KR100920330B1 - Transgenic lettuce plants producing increased tocopherol content - Google Patents

Transgenic lettuce plants producing increased tocopherol content Download PDF

Info

Publication number
KR100920330B1
KR100920330B1 KR1020080137758A KR20080137758A KR100920330B1 KR 100920330 B1 KR100920330 B1 KR 100920330B1 KR 1020080137758 A KR1020080137758 A KR 1020080137758A KR 20080137758 A KR20080137758 A KR 20080137758A KR 100920330 B1 KR100920330 B1 KR 100920330B1
Authority
KR
South Korea
Prior art keywords
tocopherol
leu
ser
val
ala
Prior art date
Application number
KR1020080137758A
Other languages
Korean (ko)
Other versions
KR20090013154A (en
Inventor
김민균
이고은
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020080137758A priority Critical patent/KR100920330B1/en
Publication of KR20090013154A publication Critical patent/KR20090013154A/en
Application granted granted Critical
Publication of KR100920330B1 publication Critical patent/KR100920330B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 토코페롤 함량이 증가한 형질전환 상추에 관한 것으로, 더욱 상세하게는 서열번호 4로 표시되는 아미노산 서열로 이루어진, 토코페롤의 합성에 관여하는 애기장대(Arabidopsis thaliana) 유래의 TC/VTE1 (tocopherol cyclase) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어 토코페롤 함량이 증가된 것을 특징으로 하는 형질전환 상추 및 상기 유전자를 상추에서 과발현시킴으로써 토코페롤 함량을 증가시키는 방법에 관한 것이다.The present invention relates to a transformed lettuce with an increased tocopherol content, more specifically, TC / VTE1 (tocopherol cyclase) derived from Arabidopsis thaliana involved in the synthesis of tocopherol, consisting of the amino acid sequence represented by SEQ ID NO: 4 The present invention relates to a transformed lettuce characterized by an increase in tocopherol content by transformation with a recombinant vector comprising a gene encoding a protein, and a method for increasing the tocopherol content by overexpressing the gene in lettuce.

상추, 토코페롤, 형질전환, 유전자, TC/VTE1 Lettuce, tocopherol, transformation, gene, TC / VTE1

Description

토코페롤 함량이 증가한 형질전환 상추{Transgenic lettuce plants producing increased tocopherol content}Transgenic lettuce plants producing increased tocopherol content

본 발명은 토코페롤 함량이 증가한 형질전환 상추에 관한 것이다.The present invention relates to a transgenic lettuce with increased tocopherol content.

비타민 E로 알려진 토코페롤은 친지질 항산화제로서 광합성 생물체를 통하여 합성된다 (Traber, M. G. and Sies, H. (1996) Annu. Rev. Nutr. 16, 321-347; Grusak, M. A. (1999) Trends Plant Sci. 4, 164-166). 이러한 토코페롤은 구조적으로 밀접한 관련이 있는 화합물인 α-, β-, γ- 및 δ-토코페롤로 구분된다.Tocopherol, known as vitamin E, is synthesized through photosynthetic organisms as a lipophilic antioxidant (Traber, MG and Sies, H. (1996) Annu. Rev. Nutr. 16, 321-347; Grusak, MA (1999) Trends Plant Sci 4, 164-166). These tocopherols are divided into structurally closely related compounds α-, β-, γ-, and δ-tocopherol.

상기한 네 가지 토코페롤 이성질체의 생물학적 활성은 크로만 고리의 메틸기의 위치와 수, 곁사슬의 비대칭 탄소의 배열에 따라 다양하게 나타난다(Hirschberg, J. (1999) Curr. Opin. Biotech. 10, 186-191). The biological activities of these four tocopherol isomers vary according to the position and number of the methyl groups of the chromatin ring and the arrangement of the asymmetric carbons of the side chains (Hirschberg, J. (1999) Curr. Opin. Biotech. 10, 186-191 ).

그 중에서도 α-토코페롤은 인간을 비롯한 동물에 대하여 생물학적 활성이 가장 높은 친유성 항산화제이다. 특히 토코페롤은 막지방을 구성하는 불포화 지방산의 활성산소종에 의한 산화를 방지함으로써 생물학적 막의 유지보존에 기여하는 것으로 추정된다.Among them, α-tocopherol is the lipophilic antioxidant with the highest biological activity against animals including humans. In particular, it is estimated that tocopherol contributes to the maintenance and maintenance of biological membranes by preventing oxidation of reactive oxygen species of unsaturated fatty acids constituting membrane fats.

최근의 연구결과에 따르면, 상대적으로 높은 함량의 토코페롤의 정기적인 복 용은 동맥경화의 진행을 억제할 수 있다고 한다. 또한, 당뇨병으로 인한 후천적 손상의 지연, 백내장으로의 발전의 위험의 감소, 흡연자들의 산화적인 스트레스의 감소, 항암효과, 항피부손상 효과에도 토코페롤의 생리적 특성 및 영향이 검토되어 왔다.Recent studies have shown that regular use of relatively high levels of tocopherol can inhibit the progression of atherosclerosis. In addition, the physiological characteristics and effects of tocopherol have been examined in delaying acquired damage due to diabetes, reducing the risk of developing cataracts, reducing oxidative stress in smokers, anticancer effects, and anti-skin damage effects.

이러한 토코페롤은 다수의 식물성 기름, 상세히는 대두, 밀, 옥수수, 쌀, 목화, 자주개자리(lucene) 및 견과의 종자유에 풍부하다. 또한, 과일이나 채소, 예를 들면 라스베리, 콩, 완두콩, 회향, 고추 등에도 함유되어 있다. Such tocopherols are abundant in seed oils of many vegetable oils, in particular soybeans, wheat, corn, rice, cotton, lucene and nuts. It is also contained in fruits and vegetables, such as raspberries, beans, peas, fennel, peppers, and the like.

상기 식물체 및 광합성 미생물의 체내에서 토코페롤은 두 개의 경로에서 유도된 전구체로부터 생합성된다 (도1). Methylerythritol phosphate 경로는 phytyldiphosphate를 합성하여 토코페롤의 곁사슬을 형성한다. 또한 shikimate 경로는 homogentisic acid를 생성하여 토코페롤의 방향족 고리로 제공한다. 이러한 토코페롤 생합성 과정에서 첫 번째 단계는 2-methyl-6-phytyl-benzoquinol (MPBQ)을 생성하기 위하여 phytyldiphosphate을 가진 homogentisic acid의 prenylation 과정이다 (Savidge, B., et al. (2002) Plant Physiol. 129, 321-332). 이 때 생성되는 전체 토코페롤의 함량은 homogentisate phytyltransferase (HPT/VTE2)와 tocopherol cyclase (TC/VTE1) 및 두 개의 methyltransferase 효소 (VTE3와 VTE4)의 기질특이성과 활성으로부터 결정된다 (도1). Tocopherol cyclase의 활성은 MPBQ로부터 δ-tocopherol의 형성을 유도한다. 반대로 MPBQ methyltransferase (MPBQMT/VTE3)에 의한 메틸화는 2,3-dimethyl-5-phytylbenzoquinol (DMPBQ)의 형성을 유도하고, 이어지는 tocopherol cyclase의 활성이 γ-tocopherol의 형성을 유도 한다. 최종적으로 γ-tocopherol methyltransferase (γ-TMT/VTE4)가 R3 위치에 고리 메틸레이션을 형성하면서 γ와 δ isoforms을 α와 β isoforms로 각각 변형시키게 된다 (DellaPenna, D. and Last, R. L. (2006) Physiol Plantarum. 126, 356-368; DellaPenna, D. and Pogson, B. J. (2006) Annu. Rev. Plant Biol. 57, 711-738).Tocopherols are biosynthesized from precursors derived from two pathways in the body of the plant and photosynthetic microorganisms (FIG. 1). The methylethylthritol phosphate pathway synthesizes phytyldiphosphate to form the side chains of tocopherols. The shikimate pathway also produces homogentisic acid and provides it to the aromatic ring of tocopherol. The first step in this tocopherol biosynthesis process is the prenylation process of homogentisic acid with phytyldiphosphate to produce 2-methyl-6-phytyl-benzoquinol (MPBQ) (Savidge, B., et al . (2002) Plant Physiol. 129 , 321-332). The total content of tocopherol produced at this time is determined from the substrate specificity and activity of homogentisate phytyltransferase (HPT / VTE2) and tocopherol cyclase (TC / VTE1) and two methyltransferase enzymes (VTE3 and VTE4) (Figure 1). Tocopherol cyclase activity induces the formation of δ-tocopherol from MPBQ. In contrast, methylation by MPBQ methyltransferase (MPBQMT / VTE3) induces the formation of 2,3-dimethyl-5-phytylbenzoquinol (DMPBQ), followed by tocopherol cyclase activity leading to the formation of γ-tocopherol. Finally, γ-tocopherol methyltransferase (γ-TMT / VTE4) forms ring methylation at the R 3 position, transforming γ and δ isoforms into α and β isoforms, respectively (DellaPenna, D. and Last, RL (2006)). Physiol Plantarum. 126, 356-368; Della Penna, D. and Pogson, BJ (2006) Annu. Rev. Plant Biol. 57, 711-738).

현재 애기장대 (Arabidopsis thaliana)를 재료로 토코페롤 생합성에 관여하는 여러 효소의 유전자를 형질전환하여 그 함량을 조절한 보고들이 있다. 예를 들어, 애기장대로부터 유래한 HPT/VTE2TC/VTE1 유전자의 발현은 애기장대의 잎에서 토코페롤 함량을 각각 4.4배와 7배까지 증가시켰다 (Collakova, E. and DellaPenna, D. (2003) Plant Physiol. 131, 632-642; Kanwischer, M., Porfirova, S., Bergmuller, E. and Dormann, P. (2005) Plant Physiol. 137, 713-723). 위의 사실로부터 대사공학을 통하여 엽채소 작물에서도 토코페롤 함량을 증가시킬 수 있는지 그 가능성을 알아보고자, 본 발명에서는 애기장대의 homogentisate phytyltransferase (HPT/VTE2)와 tocopherol cyclase (TC/VTE1) 유전자를 과발현시킨 형질전환 상추 (Lactuca sativa L. cv. Chungchima)를 제작하고, 토코페롤의 조성과 함량을 분석하였다.At present, there are reports of Arabidopsis thaliana , which is used to transform genes of various enzymes involved in tocopherol biosynthesis and control their content. For example, expression of the HPT / VTE2 and TC / VTE1 genes from Arabidopsis has increased tocopherol content by 4.4 and 7 fold, respectively, in Arabidopsis leaves (Collakova, E. and Della Penna, D. (2003)). Plant Physiol. 131, 632-642; Kanwischer, M., Porfirova, S., Bergmuller, E. and Dormann, P. (2005) Plant Physiol. 137, 713-723). In order to find out the possibility of increasing the content of tocopherol in foliar crops through metabolic engineering, the present invention overexpressed homogentisate phytyltransferase ( HPT / VTE2 ) and tocopherol cyclase ( TC / VTE1 ) genes Transformed lettuce ( Lactuca sativa L. cv. Chungchima) was prepared, and the composition and content of tocopherol were analyzed.

본 발명은 상기와 같은 요구에 의해 안출된 것으로서, 본 발명은 토코페롤의 합성에 관여하는 애기장대 유래의 TC/VTE1 단백질을 코딩하는 유전자를 포함하는 벡터로 형질전환되어 토코페롤 함량이 증가된 형질전환 상추를 제공하고자 한다.The present invention has been made in accordance with the above requirements, the present invention is transformed with a vector containing a gene encoding a TC / VTE1 protein derived from Arabidopsis involved in the synthesis of tocopherol transformed lettuce with increased tocopherol content To provide.

상기 과제를 해결하기 위해, 본 발명은 서열번호 4로 표시되는 아미노산 서열로 이루어진, 토코페롤의 합성에 관여하는 애기장대(Arabidopsis thaliana) 유래의 TC/VTE1 (tocopherol cyclase) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어 토코페롤 함량이 증가된 것을 특징으로 하는 형질전환 상추를 제공하는 것이다.In order to solve the above problems, the present invention comprises a gene encoding TC / VTE1 (tocopherol cyclase) protein derived from Arabidopsis thaliana involved in the synthesis of tocopherol, consisting of the amino acid sequence represented by SEQ ID NO: 4 It is to provide a transgenic lettuce characterized in that the tocopherol content is increased by transformation with a recombinant vector.

본 발명은 또한, 상기 유전자를 상추에서 과발현시킴으로써 토코페롤 함량을 증가시키는 방법을 제공하는 것이다.The present invention also provides a method of increasing the tocopherol content by overexpressing the gene in lettuce.

본 발명은 토코페롤 함량이 증가한 형질전환 상추를 제공함으로써, 토코페롤의 항산화 작용으로 인해서 식품공학 응용분야에 이용될 수 있다. The present invention can be used in food engineering applications due to the antioxidant activity of tocopherol by providing a transgenic lettuce with increased tocopherol content.

본 발명에 따른 HPT/VTE2와 TC/VTE1 단백질의 범위는 담배로부터 분리된 서열번호3과 서열번호4로 각각 표시되는 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호2로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호2로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. "실질적으로 동질의 생리활성"이란 식물체 내에서 토코페롤 합성에 관여하는 활성을 의미한다.The range of HPT / VTE2 and TC / VTE1 proteins according to the present invention includes proteins having amino acid sequences represented by SEQ ID NO: 3 and SEQ ID NO: 4, respectively, isolated from tobacco and functional equivalents of the proteins. "Functional equivalent" means at least 70%, preferably at least 80%, more preferably at least 90%, even more preferably at least 70% of the amino acid sequence represented by SEQ ID NO: 2 as a result of the addition, substitution, or deletion of the amino acid Is 95% or more of sequence homology, and refers to a protein that exhibits substantially homogeneous physiological activity with the protein represented by SEQ ID NO: 2. "Substantially homogeneous physiological activity" refers to the activity involved in tocopherol synthesis in plants.

또한, 본 발명은 상기 HPT/VTE2와 TC/VTE1 단백질을 코딩하는 유전자를 제공한다. 본 발명의 유전자는HPT/VTE2와 TC/VTE1 단백질을 코딩하는 게놈 DNA와 cDNA를 모두 포함한다. 바람직하게는, 본 발명의 유전자는 서열번호 1과 서열번호2로 각각 표시되는 염기서열을 포함할 수 있다.The present invention also provides genes encoding the HPT / VTE2 and TC / VTE1 proteins. Genes of the invention include both genomic DNA and cDNA encoding HPT / VTE2 and TC / VTE1 proteins. Preferably, the gene of the present invention may include a nucleotide sequence represented by SEQ ID NO: 1 and SEQ ID NO: 2, respectively.

또한, 상기 염기 서열의 변이체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 유전자는 서열번호 1의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.In addition, variants of the above nucleotide sequences are included within the scope of the present invention. Specifically, the gene has a base sequence having a sequence homology of at least 70%, more preferably at least 80%, even more preferably at least 90%, most preferably at least 95% with the nucleotide sequence of SEQ ID NO: 1, respectively. It may include. The "% sequence homology" for a polynucleotide is identified by comparing two optimally arranged sequences with a comparison region, wherein part of the polynucleotide sequence in the comparison region is the reference sequence (addition or deletion) for the optimal alignment of the two sequences. It may include the addition or deletion (ie, gap) compared to).

또한, 본 발명은 본 발명에 따른 유전자를 포함하는 재조합 벡터를 제공한다. 상기 재조합 벡터는 바람직하게는 재조합 식물 발현 벡터이다.The present invention also provides a recombinant vector comprising the gene according to the present invention. The recombinant vector is preferably a recombinant plant expression vector.

용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로써 인위적인 수단에 의해 세포 내 재도입된 것이다.The term “recombinant” refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a protein encoded by a peptide, a heterologous peptide, or a heterologous nucleic acid. Recombinant cells can express genes or gene fragments that are not found in their natural form in either the sense or antisense form. Recombinant cells can also express genes found in natural cells, but the genes have been modified and reintroduced into cells by artificial means.

용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.The term “vector” is used to refer to a DNA fragment (s), a nucleic acid molecule, that is delivered into a cell. Vectors can replicate DNA and be reproduced independently in host cells. The term "carrier" is often used interchangeably with "vector". The term “expression vector” refers to a recombinant DNA molecule comprising a coding sequence of interest and a suitable nucleic acid sequence necessary to express a coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.

식물 발현 벡터의 바람직한 예는 아그로박테리움 투머파시엔스와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터(EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리(binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가 닥 식물 바이러스(예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.Preferred examples of plant expression vectors are Ti-plasmid vectors which, when present in a suitable host such as Agrobacterium tumerfaciens, can transfer part of themselves, the so-called T-region, into plant cells. Another type of Ti-plasmid vector (see EP 0 116 718 B1) is used to transfer hybrid DNA sequences to protoplasts from which current plant cells or new plants can be produced that properly insert hybrid DNA into the plant's genome. have. A particularly preferred form of the Ti-plasmid vector is the so-called binary vector as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838. Other suitable vectors that can be used to introduce the DNA according to the invention into a plant host are viral vectors, such as those which can be derived from double stranded plant viruses (eg CaMV) and single stranded viruses, gemini viruses, etc., For example, it may be selected from an incomplete plant viral vector. The use of such vectors can be advantageous especially when it is difficult to properly transform a plant host.

발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 것이다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate) 또는 포스피노트리신(포스피노트리신)과 같은 제초제 저항성 유전자, 카나마이신(Kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.The expression vector will preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having properties that can be selected by chemical methods, and all genes that can distinguish transformed cells from non-transformed cells. Examples include herbicide resistance genes such as glyphosate or phosphinothricin (phosphinothricin), kanamycin, G418, bleomycin, hygromycin, chloramphenicol There are antibiotic resistance genes such as, but not limited to.

본 발명의 일 구현예에 따른 식물 발현 벡터에서, 프로모터는 CaMV 35S, 액틴, 유비퀴틴, pEMU, MAS 또는 히스톤 프로모터일 수 있으나, 이에 제한되지 않는다. "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 구성적 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 구성적 프로모터는 선택 가능성을 제한하지 않는다.In the plant expression vector according to an embodiment of the present invention, the promoter may be, but is not limited to, CaMV 35S, actin, ubiquitin, pEMU, MAS or histone promoter. The term "promoter" refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription. A "plant promoter" is a promoter capable of initiating transcription in plant cells. A "constitutive promoter" is a promoter that is active under most environmental conditions and developmental conditions or cell differentiation. Constitutive promoters may be preferred in the present invention because selection of the transformants may be made by various tissues at various stages. Thus, the constitutive promoter does not limit the selection possibilities.

상기 터미네이터는, 통상의 터미네이터를 사용할 수 있으며, 그 예로는 노팔린 신타아제(NOS), 벼 α-아밀라아제 RAmy1 A 터미네이터, 파세올린(phaseoline) 터미네이터, 아그로박테리움 투메파시엔스(agrobacterium tumefaciens)의 옥토파인(Octopine) 유전자의 터미네이터 등이 있으나, 이에 한정되는 것은 아니다. 터미네이터의 필요성에 관하여, 그러한 영역이 식물 세포에서의 전사의 확실성 및 효율을 증가시키는 것으로 일반적으로 알고 있다. 그러므로, 터미네이터의 사용은 본 발명의 내용에서 매우 바람직하다.The terminator may be a conventional terminator, and examples thereof include nopaline synthase (NOS), rice α-amylase RAmy1 A terminator, phaseoline terminator, agrobacterium tumefaciens (ocrobacterium tumefaciens) Terminator of the Fine (Octopine) gene, etc., but is not limited thereto. With regard to the need for terminators, it is generally known that such regions increase the certainty and efficiency of transcription in plant cells. Therefore, the use of terminators is highly desirable in the context of the present invention.

또한, 본 발명은 본 발명에 따른 재조합 벡터로 형질전환된 식물체를 제공한다. 식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및(또는) 조직 배양 기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito R.D. et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법(Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185), 각종 식물 요소의 (DNA 또는 RNA-코팅된) 입자 충격법(Klein T.M. et al., 1987, Nature 327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투머파시엔스 매개된 유전자 전이에서 (비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다. 특히 바람직한 것은 EP A 120 516호 및 미국 특허 제4,940,838호에 기재된 바와 같은 소위 이원 벡터 기술을 이용하는 것이다.The present invention also provides a plant transformed with the recombinant vector according to the present invention. Plant transformation refers to any method of transferring DNA to a plant. Such transformation methods do not necessarily have a period of regeneration and / or tissue culture. Transformation of plant species is now common for plant species, including both dicotyledonous plants as well as monocotyledonous plants. In principle, any transformation method can be used to introduce hybrid DNA according to the invention into suitable progenitor cells. Method is calcium / polyethylene glycol method for protoplasts (Krens, FA et al., 1982, Nature 296, 72-74; Negrutiu I. et al., June 1987, Plant Mol. Biol. 8, 363-373), protoplasts Electroporation (Shillito RD et al., 1985 Bio / Technol. 3, 1099-1102), microscopic injection into plant elements (Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185 ), (DNA or RNA-coated) particle bombardment of various plant elements (Klein TM et al., 1987, Nature 327, 70), Agrobacterium tumulopasis by plant infiltration or transformation of mature pollen or vesicles And infection with (incomplete) virus (EP 0 301 316) in en mediated gene transfer. Preferred methods according to the invention include Agrobacterium mediated DNA delivery. Especially preferred is the use of the so-called binary vector technology as described in EP A 120 516 and US Pat. No. 4,940,838.

식물의 형질전환에 이용되는 "식물 세포"는 어떤 식물 세포도 된다. 식물 세포는 배양 세포, 배양 조직, 배양 기관 또는 전체 식물, 바람직하게는 배양 세포, 배양 조직 또는 배양 기관 및 더욱 바람직하게는 배양 세포의 어떤 형태도 된다.The "plant cells" used for plant transformation may be any plant cells. The plant cells may be cultured cells, cultured tissues, cultured organs or whole plants, preferably cultured cells, cultured tissues or cultured organs and more preferably any form of cultured cells.

"식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 종자, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다."Plant tissue" refers to the tissues of differentiated or undifferentiated plants, such as, but not limited to, roots, stems, leaves, pollen, seeds, cancer tissues and various types of cells used in culture, ie single cells, protoplasts. (protoplast), shoots and callus tissue. The plant tissue may be in planta or in an organ culture, tissue culture or cell culture.

또한, 본 발명은 본 발명에 따른 HPT/VTE2와 TC/VTE1 유전자를 식물체에서 발현시킴으로써 토코페롤 합성에 관여하는 방법을 제공한다.The present invention also provides a method of participating in tocopherol synthesis by expressing the HPT / VTE2 and TC / VTE1 genes according to the present invention in plants.

식물체에서 HPT/VTE2와 TC/VTE1 유전자를 발현시키는 방법으로는 HPT/VTE2와 TC/VTE1유전자를 각각 포함하고 있는 식물체 또는 HPT/VTE2와 TC/VTE1 유전자를 포함하고 있지 않은 각각의 식물체 내로 HPT/VTE2와 TC/VTE1유전자를 각각 도입함으로써 수행될 수 있다. 식물체 내로 HPT/VTE2와 TC/VTE1 유전자를 도입하는 방법으로는 프로모터의 조절을 받는 HPT/VTE2와 TC/VTE1유전자가 각각 포함된 발현 벡터를 이용하여 식물체를 형질전환하는 방법이 있다. 상기에서 프로모터로는 식물체 내에 삽입 유전자를 발현시킬 수 있는 것이라면 특별히 제한되지 않는다. 상기 프로모터의 예로는 이에 한정되지는 않으나, CaMV의 35S RNA 및 19S RNA 프로모터; 피크워트 모자이크 비루스(FMV)에서 유래한 전장 전사 프로모터 및 TMV의 코트 단백질 프로모터를 들 수 있다. 또한, 단자엽 식물이나 목본식물체에서 HPT/VTE2와 TC/VTE1 유전자를 발현하기 위해서는 유비퀴틴(ubiquitin) 프로모터를 사용할 수 있다.As a method for expression of the HPT / VTE2 and TC / VTE1 genes in plants is within the HPT / VTE2 and TC / VTE1 each plant containing the gene respectively, and a plant or that do not contain the HPT / VTE2 and TC / VTE1 gene HPT / This can be done by introducing the VTE2 and TC / VTE1 genes respectively. A method for introducing the HPT / VTE2 and TC / VTE1 gene into a plant is a method of using the HPT / VTE2 and TC / VTE1 gene subject to the control of the promoter using the expression vectors each containing the transgenic plant. The promoter is not particularly limited as long as it can express an insertion gene in a plant. Examples of such promoters include, but are not limited to, 35S RNA and 19S RNA promoters of CaMV; Full length transcriptional promoters derived from Peak Water Mosaic Virus (FMV) and Coat protein promoters of TMV. In addition, the ubiquitin promoter can be used to express the HPT / VTE2 and TC / VTE1 genes in monocotyledonous plants or woody plants.

본 발명의 방법에 의해 식물의 토코페롤 합성에 관여할 수 있는 식물체로는 벼, 밀, 보리, 옥수수, 콩, 감자, 팥, 귀리, 수수를 포함하는 식량작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근을 포함하는 채소작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩, 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구, 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합, 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐, 페레니얼라이그라스 등을 포함하는 사료작물류가 포함된다.Plants that may be involved in tocopherol synthesis of plants by the method of the present invention include food crops including rice, wheat, barley, corn, soybeans, potatoes, red beans, oats, and sorghum; Vegetable crops including Arabidopsis, Chinese cabbage, radish, pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion, carrot; Special crops including ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut, rapeseed; Fruit trees including apple trees, pears, jujube trees, peaches, leeks, grapes, citrus fruits, persimmons, plums, apricots, bananas; Flowers, including roses, gladiolus, gerberas, carnations, chrysanthemums, lilies and tulips; And feed crops including lygras, redclover, orchardgrass, alphaalpha, tolskew, perennial licegrass and the like.

또한, 본 발명은 상기 방법에 의해 제조된 토코페롤 함량에 변화가 생성된 형질전환 식물체를 제공한다.The present invention also provides a transgenic plant in which a change is produced in the tocopherol content produced by the above method.

본 발명에 따른 토코페롤 함량에 변화가 생성된 식물은 당업계의 통상적인 방법인 유성번식 방법 또는 무성번식 방법을 통해 수득할 수 있다. 보다 구체적으로, 본 발명의 식물체는 꽃의 수분과정을 통하여 종자를 생산하고 상기 종자로부터 번식하는 과정인 유성번식을 통해 수득할 수 있다. 또한, 본 발명에 따른 HPT/VTE2와 TC/VTE1 유전자를 포함하는 재조합 벡터로 식물체를 형질전환한 다음 통상적인 방법에 따라 캘러스의 유도, 발근 및 토양 순화의 과정인 무성번식 방법을 통해 수득할 수 있다. 즉, HPT/VTE2와 TC/VTE1 유전자가 포함된 재조합 벡터로 형질전환된 식물의 절편체를 당업계에 공지된 적합한 배지에 치상한 다음 적정 조건으로 배양하여 캘러스의 형성을 유도하고, 신초가 형성되면 호르몬 무첨가 배지로 옮겨 배양한다. 약 2주 후 상기 신초를 발근용 배지에 옮겨서 뿌리를 유도한다. 뿌리가 유도된 다음 이를 토양에 이식하여 순화시킴으로써 토코페롤 함량에 변화가 생성된 식물을 수득할 수 있다. 본 발명에서 형질전환 식물은 전체 식물체뿐만 아니라 그로부터 수득될 수 있는 조직, 세포 또는 종자를 포함할 수 있다.Plants in which a change in the tocopherol content according to the present invention is produced can be obtained through the sexual propagation method or the asexual propagation method which is a conventional method in the art. More specifically, the plant of the present invention can be obtained through the oily breeding process of producing seeds through the pollination process of flowers and breeding from the seeds. In addition, after transforming a plant with a recombinant vector comprising the HPT / VTE2 and TC / VTE1 gene according to the present invention can be obtained through the asexual propagation method which is a process of induction, rooting and soil purification of the callus according to a conventional method. have. That is, explants of plants transformed with recombinant vectors containing HPT / VTE2 and TC / VTE1 genes are implanted in a suitable medium known in the art and then cultured under appropriate conditions to induce the formation of callus, and shoots are formed. When incubated, transfer to the hormone-free medium. After about 2 weeks, the shoots are transferred to rooting medium to induce roots. By inducing roots and transplanting them into the soil, the plants can be obtained with a change in tocopherol content. In the present invention, the transformed plant may include not only the whole plant, but also tissues, cells, or seeds obtainable therefrom.

비타민 E로 잘 알려진 토코페롤 (tocopherol)은 식물과 광합성 미생물에 의하여 합성되는 지용성 항산화제이다. 토코페롤은 고등식물의 엽록체가 광산화 작용에 의하여 피해를 입는 것을 막으며 인간의 균형 잡힌 식단에서도 필수적인 요소가 된다. 토코페롤은 크게 알파와 베타, 감마, 그리고 델타 (α, β, γ, δ)의 4가지 형태로 존재한다. 자연계에 존재하는 네 가지 형태의 토코페롤 중에서 알파토코페롤의 생물학적 활성이 100%라고 할 때, 베타토코페롤은 50%, 감마토코페롤은 10%, 델타토코페롤은 3%에 해당한다. Tocopherol, also known as vitamin E, is a fat-soluble antioxidant that is synthesized by plants and photosynthetic microorganisms. Tocopherols prevent the chloroplasts of higher plants from being damaged by photooxidation and are an essential component of a human balanced diet. Tocopherols come in four major forms: alpha, beta, gamma, and delta (α, β, γ, δ). Of the four types of tocopherols present in nature, the alpha tocopherol activity is 100%, which corresponds to 50% of beta tocopherol, 10% of gamma tocopherol, and 3% of delta tocopherol.

본 발명에서는 애기장대의 homogentisate phytyltransferase (HPT/VTE2)와 tocopherol cyclase (TC/VTE1) 유전자를 과발현시킨 형질전환 상추 (Lactuca sativa L. cv. Chungchima)를 제작하고, 토코페롤의 조성과 함량을 분석하였다. In the present invention, transgenic lettuce ( Lactuca sativa L. cv. Chungchima ) overexpressing the Arabidopsis homogentisate phytyltransferase ( HPT / VTE2 ) and tocopherol cyclase ( TC / VTE1 ) genes were prepared, and the composition and content of tocopherol were analyzed.

위에서 선발된 유전자들은 토코페롤 생합성 경로로 향하는 전체적인 유동량 (flux)을 증가시켜서 토코페롤의 함량을 증가시키기 위한 목적으로 선발되었다. 또한 HPT/VTE2와 TC/VTE1의 두 효소는 애기장대의 잎에서 토코페롤의 합성에 관여하는 주요한 제한요소 (limiting factors)로 밝혀져 있다 (도1). 반면에, MPBQ를 DMPBQ로 전환시키는 MPBQMT/VTE3는 애기장대와 상추에서 발견되는 대부분의 토코페롤이 델타와 베타토코페롤보다 효율적인 항산화제인 감마와 알파 토코페롤인 것을 볼 때 제한요소로 여겨지지 않는다. 그러므로 MPBQMT/VTE3는 대사공학을 통하여 상추의 토코페롤 함량을 증가시키기 위한 타겟 (target)에서 제외하였다. γ-TMT/VTE4는 애기장대와 상추, 콩에서 과발현시켰을 경우 전체 토코페롤 함량의 증가라는 측면에서 기여도가 거의 없었다는 보고에 기초하여 마찬가지로 타겟 (target)에서 제외하였다.The genes selected above were selected for the purpose of increasing the content of tocopherol by increasing the overall flux towards the tocopherol biosynthetic pathway. In addition, two enzymes, HPT / VTE2 and TC / VTE1, have been identified as the major limiting factors involved in the synthesis of tocopherols in the leaves of Arabidopsis (Fig. 1). On the other hand, MPBQMT / VTE3, which converts MPBQ to DMPBQ, is not considered to be a limiting factor given that most of the tocopherols found in Arabidopsis and lettuce are the more effective antioxidants gamma and alpha tocopherols than delta and betatocopherol. MPBQMT / VTE3 was therefore excluded as a target for increasing the tocopherol content of lettuce through metabolic engineering. γ-TMT / VTE4 was also excluded from the target on the basis of reports that overexpression in Arabidopsis, lettuce, and soybeans contributed little to the increase in total tocopherol content.

아그로박테리움을 이용하여 HPT/VTE2TC/VTE1 유전자를 각각 상추에 형질전환한 결과, genomic DNA PCR 분석을 통하여 각각 2개의 형질전환체를 획득하였다 (도3). 또한 real time RT-PCR 분석 결과, 이들 형질전환체에서 발현되는 HPT/VTE2TC/VTE1의 전사체 (transcript)의 양은 야생형 (wild tyep) 애기장대에서 발현되는 양보다 많은 것을 알 수 있었다. 역상 HPLC 분석 결과, 형질전환 상추의 전체 토코페롤 함량은 HPT/VTE2 형질전환체의 잎에서 야생형 상추에 비하여 2.7배와 2배 가량 높게 측정되었고, TC/VTE1 형질전환체의 잎에서도 역시 2배 가량 높게 측정되었다 (도4; 표 1). 이 두 가지 형질전환체 모두에서 전체 토코페롤 함량의 증가는 주로 감마토코페롤 (γ-tocopherol) 함량의 증가에서 기인한 것이었다. 반면, 모든 형질전환체와 야생형 상추 작물에서 베타토코페롤 (β-tocopherol)은 검출되지 않았다. HPT / VTE2 and TC / VTE1 genes were transformed into lettuce using Agrobacterium, respectively, and two transformants were obtained through genomic DNA PCR analysis (FIG. 3). In addition, the real time RT-PCR analysis showed that the amount of transcript of HPT / VTE2 and TC / VTE1 expressed in these transformants was greater than that expressed in wild tyep. Reverse phase HPLC analysis showed that the total tocopherol content of the transformed lettuce was 2.7-fold and 2-fold higher in the leaves of HPT / VTE2 transformants than in the wild-type lettuce, and also 2-fold higher in the leaves of TC / VTE1 transformants. It was measured (FIG. 4; Table 1). The increase in total tocopherol content in both of these transformants was mainly due to the increase in gamma-tocopherol content. On the other hand, beta-tocopherol was not detected in all transformants and wild type lettuce crops.

식물 내의 대사 경로를 인위적으로 조작할 경우, 주위의 다른 대사경로에도 변화를 가져오기가 쉽다. 이와 같은 맥락에서, 형질전환 상추의 엽록소 함량을 측정해 보았다. 왜냐하면 토코페롤 생합성 과정에서 HPT/VTE2 효소의 기질이 되는 phytyl-DP가 엽록소 생합성 과정에서도 공통적으로 기질이 되기 때문이다. 분석 결과, HPT/VTE2 형질전환체에서 엽록소의 함량은 20%까지 눈에 띄게 감소하였다 (P < 0.01) (도5). 이러한 현상은 형질전환체 내에 존재하는 엽록소 생합성 효소와 과발현된 HPT/VTE2 효소 사이의 phytyl-DP에 대한 경쟁에 의한 것으로 생각된다. 즉, 형질전환체 내에서 토코페롤 생합성에 제한요소가 되는 HPT/VTE2 효소가 증가함에 따라 phytyl-DP의 flux 균형이 토코페롤 생합성 쪽으로 이동하였다는 것을 의미한다. 반면에, TC/VTE1 형질전환체에서는 엽록소 함량이 최고 35%까지 크게 증가하는 것을 볼 수 있다 (P < 0.001). 이것은 TC/VTE1의 증가에 의하여 집적된 phytyl-DP가 상추 내에 제한적으로 존재하는 HPT/VTE2에 의하여 제한된 양만이 소비되기 때문에, 결과적으로 엽록소 합성으로 가는 phyty-DP의 양이 증가하게 된 것으로 생각 된다. Artificially manipulating the metabolic pathways in a plant makes it easy to make changes in other metabolic pathways around it. In this context, the chlorophyll content of transgenic lettuce was measured. This is because phytyl-DP, a substrate of HPT / VTE2 enzyme in tocopherol biosynthesis, is also commonly used in chlorophyll biosynthesis. As a result, the content of chlorophyll in the HPT / VTE2 transformant was noticeably reduced by 20% (P <0.01) (Fig. 5). This phenomenon is thought to be due to competition for phytyl-DP between chlorophyll biosynthetic enzymes present in the transformant and the overexpressed HPT / VTE2 enzyme. That is, the flux balance of phytyl-DP shifted toward tocopherol biosynthesis as HPT / VTE2 enzyme, which is a limiting factor in tocopherol biosynthesis, increased in the transformants. On the other hand, in the TC / VTE1 transformants, the chlorophyll content can be seen to increase significantly up to 35% (P <0.001). This is thought to be due to the increase in the amount of phyty-DP that leads to chlorophyll synthesis because only a limited amount of phytyl-DP accumulated by TC / VTE1 is consumed by HPT / VTE2, which is limited in lettuce. .

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. Since these examples are only for illustrating the present invention, the scope of the present invention is not to be construed as being limited by these examples.

<실시예1: 식물체와 성장조건>Example 1: Plants and Growth Conditions

상추 (Lactuca sativa L. cv. Chungchima) 씨앗 표면을 70% 에탄올에서 30초간 멸균한 후, 1.0% sodium hypochlorite solution에서 15분 동안 처리하였다. 그 후 3%(w/v) 수크로스와 0.6% (w/v) 피토아가가 첨가된 MS배지 (Murashige, T. and Skoog, F. (1962) Physiol. Plant 15, 473-497)에 파종하였다. 이 때 배지의 pH는 5.8로 맞추었다. 씨앗은 25℃, 일정한 광주기 (16시간 광 (50 μmol/m2/s)/8시간 암)로 싹을 틔웠다.Lettuce ( Lactuca sativa L. cv. Chungchima) seed surfaces were sterilized in 70% ethanol for 30 seconds and then treated with 1.0% sodium hypochlorite solution for 15 minutes. Then seeded in MS medium (Murashige, T. and Skoog, F. (1962) Physiol. Plant 15, 473-497) to which 3% (w / v) sucrose and 0.6% (w / v) phytoagar were added. It was. At this time, the pH of the medium was adjusted to 5.8. Seeds were sprouted at 25 ° C., constant photoperiod (16 h light (50 μmol / m 2 / s) / 8 h dark).

<실시예2; 상추의 형질전환을 위한 재조합 플라스미드의 제작><Example 2; Construction of Recombinant Plasmids for Transformation of Lettuce>

Total RNA는 2주된 애기장대의 어린싹으로부터 RNeasy Plant Mini Kit (Qiagen)을 이용하여 분리하였다. 이로부터 RT-PCR을 이용하여 애기장대 homogentisate phytyltransferase (HPT/VTE2)의 cDNA를 준비하였다. 첫 번째 cDNA 가닥은 SuperScriptTM III RNase H- reverse transcriptase (Invitrogen)와 프라이머 (AtHPT-RT, 5’-TCACTTCAAAAAAGGTAACAGCAAGTA-3’(서열목록5))를 이용하여 합성하였다. 두 번째 PCR 산물은 유전자 특이 프라이머 세트 (AtHPT-L, 5’-CATGCCATGGAGTCTCTGCTCTCTAGTTCT-3’(서열목록6)과 AtHPT-R, 5’-GGGTCACCTCACTTCAAAAAAGGTAACAGC-3’(서열목록7))을 MgSO4와 pfu DNA polymerase와 함께 넣고 반응시켜 얻었다. PCR 조건은 다음과 같다. 초기변성 95℃:1.5분/ 94℃:2분, 60℃:30초, 72℃:2.3분, 40사이클. 이렇게 생성된 HPT/VTE2의 PCR 산물을 NcoI와 BstEII로 자른 후, pCAMBIA1301 벡터에 삽입하였다. 애기장대 tocopherol cyclase (TC/VTE1) cDNA의 경우에는 AtTC-RT 프라이머 ( 5’-TTACAGACCCGGTGGCTTGAAGAAAGG-3’(서열목록8))를 이용하여 위와 같은 방법으로 얻었다. 이 단계에서 사용된 유전자 특이 프라이머는 AtTC-L(5’-CATGCCATGGAGATACGGAGCTTGATTGTT-3’(서열목록9))과 AtTC-R(5’-GGGTCACCTTACAGACCCGGTGGCTTGAA-3’(서열목록10))이며, 증폭 조건은 초기변성 95℃:1.5분/ 94℃:2분, 60℃:30초, 72℃:2.9분, 50사이클이다.Total RNA was isolated from young shoots of 2 week old Arabidopsis RNeasy Plant Mini Kit (Qiagen). From this, cDNA of Arabidopsis homogentisate phytyltransferase ( HPT / VTE2 ) was prepared using RT-PCR. The first cDNA strand was synthesized using SuperScript III RNase H- reverse transcriptase (Invitrogen) and primer (AtHPT-RT, 5'-TCACTTCAAAAAAGGTAACAGCAAGTA-3 ') (SEQ ID NO: 5). The second PCR product contains a set of gene specific primers (AtHPT-L, 5'-CATGCCATGGAGTCTCTGCTCTCTAGTTCT-3 '(SEQ ID NO: 6) and AtHPT-R, 5'-GGGTCACCTCACTTCAAAAAAGGTAACAGC-3' (SEQ ID NO: 7)) for MgSO 4 and pfu DNA. The reaction was carried out with the polymerase. PCR conditions are as follows. Initial denaturation 95 ° C: 1.5 minutes / 94 ° C: 2 minutes, 60 ° C: 30 seconds, 72 ° C: 2.3 minutes, 40 cycles. The PCR product of HPT / VTE2 thus produced was cut into NcoI and BstEII, and then inserted into pCAMBIA1301 vector. Arabidopsis tocopherol cyclase (TC / VTE1) cDNA was obtained by the above method using AtTC-RT primer (5'-TTACAGACCCGGTGGCTTGAAGAAAGG-3 '(SEQ ID NO: 8)). The gene specific primers used at this stage are At TC-L (5'-CATGCCATGGAGATACGGAGCTTGATTGTT-3 ') (SEQ ID NO: 9) and At TC-R (5'-GGGTCACCTTACAGACCCGGTGGCTTGAA-3' (SEQ ID NO: 10)) The initial denaturation is 95 ° C: 1.5 minutes / 94 ° C: 2 minutes, 60 ° C: 30 seconds, 72 ° C: 2.9 minutes, and 50 cycles.

<실시예3; 아그로박테리움을 이용한 상추의 형질전환><Example 3; Transformation of Lettuce Using Agrobacterium>

pCAMBIA1301-AtHPT/VTE2 또는 pCAMBIA1301-AtTC/VTE1을 갖는 아그로박테리움 LBA4404의 단일 콜로니를 rifampicin과 kanamycin이 들어있는 YEP 액체배지에서 OD600가 1.1~1.6이 될 때까지 배양하였다. 그 후 배양액을 5,000×g에서 20분 동안 원심분리하고, 다시 펠렛을 액체 MS배지에 풀었다. 이를 액체 MS배지로 10배 희석 하였다. 파종 후, 6~7일이 지난 상추 떡잎 (cotyledons)을 향축 표면과 수직방향으로 3번 상처를 낸 뒤 박테리아 1/10 희석액에 5분 동안 접종하였다 (Wroblewski, T., Tomczak, A. and Michelmore, R. (2005) Plant Biotechnol. J. 3, 259-273). 멸균 필터로 떡잎의 물기를 제거하고, 이를 MRS 배지 (MS basal salts with vitamins, 3% sucrose, 0.1 mg/ℓ NAA, 0.1 mg/ℓ BAP, pH 5.8, 0.6% phytoagar)에 치상하고, 암조건에서 이틀동안 배양하였다 (Kim, J. H. and Botella, J. R. (2004) Plant Cell Tiss. Org. 78, 69-73; Kim, B. et al. (2004) J. Kor. Soc. Hort. Sci. 45, 16-20). 이틀 후, 아그로박테리움을 처리한 떡잎을 hygromycin 10 mg/ℓ과 cefotaxime 300 mg/ℓ을 첨가한 MSR배지로 옮겼다. 2주 후, 이 떡잎을 다시 hygromycin과 cefotaxime이 첨가된 신선한 MRS배지로 옮겼다. 이 절편으로부터 생성된 재분화 개체를 hygromycin과 cefotaxime이 첨가된 신선한 MRS배지에 옮겼다. 그 중에서 살아난 개체는 MSO배지에서 뿌리가 생길 때까지 배양하였다.A single colony of Agrobacterium LBA4404 with either pCAMBIA1301- AtHPT / VTE2 or pCAMBIA1301- AtTC / VTE1 was incubated in a YEP liquid medium containing rifampicin and kanamycin until OD 600 was 1.1-1.6. The culture was then centrifuged at 5,000 × g for 20 minutes and the pellet was again taken up in liquid MS medium. It was diluted 10 times with liquid MS medium. After sowing, six to seven days old lettuce cotyledon (cotyledons) were wound three times in the direction perpendicular to the axial surface and inoculated in 1/10 dilution of bacteria for 5 minutes (Wroblewski, T., Tomczak, A. and Michelmore). , R. (2005) Plant Biotechnol. J. 3, 259-273). Drain the cotyledon with a sterile filter and wash it in MRS medium (MS basal salts with vitamins, 3% sucrose, 0.1 mg / L NAA, 0.1 mg / L BAP, pH 5.8, 0.6% phytoagar) Incubated for two days (Kim, JH and Botella, JR (2004) Plant Cell Tiss. Org. 78, 69-73; Kim, B. et al . (2004) J. Kor. Soc. Hort. Sci. 45, 16 -20). Two days later, Agrobacterium treated cotyledon was transferred to MSR medium containing 10 mg / l hygromycin and 300 mg / l cefotaxime. Two weeks later, the cotyledon was transferred to fresh MRS medium supplemented with hygromycin and cefotaxime. Redifferentiated individuals from these sections were transferred to fresh MRS medium containing hygromycin and cefotaxime. The surviving individuals were cultured until roots were formed in MSO medium.

<실시예4: T-DNA삽입 여부 확인><Example 4: T-DNA insertion check>

HPT/VTE2 형질전환 개체를 골라내기 위한 PCR반응을 유전자 특이 프라이머 세트 (AtHPT-M, 5’-GTTTCTGATATATCTCCTTTA-3’(서열목록11)과 pCAM-NosPolyA, 5’-CATGCTTAACGTAATTCAAC-3’(서열목록12))를 이용하여 50 ng의 염색체 DNA를 포함하는 20 μℓ 반응액을 만들어 수행하였다. PCR 조건은 초기변성 95℃:4분/ 94℃:30분, 55℃:30초, 72℃:1분, 35사이클로 하여 수행하였다. TC/VTE1 형질전환 개체를 골라내기 위한 프라이머 세트는 AtTC-L, 5’-CATGCCATGGAGATACGGAGCTTGATTGTT-3’ (서열목록13)과 AtTC-Rev3, 5’-GAACCCTTCGGACACTCTTCTGTTA-3’(서열목록14)으로 여타 조건은 상기한 바와 같다.PCR reactions to select HPT / VTE2 transgenic subjects were carried out using a gene-specific primer set ( At HPT-M, 5'-GTTTCTGATATATCTCCTTTA-3 '(SEQ ID NO: 11) and pCAM-NosPolyA, 5'-CATGCTTAACGTAATTCAAC-3' (SEQ ID NO: 12)) was used to make a 20 μl reaction solution containing 50 ng of chromosomal DNA. PCR conditions were carried out in the initial denaturation 95 ℃: 4 minutes / 94 ℃: 30 minutes, 55 ℃: 30 seconds, 72 ℃: 1 minutes, 35 cycles. Primer sets for selecting TC / VTE1 transgenic individuals were At TC-L, 5'-CATGCCATGGAGATACGGAGCTTGATTGTT-3 '(SEQ ID NO: 13) and At TC-Rev3, 5'-GAACCCTTCGGACACTCTTCTGTTA-3' (SEQ ID NO: 14). The conditions are as described above.

<실시예5: 토코페롤 정량을 위한 HPLC 분석>Example 5 HPLC Analysis for Tocopherol Quantitation

상추 잎의 토코페롤 정량을 수행하기 위해, 메탄올을 이용하여 동결잎 80 mg으로부터 추출하였다. 추출물은 0.45 μm PVDF, 4 mm syringe 필터를 이용하여 필터링한 후, autosampler tubes에 담았다. 토코페롤은 주입량 20 μℓ, 유속 1.5 mℓ min-1, 런타임 (run time) 20분의 조건으로 isocratic reverse-phase HPLC (58% [v/v] acetonitrile and 42% [v/v] methanol containing 7%-isopropanol)을 이용하여 분리하였다. HPLC 분석은 형광분석기 (Shimadzu, RF-10AXL, Japan)와 Phenomenex Luna C18 column (25 cm ⅹ 4.6 mm, 5 μm)을 이용하여 수행하였다. 이 때 시료의 여기 (excitation)는 298 nm, 방사 (emission)는 328 nm에서 관찰하였다. α-, β-, γ- 및 δ-토코페롤의 피크는 standard 피크의 보유시간 (retention times)과 비교하여 구분하였다. 토코페롤 농도와 성분은 각각의 standard 곡선을 기초하여 계산하였다. 토코페롤의 추출과 HPLC 분석은 각각 4번 수행하였다.To perform tocopherol quantification of lettuce leaves, the extracts were extracted from 80 mg of frozen leaves using methanol. The extract was filtered using 0.45 μm PVDF, 4 mm syringe filter, and placed in autosampler tubes. Tocopherol isocratic reverse-phase HPLC (58% [v / v] acetonitrile and 42% [v / v] methanol containing 7%-) under conditions of 20 μl injection rate, 1.5 mℓ min - 1 flow rate and 20 minutes run time). isopropanol). HPLC analysis was performed using a fluorometer (Shimadzu, RF-10AXL, Japan) and a Phenomenex Luna C18 column (25 cm ⅹ 4.6 mm, 5 μm). At this time, the excitation of the sample was observed at 298 nm and emission at 328 nm. Peaks of α-, β-, γ-, and δ-tocopherols were distinguished by comparison with retention times of standard peaks. Tocopherol concentrations and components were calculated based on the respective standard curves. Tocopherol extraction and HPLC analysis were performed four times, respectively.

<실시예6: 엽록소 정량>Example 6 Chlorophyll Determination

형질전환체와 야생형 상추 잎의 엽록소 함량은 분광광도계로 측정하였다 (Arnon, D. I. (1949) Plant Physiol. 24, 1-15). 추출과 엽록소의 정량은 각각 3 번 수행하였다.Chlorophyll content of transformants and wild type lettuce leaves was measured spectrophotometrically (Arnon, D. I. (1949) Plant Physiol. 24, 1-15). Extraction and quantification of chlorophyll were performed three times each.

표 1. HPT/VTE2TC/VTE1 형질전환체의 토코페롤 함량 및 조성Table 1. Tocopherol content and composition of HPT / VTE2 and TC / VTE1 transformants

Figure 112008090830888-pat00001
Figure 112008090830888-pat00001

도1은 애기장대의 토코페롤 생합성 경로를 나타내는 그림이고,1 is a diagram showing the tocopherol biosynthetic pathway of Arabidopsis;

도2는 Agrobacterium을 이용한 형질전환을 통해 생성된 형질전환 상추를 나타내는 그림이고,Figure 2 is a diagram showing the transformed lettuce produced by transformation with Agrobacterium ,

도3은 상추 HPT/VTE2TC/VTE1 형질전환체의 유전체에 애기장대에서 유래한 외래 유전자가 삽입되었는지 genomic DNA PCR 분석을 통하여 확인한 그림이고,FIG. 3 is a diagram confirming whether a foreign gene derived from Arabidopsis herpes is inserted into the genomes of the lettuce HPT / VTE2 and TC / VTE1 transformants through genomic DNA PCR analysis.

도4는 야생형 상추 및 HPT/VTE2TC/VTE1 형질전환 상추의 토코페롤 함량을 측정한 그림이고,4 is a diagram measuring the tocopherol content of wild type lettuce and HPT / VTE2 and TC / VTE1 transformed lettuce,

도5는 야생형 상추 및 HPT/VTE2TC/VTE1 형질전환 상추의 엽록소 함량을 측정한 그림이다.Figure 5 is a measure of the chlorophyll content of wild type lettuce and HPT / VTE2 and TC / VTE1 transformed lettuce.

<110> Seoul National University Industry Foundation <120> Transgenic lettuce plants producing increased tocopherol content <160> 14 <170> KopatentIn 1.71 <210> 1 <211> 1182 <212> DNA <213> Arabidopsis thaliana <400> 1 atggagtctc tgctctctag ttcttctctt gtttccgctg ctggtgggtt ttgttggaag 60 aagcagaatc taaagctcca ctctttatca gaaatccgag ttctgcgttg tgattcgagt 120 aaagttgtcg caaaaccgaa gtttaggaac aatcttgtta ggcctgatgg tcaaggatct 180 tcattgttgt tgtatccaaa acataagtcg agatttcggg ttaatgccac tgcgggtcag 240 cctgaggctt tcgactcgaa tagcaaacag aagtctttta gagactcgtt agatgcgttt 300 tacaggtttt ctaggcctca tacagttatt ggcacagtgc ttagcatttt atctgtatct 360 ttcttagcag tagagaaggt ttctgatata tctcctttac ttttcactgg catcttggag 420 gctgttgttg cagctctcat gatgaacatt tacatagttg ggctaaatca gttgtctgat 480 gttgaaatag ataaggttaa caagccctat cttccattgg catcaggaga atattctgtt 540 aacaccggca ttgcaatagt agcttccttc tccatcatga gtttctggct tgggtggatt 600 gttggttcat ggccattgtt ctgggctctt tttgtgagtt tcatgctcgg tactgcatac 660 tctatcaatt tgccactttt acggtggaaa agatttgcat tggttgcagc aatgtgtatc 720 ctcgctgtcc gagctattat tgttcaaatc gccttttatc tacatattca gacacatgtg 780 tttggaagac caatcttgtt cactaggcct cttattttcg ccactgcgtt tatgagcttt 840 ttctctgtcg ttattgcatt gtttaaggat atacctgata tcgaagggga taagatattc 900 ggaatccgat cattctctgt aactctgggt cagaaacggg tgttttggac atgtgttaca 960 ctacttcaaa tggcttacgc tgttgcaatt ctagttggag ccacatctcc attcatatgg 1020 agcaaagtca tctcggttgt gggtcatgtt atactcgcaa caactttgtg ggctcgagct 1080 aagtccgttg atctgagtag caaaaccgaa ataacttcat gttatatgtt catatggaag 1140 ctcttttatg cagagtactt gctgttacct tttttgaagt ga 1182 <210> 2 <211> 1467 <212> DNA <213> Arabidopsis thaliana <400> 2 atggagatac ggagcttgat tgtttctatg aaccctaatt tatcttcctt tgagctctct 60 cgccctgtat ctcctctcac tcgctcacta gttccgttcc gatcgactaa actagttccc 120 cgctccattt ctagggtttc ggcgtcgatc tccaccccga atagtgaaac tgacaagatc 180 tccgttaaac ctgtttacgt cccgacgtct cccaatcgcg aactccggac tcctcacagt 240 ggataccatt tcgatggaac acctcggaag ttcttcgagg gatggtattt cagggtttcc 300 atcccagaga agagggagag tttttgtttt atgtattctg tggagaatcc tgcatttcgg 360 cagagtttgt caccattgga agtggctcta tatggaccta gattcactgg tgttggagct 420 cagattcttg gcgctaatga taaatattta tgccaatacg aacaagactc tcacaatttc 480 tggggagatc gacatgagct agttttgggg aatactttta gtgctgtgcc aggcgcaaag 540 gctccaaaca aggaggttcc accagaggaa tttaacagaa gagtgtccga agggttccaa 600 gctactccat tttggcatca aggtcacatt tgcgatgatg gccgtactga ctatgcggaa 660 actgtgaaat ctgctcgttg ggagtatagt actcgtcccg tttacggttg gggtgatgtt 720 ggggccaaac agaagtcaac tgcaggctgg cctgcagctt ttcctgtatt tgagcctcat 780 tggcagatat gcatggcagg aggcctttcc acagggtgga tagaatgggg cggtgaaagg 840 tttgagtttc gggatgcacc ttcttattca gagaagaatt ggggtggagg cttcccaaga 900 aaatggtttt gggtccagtg taatgtcttt gaaggggcaa ctggagaagt tgctttaacc 960 gcaggtggcg ggttgaggca attgcctgga ttgactgaga cctatgaaaa tgctgcactg 1020 gtttgtgtac actatgatgg aaaaatgtac gagtttgttc cttggaatgg tgttgttaga 1080 tgggaaatgt ctccctgggg ttattggtat ataactgcag agaacgaaaa ccatgtggtg 1140 gaactagagg caagaacaaa tgaagcgggt acacctctgc gtgctcctac cacagaagtt 1200 gggctagcta cggcttgcag agatagttgt tacggtgaat tgaagttgca gatatgggaa 1260 cggctatatg atggaagtaa aggcaaggtg atattagaga caaagagctc aatggcagca 1320 gtggagatag gaggaggacc gtggtttggg acatggaaag gagatacgag caacacgccc 1380 gagctactaa aacaggctct tcaggtccca ttggatcttg aaagcgcctt aggtttggtc 1440 cctttcttca agccaccggg tctgtaa 1467 <210> 3 <211> 393 <212> PRT <213> Arabidopsis thaliana <400> 3 Met Glu Ser Leu Leu Ser Ser Ser Ser Leu Val Ser Ala Ala Gly Gly 1 5 10 15 Phe Cys Trp Lys Lys Gln Asn Leu Lys Leu His Ser Leu Ser Glu Ile 20 25 30 Arg Val Leu Arg Cys Asp Ser Ser Lys Val Val Ala Lys Pro Lys Phe 35 40 45 Arg Asn Asn Leu Val Arg Pro Asp Gly Gln Gly Ser Ser Leu Leu Leu 50 55 60 Tyr Pro Lys His Lys Ser Arg Phe Arg Val Asn Ala Thr Ala Gly Gln 65 70 75 80 Pro Glu Ala Phe Asp Ser Asn Ser Lys Gln Lys Ser Phe Arg Asp Ser 85 90 95 Leu Asp Ala Phe Tyr Arg Phe Ser Arg Pro His Thr Val Ile Gly Thr 100 105 110 Val Leu Ser Ile Leu Ser Val Ser Phe Leu Ala Val Glu Lys Val Ser 115 120 125 Asp Ile Ser Pro Leu Leu Phe Thr Gly Ile Leu Glu Ala Val Val Ala 130 135 140 Ala Leu Met Met Asn Ile Tyr Ile Val Gly Leu Asn Gln Leu Ser Asp 145 150 155 160 Val Glu Ile Asp Lys Val Asn Lys Pro Tyr Leu Pro Leu Ala Ser Gly 165 170 175 Glu Tyr Ser Val Asn Thr Gly Ile Ala Ile Val Ala Ser Phe Ser Ile 180 185 190 Met Ser Phe Trp Leu Gly Trp Ile Val Gly Ser Trp Pro Leu Phe Trp 195 200 205 Ala Leu Phe Val Ser Phe Met Leu Gly Thr Ala Tyr Ser Ile Asn Leu 210 215 220 Pro Leu Leu Arg Trp Lys Arg Phe Ala Leu Val Ala Ala Met Cys Ile 225 230 235 240 Leu Ala Val Arg Ala Ile Ile Val Gln Ile Ala Phe Tyr Leu His Ile 245 250 255 Gln Thr His Val Phe Gly Arg Pro Ile Leu Phe Thr Arg Pro Leu Ile 260 265 270 Phe Ala Thr Ala Phe Met Ser Phe Phe Ser Val Val Ile Ala Leu Phe 275 280 285 Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys Ile Phe Gly Ile Arg Ser 290 295 300 Phe Ser Val Thr Leu Gly Gln Lys Arg Val Phe Trp Thr Cys Val Thr 305 310 315 320 Leu Leu Gln Met Ala Tyr Ala Val Ala Ile Leu Val Gly Ala Thr Ser 325 330 335 Pro Phe Ile Trp Ser Lys Val Ile Ser Val Val Gly His Val Ile Leu 340 345 350 Ala Thr Thr Leu Trp Ala Arg Ala Lys Ser Val Asp Leu Ser Ser Lys 355 360 365 Thr Glu Ile Thr Ser Cys Tyr Met Phe Ile Trp Lys Leu Phe Tyr Ala 370 375 380 Glu Tyr Leu Leu Leu Pro Phe Leu Lys 385 390 <210> 4 <211> 488 <212> PRT <213> Arabidopsis thaliana <400> 4 Met Glu Ile Arg Ser Leu Ile Val Ser Met Asn Pro Asn Leu Ser Ser 1 5 10 15 Phe Glu Leu Ser Arg Pro Val Ser Pro Leu Thr Arg Ser Leu Val Pro 20 25 30 Phe Arg Ser Thr Lys Leu Val Pro Arg Ser Ile Ser Arg Val Ser Ala 35 40 45 Ser Ile Ser Thr Pro Asn Ser Glu Thr Asp Lys Ile Ser Val Lys Pro 50 55 60 Val Tyr Val Pro Thr Ser Pro Asn Arg Glu Leu Arg Thr Pro His Ser 65 70 75 80 Gly Tyr His Phe Asp Gly Thr Pro Arg Lys Phe Phe Glu Gly Trp Tyr 85 90 95 Phe Arg Val Ser Ile Pro Glu Lys Arg Glu Ser Phe Cys Phe Met Tyr 100 105 110 Ser Val Glu Asn Pro Ala Phe Arg Gln Ser Leu Ser Pro Leu Glu Val 115 120 125 Ala Leu Tyr Gly Pro Arg Phe Thr Gly Val Gly Ala Gln Ile Leu Gly 130 135 140 Ala Asn Asp Lys Tyr Leu Cys Gln Tyr Glu Gln Asp Ser His Asn Phe 145 150 155 160 Trp Gly Asp Arg His Glu Leu Val Leu Gly Asn Thr Phe Ser Ala Val 165 170 175 Pro Gly Ala Lys Ala Pro Asn Lys Glu Val Pro Pro Glu Glu Phe Asn 180 185 190 Arg Arg Val Ser Glu Gly Phe Gln Ala Thr Pro Phe Trp His Gln Gly 195 200 205 His Ile Cys Asp Asp Gly Arg Thr Asp Tyr Ala Glu Thr Val Lys Ser 210 215 220 Ala Arg Trp Glu Tyr Ser Thr Arg Pro Val Tyr Gly Trp Gly Asp Val 225 230 235 240 Gly Ala Lys Gln Lys Ser Thr Ala Gly Trp Pro Ala Ala Phe Pro Val 245 250 255 Phe Glu Pro His Trp Gln Ile Cys Met Ala Gly Gly Leu Ser Thr Gly 260 265 270 Trp Ile Glu Trp Gly Gly Glu Arg Phe Glu Phe Arg Asp Ala Pro Ser 275 280 285 Tyr Ser Glu Lys Asn Trp Gly Gly Gly Phe Pro Arg Lys Trp Phe Trp 290 295 300 Val Gln Cys Asn Val Phe Glu Gly Ala Thr Gly Glu Val Ala Leu Thr 305 310 315 320 Ala Gly Gly Gly Leu Arg Gln Leu Pro Gly Leu Thr Glu Thr Tyr Glu 325 330 335 Asn Ala Ala Leu Val Cys Val His Tyr Asp Gly Lys Met Tyr Glu Phe 340 345 350 Val Pro Trp Asn Gly Val Val Arg Trp Glu Met Ser Pro Trp Gly Tyr 355 360 365 Trp Tyr Ile Thr Ala Glu Asn Glu Asn His Val Val Glu Leu Glu Ala 370 375 380 Arg Thr Asn Glu Ala Gly Thr Pro Leu Arg Ala Pro Thr Thr Glu Val 385 390 395 400 Gly Leu Ala Thr Ala Cys Arg Asp Ser Cys Tyr Gly Glu Leu Lys Leu 405 410 415 Gln Ile Trp Glu Arg Leu Tyr Asp Gly Ser Lys Gly Lys Val Ile Leu 420 425 430 Glu Thr Lys Ser Ser Met Ala Ala Val Glu Ile Gly Gly Gly Pro Trp 435 440 445 Phe Gly Thr Trp Lys Gly Asp Thr Ser Asn Thr Pro Glu Leu Leu Lys 450 455 460 Gln Ala Leu Gln Val Pro Leu Asp Leu Glu Ser Ala Leu Gly Leu Val 465 470 475 480 Pro Phe Phe Lys Pro Pro Gly Leu 485 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tcacttcaaa aaaggtaaca gcaagta 27 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 catgccatgg agtctctgct ctctagttct 30 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 gggtcacctc acttcaaaaa aggtaacagc 30 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ttacagaccc ggtggcttga agaaagg 27 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 catgccatgg agatacggag cttgattgtt 30 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gggtcacctt acagacccgg tggcttgaa 29 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gtttctgata tatctccttt a 21 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 catgcttaac gtaattcaac 20 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 catgccatgg agatacggag cttgattgtt 30 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gaacccttcg gacactcttc tgtta 25 <110> Seoul National University Industry Foundation <120> Transgenic lettuce plants producing increased tocopherol content <160> 14 <170> KopatentIn 1.71 <210> 1 <211> 1182 <212> DNA <213> Arabidopsis thaliana <400> 1 atggagtctc tgctctctag ttcttctctt gtttccgctg ctggtgggtt ttgttggaag 60 aagcagaatc taaagctcca ctctttatca gaaatccgag ttctgcgttg tgattcgagt 120 aaagttgtcg caaaaccgaa gtttaggaac aatcttgtta ggcctgatgg tcaaggatct 180 tcattgttgt tgtatccaaa acataagtcg agatttcggg ttaatgccac tgcgggtcag 240 cctgaggctt tcgactcgaa tagcaaacag aagtctttta gagactcgtt agatgcgttt 300 tacaggtttt ctaggcctca tacagttatt ggcacagtgc ttagcatttt atctgtatct 360 ttcttagcag tagagaaggt ttctgatata tctcctttac ttttcactgg catcttggag 420 gctgttgttg cagctctcat gatgaacatt tacatagttg ggctaaatca gttgtctgat 480 gttgaaatag ataaggttaa caagccctat cttccattgg catcaggaga atattctgtt 540 aacaccggca ttgcaatagt agcttccttc tccatcatga gtttctggct tgggtggatt 600 gttggttcat ggccattgtt ctgggctctt tttgtgagtt tcatgctcgg tactgcatac 660 tctatcaatt tgccactttt acggtggaaa agatttgcat tggttgcagc aatgtgtatc 720 ctcgctgtcc gagctattat tgttcaaatc gccttttatc tacatattca gacacatgtg 780 tttggaagac caatcttgtt cactaggcct cttattttcg ccactgcgtt tatgagcttt 840 ttctctgtcg ttattgcatt gtttaaggat atacctgata tcgaagggga taagatattc 900 ggaatccgat cattctctgt aactctgggt cagaaacggg tgttttggac atgtgttaca 960 ctacttcaaa tggcttacgc tgttgcaatt ctagttggag ccacatctcc attcatatgg 1020 agcaaagtca tctcggttgt gggtcatgtt atactcgcaa caactttgtg ggctcgagct 1080 aagtccgttg atctgagtag caaaaccgaa ataacttcat gttatatgtt catatggaag 1140 ctcttttatg cagagtactt gctgttacct tttttgaagt ga 1182 <210> 2 <211> 1467 <212> DNA <213> Arabidopsis thaliana <400> 2 atggagatac ggagcttgat tgtttctatg aaccctaatt tatcttcctt tgagctctct 60 cgccctgtat ctcctctcac tcgctcacta gttccgttcc gatcgactaa actagttccc 120 cgctccattt ctagggtttc ggcgtcgatc tccaccccga atagtgaaac tgacaagatc 180 tccgttaaac ctgtttacgt cccgacgtct cccaatcgcg aactccggac tcctcacagt 240 ggataccatt tcgatggaac acctcggaag ttcttcgagg gatggtattt cagggtttcc 300 atcccagaga agagggagag tttttgtttt atgtattctg tggagaatcc tgcatttcgg 360 cagagtttgt caccattgga agtggctcta tatggaccta gattcactgg tgttggagct 420 cagattcttg gcgctaatga taaatattta tgccaatacg aacaagactc tcacaatttc 480 tggggagatc gacatgagct agttttgggg aatactttta gtgctgtgcc aggcgcaaag 540 gctccaaaca aggaggttcc accagaggaa tttaacagaa gagtgtccga agggttccaa 600 gctactccat tttggcatca aggtcacatt tgcgatgatg gccgtactga ctatgcggaa 660 actgtgaaat ctgctcgttg ggagtatagt actcgtcccg tttacggttg gggtgatgtt 720 ggggccaaac agaagtcaac tgcaggctgg cctgcagctt ttcctgtatt tgagcctcat 780 tggcagatat gcatggcagg aggcctttcc acagggtgga tagaatgggg cggtgaaagg 840 tttgagtttc gggatgcacc ttcttattca gagaagaatt ggggtggagg cttcccaaga 900 aaatggtttt gggtccagtg taatgtcttt gaaggggcaa ctggagaagt tgctttaacc 960 gcaggtggcg ggttgaggca attgcctgga ttgactgaga cctatgaaaa tgctgcactg 1020 gtttgtgtac actatgatgg aaaaatgtac gagtttgttc cttggaatgg tgttgttaga 1080 tgggaaatgt ctccctgggg ttattggtat ataactgcag agaacgaaaa ccatgtggtg 1140 gaactagagg caagaacaaa tgaagcgggt acacctctgc gtgctcctac cacagaagtt 1200 gggctagcta cggcttgcag agatagttgt tacggtgaat tgaagttgca gatatgggaa 1260 cggctatatg atggaagtaa aggcaaggtg atattagaga caaagagctc aatggcagca 1320 gtggagatag gaggaggacc gtggtttggg acatggaaag gagatacgag caacacgccc 1380 gagctactaa aacaggctct tcaggtccca ttggatcttg aaagcgcctt aggtttggtc 1440 cctttcttca agccaccggg tctgtaa 1467 <210> 3 <211> 393 <212> PRT <213> Arabidopsis thaliana <400> 3 Met Glu Ser Leu Leu Ser Ser Ser Ser Leu Val Ser Ala Ala Gly Gly   1 5 10 15 Phe Cys Trp Lys Lys Gln Asn Leu Lys Leu His Ser Leu Ser Glu Ile              20 25 30 Arg Val Leu Arg Cys Asp Ser Ser Lys Val Val Ala Lys Pro Lys Phe          35 40 45 Arg Asn Asn Leu Val Arg Pro Asp Gly Gln Gly Ser Ser Leu Leu Leu      50 55 60 Tyr Pro Lys His Lys Ser Arg Phe Arg Val Asn Ala Thr Ala Gly Gln  65 70 75 80 Pro Glu Ala Phe Asp Ser Asn Ser Lys Gln Lys Ser Phe Arg Asp Ser                  85 90 95 Leu Asp Ala Phe Tyr Arg Phe Ser Arg Pro His Thr Val Ile Gly Thr             100 105 110 Val Leu Ser Ile Leu Ser Val Ser Phe Leu Ala Val Glu Lys Val Ser         115 120 125 Asp Ile Ser Pro Leu Leu Phe Thr Gly Ile Leu Glu Ala Val Val Ala     130 135 140 Ala Leu Met Met Asn Ile Tyr Ile Val Gly Leu Asn Gln Leu Ser Asp 145 150 155 160 Val Glu Ile Asp Lys Val Asn Lys Pro Tyr Leu Pro Leu Ala Ser Gly                 165 170 175 Glu Tyr Ser Val Asn Thr Gly Ile Ala Ile Val Ala Ser Phe Ser Ile             180 185 190 Met Ser Phe Trp Leu Gly Trp Ile Val Gly Ser Trp Pro Leu Phe Trp         195 200 205 Ala Leu Phe Val Ser Phe Met Leu Gly Thr Ala Tyr Ser Ile Asn Leu     210 215 220 Pro Leu Leu Arg Trp Lys Arg Phe Ala Leu Val Ala Ala Met Cys Ile 225 230 235 240 Leu Ala Val Arg Ala Ile Ile Val Gln Ile Ala Phe Tyr Leu His Ile                 245 250 255 Gln Thr His Val Phe Gly Arg Pro Ile Leu Phe Thr Arg Pro Leu Ile             260 265 270 Phe Ala Thr Ala Phe Met Ser Phe Phe Ser Val Val Ile Ala Leu Phe         275 280 285 Lys Asp Ile Pro Asp Ile Glu Gly Asp Lys Ile Phe Gly Ile Arg Ser     290 295 300 Phe Ser Val Thr Leu Gly Gln Lys Arg Val Phe Trp Thr Cys Val Thr 305 310 315 320 Leu Leu Gln Met Ala Tyr Ala Val Ala Ile Leu Val Gly Ala Thr Ser                 325 330 335 Pro Phe Ile Trp Ser Lys Val Ile Ser Val Val Gly His Val Ile Leu             340 345 350 Ala Thr Thr Leu Trp Ala Arg Ala Lys Ser Val Asp Leu Ser Ser Lys         355 360 365 Thr Glu Ile Thr Ser Cys Tyr Met Phe Ile Trp Lys Leu Phe Tyr Ala     370 375 380 Glu Tyr Leu Leu Leu Pro Phe Leu Lys 385 390 <210> 4 <211> 488 <212> PRT <213> Arabidopsis thaliana <400> 4 Met Glu Ile Arg Ser Leu Ile Val Ser Met Asn Pro Asn Leu Ser Ser   1 5 10 15 Phe Glu Leu Ser Arg Pro Val Ser Pro Leu Thr Arg Ser Leu Val Pro              20 25 30 Phe Arg Ser Thr Lys Leu Val Pro Arg Ser Ile Ser Arg Val Ser Ala          35 40 45 Ser Ile Ser Thr Pro Asn Ser Glu Thr Asp Lys Ile Ser Val Lys Pro      50 55 60 Val Tyr Val Pro Thr Ser Pro Asn Arg Glu Leu Arg Thr Pro His Ser  65 70 75 80 Gly Tyr His Phe Asp Gly Thr Pro Arg Lys Phe Phe Glu Gly Trp Tyr                  85 90 95 Phe Arg Val Ser Ile Pro Glu Lys Arg Glu Ser Phe Cys Phe Met Tyr             100 105 110 Ser Val Glu Asn Pro Ala Phe Arg Gln Ser Leu Ser Pro Leu Glu Val         115 120 125 Ala Leu Tyr Gly Pro Arg Phe Thr Gly Val Gly Ala Gln Ile Leu Gly     130 135 140 Ala Asn Asp Lys Tyr Leu Cys Gln Tyr Glu Gln Asp Ser His Asn Phe 145 150 155 160 Trp Gly Asp Arg His Glu Leu Val Leu Gly Asn Thr Phe Ser Ala Val                 165 170 175 Pro Gly Ala Lys Ala Pro Asn Lys Glu Val Pro Pro Glu Glu Phe Asn             180 185 190 Arg Arg Val Ser Glu Gly Phe Gln Ala Thr Pro Phe Trp His Gln Gly         195 200 205 His Ile Cys Asp Asp Gly Arg Thr Asp Tyr Ala Glu Thr Val Lys Ser     210 215 220 Ala Arg Trp Glu Tyr Ser Thr Arg Pro Val Tyr Gly Trp Gly Asp Val 225 230 235 240 Gly Ala Lys Gln Lys Ser Thr Ala Gly Trp Pro Ala Ala Phe Pro Val                 245 250 255 Phe Glu Pro His Trp Gln Ile Cys Met Ala Gly Gly Leu Ser Thr Gly             260 265 270 Trp Ile Glu Trp Gly Gly Glu Arg Phe Glu Phe Arg Asp Ala Pro Ser         275 280 285 Tyr Ser Glu Lys Asn Trp Gly Gly Gly Phe Pro Arg Lys Trp Phe Trp     290 295 300 Val Gln Cys Asn Val Phe Glu Gly Ala Thr Gly Glu Val Ala Leu Thr 305 310 315 320 Ala Gly Gly Gly Leu Arg Gln Leu Pro Gly Leu Thr Glu Thr Tyr Glu                 325 330 335 Asn Ala Ala Leu Val Cys Val His Tyr Asp Gly Lys Met Tyr Glu Phe             340 345 350 Val Pro Trp Asn Gly Val Val Arg Trp Glu Met Ser Pro Trp Gly Tyr         355 360 365 Trp Tyr Ile Thr Ala Glu Asn Glu Asn His Val Val Glu Leu Glu Ala     370 375 380 Arg Thr Asn Glu Ala Gly Thr Pro Leu Arg Ala Pro Thr Thr Glu Val 385 390 395 400 Gly Leu Ala Thr Ala Cys Arg Asp Ser Cys Tyr Gly Glu Leu Lys Leu                 405 410 415 Gln Ile Trp Glu Arg Leu Tyr Asp Gly Ser Lys Gly Lys Val Ile Leu             420 425 430 Glu Thr Lys Ser Ser Met Ala Ala Val Glu Ile Gly Gly Gly Pro Trp         435 440 445 Phe Gly Thr Trp Lys Gly Asp Thr Ser Asn Thr Pro Glu Leu Leu Lys     450 455 460 Gln Ala Leu Gln Val Pro Leu Asp Leu Glu Ser Ala Leu Gly Leu Val 465 470 475 480 Pro Phe Phe Lys Pro Pro Gly Leu                 485 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tcacttcaaa aaaggtaaca gcaagta 27 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 catgccatgg agtctctgct ctctagttct 30 <210> 7 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 gggtcacctc acttcaaaaa aggtaacagc 30 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ttacagaccc ggtggcttga agaaagg 27 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 catgccatgg agatacggag cttgattgtt 30 <210> 10 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gggtcacctt acagacccgg tggcttgaa 29 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 gtttctgata tatctccttt a 21 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 catgcttaac gtaattcaac 20 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 catgccatgg agatacggag cttgattgtt 30 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gaacccttcg gacactcttc tgtta 25  

Claims (2)

서열번호 4로 표시되는 아미노산 서열로 이루어진, 토코페롤의 합성에 관여하는 애기장대(Arabidopsis thaliana) 유래의 TC/VTE1 (tocopherol cyclase) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 형질전환되어 감마토코페롤 함량이 증가된 것을 특징으로 하는 형질전환 상추.A gamma tocopherol content was transformed with a recombinant vector comprising a gene encoding a TC / VTE1 (tocopherol cyclase) protein derived from Arabidopsis thaliana involved in the synthesis of tocopherol, consisting of the amino acid sequence represented by SEQ ID NO: 4. Transgenic lettuce characterized by an increased content. 서열번호 4로 표시되는 아미노산 서열로 이루어진, 토코페롤의 합성에 관여하는 애기장대(Arabidopsis thaliana) 유래의 TC/VTE1 단백질을 코딩하는 유전자를 상추에서 과발현시킴으로써 감마토코페롤 함량을 증가시키는 방법.A method of increasing gamma tocopherol content by overexpressing in a lettuce a gene encoding a TC / VTE1 protein from Arabidopsis thaliana involved in the synthesis of tocopherol, consisting of the amino acid sequence represented by SEQ ID NO: 4.
KR1020080137758A 2008-12-31 2008-12-31 Transgenic lettuce plants producing increased tocopherol content KR100920330B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080137758A KR100920330B1 (en) 2008-12-31 2008-12-31 Transgenic lettuce plants producing increased tocopherol content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080137758A KR100920330B1 (en) 2008-12-31 2008-12-31 Transgenic lettuce plants producing increased tocopherol content

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020070051293A Division KR100901116B1 (en) 2007-05-28 2007-05-28 Transgenic lettuce plants producing increased tocopherol content

Publications (2)

Publication Number Publication Date
KR20090013154A KR20090013154A (en) 2009-02-04
KR100920330B1 true KR100920330B1 (en) 2009-10-07

Family

ID=40683706

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080137758A KR100920330B1 (en) 2008-12-31 2008-12-31 Transgenic lettuce plants producing increased tocopherol content

Country Status (1)

Country Link
KR (1) KR100920330B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120272352A1 (en) * 2009-10-30 2012-10-25 Syngenta Participations Ag Genes Conferring Drought and Salt Tolerance and Uses Thereof
KR101885595B1 (en) 2016-09-13 2018-08-06 중앙대학교 산학협력단 Method for culturing microalgae with enhanced α-tocopherol content

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872815B1 (en) * 2000-10-14 2005-03-29 Calgene Llc Nucleic acid sequences to proteins involved in tocopherol synthesis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872815B1 (en) * 2000-10-14 2005-03-29 Calgene Llc Nucleic acid sequences to proteins involved in tocopherol synthesis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Genbank Accession # AAY07949 (2005. 4. 20.)

Also Published As

Publication number Publication date
KR20090013154A (en) 2009-02-04

Similar Documents

Publication Publication Date Title
US8802925B2 (en) Method for modifying anthocyanin expression in solanaceous plants
US9115338B2 (en) Enhancement of beta-carotene content in plants
US20150322444A1 (en) Enhanced accumulation of carotenoids in plants
Chen et al. Expression of γ-tocopherol methyltransferase gene from Brassica napus increased α-tocopherol content in soybean seed
KR101209345B1 (en) Transgenic pineapple plants with modified carotenoid levels and methods of their production
WO2012115697A1 (en) Materials and method for modifying a biochemical component in a plant
Lee et al. Overexpression of Arabidopsis homogentisate phytyltransferase or tocopherol cyclase elevates vitamin E content by increasing γ-tocopherol level in lettuce (Lactuca sativa L.)
KR100901116B1 (en) Transgenic lettuce plants producing increased tocopherol content
KR20010105373A (en) Method for Improving the Agronomic and Nutritional Value of Plants
KR100920330B1 (en) Transgenic lettuce plants producing increased tocopherol content
DE19918949A1 (en) Overexpression of a DNA sequence coding for a 1-deoxy-D-xylulose-5-phosphate reductoisomerase in plants
KR20180046379A (en) A Polycistronic Expression Vectors in Plant System
US7084322B2 (en) Method for biosynthesizing the serotonin derivatives in plants
KR101303741B1 (en) Germinated transformants synthesizing tocotrienol with high anti-oxidant activity
KR101166715B1 (en) Recombinant vector comprising polynucleotide related with tocotrienol biosynthesis and transformants transformed thereby
KR101931582B1 (en) Gene enhancing anthocyanin biosynthesis derived from Oryza sativa and uses thereof
KR102603683B1 (en) Plant growth regulatory genes encoding seeds plant specific extensin motif containing proteins and uses thereof
Babaei et al. Increasing vitamin E content of canola (Brassica napus L.) by transferring γ-tmt gene
KR20190043841A (en) Method for reducing ethylene production by LeMADS-RIN gene editing using CRISPR/Cas9 system in plant
CN111448206B (en) IbOr-R96H variant derived from sweet potato and application thereof
KR101985321B1 (en) Method for producing transgenic plant with increased heavy metal stress tolerance using OsAIR2 gene from Oryza sativa and plant thereof
KR101849151B1 (en) pTAC10 gene from Arabidopsis thaliana for increasing biomass or seed productivity of plant and uses thereof
Kershanskaya et al. Improving crops genome through genetic engineering of the key metabolic pathways
KR100970379B1 (en) Transgenic perilla having increased tocotrienol content
KR20120114613A (en) A preparation method of freezing-tolerant plant by a recombinant dna technology

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121228

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130909

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140924

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170824

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180820

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190917

Year of fee payment: 11