KR100922182B1 - Amphiphilic Norbornene-based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared By Living Ring Opening Metathesis Polymerization, And Method For The Preparation Thereof - Google Patents

Amphiphilic Norbornene-based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared By Living Ring Opening Metathesis Polymerization, And Method For The Preparation Thereof Download PDF

Info

Publication number
KR100922182B1
KR100922182B1 KR1020070108695A KR20070108695A KR100922182B1 KR 100922182 B1 KR100922182 B1 KR 100922182B1 KR 1020070108695 A KR1020070108695 A KR 1020070108695A KR 20070108695 A KR20070108695 A KR 20070108695A KR 100922182 B1 KR100922182 B1 KR 100922182B1
Authority
KR
South Korea
Prior art keywords
nbetms
poly
formula
nbeposs
nbecooh
Prior art date
Application number
KR1020070108695A
Other languages
Korean (ko)
Other versions
KR20090043063A (en
Inventor
권영환
Original Assignee
대구대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대구대학교 산학협력단 filed Critical 대구대학교 산학협력단
Priority to KR1020070108695A priority Critical patent/KR100922182B1/en
Publication of KR20090043063A publication Critical patent/KR20090043063A/en
Application granted granted Critical
Publication of KR100922182B1 publication Critical patent/KR100922182B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Abstract

본 발명은 소수성 다면체 올리고머릭 실세스퀴옥산(polyhedral oligomeric silsesquioxane, POSS) 세그멘트(segment)를 포함하는 양친매성 유/무기 블록 공중합체 및 이의 제조방법에 관한 것으로, RuCl2(=CHPh)(PCy3)2/CH2Cl2/20℃시스템을 사용하여 2-엔도-3-엑소-5-노보넨디카르복실산(2-endo-3-exo-5-Norborene dicarboxylic acid, NBECOOH)과 2-엔도-3-엑소-5-노보넨-2,3-디카르복실산비스(트리메틸실릴)에스테르(2-endo-3-exo-5-Norbornene-2,3-dicarboxylic acid bis(trimethylsilyl)ester, NBETMS)의 리빙 개환 복분해 중합 및 연속적 NBEPOSS 단량체의 첨가반응을 이용함으로써, 폴리(NBETMS-b-NBEPOSS)공중합체에 있는 트리메틸실릴기의 가수분해에 의해 연속적으로 폴리(NBECOOH-b-NBEPOSS)공중합체를 제조하는 것을 특징으로 한다.The present invention relates to an amphipathic organic / inorganic block copolymer comprising a hydrophobic polyhedral oligomeric silsesquioxane (POSS) segment and a method for preparing the same, which includes RuCl 2 (= CHPh) (PCy 3 ). ) 2 / CH 2 Cl 2/ 20 ℃ 2- endo-3-exo-5-using system norbornene dicarboxylic acid (2-endo-3-exo -5-Norborene dicarboxylic acid, NBECOOH) and 2- Endo-3-exo-5-norbornene-2,3-dicarboxylic acid bis (trimethylsilyl) ester (2-endo-3-exo-5-Norbornene-2,3-dicarboxylic acid bis (trimethylsilyl) ester, by using the addition reaction of the living ring-opening metathesis polymerization, and subsequently the monomer NBEPOSS NBETMS), poly (NBETMS- -NBEPOSS b) continuously by hydrolysis of the trimethylsilyl group in the copolymer poly (NBECOOH- -NBEPOSS b) copolymer It characterized in that the manufacturing.

폴리헤드랄 올리고머릭 실세스퀴옥산, 개환 복분해 중합, 블록 공중합체 리빙 중합, 순차적(연속적) 단량체 첨가반응 Polyhedral oligomeric silsesquioxane, ring-opening metathesis polymerization, block copolymer living polymerization, sequential (continuous) monomer addition

Description

리빙 개환 복분해 중합을 이용한 다면체 올리고머릭 실세스퀴옥산을 포함하는 양친매성 노보넨계 블록 공중합체 및 이의 제조방법{Amphiphilic Norbornene-based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared By Living Ring Opening Metathesis Polymerization, And Method For The Preparation Thereof}Amphiphilic Norbornene-based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared By Living Ring Opening Metathesis Polymerization, And Method For The Preparation Thereof}

본 발명은 리빙 개환 복분해 중합을 이용한 양친매성 노보넨계 블록 공중합체 및 이의 제조방법에 관한 것이다.The present invention relates to an amphipathic norbornene-based block copolymer using living ring-opening metathesis polymerization and a method for preparing the same.

고분자 과학의 목표는 맞춤 특성을 가진 신규의 고분자 소재를 디자인하고 합성하는데 있으며, 이는 분자량, 분자량 분포 및 분자설계 등을 제어할 수 있는 거대분자 공학의 발달에 의해 가능해지고 있다[P. Rempp, E. Franta, and J. E. Herz, Adv . Polym . Sci ., 88, 145 (1988); J. P. Kennedy and B. Ivan, Designed Polymers by Carbocationic Macromolecular Engineering, Hanser, Germany, 1991; K. Hatada, T. Kitayama, and O. Vogl, Eds., Macromolecular Design of Polymeric Materials, Marcel Dekker, New York, 1996; Y. Kwon and R. Faust, Adv . Polym . Sci ., 167, 107 (2004)]. 상기와 같이 분자량, 분자량 분포 및 분자설계 등을 제어 할 수 있는 블록 공중합체를 획득하기 위한 전제조건은 리빙 중합(living polymerizations) 시스템을 이용하는 것으로, 거대분자 공학에 있어 리빙 중합은 가장 중요한 방법이다.The goal of polymer science is to design and synthesize new polymer materials with custom properties, which is made possible by the development of macromolecular engineering to control molecular weight, molecular weight distribution and molecular design [P. Rempp, E. Franta, and JE Herz, Adv . Polym . Sci . , 88 , 145 (1988); JP Kennedy and B. Ivan, Designed Polymers by Carbocationic Macromolecular Engineering , Hanser, Germany, 1991; K. Hatada, T. Kitayama, and O. Vogl, Eds., Macromolecular Design of Polymeric Materials , Marcel Dekker, New York, 1996; Y. Kwon and R. Faust, Adv . Polym . Sci . , 167 , 107 (2004)]. As a prerequisite for obtaining a block copolymer capable of controlling molecular weight, molecular weight distribution and molecular design as described above, a living polymerization system is used, and living polymerization is the most important method in macromolecular engineering.

최근 많은 연구가 진행되고 있는 라디칼을 비롯하여, 음이온, 양이온, 개환중합방법 등의 리빙 중합은 반응시간에 따른 중합도 제어가 가능하고, 분자량을 제어할 수 있으며, 분자량 분포를 단일하게 만들 수 있다. 또한 리빙 중합은 성장 센터가 정지 반응이나 전달반응에 의하여 사라지지 않고, 사슬의 말단에 관능기를 붙이기 편리하여 단분산 고분자, 나노 구조가 제어된 스타, 분기, 브러쉬 형태의 고분자 뿐만 아니라 블록 공중합체를 합성하는 중요한 방법으로 성분이 다른 고분자 간의 나노 구조를 설계대로 제어하고 합성할 수 있으므로 나노테크놀로지에 사용할 요소 소재의 제조방법으로써 많은 연구가 진행되고 있다.Living polymerization such as anion, cation, ring-opening polymerization method, including radicals that have been studied in recent years, can control the degree of polymerization according to reaction time, control the molecular weight, and make the molecular weight distribution uniform. In addition, living polymerization does not disappear by the stop or transfer reaction of the growth center, and it is convenient to attach a functional group to the end of the chain. As an important method for synthesizing, nanostructures between polymers with different components can be controlled and synthesized as designed, and thus a lot of research is being conducted as a method for preparing urea materials for use in nanotechnology.

리빙 중합은 종결(termination) (K t=0) 및 연쇄이동(chain trasfer) (K tr=0)의 부재를 특징으로 하여 다양한 고분자와 블록 공중합체는 대게 리빙 중합으로 제조된다. 일반적으로, 연쇄이동과 종결의 부재는 선형 제1차 동역학적 플롯(linear first order kinetic plot) (ln([M0]/[M]) 대 시간)과 단량체 전환에 대한 분자량의 선형 종속(linear dependence of molecular weight on monomer conversion)(

Figure 112007077232327-pat00001
대 전환 플롯)으로부터 증명된다. 제1차 동역학적 플롯의 직선성은 성장 센터(즉, 종결이 존재하지 않음)의 일정한 농도를 나타낸다. 또한 분자량 대 전환 플롯의 직선성은 전체 중합 반응 동안에 연쇄이동이 존재하지 않음을 입증한다.Living polymerization is characterized by the absence of termination ( K t = 0) and chain trasfer ( K tr = 0), so that various polymers and block copolymers are usually produced by living polymerization. In general, the absence of chain transfer and termination results in a linear first order kinetic plot (ln ([M 0 ] / [M]) versus time) and linear dependence of molecular weight on monomer conversion. dependence of molecular weight on monomer conversion)
Figure 112007077232327-pat00001
Vs. conversion plot). The linearity of the first kinematic plot represents a constant concentration of growth centers (ie no termination). The linearity of the molecular weight versus conversion plot also demonstrates that there is no chain transfer during the entire polymerization reaction.

첫 번째 리빙 음이온 중합이 1950년대에 보고되었으며[M. Szwarc, Nature, 178, 1168 (1956)], 리빙 중합(living polymerizations)은 그룹 트랜스퍼 중합(group transfer polymerization, GTP), 카보양이온 중합(carbocationic polymerization), 개환 복분해중합(ring opening metathesis polymerization, ROMP) 및 원자 트랜스퍼 라디칼 중합 (atom transfer radical polymerization, ATRP) 등이 있으며, 특히 수분/기능성 그룹을 유지할 수 있는 ROMP 촉매가 출현함에 따라 리빙 ROMP는 블록 공중합체를 생산할 수 있는 중요하고 편리한 방법이 되었다[K. J. Ivin and C. J. Mol, Olefin Metathesis and Metathesis Polymerization, Academic Press, London (1997); R. H. Grubbs, Tetrahedron, 60, 7117 (2004); R. R. Shrock and A. H. Hoveyda, Angewandte Chemie International Edition, 42, 4592 (2003); C. W. Bielawski and R. H. Grubbs, Prog . Polym . Sci ., 32, 1 (2007)].The first living anionic polymerization was reported in the 1950s [M. Szwarc, Nature , 178 , 1168 (1956)], living polymerizations include group transfer polymerization (GTP), carbocationic polymerization, ring opening metathesis polymerization (ROMP) and atom transfer radical polymerization (atom transfer radical polymerization, ATRP), etc., and has become particularly important and convenient way, as the ROMP catalyst which can maintain the water / functional group occurrence living ROMP can produce a block copolymer [KJ Ivin and CJ Mol, Olefin Metathesis and Metathesis Polymerization , Academic Press, London (1997); RH Grubbs, Tetrahedron , 60 , 7117 (2004); RR Shrock and AH Hoveyda, Angewandte Chemie International Edition , 42 , 4592 (2003); CW Bielawski and RH Grubbs, Prog . Polym . Sci . , 32 , 1 (2007)].

상기 ROMP를 수행하기 위한 단량체로는 스트레인드 고리(strained rings)가 쉽게 ROMP 촉매와 반응할 수 있는 스트레인드 시클로알켄(strained cycloalkenes), 노보렌 유도체 등이 알려져 있다. 상기 단량체를 근거로 하여 다양한 호모폴리머 및 블록 공중합체를 리빙 중합으로 합성하고 있다.As monomers for carrying out the ROMP, strained cycloalkenes, norborene derivatives, etc., in which strained rings can easily react with a ROMP catalyst, are known. Based on the monomers, various homopolymers and block copolymers are synthesized by living polymerization.

최근, 하나의 고분자 블록에 공유결합으로 부착된 나노입자(예를 들면 다면체 올리고머릭 실세스퀴옥산(POSS))를 가진 블록 공중합체를 포함하는 유/무기 하이브리도 나노복합재료는 상당한 관심을 받고 있으며, 상기 나노복합재료는 나노 미터의 10의 길이 스케일의 고도로 질서있는 형태론적 복잡성을 가지고 있다. 상기 다면체 올리고머릭 실세스퀴옥산(Polyhedral Oligomeric Silsesquioxane, 이하 ‘POSS’라 함) 분자는 일반식 (RSiO1 .5)8로 표시되며, 유기용매 내 용해도와 유기고분자 매트릭스와의 화합성을 향상시키기 위한 옥타 코어 위에 7개의 유기적 R 치환체 및 사슬 중합을 수행하기 위한 작용기(예를 들면 노보렌, 비닐, (메타)아크릴레이트 등)로 연결된 8개의 모서리로 구성된다. Recently, organic / inorganic hybrid nanocomposites containing block copolymers having nanoparticles (eg, polyhedral oligomeric silsesquioxanes (POSS)) covalently attached to one polymer block have been of considerable interest. And the nanocomposites have a highly ordered morphological complexity of a length scale of 10 nanometers. Wherein the polyhedral oligomeric silsesquioxane (Polyhedral Oligomeric Silsesquioxane la, hereinafter 'POSS' hereinafter) to the molecule and represented by the general formula (RSiO 1 .5) 8, improving the screen synthesis and solubility of the organic solvent and the organic polymer matrix It consists of seven organic R substituents on the octa core for and eight corners connected by functional groups (eg, noborene, vinyl, (meth) acrylates, etc.) for carrying out chain polymerization.

나노크기 형태학에서의 다양성을 달성하면서, 액정[K. M. Kim and Y. J. Chujo, J. Polym . Sci . Part A: Polym . Chem ., 39, 4035 (2001); P. Xie and R. B. Zhang, Polym. Adv . Techno ., 8, 649 (1997); C. X. Zhang, T. J. Bunning, and R. M. Laine, Chem . Mater ., 13, 3653 (2001)], 나노복합재료[J. Choi, J. Harcup, A. F. Yee, Q. Zhu, and R. M. Laine, J. Am . Chem . Soc ., 123, 11420 (2001); C. Sanchez, G. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer, and V. Cabuil, Chem . Mater ., 13, 3061 (2001); L. Zheng, R. J. Farris, and E. B. Coughlin, Macromolecules, 34, 8034 (2001)], CVD 코팅[M. D. Nyman, S. B. Desu, and C. H. Peng, Chem . Mater ., 5, 1636 (1993)] 및 리소그래픽 기술에서 포토레지스트[E. Tegou, V. Bellas, E. Gogolides, and P. Argitis, Microelectro . Eng ., 73-74, 238 (2004); K. E. Gonsalves, L. Merhari, H. Wu, and Y. Hu, Adv . Mater ., 13, 703 (2001)]과 같은 영역에서 신규한 잠재적 응용을 창출하기 위하여 고분자를 함유하는 non-POSS에 비해 고온에서의 산화저항성 및 높은 구조적 무결성을 갖는 POSS-포함 블록 공중합체를 합성하는 것이 결정적으로 중요하다. 그러나, 현재 POSS 나노입자를 포함하는 블록 공중합체의 극소수만이 보고되어 있다[J. Pyun and K. Matyjaszewski, Macromolecules, 33, 217 (2000); J. Pyun, K. Matyjaszewski, J. Wu, G.-M. Kim, S. B. Chun, and P. T. Mather, Polymer, 44, 2739 (2003); T. S. Haddad, P. T. Mather, H. G. Jeon, S. B. Chun, and S. H. Phillips, Mat . Res . Soc . Symp . Proc ., 628, CC2.6.1 (2000); Y. Kwon and K.-H. Kim, Macromol . Res., 14, 424 (2006)].While achieving diversity in nanosize morphology, liquid crystals [KM Kim and YJ Chujo, J. Polym . Sci . Part A: Polym . Chem . , 39 , 4035 (2001); P. Xie and RB Zhang, Polym. Adv . Techno . , 8 , 649 (1997); CX Zhang, TJ Bunning, and RM Laine, Chem . Mater . , 13 , 3653 (2001)], nanocomposites [J. Choi, J. Harcup, AF Yee, Q. Zhu, and RM Laine, J. Am . Chem . Soc . , 123 , 11420 (2001); C. Sanchez, G. Soler-Illia, F. Ribot, T. Lalot, CR Mayer, and V. Cabuil, Chem . Mater . , 13 , 3061 (2001); L. Zheng, RJ Farris, and EB Coughlin, Macromolecules , 34 , 8034 (2001)], CVD coatings [MD Nyman, SB Desu, and CH Peng, Chem . Mater . , 5 , 1636 (1993)] and photoresists in lithographic techniques [E. Tegou, V. Bellas, E. Gogolides, and P. Argitis, Microelectro . Eng . 73-74 , 238 (2004); KE Gonsalves, L. Merhari, H. Wu, and Y. Hu, Adv . Mater . , 13 , 703 (2001)], in order to create new potential applications, the synthesis of POSS-containing block copolymers with oxidation resistance and high structural integrity at high temperatures compared to non-POSS containing polymers Critically important. However, very few current block copolymers containing POSS nanoparticles have been reported [J. Pyun and K. Matyjaszewski, Macromolecules , 33 , 217 (2000); J. Pyun, K. Matyjaszewski, J. Wu, G.-M. Kim, SB Chun, and PT Mather, Polymer , 44 , 2739 (2003); TS Haddad, PT Mather, HG Jeon, SB Chun, and SH Phillips, Mat . Res . Soc . Symp . Proc . 628 , CC2.6.1 (2000); Y. Kwon and K.-H. Kim, Macromol . Res. , 14 , 424 (2006).

본 발명의 목적은 소수성 다면체 올리고머릭 실세스퀴옥산(polyhedral oligomeric silsesquioxane, POSS) 세그멘트(segment)를 포함하는 양친매성 유/무기 블록 공중합체 및 이의 제조방법을 제공하는데 있다.It is an object of the present invention to provide an amphipathic organic / inorganic block copolymer comprising a hydrophobic polyhedral oligomeric silsesquioxane (POSS) segment and a method for preparing the same.

본 발명은 소수성 다면체 올리고머릭 실세스퀴옥산(polyhedral oligomeric silsesquioxane, POSS) 세그멘트(segment)를 포함하는 양친매성 유/무기 블록 공중합체 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 하기 화학식 1로 표시되는 폴리(NBECOOH-b-NBEPOSS) 블록 공중합체 및 하기 화학식 2로 표시되는 폴리(NBETMS-b-NBEPOSS) 블록 공중합체 그리고 이들의 제조방법에 관한 것이다.The present invention relates to an amphiphilic organic / inorganic block copolymer including a hydrophobic polyhedral oligomeric silsesquioxane (POSS) segment and a method for preparing the same, and more specifically, to the following formula (1) poly (NBECOOH- -NBEPOSS b) block copolymers and to be directed to a poly (NBETMS- -NBEPOSS b) block copolymers and methods for their preparation represented by the formula (2).

[화학식 1][Formula 1]

Figure 112007077232327-pat00002
Figure 112007077232327-pat00002

[화학식 2][Formula 2]

Figure 112007077232327-pat00003
Figure 112007077232327-pat00003

[상기 화학식 1 및 2에서 R은 수소, (C1-C20)알킬 또는 (C3-C20)시클로알킬이고; m은 3~20이고; n은 50~150이다.][In Formula 1 and 2, R is hydrogen, (C1-C20) alkyl or (C3-C20) cycloalkyl; m is 3-20; n is 50 to 150.]

본 발명은 RuCl2(=CHPh)(PCy3)2/CH2Cl2/20℃ 시스템을 사용하여 2-엔도-3-엑소-5-노보넨디카르복실산(2-endo-3-exo-5-Norborene dicarboxylic acid, NBECOOH)과 2-엔도-3-엑소-5-노보넨-2,3-디카르복실산비스(트리메틸실릴)에스테르(2-endo-3-exo-5-Norbornene-2,3-dicarboxylic acid bis(trimethylsilyl) ester, NBETMS)의 리빙 개환 복분해 중합 및 연속적 NBEPOSS 단량체의 첨가반응을 이용함으로써, 폴리(NBETMS-b-NBEPOSS)공중합체에 있는 트리메틸실릴기의 가수분해에 의해 연속적으로 폴리(NBECOOH-b-NBEPOSS)공중합체를 제조하는 것을 특징으로 한다.The invention RuCl 2 (= CHPh) (PCy 3) 2 / CH 2 Cl 2/20 ℃ 2- endo-3-exo-5-using system norbornene dicarboxylic acid (2-endo-3-exo -5-Norborene dicarboxylic acid (NBECOOH) and 2-endo-3-exo-5-norbornene-2,3-dicarboxylic acid bis (trimethylsilyl) ester (2-endo-3-exo-5-Norbornene- By hydrolysis of trimethylsilyl groups in poly (NBETMS- b- NBEPOSS) copolymers by using living ring-opening metathesis polymerization of 2,3-dicarboxylic acid bis (trimethylsilyl) ester (NBETMS) and the addition of a continuous NBEPOSS monomer It is characterized by continuously producing a poly (NBECOOH- b- NBEPOSS) copolymer.

본 발명에 따른 폴리(NBECOOH-b-NBEPOSS)공중합체를 제조하는 반응을 하기 반응식 1에 나타내었다.The reaction for preparing the poly (NBECOOH- b- NBEPOSS) copolymer according to the present invention is shown in Scheme 1 below.

[반응식 1]Scheme 1

Figure 112007077232327-pat00004
Figure 112007077232327-pat00004

[상기 반응식 1에서 R은 수소, (C1-C20)알킬 또는 (C3-C20)시클로알킬이고; m은 3~20이고; n은 50~150이다.][Wherein R is hydrogen, (C1-C20) alkyl or (C3-C20) cycloalkyl; m is 3-20; n is 50 to 150.]

상기 화학식 1로 표시되는 폴리(NBECOOH-b-NBEPOSS) 블록 공중합체는 Poly (NBECOOH- b -NBEPOSS) block copolymer represented by the formula (1) is

1) 하기 화학식 3의 NBETMS 화합물을 RuCl2(=CHPh)(PCy3)2/CH2Cl2/20℃의 조건에서 개환 복분해중합(ring opening metathesis polymerization, ROMP) 반응시켜 화학식 4의 폴리(NBETMS) 화합물을 제조하는 단계;1) a ring-opening under the conditions of the NBETMS compound of formula 3 RuCl 2 (= CHPh) ( PCy 3) 2 / CH 2 Cl 2/20 ℃ metathesis polymerization (ring opening metathesis polymerization, ROMP) by reacting poly (NBETMS of formula (IV) ) Preparing a compound;

2) 상기 제조된 화학식 4의 폴리(NBETMS) 화합물에 하기 화학식 5의 NBSPOSS 단량체 화합물을 연속적으로 첨가반응시켜 화학식 2의 폴리(NBETMS-b-NBEPOSS) 블록 공중합체를 제조하는 단계; 및2) preparing a poly (NBETMS- b- NBEPOSS) block copolymer of Formula 2 by continuously adding NBSPOSS monomer compound of Formula 5 to the poly (NBETMS) compound of Formula 4; And

3) 상기 제조된 화학식 2의 폴리(NBETMS-b-NBEPOSS) 블록 공중합체를 가수분해시켜 화학식 1의 폴리(NBECOOH-b-NBEPOSS) 블록 공중합체를 제조하는 단계;로 제조되는 것을 특징으로 한다.3) preparing a poly (NBECOOH- b- NBEPOSS) block copolymer of Chemical Formula 1 by hydrolyzing the poly (NBETMS- b- NBEPOSS) block copolymer of Chemical Formula 2 prepared above.

[화학식 1][Formula 1]

Figure 112007077232327-pat00005
Figure 112007077232327-pat00005

[화학식 2][Formula 2]

Figure 112007077232327-pat00006
Figure 112007077232327-pat00006

[화학식 3][Formula 3]

Figure 112007077232327-pat00007
Figure 112007077232327-pat00007

[화학식 4][Formula 4]

Figure 112007077232327-pat00008
Figure 112007077232327-pat00008

[화학식 5][Formula 5]

Figure 112007077232327-pat00009
Figure 112007077232327-pat00009

[상기 식에서 R은 수소, (C1-C20)알킬 또는 (C3-C20)시클로알킬이고; m은 3~20이고; n은 50~150이다.][Wherein R is hydrogen, (C1-C20) alkyl or (C3-C20) cycloalkyl; m is 3-20; n is 50 to 150.]

또한, 본 발명에서 출발물질로 사용되는 상기 화학식 3의 NBETMS 화합물은 하기 반응식 2에 나타낸 바와 같이, 디시클로펜타디엔을 열분해시켜 제조된 시클로펜타디엔과 푸마르산을 반응시켜 NBECOOH 화합물을 제조한 후 트리메틸실릴화 반응시켜 제조되어진다.In addition, the NBETMS compound of Formula 3 used as a starting material in the present invention, as shown in Scheme 2 below, by reacting cyclopentadiene and fumaric acid prepared by pyrolysis of dicyclopentadiene to prepare an NBECOOH compound, trimethylsilyl It is prepared by the reaction.

[반응식 2]Scheme 2

Figure 112007077232327-pat00010
Figure 112007077232327-pat00010

본 발명에서 제조된 폴리(NBECOOH-b-NBEPOSS) 블록 공중합체 및 폴리(NBETMS-b-NBEPOSS) 블록 공중합체의 구조는 1H NMR, 13C NMR 및 GC-mass 분광계를 사용하여 규명된다.The structures of the poly (NBECOOH- b- NBEPOSS) block copolymers and poly (NBETMS- b- NBEPOSS) block copolymers prepared in the present invention are characterized using 1 H NMR, 13 C NMR and GC-mass spectrometers.

상술한 바와 같이, 본 발명은 소수성 다면체 올리고머릭 실세스퀴옥산(polyhedral oligomeric silsesquioxane, POSS) 세그멘트(segment)를 포함하는 신규한 양친매성 유/무기 블록 공중합체를 제공할 뿐만 아니라 RuCl2(=CHPh)(PCy3)2/CH2Cl2/20℃시스템을 사용하여 2-엔도-3-엑소-5-노보넨디카르복실산(2-endo-3-exo-5-Norborene dicarboxylic acid, NBECOOH)과 2-엔도-3-엑소-5-노보넨-2,3-디카르복실산비스(트리메틸실릴)에스테르(2-endo-3-exo-5-Norbornene-2,3-dicarboxylic acid bis(trimethylsilyl) ester, NBETMS)의 리빙 개환 복분해 중합 및 연속적 NBEPOSS 단량체의 첨가반응을 이용함으로써, 폴리(NBETMS-b-NBEPOSS)공중합체에 있는 트리메틸실릴기의 가수분해에 의해 연속적으로 폴 리(NBECOOH-b-NBEPOSS)공중합체를 용이하게 제조할 수 있다.As mentioned above, the present invention not only provides novel amphiphilic organic / inorganic block copolymers comprising hydrophobic polyhedral oligomeric silsesquioxane (POSS) segments, but also RuCl 2 (= CHPh). ) (PCy 3) 2 / CH 2 Cl 2/20 ℃ 2- endo-3-exo-5-using system norbornene dicarboxylic acid (2-endo-3-exo -5-Norborene dicarboxylic acid, NBECOOH ) And 2-endo-3-exo-5-norbornene-2,3-dicarboxylic acid bis (trimethylsilyl) ester (2-endo-3-exo-5-Norbornene-2,3-dicarboxylic acid bis ( trimethylsilyl) ester, by using an addition reaction of the living ring-opening metathesis polymerization, and subsequently the monomer NBEPOSS NBETMS), poly (NBETMS- -NBEPOSS b) continuously by hydrolysis of the trimethylsilyl group in the copolymer poly (NBECOOH- b -NBEPOSS) copolymers can be readily prepared.

이하, 본 발명을 구체적인 실시예에 의해 보다 더 상세히 설명하고자 한다. 하지만, 본 발명은 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited by the following examples.

[실시예]EXAMPLE

시약 (Materials)Reagents (Materials)

시클로펜틸-POSS-노보넨 모노머(Cyclopentyl-POSS-norbornene monomer, NBEPOSS), 1-[2-(5-노보넨-2-일)에틸]-3,5,7,9,11,13,15-헵타시클로펜틸펜타시클로[9.5.1.13,9.15,15.17,13]-옥타실록산(1-[2-(5-norbornene-2-yl)ethyl]-3,5,7,9,11, 13,15-heptacyclopentylpentacyclo[9.5.1.13,9.15,15.17,13]-octasiloxane), 푸마르산(fumaric acid), 클로로트리메틸 실란(chlorotrimethyl silane), 에틸비닐에테르(Ethyl vinyl ether), 셀라이트(Celite) 및 중성 활성 알루미늄 옥사이드(neutral activated aluminum oxide) : 알드리치사(Aldrich Chemical Co.)Cyclopentyl-POSS-norbornene monomer (NBEPOSS), 1- [2- (5-norbornene-2-yl) ethyl] -3,5,7,9,11,13,15 -Heptacyclopentylpentacyclo [9.5.1.1 3,9 .1 5,15 .1 7,13 ] -octasiloxane (1- [2- (5-norbornene-2-yl) ethyl] -3,5,7 , 9,11,13,15-heptacyclopentylpentacyclo [9.5.1.1 3,9 .1 5,15 .1 7,13 ] -octasiloxane, fumaric acid, chlorotrimethyl silane, ethyl vinyl ether Ethyl vinyl ether, Celite and neutral activated aluminum oxide: Aldrich Chemical Co.

그럽스(Grubbs) 촉매(RuCl2(=CHPh)(PCy3)2 : 스트렘사(Strem Chemical Co.)Grubbs catalyst (RuCl 2 (= CHPh) (PCy 3 ) 2: Strem Chemical Co.)

디시클로펜타디엔 : ACROS 사Dicyclopentadiene: ACROS

디클로로메탄(DC chemicals, 99.5%) : CaH2(Calcium hydride) 존재하 12시간 이상 환류 및 사용직전에 증류처리Dichloromethane (DC chemicals, 99.5%): refluxed for at least 12 hours in the presence of CaH 2 (Calcium hydride) and distilled immediately before use

디에틸에테르(DC chemicals) : 10 % 아황산나트륨 수용액과 물로 세척한 다음, 밤새 황산마그네슘으로 건조하고 필터한 후 색이 파란색으로 변할 때까지 나트륨과 벤조페논 존재하에서 환류시키고, 사용직전에 증류처리Diethyl ether (DC chemicals): washed with 10% aqueous sodium sulfite solution and water, dried over magnesium sulfate overnight, filtered and refluxed in the presence of sodium and benzophenone until the color turns blue, and distilled immediately before use.

펜탄(Kanto chemical, Japan) : 실리칼 겔을 통과시킨 다음 CaH2(Calcium hydride) 존재하 12시간이상 환류 및 사용직전에 증류처리Pentane (Kanto chemical, Japan): After passing through the silica gel, refluxing for at least 12 hours in the presence of CaH 2 (Calcium hydride) and distillation immediately before use

피리딘(Showa chemical, Japan, 99.5 %) : 4Å이상의 몰레큘러시브 (Molecular sieves)로 24시간 이상 건조후 사용Pyridine (Showa chemical, Japan, 99.5%): Molecular sieves of 4Å or more and used after drying for more than 24 hours

상기 이외의 시약 : 알드리치사(Aldrich Chemical Co.)Reagents other than above: Aldrich Chemical Co.

기구와 측정 (Instruments and Measurement)Instruments and Measurement

1H와 13C NMR 스펙트럼은 옥스퍼드 NMR 300 MHz 분광계로 기록되었다. 합성된 호모폴리머와 이중블록 공중합체의 분자량 및 분자량 분포는 Waters 515 pump, 2개의 스타이라겔(styragel) GPC 칼럼(104Å 및 105Å)으로 연결된 Waters 410 differential refractometer이 장착된 워터즈 겔 투과 크로마토그래피(Waters Gel Permeation Chromatography, GPC)를 이용하여 실온에서 측정되었다. THF는 1 mL/분의 유량으로 이동상으로 사용되었다. 분자량은 좁은 분자량 폴리스티렌 표준물질에 대해 눈금이 조정되었다. 모든 합성 절차는 질소가 채워진 글로브 박스에서 실시되었다. 1 H and 13 C NMR spectra were recorded on an Oxford NMR 300 MHz spectrometer. The molecular weight and molecular weight distribution of the synthesized homopolymers and diblock copolymers were determined using a Waters 515 pump and a Waters gel with a Waters 410 differential refractometer connected to two styragel GPC columns (10 4 10 and 10 5 Å). It was measured at room temperature using permeation chromatography (Waters Gel Permeation Chromatography, GPC). THF was used as the mobile phase at a flow rate of 1 mL / min. Molecular weights were calibrated against narrow molecular weight polystyrene standards. All synthetic procedures were carried out in a nitrogen filled glove box.

[[ 실시예Example 1] 2-엔도 3- 1] 2- endo 3- 엑소Exo -5--5- 노보넨Norborneen 디카르복실산( Dicarboxylic acid ( NBECOOHNBECOOH ) 및 2-엔도-3-) And 2-endo-3- 엑소Exo -5--5- 노보넨Norborneen -2,3-디카르복실산 -2,3-dicarboxylic acid 비스트리메틸실릴Bistrimethylsilyl )에스테르()ester( NBETMSNBETMS )의 제조Manufacturing

Figure 112007077232327-pat00011
Figure 112007077232327-pat00011

NBECOOHNBECOOH 의 제조Manufacture

디시클로펜타디엔 100mL를 250mL 삼구 둥근 바닥 플라스크에 넣고 질소 대기 하에서 환류시켜 디시클로펜타디엔은 시클로펜타디엔으로 열분해되었다. 초기 증류된 5mL를 회수하지 않은 후에, -78℃로 냉각된 용기로 시클로펜타디엔을 증류하였다. 메탄올 350mL에 푸마르산(30.0g, 0.259mol)을 넣은 다음, 열분해된 시클로펜타디엔(35.9mL, 0.431mol)을 상온에서 첨가하였다. 반응혼합물을 밤새도록 교반시킨 후, 용매를 감압제거하여 고체를 수득하였다. 수득된 고체를 펜탄으로 5회 세척한 후 건조하여 표제화합물인 NBECOOH를 흰색고체로 46.9g(99.7%)얻었다.100 mL of dicyclopentadiene was placed in a 250 mL three neck round bottom flask and refluxed under nitrogen atmosphere to pyrolyze the dicyclopentadiene into cyclopentadiene. After 5 mL of initial distillation was not recovered, cyclopentadiene was distilled into a vessel cooled to -78 ° C. Fumaric acid (30.0 g, 0.259 mol) was added to 350 mL of methanol, and pyrolysed cyclopentadiene (35.9 mL, 0.431 mol) was added at room temperature. After stirring the reaction mixture overnight, the solvent was removed under reduced pressure to obtain a solid. The obtained solid was washed 5 times with pentane and dried to obtain 46.9 g (99.7%) of the title compound NBECOOH as a white solid.

1H NMR (δ, D2O, 300 MHz):6.18 - 6.25 (dd, 1H, =C H ), 5.87 - 6.15 (dd, 1H, =C H ), 3.20 -3.25 (t, 1H, exo-C H ), 3.15 (s, 1H, bridge head), 3.04 (s, 1H, bridge head), 2.44 - 2.49 (dd, 1H, endo-C H ), 1.41 - 1.47 (d, 1H, C H 2), 1.31 - 1.38 (dd, 1H, C H 2). 13C NMR (δ, acetone-d6, 75 MHz): 175.7, 174.4, 138.2, 135.9, 48.3, 48.2, 47.9, 47.6, 46.1. 1 H NMR ( δ , D 2 O, 300 MHz): 6.18-6.25 ( dd , 1H, = C H ), 5.87-6.15 ( dd , 1H, = C H ), 3.20 -3.25 ( t , 1H, exo- C H ), 3.15 ( s , 1H, bridge head), 3.04 ( s , 1H, bridge head), 2.44-2.49 ( dd , 1H, endo -C H ), 1.41-1.47 ( d , 1H, C H 2 ) , 1.31-1.38 ( dd , 1H, C H 2 ). 13 C NMR ( δ , acetone-d 6 , 75 MHz): 175.7, 174.4, 138.2, 135.9, 48.3, 48.2, 47.9, 47.6, 46.1.

NBETMSNBETMS 의 제조Manufacture

상기 제조된 NBECOOH (8.0 g, 44 mmol)를 distil.디에틸에테르 280mL에 용해시킨 후 피리딘 8.7 mL(132 mmol)을 한 번에 첨가하였다. 클로로트리메틸실란 (22.48 mL, 132 mmol)을 30초에 걸쳐서 첨가하고 교반시켰다. 피리딘 염산 염의 흰색 침전물이 즉시 생성되었다. 침전물을 셀라이트 필터하여 제거시킨 후 여액을 3시간동안 교반시켰다. 용매는 감압제거하여 표제화합물인 NBETMS를 흰색 고체로 11.5g(80.1%) 수득하였다. 추가적인 정제는 생성된 흰색 고체를 펜탄에서 재용해시킨 후 중성 비활성알루미나 칼럼에 통과시킨 다음, 감압하에 펜탄을 제거하고, 디에틸에테르를 이용하여 백색 고체를 재결정하였다. The NBECOOH (8.0 g, 44 mmol) prepared above was dissolved in 280 mL of distil.diethyl ether, and 8.7 mL (132 mmol) of pyridine was added at a time. Chlorotrimethylsilane (22.48 mL, 132 mmol) was added over 30 seconds and stirred. A white precipitate of pyridine hydrochloride immediately formed. The precipitate was removed by celite filter and the filtrate was stirred for 3 hours. The solvent was removed under reduced pressure to give 11.5 g (80.1%) of the title compound, NBETMS, as a white solid. Further purification was redissolved the resulting white solid in pentane and passed through a neutral inert alumina column, then the pentane was removed under reduced pressure, and the white solid was recrystallized using diethyl ether.

1H NMR (δ, CDCl3, 300 MHz):6.27 - 6.30 (dd, 1H, =CH), 6.03 - 6.06 (dd, 1H, =CH), 3.32 - 3.35 (t, 1H, exo-CH), 3.22 (s, 1H, bridge head), 3.11 (s, 1H, bridge head), 2.61 - 2.63 (dd, 1H, endo-CH), 1.54 - 1.57 (d, 1H, CH 2), 1.42 - 1.45 (dd, 1H, CH 2), 0.23 - 0.28 (d, 18H, TMS). 13C NMR (δ, CDCl3, 75 MHz):175.2, 174.1, 137.9, 135.1, 49.5, 49.0, 48.0, 47.6, 46.1, 0.0. 1 H NMR (δ, CDCl 3 , 300 MHz): 6.27-6.30 (dd, 1H, = C H ), 6.03-6.06 (dd, 1H, = C H ), 3.32-3.35 (t, 1H, exo-C H ), 3.22 (s, 1H, bridge head), 3.11 (s, 1H, bridge head), 2.61-2.63 (dd, 1H, endo-C H ), 1.54-1.57 (d, 1H, C H 2 ), 1.42-1.45 (dd, 1H, C H 2 ), 0.23-0.28 (d, 18H, TMS). 13 C NMR (δ, CDCl 3 , 75 MHz): 175.2, 174.1, 137.9, 135.1, 49.5, 49.0, 48.0, 47.6, 46.1, 0.0.

노보넨Norborneen 단량체,  Monomer, NBECOOHNBECOOH  And NBETMSNBETMS 의 특성화Characterization of

NBECOOH와 그의 트리메틸실릴화된 NBETMS는 1H, 13C NMR와 GC-mass 분광계에 의해 식별되었다. NBECOOH의 1H NMR 스펙트럼은 도 1에 나타내었다. 도 1에서, 노보넨-타입 고리 화합물의 비닐(6,7)피크(-CH=CH-)의 특징적인 공명 피크가 6.18 - 6.25 ppm과 5.87 - 6.15 ppm에서 분명히 관찰되었다. 카르복실산 기는 엔도-(endo-)와 엑소-(exo-) 위치에 붙어있기 때문에, 카르복실 산에 인접한 2개의 메탄(2, 3) 양성자는 각각 3.20 - 3.25 ppm (exo-CH)와 2.44 - 2.49 ppm (endo-CH)에서 관찰되었다. 도 4에서 NBECOOH의 트리메틸실릴화시켜 제조된 NBETMS의 경우 0.23 - 0.28 ppm에 있는 트리메틸실릴 기 (8,9)의 특징적 공명 신호를 제외하고 나머지 모든 특징적 피크는 NBECOOH와 동일하게 남아있다. 이로부터 NBECOOH의 트리메틸실릴화를 확인하였다. 도 2 및 도 5에서 NBECOOH와 NBETMS의 13C NMR 스펙트럼으로부터 합성된 노보넨 화합물의 구조가 확인되었다. 또한 GC-mass 분광계에 의해 측정된 분자 이온 피크는 NBECOOH에 대해 182 및 NBETMS에 대해 326으로 각각의 단량체가 합성되었음을 확인하였다[도 3 및 도 6].NBECOOH and its trimethylsilylated NBETMS were identified by 1 H, 13 C NMR and GC-mass spectrometer. 1 H NMR spectrum of NBECOOH is shown in FIG. 1. In Figure 1, the characteristic resonance peaks of the vinyl (6,7) peak (-C H = C H- ) of the norbornene-type ring compound were clearly observed at 6.18-6.25 ppm and 5.87-6.15 ppm. Since the carboxylic acid groups are attached at the endo- and exo- positions, the two methane (2, 3) protons adjacent to the carboxylic acid are 3.20-3.25 ppm (exo-C H ) and It was observed at 2.44-2.49 ppm (endo-C H ). In the case of NBETMS prepared by trimethylsilylation of NBECOOH in FIG. 4, all other characteristic peaks remain the same as NBECOOH except for the characteristic resonance signal of trimethylsilyl group (8,9) at 0.23-0.28 ppm. This confirmed trimethylsilylation of NBECOOH. In FIGS. 2 and 5, the structure of the norbornene compound synthesized from 13 C NMR spectra of NBECOOH and NBETMS was confirmed. In addition, the molecular ion peak measured by the GC-mass spectrometer confirmed that each monomer was synthesized at 182 for NBECOOH and 326 for NBETMS [FIGS. 3 and 6].

NBETMS는 반응성이 좋아 공기 중의 수분에 의해 가수분해되어진다. 또한 중성 물에 의해 TMS 기를 제거하는 방법이 보고된 바 있다[R. S. Saunders, R. E. Cohen, S. J. Wong, and R. R. Schrock, Macromolecules, 25, 2055 (1992)]. 본 발명자는 NBETMS를 냉장고에서 실리카겔과 함께 -5℃에서 저장시 천천히 분해되는 것을 발견하였다. 도 7에 나타낸 바와 같이, 저장기간이 증가됨에 따라 순수한 NBETMS의 2개의 비닐 피크 6.1-6.2ppm 사이에 새로운 피크가 나타나는 것을 관찰하 였고, NBETMS의 저장 안정성을 다음과 같이 연구하였다. 상이한 저장시간 동안 저장된 NBETMS를 글로브 박스 안으로 옮기고, 디스틸된 펜탄에 용해시켰다. 펜탄 내 불용성 부분은 사전에 건조된 글래스 펀넬(predried glass funnel)을 통해 여과시켰다. 펜넬을 건조시킨 다음 분해된 화합물을 분리하고 무게를 측정하였다. NBETMS의 분해율(wt%)를 계산하고 도 8에 저장시간에 따른 분해율(wt%)을 도시하였다. 도 8는 0.206 wt.%/day의 상대적으로 느린 분해율을 나타냈다.NBETMS is highly reactive and hydrolyzed by moisture in the air. It has also been reported to remove TMS groups by neutral water (RS Saunders, RE Cohen, SJ Wong, and RR Schrock, Macromolecules , 25 , 2055 (1992)). The inventors have found that NBETMS degrades slowly upon storage at −5 ° C. with silica gel in a refrigerator. As shown in FIG. 7, it was observed that as the storage period increased, a new peak appeared between 6.1-6.2 ppm of two vinyl peaks of pure NBETMS, and the storage stability of NBETMS was studied as follows. NBETMS stored for different storage times were transferred into a glove box and dissolved in distilled pentane. The insoluble portion in the pentane was filtered through a pre-dried glass funnel. The fennel was dried and the degraded compounds were separated and weighed. The decomposition rate (wt%) of NBETMS was calculated and FIG. 8 shows the decomposition rate (wt%) according to storage time. 8 shows a relatively slow decomposition rate of 0.206 wt.% / Day.

[[ 실시예Example 2]  2] 폴리Poly (( NBETMSNBETMS ) 및 ) And 폴리(NBECOOH)의Of poly (NBECOOH) 제조 Produce

Figure 112007077232327-pat00012
Figure 112007077232327-pat00012

폴리(NBECOOH)는 글로브박스 안에서 NBETMS의 ROMP에 의해 준비된 폴리(NBETMS)를 가수분해시킴으로서 제조되었다.Poly (NBECOOH) was prepared by hydrolyzing Poly (NBETMS) prepared by ROMB of NBETMS in a glovebox.

폴리(NBETMS)의 제조Preparation of Poly (NBETMS)

플라스틱 나사 캡을 가진 7개의 작은 바이알에 3.68 × 10-2 M NBETMS의 CH2Cl2 용액 2.65 mL를 각각 넣고 20℃에서 교반시켰다. Grubbs' 촉매 ([RuCl2(=CHPh)(PCy3)2] = 3.68 × 10-4 M)의 CH2Cl2 용액 1.1 mL 를 각가의 바이알에 첨가하였다. 중합 반응물의 색이 10분 내에 분홍색에서 노란색으로 변화되었다. 7 개의 평행 반응이 동시에 시작되었으며, 각각 1시간, 2시간, 3시간, 4.5시간, 6시간, 12시간, 24시간 반응후 각각의 바이알에 에틸비닐에테르 0.9mL를 주입하여 반응을 종결시켰다. 이들을 다시 0.5시간 동안 교반시켰다. 상기 에틸비닐에테르는 개시제의 75배 초과량으로 사용하여 반응성 사슬 말단의 효율적인 종결을 수행하였다.Two small vials with plastic screw caps were added 2.65 mL of a CH 2 Cl 2 solution of 3.68 × 10 −2 M NBETMS, respectively, and stirred at 20 ° C. 1.1 mL of a CH 2 Cl 2 solution of Grubbs' catalyst ([RuCl 2 (= CHPh) (PCy 3 ) 2 ] = 3.68 × 10 −4 M) was added to each vial. The color of the polymerization reaction changed from pink to yellow within 10 minutes. Seven parallel reactions were started at the same time, and the reaction was terminated by injecting 0.9 mL of ethyl vinyl ether into each vial after 1 hour, 2 hours, 3 hours, 4.5 hours, 6 hours, 12 hours, and 24 hours. These were stirred again for 0.5 hours. The ethyl vinyl ether was used in excess of 75 times the initiator to effect efficient termination of the reactive chain ends.

1H NMR (δ, CDCl3, 300 MHz): 5.18 - 5.54 (m, 2H, =C H ), 3.14 - 2.68 (m, 4H, C H ), 1.92 (bs, 1H, C H 2), 1.51 (bs, 1H, C H 2), 0.25 (bs, 18H, TMS). 1 H NMR ( δ , CDCl 3 , 300 MHz): 5.18-5.54 ( m , 2H, = C H ), 3.14-2.68 ( m , 4H, C H ), 1.92 ( bs , 1H, C H 2 ), 1.51 ( bs , 1H, C H 2 ), 0.25 ( bs , 18H, TMS).

폴리(NBECOOH)의 제조Preparation of Poly (NBECOOH)

바이알을 글로브박스 밖으로 꺼내고, 격렬히 교반을 하면서 HCl 또는 초산 을 포함하는 가수분해 수용액 1mL를 첨가하여 폴리(NBETMS)를 가수분해시켰다. 2시간 후 용매를 제거시키고, 잔류물인 연갈색 고체를 THF 5 mL에 재용해시킨 후, 격렬히 교반하면서 잔류된 개시제를 제거하기 위하여 디클로로메탄 200 mL를 첨가하여 침전물을 형성시켰다. 생성된 침전물은 40℃에서 감압하여 24 시간 동안 건조되었다. 수분을 쉽게 흡수하는 생성물은 글로브박스에 즉시 옮겼고, 건조시킨 뒤 무게를 측정하였다. The vial was taken out of the glovebox, and 1 mL of a hydrolysis aqueous solution containing HCl or acetic acid was added with vigorous stirring to hydrolyze the poly (NBETMS). After 2 hours the solvent was removed and the residue light brown solid was redissolved in 5 mL of THF and then precipitated by the addition of 200 mL of dichloromethane to remove the remaining initiator with vigorous stirring. The resulting precipitate was dried under reduced pressure at 40 ° C. for 24 hours. The product that readily absorbed moisture was immediately transferred to the glovebox, dried and weighed.

1H NMR (δ, THF-d8, 300 MHz): 5.34 - 5.57 (m, 2H, =C H ), 2.72 - 3.21 (m, 4H, C H ), 2.04 (bs, 1H, C H 2), 1.53 (bs, 1H, C H 2). 1 H NMR ( δ , THF-d 8 , 300 MHz): 5.34-5.57 ( m , 2H, = C H ), 2.72-3.21 ( m , 4H, C H ), 2.04 ( bs , 1H, C H 2 ) , 1.53 ( bs , 1 H, C H 2 ).

NBETMSNBETMS of 리빙Living ROMPROMP 에 대한 연구Research on

최적화된 리빙 ROMP 조건을 찾기 위해, NBETMS의 ROMP는 반응온도 20℃, 용매 CH2Cl2 및 개시제 RuCl2(=CHPh)(PCy3)2를 사용하여 수행되었다. 중합 조건은 다음과 같다.In order to find optimized living ROMP conditions, ROMP of NBETMS was performed using a reaction temperature of 20 ° C., solvent CH 2 Cl 2 and initiator RuCl 2 (= CHPh) (PCy 3 ) 2 . Polymerization conditions are as follows.

[RuCl2(=CHPh)(PCy3)2] = 3.68 × 10-4 M[RuCl 2 (= CHPh) (PCy 3 ) 2 ] = 3.68 × 10 −4 M

[NBETMS] = 3.68 × 10-2 M[NBETMS] = 3.68 × 10 -2 M

각각의 일정 시간 뒤에, 중합반응은 과량의 에틸비닐에테르로 종결되었다. 20℃에서 NBETMS의 ROMP에 대한 결과를 하기 표 1에 나타내었다.After each period of time, the polymerization was terminated with excess ethyl vinyl ether. The results for ROMP of NBETMS at 20 ° C. are shown in Table 1 below.

[표 1] 20℃에서 NBETMS의 ROMP에 대한 결과a TABLE 1 Results for ROMP of NBETMS at 20 ° C a

Figure 112007077232327-pat00013
Figure 112007077232327-pat00013

상기 표 1에 기재된 바와 같이, NBETMS의 중합은 개시제 원료 용액의 첨가 후 원활하게 진행되고 12시간 반응 후 단량체의 전화율이 100%에 도달하게 되었다.As shown in Table 1 above, the polymerization of NBETMS proceeded smoothly after the addition of the initiator raw material solution and the conversion rate of the monomer reached 100% after 12 hours of reaction.

도 9에 NBETMS 단량체, 폴리(NBETMS) 및 폴리(NBECOOH)의 1H NMR 스펙트럼을 도시하였다. ROMP를 통해 뒤틀린 고리형 노보넨 단량체에 존재하는 이중결합이 단량체 사이의 새로운 이중결합을 형성하면서 개구됨으로서, 단량체와 고분자에 있는 비닐 양성자는 비닐 양성자 주위에 다른 화학적 상황을 나타냈다. 그 결과로서 NBETMS의 ROMP 후 δ6.0-6.4ppm에서 나타나는 NBETMS의 비닐피크가 δ5.0-5.8ppm으로 이동하였으며, 이 위치는 폴리(NBETMS)의 비닐피크를 나타냈다. 따라서 중합반응 동안 NBETMS 단량체의 완전한 전환은 1H NMR 스펙트럼으로부터도 확인되었다. 폴리(NBETMS)의 가수분해 후 생성된 폴리(NBECOOH)의 1H NMR 스펙트럼(THF-d8)은 폴리(NBETMS)에 존재하는 트리메틸실릴기가 효율적으로 제거되고 다른 특성 피크 값은 원래대로 존재함을 보여주었다.FIG. 9 shows the 1 H NMR spectra of NBETMS monomers, poly (NBETMS) and poly (NBECOOH). As the double bonds present in the cyclic norbornene monomers twisted through the ROMP opened up forming new double bonds between the monomers, the vinyl protons in the monomer and polymer exhibited different chemical conditions around the vinyl protons. As a result, the vinyl peak of NBETMS shifted from δ6.0-6.4ppm after ROMP of NBETMS shifted to δ5.0-5.8ppm, indicating the vinyl peak of poly (NBETMS). Thus, complete conversion of NBETMS monomers during polymerization was also confirmed from the 1 H NMR spectrum. The 1 H NMR spectrum (THF-d 8 ) of poly (NBECOOH) produced after hydrolysis of poly (NBETMS) efficiently removes trimethylsilyl groups present in poly (NBETMS) and other characteristic peak values remain intact. Showed.

도 10에 제1차 동역학적 (ln([M0]/[M]) 대 시간) 플롯을 도시하였다. 증식(RP)의 비율은 하기 수학식 (1)로 표시된다.First order kinetics (ln ([M 0 ] / [M]) vs. time) plots are shown in FIG. The ratio of proliferation R P is represented by the following equation (1).

Figure 112007077232327-pat00014
Figure 112007077232327-pat00014

kp는 중합반응 속도 상수이고, [M]은 일정한 시간(t)에서의 중합반응에 참려하는 단량체 농도이고, [M0]는 초기 단량체 농도이고, [I]는 개시제 또는 증가되는 사슬 말단의 농도이다. 제1차 동력학적 플롯이 일정한 온도에서 직선 관계를 보이면, 증가되는 사슬 말단의 양이 일정하다는 것을 나타내는 것이고, 이는 중합반응 동안에는 어떠한 종결도 나타나지 않는다는 것을 의미한다. NBETMS의 ROMP의 경우 ln([M0]/[M])과 시간 사이의 직선 관계는 도 10에서 관찰되었으며, 이는 Grubbs 촉매를 이용한 NBETMS의 ROMP 동안에 종결의 부재를 확신시켜 주는 것이다.k p is the polymerization rate constant, [M] is the monomer concentration to withstand the polymerization at a given time (t), [M 0 ] is the initial monomer concentration, and [I] is the initiator or increased chain terminus. Concentration. If the first kinematic plot shows a linear relationship at a constant temperature, it indicates that the amount of chain ends that is increased is constant, which means that no termination occurs during the polymerization. The linear relationship between ln ([M 0 ] / [M]) and time for ROMP of NBETMS was observed in FIG. 10, which confirms the absence of termination during ROMP of NBETMS with Grubbs catalyst.

또 다른 플롯으로 연쇄이동 반응의 부재를 확인하기 위한

Figure 112007077232327-pat00015
대 전환을 도 11에 도시하였다.
Figure 112007077232327-pat00016
과 상응하는 전환 사이의 관계는 하기 수학식 3으로 표시된다.Another plot to identify the absence of chain transfer reactions.
Figure 112007077232327-pat00015
Large conversion is shown in FIG. 11.
Figure 112007077232327-pat00016
The relationship between and the corresponding conversion is represented by the following equation.

Figure 112007077232327-pat00017
Figure 112007077232327-pat00017

Figure 112007077232327-pat00018
는 고분자의 수 평균 분자량이고, Mm은 단량체의 분자량이고, Np는 고분자 사슬의 수를 나타낸다.
Figure 112007077232327-pat00019
이 전환에 대해 선형 의존도를 가질 때 Np는 일정한 것을 의미하고, 전체 중합 반응 동안에 어떠한 연쇄이동반응이 일어나지 않았음을 나타낸다. 도 11에 나타낸 바와 같이 선형
Figure 112007077232327-pat00020
대 전화 플롯이 관찰되었고 이는 연쇄이동반응의 부재를 나타낸다. 폴리(NBETMS)에 있는 트리메틸실릴기는 수분과의 반응성이 너무 좋아 폴리(NBETMS) 자체의 정확한 분자량을 GPC를 사용하여 측정할 수 없다. 따라서, 고분자 전구체, 폴리(NBETMS)의 가수분해 후 생성된 폴 리(NBECOOH)의 분자량이 상기 표 1 및 도 11에 나타낸 바와 같이 측정되었다. 도 12은 좁은 분자량 분포를 유지하는 동안 증가되는 전환에 따른 높은 분자량으로의 GPC 흔적량의 이동을 도시화한 것이다. 그결과 모든 고분자 사슬 말단은 종결 및 연쇄이동 반응과 같은 사슬끊김반응 없이 증가되었다.
Figure 112007077232327-pat00018
Is the number average molecular weight of the polymer, M m is the molecular weight of the monomer, and N p represents the number of polymer chains.
Figure 112007077232327-pat00019
When having a linear dependence on this conversion, N p means constant, indicating that no chain transfer reaction occurred during the entire polymerization reaction. Linear as shown in FIG.
Figure 112007077232327-pat00020
Large plots were observed, indicating the absence of chain transfer reactions. The trimethylsilyl group in poly (NBETMS) is so reactive with water that the exact molecular weight of poly (NBETMS) itself cannot be measured using GPC. Therefore, the molecular weight of poly (NBECOOH) produced after the hydrolysis of the polymer precursor, poly (NBETMS) was measured as shown in Table 1 and FIG. FIG. 12 depicts the shift of GPC traces to higher molecular weights with increasing conversion while maintaining a narrow molecular weight distribution. As a result, all polymer chain ends were increased without chain breakage reactions such as termination and chain transfer reactions.

NBETMS 단량체의 완전한 전환 후에도 폴리(NBETMS) 사슬 말단이 활성을 유지하는지를 알아보기 위하여 2차 NBETMS 증가량을 중합반응 혼합물에 첨가시키고 24시간동안 유지시켰다. 중합반응 조건은 다음과 같았다.A second NBETMS increase was added to the polymerization mixture and maintained for 24 hours to see if the poly (NBETMS) chain ends remained active after complete conversion of the NBETMS monomer. Polymerization conditions were as follows.

1차 [NBETMS] = 3.68 × 10-2 M, [RuCl2(=CHPh)(PCy3)2] = 7.36 × 10-4 MPrimary [NBETMS] = 3.68 × 10 -2 M, [RuCl 2 (= CHPh) (PCy 3 ) 2 ] = 7.36 × 10 -4 M

2차 [NBETMS] = 3.68 × 10-2 M2nd [NBETMS] = 3.68 × 10 -2 M

GPC 결과로부터 1차 합성된 폴리(NBETMS)는

Figure 112007077232327-pat00021
=11,300g/몰,
Figure 112007077232327-pat00022
=1.23을 나타내었으나, 2차 NBETMS 증가량을 첨가시킨 후 합성된 폴리(NBETMS)는 더 높은 분자량(
Figure 112007077232327-pat00023
=23,300g/몰) 및 좁은 분자량 분포(
Figure 112007077232327-pat00024
=1.23)을 향하여 이동하였다. 이는 증가되는 사슬 말단은 첫 번째 블록의 중합반응 후에도 여전히 활성을 띠고 있다는 것을 나타낸다. 상기 결과들로부터 일정한 조건하에서 NBETMS의 ROMP는 리빙 방식으로 진행됨을 알 수 있다.The first synthesized poly (NBETMS) from GPC results is
Figure 112007077232327-pat00021
= 11,300 g / mol,
Figure 112007077232327-pat00022
= 1.23, but the poly (NBETMS) synthesized after adding the second NBETMS increase was higher molecular weight (
Figure 112007077232327-pat00023
= 23,300 g / mol) and narrow molecular weight distribution (
Figure 112007077232327-pat00024
= 1.23). This indicates that the increasing chain ends are still active after the polymerization of the first block. From the above results, it can be seen that the ROMP of NBETMS proceeds in a living manner under certain conditions.

[[ 실시예Example 3] 연속적인 단량체 첨가반응을 통한  3] through continuous monomer addition 폴리(NBECOOH-Poly (NBECOOH- bb -NBEPOSS)의-NBEPOSS) 제조 Produce

Figure 112007077232327-pat00025
Figure 112007077232327-pat00025

폴리(NBECOOH-b-NBEPOSS)는 상기 실시예 1에서 제조된 폴리(NBETMS)블록에 NBEPOSS 원료 용액을 하기 표 2에 기재된 함량으로 연속적으로 첨가시킨 후 2시간동안 교반시킨 다음 에틸비닐에테르 50 μL을 주입시켜 반응을 종결시켜 폴리(NBETMS-b-NBEPOSS)를 제조하였다. 상기 제조된 폴리(NBETMS-b-NBEPOSS) 500 μL를 취하여 1H NMR 분석을 하였다. 완전한 종결을 위해 반응 혼합물은 0.5 시간동안 교반되었다. 아세트산 150 μL를 상기 반응 혼합물에 첨가한 후 반응 혼합물은 반 복적으로 THF/CH2Cl2에 용해/침전하여 반복해서 여과하여 정제하였다.Poly (NBECOOH- b- NBEPOSS) was added to NBEPOSS raw material solution in the poly (NBETMS) block prepared in Example 1 continuously in the content shown in Table 2 and stirred for 2 hours and then 50 μL of ethyl vinyl ether Injection was completed to terminate the reaction to prepare poly (NBETMS- b- NBEPOSS). 500 μL of the prepared poly (NBETMS- b- NBEPOSS) was taken and subjected to 1 H NMR analysis. The reaction mixture was stirred for 0.5 hour for complete termination. After 150 μL of acetic acid was added to the reaction mixture, the reaction mixture was repeatedly dissolved / precipitated in THF / CH 2 Cl 2 and filtered repeatedly.

[표 2] 연속적 ROMPa를 통해 제조된 폴리(NBECOOH-b-NBEPOSS)공중합체의 특성TABLE 2 Properties of Poly (NBECOOH- b- NBEPOSS) Copolymer Prepared via Continuous ROMP a

Figure 112007077232327-pat00026
Figure 112007077232327-pat00026

상기 표 2에 폴리(NBECOOH-b-NBEPOSS) 공중합체의 특성을 나타내었다.Table 2 shows the characteristics of the poly (NBECOOH- b- NBEPOSS) copolymer.

폴리(NBECOOH-b-NBEPOSS) 공중합체의 합성을 위해, NBETMS의 리빙 ROMP는 를 NBETMS/RuCl2(=CHPh)(PCy3)2/CH2Cl2/20℃ 시스템을 이용하여 폴리(NBETMS)를 획득하기 위해 먼저 수행되었다. NBETMS의 완전한 전환 후 NBEPOSS는 반응에 연속적으로 첨가되었고, 폴리(NBETMS-b-NBEPOSS)를 가수분해시켜 폴리(NBECOOH-b-NBEPOSS) 공중합체를 형성시켰다. 마지막 블록 공중합체의 사슬내 교차-상호교환 반응을 최소화하기 위해 중합반응은 2번째 단량체 NBEPOSS의 완전한 전환 직후 에틸비닐에테르의 첨가로 종결되었다. 폴리(NBECOOH-b-NBEPOSS)공중합체의 시리즈가 3가지의 다른 NBEPOSS 함량으로 합성되었다. NBETMS의 호모중합반응의 결과를 상기 표 2에 나타내었다. 상이한 NBEPOSS의 함량을 가진 폴리(NBECOOH-b-NBEPOSS)공중합체 및 그 의 전구체인 폴리(NBECOOH)호모폴리머의 GPC 흔적량은 도 13에 도시하였다. 도 13으로부터 폴리(NBECOOH-b-NBEPOSS)공중합체는 좁은 분자량 분포를 유지함과 동시에 NBEPOSS의 함량에 따라서 높은 분자량 쪽으로 이동하였다.Poly (NBECOOH- -NBEPOSS b) for the synthesis of the copolymer, subject to the living ROMP of NBETMS using NBETMS / RuCl 2 (= CHPh) (PCy 3) 2 / CH 2 Cl 2/20 ℃ system poly (NBETMS) It was first performed to obtain. After complete conversion of NBETMS, NBEPOSS was added continuously to the reaction and the poly (NBETMS- b- NBEPOSS) was hydrolyzed to form a poly (NBECOOH- b- NBEPOSS) copolymer. The polymerization was terminated by the addition of ethyl vinyl ether immediately after the complete conversion of the second monomer NBEPOSS to minimize the in-chain cross-interchange reaction of the last block copolymer. Series of poly (NBECOOH- -NBEPOSS b) copolymer was synthesized in a different NBEPOSS content of the three. The results of homopolymerization of NBETMS are shown in Table 2 above. GPC traces of poly (NBECOOH- b- NBEPOSS) copolymers with different NBEPOSS contents and their precursor poly (NBECOOH) homopolymers are shown in FIG. 13. Poly (NBECOOH- b -NBEPOSS) copolymer from Figure 13 was moved while maintaining a narrow molecular weight distribution towards higher molecular weight according to the content of NBEPOSS.

블록 공중합체에 있는 NBEPOSS의 구조는 도 14에 나타낸 바와 같이 1H NMR을 사용하여 결정되었다. 폴리(NBETMS)블록과 폴리(NBEPOSS)블록사이로부터의 비닐 피크의 신호 세기 비율은 δ 5.18-5.55 ppm에 보여졌고, 폴리(NBEPOSS)블록으로부터 시클로펜틸 양성자는 δ 1.30-1.50 ppm에 나타났다. 블록 공중합체에서 NBEPOSS의 계산된 함량은 단량체의 공급 비율과 일치하였다. 도 15에 폴리(NBETMS)와 폴리(NBETMS-b-NBEPOSS)공중합체의 가수분해로 제조된 폴리(NBECOOH)와 폴리(NBECOOH-b-NBEPOSS)공중합체 각각의 1H NMR을 나타냈다. 폴리(NBETMS)블록 내 트리메틸실릴기는 가수분해 후 정량적으로 제거되었음을 보여준다. δ 0 ppm의 주위에 남아있는 작은 피크들은 POSS 에 존재하는 Si 원자 옆에 양성자 피크로부터 기여되는 것으로 예측된다.The structure of NBEPOSS in the block copolymer was determined using 1 H NMR as shown in FIG. 14. The signal intensity ratio of the vinyl peaks between the poly (NBETMS) block and the poly (NBEPOSS) block was shown at δ 5.18-5.55 ppm and the cyclopentyl protons from the poly (NBEPOSS) block at δ 1.30-1.50 ppm. The calculated content of NBEPOSS in the block copolymer was consistent with the feed rate of the monomers. Exhibited 15 poly (NBETMS) and poly (NBETMS- -NBEPOSS b) a poly (NBECOOH) and poly each 1 H NMR (NBECOOH- b -NBEPOSS) copolymers prepared by the hydrolysis of the copolymer. Trimethylsilyl groups in the poly (NBETMS) block show quantitative removal after hydrolysis. Small peaks remaining around δ 0 ppm are expected to contribute from the proton peaks beside the Si atoms present in the POSS.

본 발명에서는 양친매성 유/무기 혼성 폴리(NBECOOH-b-NBEPOSS) 공중합체는 RuCl2(=CHPh)(PCy3)2/CH2Cl2/20℃ 시스템을 사용하여 NBETMS와 NBEPOSS의 연속적인 ROMP에 의해 제조된 폴리(NBETMS-b-NBEPOSS) 공중합체를 가수분해시켜 제조되는 것이다.In the present invention, an amphiphilic organic / inorganic hybrid poly (NBECOOH- -NBEPOSS b) copolymers RuCl 2 (= CHPh) (PCy 3) 2 / CH 2 Cl 2/20 ℃ using the system NBETMS and continuous ROMP of NBEPOSS It is prepared by hydrolyzing the poly (NBETMS- b -NBEPOSS) copolymer prepared by.

첫째로, NBETMS의 ROMP는 그것의 리빙 거동을 알아보기 위해 실시되었으며, 그것은 연속적인 단량체 첨가 기술에 의한 블록 공중합체를 합성하는 것이 요구되었다. NBETMS의 상대적으로 낮은 저장 불안정성 때문에, 종결과 연쇄이동반응 없이 리빙 폴리(NBETMS)는 합성된 NBETMS로부터 생성되는 것으로 부자량과 좁은 분자량 분포를 제어할 수 있다. 단량체가 고갈된 조건하에서 폴리(NBETMS) 사슬 말단의 리빙 본질은 증가되는 단량체 첨가법을 사용함으로써 확인되었다. 그다음 폴리(NBECOOH-b-NBEPOSS)공중합체는 리빙 폴리(NBETMS)에 NBEPOSS의 연속적인 단량체 첨가이후 폴리(NBETMS-b-NBEPOSS)공중합체 내 트리메틸실릴기의 가수분해로 제조되었다.Firstly, ROMB of NBETMS was conducted to examine its living behavior, which required the synthesis of block copolymers by continuous monomer addition techniques. Because of the relatively low storage instability of NBETMS, living poly (NBETMS) is produced from the synthesized NBETMS without termination and chain transfer reactions to control the rich and narrow molecular weight distribution. The living nature of poly (NBETMS) chain ends under monomer depleted conditions was confirmed by using increased monomer addition methods. The poly (NBECOOH- b- NBEPOSS) copolymer was then prepared by hydrolysis of the trimethylsilyl group in the poly (NBETMS- b -NBEPOSS) copolymer after the continuous monomer addition of NBEPOSS to the living poly (NBETMS).

도 1 - NBECOOH(in D2O)의 1H NMR 스펙트럼 1 H NMR spectrum of NBECOOH (in D 2 O) - 1

도 2- NBECOOH(in acetone-d6)의 13C NMR 스펙트럼2- 13 C NMR spectrum of NBECOOH (in acetone-d 6 )

도 3 - NBECOOH의 GC Mass 스펙트럼Figure 3-GC Mass Spectrum of NBECOOH

도 4 - NBETMS(in CDCl3)의 1H NMR 스펙트럼 1 H NMR spectrum of NBETMS (in CDCl 3) - 4

도 5- NBETMS(in CDCl3)의 13C NMR 스펙트럼5- 13 C NMR spectrum of NBETMS (in CDCl 3 )

도 6 - NBETMS의 GC Mass 스펙트럼Figure 6-GC Mass Spectrum of NBETMS

도 7 - 분해된 화합물의 식별을 위한 NBETMS의 1H NMR 스펙트럼(상-단일 치환된 NBETMS; 하-순수한 NBETMS)Figure 7 - 1 H NMR spectrum of NBETMS for the identification of the degraded compound (- a monosubstituted NBETMS phase; HA-pure NBETMS)

도 8 - NBETMS의 분해 속도Figure 8-Degradation rate of NBETMS

도 9 - NBETMS 단량체, 폴리(NBETMS)전구체 및 폴리(NBECOOH)의 1H NMR 스펙트럼Figure 9 - NBETMS monomers, poly (NBETMS) 1 H NMR spectrum of the precursor and poly (NBECOOH)

도 10 - NBETMS의 ROMP에서 전화 및 ln([M]0/[M]) 대 시간 플롯[○: 전환, ●: ln([M]0/[M])]FIG. 10-Phone and ln ([M] 0 / [M]) vs. Time Plot in ROMP of NBETMS [○: Transition, ●: ln ([M] 0 / [M])]

도 11 - NBETMS의 ROMP를 위한 수평균분자량(

Figure 112007077232327-pat00038
) 대 전환의 플롯11-Number average molecular weight for ROMP of NBETMS (
Figure 112007077232327-pat00038
) Vs. plot

도 12 - 시간 증가에 따른 폴리(NBECOOH)의 GPC 커브의 이동12-Shift of GPC curve of poly (NBECOOH) with time increase

도 13 - 폴리(NBECOOH)와 폴리(NBECOOH-b-NBEPOSS)공중합체의 GPC 커브Figure 13-GPC curves of poly (NBECOOH) and poly (NBECOOH- b- NBEPOSS) copolymers

도 14 - 폴리(NBETMS) 호모폴리머와 폴리(NBETMS-b-NBEPOSS)공중합체의 1H NMR 스펙트럼14 - Poly (NBETMS) 1 H NMR spectrum of the homopolymer and the poly (NBETMS- b -NBEPOSS) copolymer

도 15 - 폴리(NBECOOH) 호모폴리머와 폴리(NBECOOH-b-NBEPOSS)공중합체의 1H NMR 스펙트럼15 - Poly (NBECOOH) 1 H NMR spectrum of the homopolymer and the poly (NBECOOH- -NBEPOSS b) copolymer

Claims (4)

하기 화학식 1로 표시되는 폴리(NBECOOH-b-NBEPOSS) 블록 공중합체.Poly (NBECOOH- b -NBEPOSS) block copolymer represented by the formula (1). [화학식 1][Formula 1]
Figure 112007077232327-pat00027
Figure 112007077232327-pat00027
[상기 식에서 R은 수소, (C1-C20)알킬 또는 (C3-C20)시클로알킬이고; m은 3~20이고; n은 50~150이다.][Wherein R is hydrogen, (C1-C20) alkyl or (C3-C20) cycloalkyl; m is 3-20; n is 50 to 150.]
하기 화학식 2로 표시되는 폴리(NBETMS-b-NBEPOSS) 블록 공중합체.Poly (NBETMS- b- NBEPOSS) block copolymer represented by the formula (2). [화학식 2][Formula 2]
Figure 112007077232327-pat00028
Figure 112007077232327-pat00028
[상기 식에서 R은 수소, (C1-C20)알킬 또는 (C3-C20)시클로알킬이고; m은 3~20이고; n은 50~150이다.][Wherein R is hydrogen, (C1-C20) alkyl or (C3-C20) cycloalkyl; m is 3-20; n is 50 to 150.]
1) 하기 화학식 3의 NBETMS 화합물을 RuCl2(=CHPh)(PCy3)2/CH2Cl2/20℃의 조건에서 개환 복분해중합(ring opening metathesis polymerization, ROMP) 반응시켜 화학식 4의 폴리(NBETMS) 화합물을 제조하는 단계;1) a ring-opening under the conditions of the NBETMS compound of formula 3 RuCl 2 (= CHPh) ( PCy 3) 2 / CH 2 Cl 2/20 ℃ metathesis polymerization (ring opening metathesis polymerization, ROMP) by reacting poly (NBETMS of formula (IV) ) Preparing a compound; 2) 상기 제조된 화학식 4의 폴리(NBETMS) 화합물에 하기 화학식 5의 NBSPOSS 단량체 화합물을 연속적으로 첨가반응시켜 화학식 2의 폴리(NBETMS-b-NBEPOSS) 블록 공중합체를 제조하는 단계; 및2) preparing a poly (NBETMS- b- NBEPOSS) block copolymer of Formula 2 by continuously adding NBSPOSS monomer compound of Formula 5 to the poly (NBETMS) compound of Formula 4; And 3) 상기 제조된 화학식 2의 폴리(NBETMS-b-NBEPOSS) 블록 공중합체를 가수분해시켜 화학식 1의 폴리(NBECOOH-b-NBEPOSS) 블록 공중합체를 제조하는 단계;를 특징으로 하는 화학식 1의 폴리(NBECOOH-b-NBEPOSS) 블록 공중합체의 제조방법.3) step of hydrolyzing the poly (NBETMS- b -NBEPOSS) block copolymer of the general formula (2) prepared above prepared poly (NBECOOH- b -NBEPOSS) block copolymer of the formula (1); poly of the formula (1), characterized in the (NBECOOH- b -NBEPOSS) A method for preparing a block copolymer. [화학식 1][Formula 1]
Figure 112007077232327-pat00029
Figure 112007077232327-pat00029
[화학식 2][Formula 2]
Figure 112007077232327-pat00030
Figure 112007077232327-pat00030
[화학식 3][Formula 3]
Figure 112007077232327-pat00031
Figure 112007077232327-pat00031
[화학식 4][Formula 4]
Figure 112007077232327-pat00032
Figure 112007077232327-pat00032
[화학식 5][Formula 5]
Figure 112007077232327-pat00033
Figure 112007077232327-pat00033
[상기 식에서 R은 수소, (C1-C20)알킬 또는 (C3-C20)시클로알킬이고; m은 3~20이고; n은 50~150이다.][Wherein R is hydrogen, (C1-C20) alkyl or (C3-C20) cycloalkyl; m is 3-20; n is 50 to 150.]
1) 하기 화학식 3의 NBETMS 화합물을 RuCl2(=CHPh)(PCy3)2/CH2Cl2/20℃의 조건에서 개환 복분해중합(ring opening metathesis polymerization, ROMP) 반응시켜 화학식 4의 폴리(NBETMS) 화합물을 제조하는 단계; 및1) a ring-opening under the conditions of the NBETMS compound of formula 3 RuCl 2 (= CHPh) ( PCy 3) 2 / CH 2 Cl 2/20 ℃ metathesis polymerization (ring opening metathesis polymerization, ROMP) by reacting poly (NBETMS of formula (IV) ) Preparing a compound; And 2) 상기 제조된 화학식 4의 폴리(NBETMS) 화합물에 하기 화학식 5의 NBSPOSS 단량체 화합물을 연속적으로 첨가반응시켜 화학식 2의 폴리(NBETMS-b-NBEPOSS) 블록 공중합체를 제조하는 단계;를 특징으로 하는 화학식 2의 폴리(NBETMS-b-NBEPOSS) 블록 공중합체의 제조방법.2) preparing a poly (NBETMS- b- NBEPOSS) block copolymer of Chemical Formula 2 by continuously adding the NBSPOSS monomer compound of Chemical Formula 5 to the poly (NBETMS) compound of Chemical Formula 4 prepared above; A process for preparing a poly (NBETMS- b- NBEPOSS) block copolymer of formula (2). [화학식 2][Formula 2]
Figure 112007077232327-pat00034
Figure 112007077232327-pat00034
[화학식 3][Formula 3]
Figure 112007077232327-pat00035
Figure 112007077232327-pat00035
[화학식 4][Formula 4]
Figure 112007077232327-pat00036
Figure 112007077232327-pat00036
[화학식 5][Formula 5]
Figure 112007077232327-pat00037
Figure 112007077232327-pat00037
[상기 식에서 R은 수소, (C1-C20)알킬 또는 (C3-C20)시클로알킬이고; m은 3~20이고; n은 50~150이다.][Wherein R is hydrogen, (C1-C20) alkyl or (C3-C20) cycloalkyl; m is 3-20; n is 50 to 150.]
KR1020070108695A 2007-10-29 2007-10-29 Amphiphilic Norbornene-based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared By Living Ring Opening Metathesis Polymerization, And Method For The Preparation Thereof KR100922182B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070108695A KR100922182B1 (en) 2007-10-29 2007-10-29 Amphiphilic Norbornene-based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared By Living Ring Opening Metathesis Polymerization, And Method For The Preparation Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070108695A KR100922182B1 (en) 2007-10-29 2007-10-29 Amphiphilic Norbornene-based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared By Living Ring Opening Metathesis Polymerization, And Method For The Preparation Thereof

Publications (2)

Publication Number Publication Date
KR20090043063A KR20090043063A (en) 2009-05-06
KR100922182B1 true KR100922182B1 (en) 2009-10-21

Family

ID=40853960

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070108695A KR100922182B1 (en) 2007-10-29 2007-10-29 Amphiphilic Norbornene-based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared By Living Ring Opening Metathesis Polymerization, And Method For The Preparation Thereof

Country Status (1)

Country Link
KR (1) KR100922182B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268203B1 (en) 2011-03-18 2013-05-27 코오롱인더스트리 주식회사 Cyclic olefin-based resin composition and cyclic olefin-based resin film produced thereby
KR101334561B1 (en) 2011-03-18 2013-11-28 코오롱인더스트리 주식회사 Cyclic olefin-based resin and cyclic olefin-based resin film produced thereby

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020485B1 (en) * 2013-01-11 2019-09-11 삼성디스플레이 주식회사 Block copolymer, method of forming the same and method of forming pattern
KR102617834B1 (en) * 2017-09-15 2023-12-26 광주과학기술원 Super macromolecule photonic crystal materials containing polyhedral oligomeric silsesquioxane(poss
KR102223176B1 (en) * 2018-09-20 2021-03-04 광주과학기술원 Super macromolecule photonic crystal materials containing polyhedral oligomeric silsesquioxane(poss), and method for manufuturing the same
KR102081830B1 (en) * 2019-09-04 2020-02-27 삼성디스플레이 주식회사 Block copolymer, method of forming the same and method of forming pattern
CN113307952B (en) * 2020-02-27 2022-07-19 北京大学 Polynorbornene crustal liquid crystal polymer containing cage-type silsesquioxane on side chain and preparation method thereof
CN115304996B (en) * 2022-10-11 2022-12-20 广东远东高分子科技有限公司 Water-based environment-friendly high-performance UV surface treating agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980064464A (en) * 1996-12-23 1998-10-07 귄터슈마허 Process for producing hydrogenated ring-opened metathesis polymer
US6271315B1 (en) 1999-06-17 2001-08-07 Wisconsin Alumni Research Foundation Methods for making multivalent arrays
KR20020072795A (en) * 2001-03-12 2002-09-18 시바 스폐셜티 케미칼스 홀딩 인코포레이티드 Compound wherein one or more alkoxy ether groups are attatched to the oligomer moiety and compositions comprising the same
US6555255B2 (en) 2000-03-24 2003-04-29 World Properties, Inc. Polymeric organic coatings and method of manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980064464A (en) * 1996-12-23 1998-10-07 귄터슈마허 Process for producing hydrogenated ring-opened metathesis polymer
US6271315B1 (en) 1999-06-17 2001-08-07 Wisconsin Alumni Research Foundation Methods for making multivalent arrays
US6555255B2 (en) 2000-03-24 2003-04-29 World Properties, Inc. Polymeric organic coatings and method of manufacture thereof
KR20020072795A (en) * 2001-03-12 2002-09-18 시바 스폐셜티 케미칼스 홀딩 인코포레이티드 Compound wherein one or more alkoxy ether groups are attatched to the oligomer moiety and compositions comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268203B1 (en) 2011-03-18 2013-05-27 코오롱인더스트리 주식회사 Cyclic olefin-based resin composition and cyclic olefin-based resin film produced thereby
KR101334561B1 (en) 2011-03-18 2013-11-28 코오롱인더스트리 주식회사 Cyclic olefin-based resin and cyclic olefin-based resin film produced thereby

Also Published As

Publication number Publication date
KR20090043063A (en) 2009-05-06

Similar Documents

Publication Publication Date Title
KR100922182B1 (en) Amphiphilic Norbornene-based Diblock Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared By Living Ring Opening Metathesis Polymerization, And Method For The Preparation Thereof
JP2009024147A (en) Norbornene monomer having fluorene group and polymer thereof
JP2009040985A (en) Norbornene monomer with epoxy group and polymer thereof
FR2946047A1 (en) NOVEL ORGANOMETALLIC COMPOUNDS BASED ON A METAL BELONGING TO THE 2ND COLUMN OF PERIODIC CLASSIFICATION AND PROCESS FOR PREPARING THE SAME
Schulz et al. ADMET polymerization
JP5738097B2 (en) Method for producing norbornene polymer
EP1164156A1 (en) Method of polymerizing silalkylenesiloxane
Xu et al. Synthesis of novel block copolymers containing polyhedral oligomeric silsesquioxane (POSS) pendent groups via ring-opening metathesis polymerization (ROMP)
CN114891221B (en) Poly (gamma-thiobutyrolactone)
Grafov et al. New Sn (IV) and Ti (IV) bis (trimethylsilyl) amides in D, L-lactide polymerization, SEM characterization of polymers
Anhaus et al. Silicon-containing macrocycles and polymers via metathesis: X-ray crystal structures of cis, cis-and trans, trans-1, 1, 6, 6-tetraphenyl-1, 6-disilacyclodeca-3, 8-diene
Dall'Asta et al. Polymerization of cyclobutene rings. VII. Polymerization of bicyclo [4, 2, 0] octa‐7‐ene and bicyclo [3, 2, 0] hepta‐2, 6‐diene with Ziegler‐Natta catalysts and with group VIII metal halides
JP5834017B2 (en) Norbornene-based monomer polymerization catalyst and method for producing norbornene-based polymer
US11725068B2 (en) Cyclic polyolefins derived from hexyne, octyne, nonyne, pentadecyne and their copolymers with acetylene
JP2010254880A (en) Crosslinked polymer
KR100847183B1 (en) Use of Zinc Derivatives as Cyclic Ester Polymerisation Catalysts
Morontsev et al. Synthesis of New of Norbornene–1, 5-Bis (hexenyl) hexamethyltrisiloxane Copolymers via Olefin Metathesis Reaction
WO2021072224A1 (en) Catalysts for olefin metathesis, methods of preparation, and processes for the use thereof
Park et al. Amphiphilic norbornene-based diblock copolymers containing polyhedral oligomeric silsesquioxane prepared by living ring opening metathesis polymerization
WO2019048842A1 (en) Catalysts suitable for the ring-opening polymerisation of cyclic esters and cyclic amides
WO2016209813A1 (en) Triblock copolymer with vinyl alcohol and/or vinyl acetate residues, synthetic precursors thereof, and a polymer membrane comprising the triblock copolymer
Li et al. SYNTHESIS AND CHARACTERIZATION OF A NOVEL REACTIVE LADDER-LIKE POLYSILSESQUIOXANE WITH LATERAL BROMOPHENYL GROUPS.
SU1616929A1 (en) Method of producing alternant copolymer of pentadiene-1,3 with methylmethacrylate
WO2018104424A1 (en) Organometallic compound having an iminophosphorane function
JP2014040532A (en) Cyclic olefin addition polymer and method of producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121010

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130910

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140923

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151015

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181015

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 11