KR100920456B1 - Fabrication method of catalyst-less cobalt nano-rods by plasma-enhanced atomic layer deposition and a semiconductor element - Google Patents

Fabrication method of catalyst-less cobalt nano-rods by plasma-enhanced atomic layer deposition and a semiconductor element Download PDF

Info

Publication number
KR100920456B1
KR100920456B1 KR1020070100430A KR20070100430A KR100920456B1 KR 100920456 B1 KR100920456 B1 KR 100920456B1 KR 1020070100430 A KR1020070100430 A KR 1020070100430A KR 20070100430 A KR20070100430 A KR 20070100430A KR 100920456 B1 KR100920456 B1 KR 100920456B1
Authority
KR
South Korea
Prior art keywords
plasma
cobalt
nanorods
atomic layer
layer deposition
Prior art date
Application number
KR1020070100430A
Other languages
Korean (ko)
Other versions
KR20090035259A (en
Inventor
이한보람
박찬경
손종역
김형준
구길호
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020070100430A priority Critical patent/KR100920456B1/en
Publication of KR20090035259A publication Critical patent/KR20090035259A/en
Application granted granted Critical
Publication of KR100920456B1 publication Critical patent/KR100920456B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Abstract

본 발명은 나노 막대의 제조방법에 관한 것으로, 특히 촉매를 사용하지 않으며 단순한 공정을 통해 금속 나노 막대를 제조할 수 있는 방법을 제공하는 것을 목적으로 한다.The present invention relates to a method for producing nanorods, and in particular, an object of the present invention is to provide a method for producing metal nanorods through a simple process without using a catalyst.

상기 목적을 달성하기 위해 본 발명은 플라스마 원자층 증착법에 사용되는 반응가스의 조절을 통해 자기 조립 나노 막대를 형성하는 방법을 제공한다.In order to achieve the above object, the present invention provides a method of forming self-assembled nano-rods by controlling the reaction gas used in the plasma atomic layer deposition method.

본 발명의 실시예에서는 코발트 전구체로 CoCp2를 사용하고, 퍼징가스로 아르곤 가스, 그리고 반응가스로 암모니아와 모노실란의 혼합가스의 플라스마를 사용하여 직경 약 10 nm 내외, 길이 50 ~ 60 nm의 나노 막대를 형성하였다.In the exemplary embodiment of the present invention, CoCp 2 is used as a cobalt precursor, argon gas is used as a purging gas, and plasma of a mixed gas of ammonia and monosilane as a reaction gas is about 10 nm in diameter and 50 to 60 nm in length. A rod was formed.

자기 조립 나노 막대, 플라스마 원자층 증착 방법, 반응 가스의 조절, 금속 나노 막대 Self-assembled nanorods, plasma atomic layer deposition method, control of reactive gases, metal nanorods

Description

플라스마 원자층 증착 방법을 이용한 비촉매 코발트 나노 막대의 제조 방법 및 반도체 소자 {FABRICATION METHOD OF CATALYST-LESS COBALT NANO-RODS BY PLASMA-ENHANCED ATOMIC LAYER DEPOSITION AND A SEMICONDUCTOR ELEMENT}FIELD OF THE INVENTION Production of non-catalytic cobalt nanorods using plasma atomic layer deposition and semiconductor devices

본 발명은 금속 나노 막대의 제조방법 및 이에 의한 반도체 소자에 관한 것으로서, 보다 상세하게는 플라스마 원자층 증착법을 이용함으로써 촉매를 사용하지 않고 자기 조립 방식으로 금속 나노 막대를 형성할 수 있는 제조방법과 이 제조방법에 의해 제조된 반도체 소자에 관한 것이다.The present invention relates to a method for manufacturing metal nanorods and a semiconductor device thereby, and more particularly, to a method for forming metal nanorods by self-assembly without using a catalyst by using plasma atomic layer deposition and It relates to a semiconductor device manufactured by the manufacturing method.

1960년대부터 금속 촉매를 이용한 소위 VLS(Vapor-Liquid-Solid)법을 통해 반도체 나노 선(nano-wire)이나 나노 막대(nano-rod or nano-whisker)를 제조하는 연구가 진행되어 왔다.Since the 1960s, researches on manufacturing semiconductor nanowires or nano-rods or nano-whiskers through a so-called VLS (Vapor-Liquid-Solid) method using a metal catalyst have been conducted.

VLS법은 공정 내에서 기체, 액체, 그리고 고체의 3가지 물질의 형태가 관여하기 때문에 붙여진 명칭으로, 예를 들어, 이 방법에 의해 실리콘 웨이퍼 상에 실리콘 나노 선을 제조하고자 할 경우 다음과 같은 과정을 통해 이루어진다. 먼저 촉매로서 금(Au) 나노 입자를 실리콘 웨이퍼 상에 도포하고, 이 웨이퍼를 진공 챔 버 안에서 금과 실리콘의 공융점인 623℃ 이상의 온도로 가열한 후, SiH4, Si2H6 또는 SiCl4와 같은 실리콘 소스 가스를 챔버에 도입시키면 상기 가스의 열 분해에 의해 생성된 실리콘이 금-실리콘 공융액에 녹아 들어가며, 상기 공융액 내에 용해된 과잉 실리콘이 실리콘 웨이퍼 상에 석출되는 과정을 통해 나노 선이 형성된다.The VLS method is named because three forms of gas, liquid, and solid are involved in the process. For example, in order to manufacture silicon nanowires on a silicon wafer by this method, Is done through. Gold (Au) nanoparticles are first applied onto a silicon wafer as a catalyst, and the wafer is heated in a vacuum chamber to a temperature above 623 ° C., which is the eutectic point of gold and silicon, and then SiH 4 , Si 2 H 6 or SiCl 4 When a silicon source gas, such as, is introduced into the chamber, silicon generated by thermal decomposition of the gas melts in the gold-silicon eutectic, and the excess silicon dissolved in the eutectic precipitates on the silicon wafer. Is formed.

그런데, 이와 같이 금속 촉매를 통한 나노 선이나 나노 막대를 제조하는 방법의 경우, 촉매로 사용된 금속의 제거가 응용에 있어서 문제가 되고 있다. 예를 들어, 실리콘 나노 선을 현재의 CMOS 공정에 응용하는 경우, 촉매로 사용된 금 또는 철이 실리콘과 혼합될 경우 실리콘 밴드갭 내에 deep level이라는 전자 준위를 형성하여 전자들의 수송현상을 방해하는 문제가 있다.By the way, in the method of manufacturing a nanowire or a nanorod through a metal catalyst, the removal of the metal used as a catalyst becomes a problem in application. For example, when silicon nanowires are applied to the current CMOS process, when gold or iron used as a catalyst is mixed with silicon, an electron level called a deep level is formed in the silicon bandgap to hinder the transport of electrons. have.

이에 따라 금속 촉매를 쓰지 않는 비촉매 법에 의한 나노 막대의 제작에 대해 많은 연구가 진행되고 있다. Accordingly, many studies have been conducted on the fabrication of nanorods by a non-catalytic method without using a metal catalyst.

그러나 비촉매 법에 의해 성장된 나노 막대의 물질은 대부분 반도체나 산화물, 질화물에 한정되고 있고, 비촉매법을 이용하여 순수 금속 물질로 이루어진 금속 나노 막대를 제작하는 방법은 거의 알려져 있지 않다.However, the material of the nanorods grown by the non-catalytic method is mostly limited to semiconductors, oxides, and nitrides, and there is little known method for producing metal nanorods made of pure metal materials using the non-catalytic method.

한편, 나노 선이나 나노 막대를 제조하는 다른 방법으로서, 나노 사이즈 템플릿(template)이나 도금법을 이용하는 방법 알려져 있으나, 이 방법들은 공정이 복잡할 뿐 아니라, 응용성이 떨어지는 문제점이 있다.On the other hand, as another method for manufacturing nanowires or nanorods, a method using a nano-sized template or plating method is known, but these methods are not only complicated in process, but also have poor applicability.

본 발명은 종래기술의 문제점을 해결하기 위하여 창안된 것으로서, 촉매를 사용하지 않고 제조할 수 있을 뿐 아니라, 매우 간단한 공정을 통해서 나노 막대를 제조할 수 있는 제조방법을 제공하는 것을 기술적 과제로 한다.The present invention has been made in order to solve the problems of the prior art, it is a technical problem to provide a manufacturing method that can be prepared without using a catalyst, as well as a nano bar through a very simple process.

상기 과제를 해결하기 위한 수단으로서 본 발명은, 플라스마 원자층 증착법에 사용되는 반응가스의 조절을 통해 자기 조립 나노 막대를 형성하는데 구성적 특징이 있다.As a means for solving the above problems, the present invention has a feature in forming a self-assembled nano-rod through the control of the reaction gas used in the plasma atomic layer deposition method.

본 발명에 따른 금속 나노 막대의 제조방법에서는 플라스마 원자층 증착법의 반응가스의 조절만을 통해 자기 조립 나노 막대를 형성하므로, 별도의 촉매를 쓸 필요가 없게 되어 촉매로 인한 문제점을 제거함과 동시에, 공정이 간단해지므로, 그 응용성도 높아지게 된다.In the method of manufacturing metal nanorods according to the present invention, since the self-assembled nanorods are formed only by controlling the reaction gas of the plasma atomic layer deposition method, it is not necessary to use a separate catalyst, and at the same time, the process is eliminated due to the catalyst. Since it is simplified, its applicability is also increased.

한편, 본 발명에 따른 금속 나노 막대의 제조방법에 있어서, 상기 자기 조립 나노 막대는, (a) 가열된 반도체 기판상에 금속 전구체를 투입하여 반도체 기판상에 흡착시키는 단계와, (b) 흡착되지 않은 금속 전구체를 퍼징 가스를 투입하여 제거하는 단계와, (c) 반응가스를 투입하여 금속 전구체와 반응시키는 단계와, (d) 반응되지 않은 반응가스를 퍼징 가스를 투입하여 제거하는 단계로 이루어진 사이클의 반복을 통해 형성되는 것을 특징으로 한다.On the other hand, in the method of manufacturing a metal nanorod according to the present invention, the self-assembling nanorod, (a) a metal precursor on a heated semiconductor substrate and adsorbed on the semiconductor substrate, (b) is not adsorbed A cycle comprising the steps of removing the undesired metal precursor by introducing a purging gas, (c) adding a reaction gas to react with the metal precursor, and (d) removing the unreacted reaction gas by adding a purging gas. It is characterized by being formed through the repetition of.

또한, 본 발명에 따른 금속 나노 막대의 제조방법에 있어서, 상기 반응가스 로는 질소와 실리콘을 포함한 물질의 플라스마 상을 사용하는 것이 바람직하며, 보다 바람직하게는 암모니아와 모노실란(SiH4)의 플라스마를 사용한다.In addition, in the method for producing a metal nanorod according to the present invention, it is preferable to use a plasma phase of a material containing nitrogen and silicon as the reaction gas, more preferably plasma of ammonia and monosilane (SiH 4 ). use.

또한, 상기 금속 전구체로는 플라스마 원자층 증착법에 사용될 수 있는 것이라면 어느 것이나 사용될 수 있다.In addition, any metal that can be used in the plasma atomic layer deposition method may be used as the metal precursor.

또한, 본 발명은 전술한 금속 나노 막대의 제조방법에 의해 제조된 나노 막대를 포함하는 반도체 소자를 제공한다.In addition, the present invention provides a semiconductor device comprising a nano-rod manufactured by the method for producing a metal nano-rod described above.

본 발명에 따른 금속 나노 막대의 제조방법은, 촉매 없이 한 번의 증착 공정을 통해 나노 막대를 자기 조립 방식으로 성장시키기 때문에, 종래에 알려진 방법에 비해 공정이 단순하여 활용성이 높다.In the method for producing a metal nanorod according to the present invention, since the nanorod is grown by self-assembly through a single deposition process without a catalyst, the process is simpler than the conventionally known method, and thus has high utility.

또한 플라스마 원자층 증착법으로 증착할 수 있는 금속 물질이라면 본 발명에 따른 제조방법을 적용할 수 있어, 다양한 금속 나노 막대의 형성이 가능하게 되므로, 금속이 갖는 높은 전도도와 종류에 따라 다른 전,자기적 특성을 이용하여 나노 전자 소자 및 수직 자기 하드 디스크 등에 직접 응용이 가능하다.In addition, if the metal material can be deposited by the plasma atomic layer deposition method can be applied to the manufacturing method according to the present invention, since it is possible to form a variety of metal nano-rods, depending on the high conductivity and type of the metal different electro-magnetic Its characteristics make it possible to directly apply it to nano electronic devices and vertical magnetic hard disks.

이하 첨부한 도면을 참조로 본 발명의 바람직한 실시예에 대해 설명한다. 그러나 본 발명의 기술적 사상 내에서 다양한 변형이 가능하며 하기 실시예에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. However, various modifications are possible within the technical idea of the present invention and are not limited to the following examples.

도 1은 본 발명에 따른 자기 조립 금속 나노 막대의 제조방법에 대한 공정 순서도이고, 도 2는 본 발명의 실시예에 따라, 반응가스로서 플라스마 형태의 암모니아와 모노 실란(SiH4)을 사용하여 형성한 코발트 나노 막대에 대한 주사 전자 현미경 사진이며, 도 3은 도 2의 코발트 나노 막대에 대한 투과 전자 현미경 사진이다.1 is a process flowchart of a method for manufacturing a self-assembled metal nanorod according to the present invention, Figure 2 is formed using ammonia and mono silane (SiH 4 ) in the plasma form as a reaction gas, according to an embodiment of the present invention A scanning electron micrograph of one cobalt nanorod and FIG. 3 is a transmission electron micrograph of the cobalt nanorod of FIG. 2.

도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 금속 나노 막대의 제조는, 4단계 (금속 전구체 투입, 아르곤 가스 퍼징, 반응 가스 플라스마 투입, 아르곤 가스 퍼징)로 이루어진 사이클을 반복함으로써 이루어진다.As shown in FIG. 1, the production of metal nanorods according to an embodiment of the present invention is accomplished by repeating a cycle consisting of four steps (adding a metal precursor, argon gas purging, reactive gas plasma charging, argon gas purging).

먼저 예비단계로 두 종류의 기판 (자연 산화 막이 제거된 실리콘 기판(Si(001))과, 100nm 두께의 이산화실리콘(SiO2)이 증착된 실리콘 기판 (Si(001)))을 300℃로 가열한다.First, as a preliminary step, two kinds of substrates (silicon substrate (Si (001)) having a natural oxide film removed thereon) and silicon substrate (Si (001)) having 100 nm thick silicon dioxide (SiO 2 ) deposited are heated to 300 ° C. do.

이어서 상기 사이클이 첫 번째 단계로서, 상기 가열된 기판 위로 기화된 코발트 금속유기물 전구체(Co metal organic precursor)로서 CoCp2(Co(C5H5)2)를 캐리어 가스인 아르곤 가스와 함께 3초간 투여시켜 준다. 이때 전구체의 적절한 증기압을 얻기 위해, 전구체가 담긴 버블러 (bubbler)는 78℃로 가열되며, 아르곤 가스의 유량은 50 sccm으로 유지된다.The cycle is then the first step, in which CoCp 2 (Co (C 5 H 5 ) 2 ) is administered with argon gas as a carrier gas for 3 seconds as a cobalt metal organic precursor vaporized onto the heated substrate. Let it be. At this time, in order to obtain a suitable vapor pressure of the precursor, the bubbler (bubbler) containing the precursor is heated to 78 ℃, the flow rate of argon gas is maintained at 50 sccm.

두 번째 스텝에서는, 실리콘 기판 위에 물리적 또는 화학적으로 흡착된 코발트 전구체를 제외한 잉여 전구체를 아르곤 퍼징 가스(purging gas) 50 sccm을 1초간 투여시켜 제거한다.In the second step, the excess precursor except for the cobalt precursor physically or chemically adsorbed on the silicon substrate is removed by administering 50 sccm of argon purging gas for 1 second.

세 번째 스텝에서는 암모니아(NH3) 200 sccm와 모노실란(SiH4) 5 sccm을 동 시에 플라스마 형태로 노출시켜 첫 번째 스텝에서 실리콘 기판상에 흡착시킨 코발트 전구체와 반응시켜 금속 코발트를 형성한다.In the third step, 200 sccm of ammonia (NH 3 ) and 5 sccm of monosilane (SiH 4 ) are simultaneously exposed in the form of plasma to react with the cobalt precursor adsorbed on the silicon substrate in the first step to form metal cobalt.

암모니아와 혼합된 모노실란 플라스마는, 혼합 가스를 고주파(RF, 13.56 MHz) 교류 전원에 연결된 샤워 헤드에 통과시키면서 플라스마 상태가 되도록 하는 직접 방식(direct type)을 사용하였다. 형성된 플라스마는 샤워 헤드 하단에 위치한 기판과 반응하게 되며, 샤워 헤드와 기판 사이의 간격은 1cm로 유지하였다. 이러한 형태는 소위 capacitively coupled plasma (CCP) 라고 일컫는다. 총 반응 가스의 유량은 205 sccm이며, 플라스마의 power는 300W로서 기본적인 노출 시간을 6초로 유지하였다.The monosilane plasma mixed with ammonia used a direct type in which the mixed gas was brought into a plasma state while passing through a shower head connected to a high frequency (RF, 13.56 MHz) AC power source. The plasma formed reacts with the substrate located at the bottom of the shower head, and the spacing between the shower head and the substrate is maintained at 1 cm. This form is called capacitively coupled plasma (CCP). The flow rate of the total reaction gas was 205 sccm, the plasma power was 300W, and the basic exposure time was maintained at 6 seconds.

마지막 스텝에서는 잉여 반응가스를 아르곤 퍼징 가스를 사용하여 제거하며, 유량과 노출시간은 두 번째 스텝과 같은 조건으로 유지하였다. In the last step, the excess reaction gas was removed using argon purging gas, and the flow rate and exposure time were maintained at the same conditions as the second step.

상기 4개의 스텝에서 투여되는 가스는 모두, 고르게 기판상에 노출시키기 위하여 샤워 헤드(shower head) 형태의 투여기(doser)를 통과해서 기판에 노출되도록 하였다.The gases administered in the four steps were all exposed to the substrate through a doser in the form of a shower head to expose the substrate evenly.

이상과 같은 4개 스텝으로 이루어진 1 사이클을 500회 반복함으로써, 도 2 및 3에서 확인되는 바와 같이 10 ~ 20nm의 굵기를 갖고 대략 50 ~ 60nm의 길이를 갖는 다수의 코발트 나노 막대를 제조할 수 있었다.By repeating one cycle of four steps as described above 500 times, as shown in FIGS. 2 and 3, a plurality of cobalt nanorods having a thickness of 10 to 20 nm and a length of approximately 50 to 60 nm could be manufactured. .

한편 본 발명의 실시예와 같은 코발트 나노 막대의 형성은, 플라스마 원자층 증착 초기에 실리콘 기판과 암모니아 플라스마의 반응에의해 실리콘 질화물막이 2 ~ 3 nm 형성되며, 뒤이은 코발트 전구체의 흡착에 의해 핵 생성이 아일랜 드(island) 형상으로 코발트가 형성되고, 질소 또는 실리콘의 혼합물로 이루어진 반응가스의 영향에 의해 초기에 형성된 금속 코발트 아일랜드 상이 원자층 증착이 진행됨에 따라 선택적으로 성장함으로써 막대 형상을 이루는 것으로 보인다.On the other hand, in the formation of the cobalt nanorods as in the embodiment of the present invention, the silicon nitride film is formed by the reaction of the silicon substrate and the ammonia plasma at the initial stage of the plasma atomic layer deposition. Cobalt is formed in this island shape, and the metal cobalt island phase initially formed by the reaction gas composed of a mixture of nitrogen or silicon is selectively grown as the atomic layer deposition proceeds to form a rod shape. see.

도 1은 본 발명에 따른 자기 조립 금속 나노 막대의 제조방법에 대한 공정 순서도이다.1 is a process flowchart of a method of manufacturing a self-assembled metal nanorod according to the present invention.

도 2는 본 발명의 실시예에 따라, 반응가스로서 플라스마 형태의 암모니아와 모노 실란(SiH4)을 사용하여 형성한 코발트 나노 막대에 대한 주사 전자 현미경 사진이다.FIG. 2 is a scanning electron micrograph of cobalt nanorods formed using ammonia and mono silane (SiH 4 ) in plasma form as a reaction gas, according to an embodiment of the present invention.

도 3은 도 2의 코발트 나노 막대에 대한 투과 전자 현미경 사진이다.3 is a transmission electron micrograph of the cobalt nanorods of FIG. 2.

Claims (5)

가열된 반도체 기판상에 코발트 전구체를 투입하여 반도체 기판상에 흡착시키는 단계와, 흡착되지 않은 코발트 전구체를 퍼징하는 단계와, 반응가스 플라스마를 투입하여 코발트 전구체와 반응시켜 코발트로 환원시키는 단계와, 반응되지 않은 반응가스를 퍼징하는 단계로 이루어진 사이클의 반복을 통해 코발트 나노 막대를 제조하는 방법으로,Injecting a cobalt precursor onto a heated semiconductor substrate and adsorbing onto the semiconductor substrate, purging the non-adsorbed cobalt precursor, injecting a reactant gas plasma to react with the cobalt precursor to reduce it to cobalt, and In the method of producing a cobalt nano bar through the repetition of the cycle consisting of purging the reaction gas that is not, 암모니아와 모노실란(SiH4)의 혼합물의 플라스마를 반응가스로 사용함으로써, 증착 초기 기판에 아일랜드 상으로 핵 생성된 코발트가 상기 반응가스에 의해 선택적으로 성장하여 자기조립 나노 막대를 형성하도록 한 것을 특징으로 하는 코발트 나노 막대의 제조방법.By using a plasma of a mixture of ammonia and monosilane (SiH 4 ) as a reaction gas, cobalt nucleated onto islands in the initial substrate of deposition is selectively grown by the reaction gas to form self-assembled nanorods. Method of producing a cobalt nano bar. 삭제delete 삭제delete 삭제delete 제 1 항에 기재된 방법에 의해 제조된 코발트 나노 막대를 포함하는 반도체 소자.A semiconductor device comprising cobalt nanorods produced by the method of claim 1.
KR1020070100430A 2007-10-05 2007-10-05 Fabrication method of catalyst-less cobalt nano-rods by plasma-enhanced atomic layer deposition and a semiconductor element KR100920456B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070100430A KR100920456B1 (en) 2007-10-05 2007-10-05 Fabrication method of catalyst-less cobalt nano-rods by plasma-enhanced atomic layer deposition and a semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070100430A KR100920456B1 (en) 2007-10-05 2007-10-05 Fabrication method of catalyst-less cobalt nano-rods by plasma-enhanced atomic layer deposition and a semiconductor element

Publications (2)

Publication Number Publication Date
KR20090035259A KR20090035259A (en) 2009-04-09
KR100920456B1 true KR100920456B1 (en) 2009-10-08

Family

ID=40760739

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070100430A KR100920456B1 (en) 2007-10-05 2007-10-05 Fabrication method of catalyst-less cobalt nano-rods by plasma-enhanced atomic layer deposition and a semiconductor element

Country Status (1)

Country Link
KR (1) KR100920456B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943097B2 (en) * 2003-08-19 2005-09-13 International Business Machines Corporation Atomic layer deposition of metallic contacts, gates and diffusion barriers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6943097B2 (en) * 2003-08-19 2005-09-13 International Business Machines Corporation Atomic layer deposition of metallic contacts, gates and diffusion barriers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Applied Physics Letter (2007.01.16.)*
Applied Physics Ltters (2007.05.23.)*

Also Published As

Publication number Publication date
KR20090035259A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
KR100723882B1 (en) Method for fabricating silicon nanowire using silicon nanodot thin film
Yu et al. Synthesis of high quality two-dimensional materials via chemical vapor deposition
Liu et al. CVD growth of MoS2‐based two‐dimensional materials
US7354871B2 (en) Nanowires comprising metal nanodots and method for producing the same
JP2010509171A5 (en)
KR100785347B1 (en) Alignment of semiconducting nanowires on metal electrodes
JP2006124834A (en) ZnO SEED LAYER BY ALD FOR DEPOSITING ZnO NANOSTRUCTURE ON SILICON SUBSTRATE
KR101102098B1 (en) Method for Producing Branched Nanowire
JP5876408B2 (en) Fabrication method of nanowire
KR20100016725A (en) Nanowire comprising silicon rich oxide and method for producing the same
JP2007105822A (en) Atomic scale metal wire or metal nanocluster, and method for manufacturing same
Yue et al. Controlled growth of MoS2 by atomic layer deposition on patterned gold pads
KR101410930B1 (en) Method of fabricating metal oxide on carbon nanotube and method of fabricating carbon nanotube transistor using the same
US7575631B2 (en) Fabrication method of gallium manganese nitride single crystal nanowire
CN109536921A (en) A method of regulating and controlling silicon oxide film stoichiometric ratio using plasma enhanced atomic layer deposition
KR100920456B1 (en) Fabrication method of catalyst-less cobalt nano-rods by plasma-enhanced atomic layer deposition and a semiconductor element
TWI452008B (en) Method for fabricating nano-structure and application thereof to three-dimensional structure
KR100698014B1 (en) Silicon nitride film for light emitting device, light emitting device using the same and method for forming silicon nitride film for light emitting device
Kamins Beyond CMOS electronics: Self-assembled nanostructures
CN114197054A (en) Synthesis and application of high-order superlattice
KR20120005683A (en) Method for preparing branched nanowires
KR101494764B1 (en) Nitride compound semiconductor nano structures and method of forming the same
KR20100023493A (en) Fabrication method for sige nanowires vie selective epitaxial growth of sige on anodic aluminum oxide nanotemplate and a semiconductor elements using the same
Li et al. Regular arrays of GaN nanorods
KR101124352B1 (en) Manufacturing method of metal nano-rods

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee