a transformant overexpressing a specific high-affinity phosphate carrier gene, which is always expressed regardless of the phosphate concentration of rice, in a cultivated rice variety (Dongjin rice) using a CaMV 35S promoter. Among these transformants, the transformant lines in which overexpression of the introduced OsPT1 gene was confirmed were selected for two years from generation to generation, and the safety and sequence lines of the introduced genes were selected. The phosphate uptake and important agricultural traits were compared with the wild type. As a result, the present invention was confirmed by confirming that the phosphate absorption capacity of the prepared rice transformant increased more than twice compared to wild type.

본 발명에서 제작된 벼 형질전환체의 이러한 유전학적 특성은 향후 화학비료의 이용을 줄일 수 있는 신품종 벼 육종에 필요한 중요한 중간모본으로 이용될 수 있을 것이다. 또한 이들 벼 형질전환체의 우수한 인산 흡수력과 수생식물인 벼의 생리적 특성을 이용한다면 하천의 부영양화를 초래하는 인산함량을 줄일 수 있는 새로운 수질정화방법의 개발에도 이용될 수 있을 것으로 기대된다.        This genetic property of the rice transformant produced in the present invention will be used as an important intermediate model for the new breed of rice breeding can reduce the use of chemical fertilizers in the future. In addition, the use of the excellent phosphate absorption ability of these rice transformants and the physiological characteristics of aquatic plant rice is expected to be used in the development of a new water purification method that can reduce the phosphoric acid content that causes eutrophication of rivers.

보다 구체적으로, 본 발명은 서열번호 1의 염기서열을 갖는 벼의 인산 운반체 유전자 OsPT1를 과발현하여 인산 흡수성이 증진된 벼 형질전환체 및 그 제조 방법을 제공한다. 상기 유전자 OsPT1의 과발현은 이 발명이 속하는 기술분야에 통상적으로 알려진 모든 방법으로 수행될 수 있다. 예컨대, 유전자 OsPT1에 CaMV 35S 프로모터(서열번호 2), 또는 유비퀴틴의 프로모터 accession number(AY954394) 와 작동가능하게 연결함으로써 유전자 OsPT1를 과발현시킬 수 있다.More specifically, the present invention provides a rice transformant having improved phosphate uptake by overexpressing the phosphate carrier gene OsPT1 of rice having the nucleotide sequence of SEQ ID NO: 1, and a method for producing the same. Overexpression of the gene OsPT1 can be performed by any method commonly known in the art. For example, the gene OsPT1 can be overexpressed by operably linking the gene OsPT1 with the CaMV 35S promoter (SEQ ID NO: 2), or the ubiquitin promoter accession number (AY954394).

본 발명에 따른 벼 형질전환체는 인산의 흡수력이 현저하게 증가되어, 하천 중에 과다하게 존재하는 인산을 제거하여 토양 또는 하천 부영양화를 방지하고 정화시키는 효과를 가질 수 있다. 따라서, 본 발명의 또 다른 측면은 서열번호 1의 염기서열을 갖는 벼의 인산 운반체 유전자 OsPT1를 과발현하는 벼 형질전환체를 이용하여 토양 또는 수질을 정화시키는 방법을 제공한다. Rice transformant according to the present invention is significantly increased the absorption of phosphoric acid, it may have the effect of preventing and purifying the soil or river eutrophication by removing the excess phosphoric acid in the river. Accordingly, another aspect of the present invention provides a method for purifying soil or water quality using a rice transformant overexpressing the phosphate carrier gene OsPT1 of rice having the nucleotide sequence of SEQ ID NO: 1.

인산 흡수력이 강화된 우수 벼 품종 개발을 위한 중간 모본으로 활용 가능하며, 인산 흡수력이 강화된 타 작물의 개발을 위한 농업생명공학 기반 기술 제공할 것이다. 또한, 화학비료의 과다사용으로 문제되는 인산 과다 집적 토양에서 인산질 비료를 사용하지 않고도 재배가 가능한 친환경적 벼 품종 개발에 활용 가능할 것이다. 또한, 벼의 수생식물적 특성과 강화된 인산 흡수력을 이용함으로써 수질 정화용으로의 활용 또한 가능할 것이다. It can be used as an intermediate model for developing excellent rice varieties with enhanced phosphoric acid absorption, and will provide agricultural biotechnology-based technology for the development of other crops with enhanced phosphoric acid absorption. In addition, it will be possible to develop environmentally friendly rice varieties that can be grown without using phosphate fertilizers in phosphate-rich soils, which are caused by overuse of chemical fertilizers. In addition, the use of aquatic plant properties and enhanced phosphate absorption capacity of rice will also be available for water purification.

하기 실시예를 들어 본 발명을 더욱 자세히 설명하고자 한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 제한되는 것은 아니다. The present invention will be described in more detail with reference to the following examples. However, these examples are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.

[[ 실시예Example ] ]

실시예Example 1.  One.

본 발명자들은 이미 국내에서 특허등록(제 10-0640284, 상기 문헌은 본 발명에 참조로서 포함된다.)한 인산농도의 변화에 관계없이 벼의 모든 조직에서 항상 발현하는 고친화성 인산 운반체 유전자인 OsPT1를 항상 강하게 발현하는 CaMV의 35S 프로모터에 의해서 조절되는 재조합 벡터 construct를 제작하고, Agrobacterium tumefaciens를 이용하여서 벼에 형질전환하였다. The present inventors have already found OsPT1, a high-affinity phosphate carrier gene that is always expressed in all tissues of rice regardless of the change in phosphate concentration, which is already registered in Korea (No. 10-0640284, which is incorporated herein by reference). A recombinant vector construct regulated by the 35S promoter of CaMV, which is always strongly expressed, was constructed and transformed into rice using Agrobacterium tumefaciens .

그 과정을 간략히 설명하면, OsPT1 유전자의 코딩 영역을 본 연구실에서 직접 제작한 바이너리 벡터(binary vector) pCAMBIA1300-35S (상업적으로 구입가능한 바이너리 벡터 pCAMBIA1300 (CAMBIA) 의 ECoRI과 HindIII 절단부위에 상기의 CaMV 35S 프로모터를 클로닝한 재조합 벡터)의 XbaI 사이트에 클로닝하여 OsPT1 유전자가 항상 강하게 발현하는 CaMV 35S 프로모터에 의해서 조절되는, 재조합 백터를 제작하였다. 상기와 같이 제작된 재조합 벡터를 트리패어렌탈 메이팅(triparental mating) 방법으로 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) EHA105 균주로 옮겼다. Briefly, the coding region of the OsPT1 gene was directly produced in the laboratory by the above-mentioned CaMV 35S on ECoRI and HindIII cleavage sites of the binary vector pCAMBIA1300-35S (commercially available binary vector pCAMBIA1300 (CAMBIA). The recombinant vector was cloned into the XbaI site of the cloned recombinant vector) to produce a recombinant vector regulated by a CaMV 35S promoter that always strongly expresses the OsPT1 gene. Agrobacterium tumefaciens ( Agrobacterium ) using the recombinant vector prepared as described above by a triple parental mating method tumefaciens ) was transferred to EHA105 strain.

아그로박테리움을 이용한 벼 형질전환법은 Toki에 의해서 잘 확립된 방법을 사용하였다 (Toki, S (1996) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Molecular Biology Report 15, 16-21). 간략히 설명하면 다음과 같다. 5주 동안 캘러스 유도 배지에서 동진 벼의 씨앗에서 유도된 캘러스를 상기에서 제작된 재조합 벡터를 함유하고 있는 A. tumefaciens로 감염하고 공동배지에서 3일간 공동배양하였다. 그리고 난 후, 상기 감염된 캘러스를 하 이그로마이신(hygromycin)(50 ㎍/ml)이 포함된 캘러스 증식용 배지에서 2주간 선별 배양하고 형질전환되어서 살아남는 캘러스를 재분화 배지에서 2주간 뿌리와 잎으로 분화를 유도한 다음 화분으로 옮겨서 형질전환체를 재배하였다. Agrobacterium-based rice transformation was well established by Toki (Toki, S (1996) Rapid and efficient Agrobacterium-mediated transformation in rice.Plant Molecular Biology Report 15, 16-21). Briefly described as follows. Callus derived from seed of Dongjin rice in callus induction medium for 5 weeks was infected with A. tumefaciens containing the recombinant vector prepared above and co-cultured in co-culture for 3 days. Then, the infected callus was selected and cultured for two weeks in a callus propagation medium containing hygromycin (50 μg / ml) and transformed to survive, and the callus surviving from the differentiation medium was differentiated into roots and leaves for two weeks. Induced and then transferred to pollen to cultivate the transformant.

이렇게 독립적으로 재생된 벼 형질전환체에서 먼저 전체 RNA를 분리하고 OsPT1 특이적 염기서열의 DNA 단편을 probe으로 이용하여서 Northern blot 분석을 수행하였다. 보다 구체적으로, 트리졸 리전트(Trizol REAGENT)(Invitrogen)를 이용하여 RNA를 분리 하였다. 10㎍ 의 RNA를 1.2% (W/V) 디네이처링 포름알데히드 아가로스 겔(denaturing formaldehyde agarose gel)에서 전기 영동하여 나일론 멤브레인(nylon membrane)(Amersham)에 RNA를 부착시켰다. RNA 가 부착된 나일론 멤브레인은 [32P]dATP로 표지된 프로브(1.6 kbp OsPT1 유전자 전체)를 20% (W/V) SDS, 20X SSPE, 100 g/L PEG (8,000 mwt), 250 mg/L 헤파린(heparin) 및10ml/L 히어링 스펌 DNA(Hearing sperm DNA)(10 mg/ml)가 포함된 용액과 함께 65℃에서 하룻밤 동안 반응시켰다. In this independently regenerated rice transformant, total RNA was first isolated and Northern blot analysis was performed using DNA fragments of OsPT1 specific sequences as probes. More specifically, RNA was isolated using Trizol REAGENT (Invitrogen). 10 μg of RNA was electrophoresed on a 1.2% (W / V) denaturing formaldehyde agarose gel to attach RNA to a nylon membrane (Amersham). Nylon membranes with RNA attached a [ 32 P] dATP labeled probe (full 1.6 kbp OsPT1 gene) with 20% (W / V) SDS, 20X SSPE, 100 g / L PEG (8,000 mwt), 250 mg / L It was reacted overnight at 65 ° C with a solution containing heparin and 10 ml / L Hearing sperm DNA (10 mg / ml).

OsPT1 유전자의 발현이 야생형에 비해서 현저히 높은 2번 라인을 선별하고 2년 동안 세대를 진척시켜서 순계라인을 확립하였다 (도 1 (A)). 순계라인의 확인은 선별 마커로 사용한 하이그로마이신 저항성 유전자에 의한 하이그로마이신 저항성  표현형이 2 세대에서 계속해서 분리되는가를 조사함으로써 검정하였다. 이들 순계라인에서 얻은 씨앗과 야생형 씨앗을 발아시키고 영암농업연구소 GMO포장에 재식거리 15X30 cm 간격으로 이양하였다. 인산질비료의 시비 또는 무시비 조건하에서 재 배하고 분얼기, 출수기, 수확기에 걸처서 식물체내의 인산 농도를 Vanadate법으로 측정하였다. 또한 주요 농업적 특정 조사는 농촌진흥청 농사시험연구 조사기준에 준해서 수행하였다. Line 2 was selected to express OsPT1 gene expression significantly higher than wild type and progressed generation for 2 years (FIG. 1 (A)). The identification of the naïve line was assayed by examining whether the hygromycin resistance phenotype by the hygromycin resistance gene used as a selection marker continued to be separated from the second generation. Seeds and wild-type seeds from these lines were germinated and transferred to the GMO packaging of Yeongam Agricultural Research Institute at 15X30 cm intervals. The phosphate concentrations in the plants were fertilized under fertilizer or fertilizer conditions, and the phosphate concentrations in plants were measured by Vanadate method. In addition, major agricultural specific surveys were carried out in accordance with the Rural Agricultural Research and Agricultural Research Standards.

상기 조사 결과, 인산이 충분히 있는 조건 (인산 농도: 178 mg/kg)에서 재배하면, OsPT1을 과발현하는 벼 형질전환체는 대조군인 야생형에 비교해서 분열의 수가 증가하고 수장의 길이가 짧은 생리적 특성을 보인다 (도 1, (B)와 (C)). As a result of the above investigation, when grown under conditions of sufficient phosphoric acid (phosphate concentration: 178 mg / kg), the rice transformants overexpressing OsPT1 showed physiological characteristics with shorter length and longer division than those of the control wild type. (Figures 1, (B) and (C)).

과발현하는 벼 형질전환체(OsPT1-OX)의 중요 농업형질의 비교한 결과를 아래의 표 1에 나타내었다.A comparison of important agricultural traits of overexpressing rice transformants (OsPT1-OX) is shown in Table 1 below.

[표 1]TABLE 1

Figure 112008039083577-pat00001
Figure 112008039083577-pat00001

벼의 분열증가는 식물체내의 인산 농도와 밀접한 관계가 있으므로 OsPT1이 과발현하는 벼 형질전환체는 대조군에 비교해서 식물체내의 인산 농도가 높을 것으로 예상된다. 실제로 일반 경작지의 토양에서 인산질비료의 시비 또는 무시비 조건하에서 재배하고 분열기, 출수기, 수확기에 각각 OsPT1이 과발현하는 벼 형질전환체와 야생형 간의 식물체내의 인산 함량 비교한 결과, OsPT1이 과발현하는 벼 형질전환체는 시비 조건에 무관하게 모든 생육 단계에서 거의 2배 이상의 인산 이 잎에 축적되어 있었다 (도 2). Increasing rice cleavage is closely related to the phosphate concentration in plants, so it is expected that rice transformants overexpressing OsPT1 will have higher phosphate concentrations in plants compared to controls. In fact, cultivation of phosphate fertilizers in fertilized or fertilized fertilizers in general cropland soil was compared with the phosphate content in plants between wild type and rice transformants overexpressing OsPT1 during splitting, harvesting, and harvesting. The transformants accumulated almost twice as much phosphoric acid in the leaves at all stages of growth regardless of fertilization conditions (FIG. 2).

그러나 질소와 칼륨을 포함한 다른 무기 양분의 함량에서는 OsPT1이 과발현하는 벼 형질전환체와 야생형 간에 차이가 없었다. 시험 전 토양 중의 인산 함량은 178 mg/kg 이었으나, 시험 후에 잔류하는 토양 인산 함량은 대조군인 재배 되었던 토양에서는 163 mg/kg, OsPT1이 과발현하는 벼 형질전환체가 재배되었던 토양에서는 152 mg/kg으로 크게 줄었다. 그러나 OsPT1과 유사한 OsPT8을 과발현하는 형질전환체는 대조군과 비슷한 인산 잔류량이 재배후에 검출되었다 과발현하는 벼 형질전환체(OsPT1-OX)의 재배 전후의 토양 무기양분 및 화학적 분석결과를 아래의 표 2에 나타내었다.However, there was no difference between wild type and rice transformants overexpressing OsPT1 in the contents of other inorganic nutrients including nitrogen and potassium. The phosphate content in the soil before the test was 178 mg / kg, but the remaining soil phosphate content after the test was 163 mg / kg in the control cultivated soil and 152 mg / kg in the soil in which the rice transformants overexpressed OsPT1 were grown. Decreased. However, the transformants overexpressing OsPT8 similar to OsPT1 were detected after cultivation similar to the control group. Soil nutrients and chemical analysis results before and after cultivation of overexpressing rice transformant (OsPT1-OX) were shown in Table 2 below. Indicated.

[표 2]  TABLE 2

품종kind 시비 방법Fertilization method PHPH ECEC T-N (mg/kg)T-N (mg / kg) P2O5 (mg/kg)P2O5 (mg / kg) 무기성분(cmol/kg)Inorganic Ingredients (cmol / kg) KK CaCa MgMg 시험전Before the test 5.815.81 0.300.30 240240 178178 0.540.54 4.494.49 0.850.85 시험후After the test 동진벼Dongjin Rice NKNK 5.185.18 0.230.23 240240 163163 0.410.41 3.023.02 0.450.45 시험후After the test OsPT1-OXOsPT1-OX NKNK 5.245.24 0.290.29 240240 152152 0.360.36 3.163.16 0.500.50 시험후After the test OsPT8-OXOsPT8-OX NKNK 5.185.18 0.260.26 230230 169169 0.370.37 3.093.09 0.480.48

이러한 결과는 대조군에 비교해서  OsPT1이 과발현하는 벼 형질전환체는 토양으로부터 더 많은 인산을 흡수하고 식물체에 축적하고 있다는 것을 나타낸다. 그 결과로  OsPT1이 과발현하는 벼 형질전환체는 분열이 많아지고 수수의 수가 증가하는 특징을 보이는 것으로 확인되었다. 그러나 OsPT1이 과발현하는 벼 형질전환체의 과다한 인산 축적은 식물체의 생육에 절대적으로 필요한 질소, 칼륨 등의 중요 무기 양분들과의 상대적 적정 비율이 깨어짐으로써 나타나는 결과로 해석된다. These results indicate that rice transformants overexpressing OsPT1 absorb more phosphoric acid from the soil and accumulate in plants compared to controls. As a result, it was confirmed that the rice transformants overexpressing OsPT1 exhibited increased division and increased number of sorghum. However, excessive phosphoric acid accumulation of rice transformants overexpressed by OsPT1 may be interpreted as a result of the breakdown of relative ratios with important inorganic nutrients such as nitrogen and potassium, which are absolutely necessary for plant growth.

도 1은 인산농도 변화에 무관하게 항상 발현하는 벼의 고친화성 인산운반체를 과발현하는 벼 형질전환체의 확인 및 생육상의 특이점을 나타낸 것이다. Figure 1 shows the identification and growth specificity of the rice transformant overexpressing the high-affinity phosphate carrier of rice that is always expressed regardless of the phosphate concentration change.

도 2는 시비조건 및 생육 단계에 따른 야생형과 인산농도 변화에 무관하게 항상 발현하는 벼의 고친화성 인산운반체가 과발현하는 벼형질전환체 간의 인산 함량을 비교 분석한 결과를 나타낸 것이다. Figure 2 shows the results of a comparative analysis of the phosphate content between the rice morphogens overexpressed by the high-affinity phosphate carrier of the rice always expressed regardless of wild type and phosphate concentration changes according to fertilization conditions and growth stages.

<110> DONG-A UNIVERSITY <120> Rice transgenic plants having enhanced ability of phosphate acquisition and methods of preparing the same <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 1584 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of OsPT1 <400> 1 atggcgggag ggcagctcaa cgtgctgagc acgctcgacc aggcgaagac gcaatggtac 60 cacttcatgg cgatcgtcat cgccggcatg ggcttcttca ccgacgccta cgacctcttc 120 tgcatttccc tcgtcaccaa gctgctcggc cgcatctact acaccgacga ttccaaggac 180 acccccggcg cgctcccgcc caacgtgtcg gccgccgtca ccggcgtcgc gctctgcggc 240 acgctcgccg gccagctttt cttcggatgg ctcggcgaca agctcggacg caagagcgtg 300 tatggtttca cgctgattct gatggtcgtg tgctcggtcg cgtccgggct ctcgttcggg 360 agctcggcca agggcgtcgt gtctacgctc tgcttcttcc ggttctggct cggcttcggc 420 atcggcggcg actacccgct cagcgccacc atcatgtcgg agtacgcgaa caagaggacg 480 cgcggggcct tcatcgccgc cgtgttcgcc atgcaggggt tcgggatcct cttcggcgcc 540 atcgtcgcgc tcgcggtgtc ggcggggttc cggcacgcgt acccggcgcc gtcctactcc 600 gacaaccacg ccgcgtcgct cgtcccgcag gccgactacg tgtggcgcat catcctcatg 660 ttcggcaccg tcccggcggc gctcacctac tactggcgga tgaagatgcc cgagacggcg 720 cggtacacgg cgctcatcgc ccgcaacgcg aagcaggcgg cggccgacat gtccaaggtg 780 ctgcacaccc agattgagga gagcgcggac cgcgccgaga cggtggccgt cggcggcgag 840 agctggggcc tcttctcgcg ccagttcctg cgccgccacg gcctccacct cctcgccacc 900 accagcacgt ggttcctcct cgacatcgcc ttctacagcc agaacctgtt ccagaaggac 960 atcttcagca aggtcgggtg gatcccgccg gcgaagacca tgaacgcgct cgaggagctc 1020 taccgcatcg cccgcgccca ggcgctcatc gcgctctgcg gcaccatccc gggctactgg 1080 ttcaccgtcg cattcatcga gatcatgggc aggttctgga tccagatcat gggcttcgcc 1140 atgatgacgg cgttcatgct cggcctcgcc atcccgtacc accactggac gacgccgggg 1200 caccacaccg gcttcatcgt catgtacgga ttcaccttct tcttcgcgaa cttcgggcca 1260 aacagcacca ccttcatcgt gccggcggag atatacccgg cgcggctccg gtcgacgtgc 1320 cacggcatct ccgccgccgc cgggaaggcc ggcgccatca tcggagcgtt cgggttcctg 1380 tacgcggcgc aggaccagca caagcccgag cctgggtacc ccagggggat cggcatcaag 1440 aacgcgctct tcgtgctcgc cggcacaaac ttcctcggga cgatcatgac gctgctcgtg 1500 ccggagtcca agggcatgtc gctcgaggtt atctcgcagg aggtcgccga cggcgacgac 1560 gaggaggcgg cctacccgaa gtaa 1584 <210> 2 <211> 538 <212> DNA <213> Artificial Sequence <220> <223> CaMV 35S Promoter sequence <400> 2 agtcccccgt gttctctcca aatgaaatga acttccttat atagaggaag ggtcttgcga 60 aggatagtgg gattgtgcgt catcccttac gtcagtggag atatcacatc aatccacttg 120 ctttgaagac gtggttggaa cgtcttcttt ttccacgatg ctcctcgtgg gtgggggtcc 180 atctttggga ccactgtcgg cagaggcatc ttcaacgatg gcctttcctt tatcgcaatg 240 atggcatttg taggagccac cttccttttc cactatcttc acaataaagt gacagatagc 300 tgggcaatgg aatccgagga ggtttccgga tattaccctt tgttgaaaag tctcaattgc 360 cctttggtct tctgagactg tatctttgat atttttggag tagacaagtg tgtcgtgctc 420 caccatgttg acgaagattt tcttcttgtc attgagtcgt aagagactct gtatgaactg 480 ttcgccagtc tttacggcga gttctgttag gtcctctatt tgaatctttg actccatg 538 <110> DONG-A UNIVERSITY <120> Rice transgenic plants having enhanced ability of phosphate          acquisition and methods of preparing the same <160> 2 <170> KopatentIn 1.71 <210> 1 <211> 1584 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence of OsPT1 <400> 1 atggcgggag ggcagctcaa cgtgctgagc acgctcgacc aggcgaagac gcaatggtac 60 cacttcatgg cgatcgtcat cgccggcatg ggcttcttca ccgacgccta cgacctcttc 120 tgcatttccc tcgtcaccaa gctgctcggc cgcatctact acaccgacga ttccaaggac 180 acccccggcg cgctcccgcc caacgtgtcg gccgccgtca ccggcgtcgc gctctgcggc 240 acgctcgccg gccagctttt cttcggatgg ctcggcgaca agctcggacg caagagcgtg 300 tatggtttca cgctgattct gatggtcgtg tgctcggtcg cgtccgggct ctcgttcggg 360 agctcggcca agggcgtcgt gtctacgctc tgcttcttcc ggttctggct cggcttcggc 420 atcggcggcg actacccgct cagcgccacc atcatgtcgg agtacgcgaa caagaggacg 480 cgcggggcct tcatcgccgc cgtgttcgcc atgcaggggt tcgggatcct cttcggcgcc 540 atcgtcgcgc tcgcggtgtc ggcggggttc cggcacgcgt acccggcgcc gtcctactcc 600 gacaaccacg ccgcgtcgct cgtcccgcag gccgactacg tgtggcgcat catcctcatg 660 ttcggcaccg tcccggcggc gctcacctac tactggcgga tgaagatgcc cgagacggcg 720 cggtacacgg cgctcatcgc ccgcaacgcg aagcaggcgg cggccgacat gtccaaggtg 780 ctgcacaccc agattgagga gagcgcggac cgcgccgaga cggtggccgt cggcggcgag 840 agctggggcc tcttctcgcg ccagttcctg cgccgccacg gcctccacct cctcgccacc 900 accagcacgt ggttcctcct cgacatcgcc ttctacagcc agaacctgtt ccagaaggac 960 atcttcagca aggtcgggtg gatcccgccg gcgaagacca tgaacgcgct cgaggagctc 1020 taccgcatcg cccgcgccca ggcgctcatc gcgctctgcg gcaccatccc gggctactgg 1080 ttcaccgtcg cattcatcga gatcatgggc aggttctgga tccagatcat gggcttcgcc 1140 atgatgacgg cgttcatgct cggcctcgcc atcccgtacc accactggac gacgccgggg 1200 caccacaccg gcttcatcgt catgtacgga ttcaccttct tcttcgcgaa cttcgggcca 1260 aacagcacca ccttcatcgt gccggcggag atatacccgg cgcggctccg gtcgacgtgc 1320 cacggcatct ccgccgccgc cgggaaggcc ggcgccatca tcggagcgtt cgggttcctg 1380 tacgcggcgc aggaccagca caagcccgag cctgggtacc ccagggggat cggcatcaag 1440 aacgcgctct tcgtgctcgc cggcacaaac ttcctcggga cgatcatgac gctgctcgtg 1500 ccggagtcca agggcatgtc gctcgaggtt atctcgcagg aggtcgccga cggcgacgac 1560 gaggaggcgg cctacccgaa gtaa 1584 <210> 2 <211> 538 <212> DNA <213> Artificial Sequence <220> <223> CaMV 35S Promoter sequence <400> 2 agtcccccgt gttctctcca aatgaaatga acttccttat atagaggaag ggtcttgcga 60 aggatagtgg gattgtgcgt catcccttac gtcagtggag atatcacatc aatccacttg 120 ctttgaagac gtggttggaa cgtcttcttt ttccacgatg ctcctcgtgg gtgggggtcc 180 atctttggga ccactgtcgg cagaggcatc ttcaacgatg gcctttcctt tatcgcaatg 240 atggcatttg taggagccac cttccttttc cactatcttc acaataaagt gacagatagc 300 tgggcaatgg aatccgagga ggtttccgga tattaccctt tgttgaaaag tctcaattgc 360 cctttggtct tctgagactg tatctttgat atttttggag tagacaagtg tgtcgtgctc 420 caccatgttg acgaagattt tcttcttgtc attgagtcgt aagagactct gtatgaactg 480 ttcgccagtc tttacggcga gttctgttag gtcctctatt tgaatctttg actccatg 538  

Claims (5)

삭제delete 삭제delete 삭제delete 삭제delete 서열번호 1의 벼의 인산 운반체 유전자 OsPT1를 과발현하고 토양으로부터의 인산 흡수성이 증진된 벼 형질전환체를 이용하여 토양 또는 하천의 인산을 감소시키는 것을 특징으로 하는 토양 또는 수질 정화 방법.A method of purifying soil or water, characterized by reducing the phosphoric acid of soil or stream by using a rice transformant overexpressing the phosphate carrier gene OsPT1 of the SEQ ID No. 1 and enhancing the phosphoric acid uptake from the soil.
KR1020080051031A 2008-05-30 2008-05-30 Rice transgenic plants having enhanced ability of phosphate acquisition and methods of preparing the same KR100925798B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080051031A KR100925798B1 (en) 2008-05-30 2008-05-30 Rice transgenic plants having enhanced ability of phosphate acquisition and methods of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080051031A KR100925798B1 (en) 2008-05-30 2008-05-30 Rice transgenic plants having enhanced ability of phosphate acquisition and methods of preparing the same

Publications (1)

Publication Number Publication Date
KR100925798B1 true KR100925798B1 (en) 2009-11-11

Family

ID=41561398

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080051031A KR100925798B1 (en) 2008-05-30 2008-05-30 Rice transgenic plants having enhanced ability of phosphate acquisition and methods of preparing the same

Country Status (1)

Country Link
KR (1) KR100925798B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305277B1 (en) 2010-10-04 2013-09-06 서울대학교산학협력단 SDA1 gene from Arabidopsis thaliana and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032156A1 (en) * 2001-06-22 2005-02-10 Syngenta Participations Ag Identification and characterization of phosphate transporter genes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032156A1 (en) * 2001-06-22 2005-02-10 Syngenta Participations Ag Identification and characterization of phosphate transporter genes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305277B1 (en) 2010-10-04 2013-09-06 서울대학교산학협력단 SDA1 gene from Arabidopsis thaliana and uses thereof

Similar Documents

Publication Publication Date Title
CN101346061B (en) Promoter sequence obtained from rice and methods of use
CN101213304A (en) Plants containing a heterologous flavohemoglobin gene and methods of use thereof
CN101508726A (en) Drought tolerant associated protein for plant, encoding gene and uses thereof
CN115896045A (en) Application of birch pear E3 ubiquitin ligase gene PbrATL18 in genetic improvement of plant drought resistance and anthracnose
CN107974459A (en) Improve the construct and method of plant abiotic stress tolerance
Behera et al. Overexpression of Setaria italica phosphoenolpyruvate carboxylase gene in rice positively impacts photosynthesis and agronomic traits
Chen et al. Overexpression of Rice Phosphate Transporter Gene OsPT2 Enhances Tolerance to Low Phosphorus Stress in Soyb ean
CN103012574A (en) Low-phosphor stress response regulatory factor ZmPHR1, gene for coding the protein and application
CN101981191A (en) Nucleotide sequences and corresponding polypeptides conferring modulated growth rate and biomass in plants grown in saline and oxidative conditions
CN111424049B (en) Application of gene TaPT13 in aspect of improving powdery mildew resistance of plants
KR100925798B1 (en) Rice transgenic plants having enhanced ability of phosphate acquisition and methods of preparing the same
CN102199610A (en) Application of OsHSF01 (oryza sativa heat stress transcription factors 01) gene
CN108676081A (en) Chinese milk vetch LEAFY genes and its application
CN104673829B (en) β expansin genes GmEXPB2 application
CN109355270B (en) Rice kinase OSK1 and application thereof
CN103525825B (en) The clone of the resistance to manganese poisoning important gene ShMDH1 of one kind of plant and application thereof
CN102558321B (en) Protein AtLPT4 related to deficient-phosphorus stress tolerance of plants, and coding gene and application thereof
KR100632486B1 (en) A phosphate transporter genes and promoters of said genes that are expressed specifically in the root hair of rice and transgenic plants using said genes
CN115725554B (en) Sandalwood farnesene synthetase SaAFS and application thereof in plant cold resistance
CN116732048B (en) Application of rice transcription factor gene OsbZIP48 in obtaining high-zinc rice grains and/or regulating nitrogen absorption
CN116987716B (en) Expression vector, application of OsSUT1 gene and transgenic rice
KR100640284B1 (en) A high-affinity phosphate transporter gene that is expressed constitutively in the whole rice plant regaredless of phosphate concentration change a promoter of said gene and a production method of transgenic plants using said gene
CN102532288B (en) Protein AtLPT3 related with phosphorus absorption and coding genes and application thereof
CN111454345B (en) Amino acid transport gene OsATL4 and application thereof in rice breeding
CN116751812B (en) Application of OsABI gene in enhancing nitrogen deficiency stress resistance of rice

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121018

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131104

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170802

Year of fee payment: 19