KR100909989B1 - Diesel catalysts for removing nitrogen oxides from diesel or lean burn engines - Google Patents

Diesel catalysts for removing nitrogen oxides from diesel or lean burn engines Download PDF

Info

Publication number
KR100909989B1
KR100909989B1 KR1020070134191A KR20070134191A KR100909989B1 KR 100909989 B1 KR100909989 B1 KR 100909989B1 KR 1020070134191 A KR1020070134191 A KR 1020070134191A KR 20070134191 A KR20070134191 A KR 20070134191A KR 100909989 B1 KR100909989 B1 KR 100909989B1
Authority
KR
South Korea
Prior art keywords
catalyst
denox
al2o3
nox
diesel
Prior art date
Application number
KR1020070134191A
Other languages
Korean (ko)
Other versions
KR20090066586A (en
Inventor
한현식
유영산
이관영
이대원
박영무
고영철
Original Assignee
희성촉매 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성촉매 주식회사 filed Critical 희성촉매 주식회사
Priority to KR1020070134191A priority Critical patent/KR100909989B1/en
Publication of KR20090066586A publication Critical patent/KR20090066586A/en
Application granted granted Critical
Publication of KR100909989B1 publication Critical patent/KR100909989B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides

Abstract

본 발명은 디젤 또는 린번(Lean-burn) 엔진 배기가스 조성 조건 내에서 별도의 환원제 투입 없이 배기가스 중의 CO만을 환원제로 이용하여 질소산화물(NOx)을 제거하는 복합촉매에 관한 것으로, DeNOx 성능 향상을 위한 방안으로 종래 디녹스(DeNOx) 촉매 및 수성가스 전이반응(WGSR, Water Gas Shift Reaction) 촉매가 혼합된 DeNOx 복합촉매에 관한 것이다.The present invention relates to a combined catalyst for removing nitrogen oxides (NOx) using only CO in exhaust gas as a reducing agent without additional reducing agent in diesel or lean-burn engine exhaust gas composition conditions. The present invention relates to a DeNOx complex catalyst in which a conventional DeNOx catalyst and a Water Gas Shift Reaction (WGSR) catalyst are mixed.

DeNOx, 수성가스, 전이반응 DeNOx, water gas, transition reaction

Description

디젤 또는 린번 엔진 배기가스 질소산화물 제거용 DeNOx 복합촉매{WGSR/DeNOx combined catalyst applied to passive DeNOx in diesel or Lean-burn exhaust gas}DEGNOW combined catalyst applied to passive DeNOx in diesel or Lean-burn exhaust gas}

본 발명은 디젤 또는 린번(Lean-burn) 엔진 배기가스 조성 조건 내에서 별도의 환원제 투입 없이 배기가스 중의 CO만을 환원제로 이용하여 질소산화물(NOx)을 제거하는 복합촉매에 관한 것으로, 구체적으로, DeNOx 성능 향상을 위한 방안으로 종래 디녹스(DeNOx) 촉매 및 수성가스 전이반응(WGSR, Water Gas Shift Reaction) 촉매가 혼합된 DeNOx 복합촉매에 관한 것이다.The present invention relates to a complex catalyst for removing nitrogen oxides (NOx) by using only CO in the exhaust gas as a reducing agent in a diesel or lean-burn engine exhaust gas composition without additional reducing agent input. Specifically, DeNOx The present invention relates to a DeNOx complex catalyst in which a conventional DeNOx catalyst and a Water Gas Shift Reaction (WGSR) catalyst are mixed.

디젤 자동차는 에너지 경제성 및 지구온난화가스 배출 억제 정책으로 인한 EU의 자동차 연비규제(우리나라 경우 2009년 ≤140 g/km)등에 따라 디젤 엔진으로 구동되는 차량의 보급률은 국내뿐 아니라 유럽 등 전 세계적으로 점차 증가하고 있는 추세이다. 과잉 산소조건 하에서 운전되는 디젤 엔진은 가솔린 엔진에 비해 약 30~40% 정도의 높은 연료 효율과 긴 내구성을 갖고, 연비가 높다. 또한 가솔린 엔진에서 주로 배출되는 이산화탄소(CO2), 이산화탄소(CO), 총 탄화수소(THC) 및 증발 탄화수소 등의 배출량이 디젤 엔진에서는 상대적으로 적고, 특히 기상변화를 일 으키는 지구온난화의 주요 요인인 CO2의 배출량이 30%정도 낮다는 점이 환경적인 측면에서 긍정적으로 평가되고 있다. 한편, 가솔린 엔진은 NO, CO 등의 배기가스 제거 기술은 많은 연구를 통하여 발전하였고, 개발된 삼원촉매(3 way catalyst) 시스템이 실용화되면서 가솔린 자동차로 인한 유해가스가 획기적으로 저감되고 있다. 반면에, 디젤 엔진은 연소실 형상 최적화, 연료 공급 시스템, 및 EGR (Exhaust Gas Recirculation)등의 전처리 기술의 한계가 디젤차의 배출가스 규제 강화에 따라 부각되고 있다. 그리고 아직까지 디젤 엔진은 가솔린 엔진에 비해 그 배출가스 방지 기술이 뒤떨어져 디젤 엔진에서 주로 배출되는 질소 산화물(NOx)이나 매연(Soot) 등의 입자상 물질(PM)이 대도시 대기 오염의 주범으로 인식되고 있다. 질소 산화물은 광화학 스모그의 원인이 되고, 산성비를 내리게 하고, 오존 발생의 주요 요인이다. 이러한 한계에도 불구하고 디젤 엔진의 사용이 계속 증가하면서 많은 선진국에서는 디젤 엔진의 배출 허용기준을 강화하고 있으며, 디젤 엔진에서 배출되는 오염물질을 줄이도록 규제하고 있다. NOx에 대해 이러한 규제를 극복하기 위해서 최근 미국에서는 운행 중인 디젤 엔진의 배출가스 저감을 목표로 1990년 대기청정 법안(Clean Air Act)에 의거, 1980년 이후 75만 이상의 인구를 가진 대도시에서 운행되고 있는 도시버스를 대상으로 도시버스 Rebuild/Retrofit 프로그램을 1995년부터 실시하여 배출가스를 대폭 저감시키려 하고 있으며, 국내의 경우에 있어서도 이에 대응 방안을 강구하고 있는 실정이다. As diesel vehicles are driven by the energy economy and the EU's fuel economy regulations (≤140 g / km in 2009, Korea), the penetration rate of diesel-powered vehicles is gradually increasing not only in Korea but also in Europe. The trend is increasing. Diesel engines operated under excess oxygen conditions have high fuel efficiency, long durability and high fuel economy of about 30-40% compared to gasoline engines. In addition, emissions of carbon dioxide (CO2), carbon dioxide (CO), total hydrocarbons (THC), and evaporated hydrocarbons, which are mainly emitted from gasoline engines, are relatively low in diesel engines, and CO2, which is a major factor of global warming, which causes meteorological changes, in particular, It is positively evaluated from the environmental point of view that the emission of carbon dioxide is about 30% lower. Meanwhile, gasoline engines have been developed through a number of studies on exhaust gas removal technologies such as NO and CO. In addition, the developed three-way catalyst system has been practically used to reduce harmful gases caused by gasoline vehicles. On the other hand, the limitation of pretreatment technologies, such as optimization of combustion chamber shape, fuel supply system, and exhaust gas recirculation (EGR), is emerging as diesel engines are tightened due to tightening emission regulations of diesel vehicles. In addition, diesel engines are far behind gasoline engines, and particulate matters such as nitrogen oxides (NOx) and soot (PM), which are mainly emitted from diesel engines, are recognized as the main culprit of air pollution in large cities. . Nitrogen oxides cause photochemical smog, cause acid rain, and are major factors in ozone generation. Despite these limitations, the use of diesel engines continues to increase, and many developed countries are tightening their emission limits and regulating emissions from diesel engines. In order to overcome these restrictions on NOx, the United States has been operating in large cities with more than 750,000 population since 1980 under the Clean Air Act of 1990, aiming to reduce emissions of diesel engines in operation in the United States. The city bus rebuild / retrofit program has been implemented for city buses since 1995 to reduce emissions, and domestic countermeasures have been taken.

세계적으로 환경오염의 주범인 자동차 배출물질 중 NOx를 제거하는 기술로는 크게 액티브(active) DeNOx 기술과 패시브(passive) DeNOx 기술로 나눌 수 있다. Active system 기술은 요소(urea), 암모니아, 탄화수소 등을 환원제로 사용하는 선택적 촉매환원법(Selective Catalytic Reduction, SCR)이 연구되고 있는데, 이 중 유망한 기술로 탄화수소를 사용하여 NOx를 선택적으로 N2로 전환시키는 선택적 접촉환원법(Selective catalytic Reduction, SCR)이 주목받고 있다. 한편, passive system 기술로는 CO, HC, NOx, PM을 동시에 제거하는 사원촉매(4 way catalyst) 및 환원제를 사용하지 않고, 디젤 엔진에서의 배출 가스에 포함된 유효 가스를 이용하여 NOx를 제거하는 기술 등이 있다. The technology that removes NOx among automobile emissions, which is the leading cause of environmental pollution, can be divided into active DeNOx technology and passive DeNOx technology. Active system technology is being studied for selective Catalytic Reduction (SCR) using urea, ammonia and hydrocarbons as reducing agents. Among these, a promising technique is to convert NOx to N2 selectively using hydrocarbons. Selective catalytic reduction (SCR) is drawing attention. On the other hand, the passive system technology does not use a 4-way catalyst and a reducing agent to remove CO, HC, NOx, and PM at the same time, and removes NOx by using an effective gas included in exhaust gas from a diesel engine. Technology.

NOx 제거를 위한 액티브 기술 중 HC-SCR의 경우, 지금까지도 많은 연구자들이 선택적 접촉 환원법에 사용되는 환원제로 파라핀(paraffin) 또는 올레핀(olefin)계열의 탄화수소를 사용하고 있으며, 과잉 산소 분위기에서도 Cu-ZSM5 촉매가 소량의 탄화수소에 의해 NO를 선택적으로 제거할 수 있음이 Iwamoto 등에 의해 보고된 이 후, 탄화수소 SCR에 금속 이온교환 ZSM5 촉매가 자주 사용되고 있다. 또한 탄화수소 SCR에서 NO보다 NO2의 환원에 있어 우수한 활성을 지니고 있음이 보고된 바 있는 γ-Al2O3에 대해서도 많은 연구들이 수행돼 오고 있다. 그러나, 환원제를 투입하는 액티브 기술의 경우 환원제 도입을 위한 별도의 장치가 필요함으로 DeNOx 시스템이 더 복잡해지는 등의 문제점이 있다. 이러한 문제점을 해결하기 위해 별도의 환원제를 공급하지 않는 패시브(passive) 기술에 대한 많은 연구가 진행되고 있다. HC-SCR is one of the active technologies for NOx removal. Until now, many researchers have used paraffin or olefin-based hydrocarbons as a reducing agent used in selective catalytic reduction, and Cu-ZSM5 is used even in excess oxygen atmosphere. Since it has been reported by Iwamoto et al. That a catalyst can selectively remove NO by a small amount of hydrocarbons, metal ion exchange ZSM5 catalysts are frequently used in hydrocarbon SCRs. In addition, many studies have been conducted on γ-Al2O3, which has been reported to have superior activity in reducing NO2 than NO in hydrocarbon SCR. However, in the case of an active technology in which a reducing agent is added, a separate device for introducing a reducing agent is required, which causes a problem such as a more complicated DeNOx system. In order to solve this problem, a lot of research is being conducted on passive technology that does not supply a separate reducing agent.

본 발명자들은 NEDC (New European Driving Cycle) 모드로 수행된 Euro IV 디젤 엔진의 배기가스 분석 결과, NOx 농도대비 UHC (Unburned Hydrocarbon) 농도의 비는 평균 5.5였으며, NOx 농도 대비 CO의 농도의 비는 평균 16임을 알 수 있었다(도 1). 이를 통해 NOx의 환원제로 배기가스 내 자체 CO를 활용하는 패시브(passive) DeNOx의 가능성을 확인하였다. The inventors of the exhaust gas analysis of the Euro IV diesel engine performed in the New European Driving Cycle (NEDC) mode showed that the ratio of UHC (Unburned Hydrocarbon) concentration to NOx concentration was 5.5, and the ratio of CO concentration to NOx concentration was average. It was found that 16 (Fig. 1). Through this, the possibility of passive DeNOx using self CO in exhaust gas as a reducing agent of NOx was confirmed.

본 발명의 기본적인 아이디어는 종래 DeNOx 촉매에 수성가스 전이반응 촉매를 혼합한 복합촉매 시스템을 통해 별도의 수소 공급 없이 passive 조건하에서 배기가스 내에 포함되어 있는 CO와 물의 반응을 통해 수소를 부산하여 passive DeNOx 반응의 환원제로 CO와 함께 부산 수소를 활용하여 DeNOx 성능을 향상시키는데 있다. 이에 따라, 본 발명의 목적은 과잉 산소 분위기에서 별도의 환원제 주입없이 배기가스에 포함된 NOx를 효율적으로 제거할 수 있는 DeNOx 복합촉매를 제공하는 것이다.The basic idea of the present invention is the passive DeNOx reaction by decomposing hydrogen through the reaction of CO and water contained in the exhaust gas under passive conditions without a separate hydrogen supply through a complex catalyst system in which a conventional DeNOx catalyst is mixed with a water gas shift reaction catalyst. It is to improve the performance of DeNOx by utilizing the hydrogen hydrogen with CO as a reducing agent of. Accordingly, an object of the present invention is to provide a DeNOx complex catalyst that can efficiently remove NOx contained in the exhaust gas in the excess oxygen atmosphere without additional injection of a reducing agent.

상기 목적을 달성하기 위하여, 본 발명은 디젤 또는 린번(Lean-burn) 엔진 배기가스에 포함된 질소산화물(NOx) 제거용 DeNOx 촉매에 있어서, 수성가스 전이반응(WGSR) 촉매가 더욱 혼합된 DeNOx 복합촉매를 제안하는 것이다.In order to achieve the above object, the present invention is a DeNOx complex in which a water gas shift reaction (WGSR) catalyst is further mixed in a DeNOx catalyst for removing NOx contained in a diesel or lean-burn engine exhaust gas. It is to propose a catalyst.

본 발명의 비제한적인 특징은 다음과 같다.Non-limiting features of the invention are as follows.

본 발명에 의한 DeNox 복합촉매에서 DeNOx 촉매는 Pd/TiO2/Al2O3이며, WGSR 촉매는 금속과 금속산화물의 복합화 촉매인 것을 특징으로 한다. 이때, WGSR 촉매의 금속은 Cu, Au, Ru, Rh, Pd, Pt 및 Ce로 구성된 그룹 중에서 선택되는 하나 또는 둘 이상의 성분이며, WGSR 촉매의 금속산화물은 ZnO, Fe2O3, Al2O3 및 CeO2로 구성된 그룹 중에서 선택되는 하나 또는 둘 이상의 성분인 것을 특징으로 한다.In the DeNox complex catalyst according to the present invention, the DeNOx catalyst is Pd / TiO2 / Al2O3, and the WGSR catalyst is a complex catalyst of metal and metal oxide. At this time, the metal of the WGSR catalyst is one or two or more components selected from the group consisting of Cu, Au, Ru, Rh, Pd, Pt and Ce, the metal oxide of the WGSR catalyst from the group consisting of ZnO, Fe2O3, Al2O3 and CeO2 It is characterized by one or more components selected.

또한, 본 발명에 의한 DeNOx 복합촉매는 DeNOx 촉매 및 WGSR 촉매의 혼합비율이 중량비로 1: 0.1~10인 것을 특징으로 하며, DeNOx 촉매 Pd/TiO2/Al2O3 중 Pd 의 함량은 DeNOx 촉매 전 중량에 대해서 중량비로 0.5%~5%, WGSR 촉매의 TiO2의 함량은 TiO2/Al2O3 중량에 대해서 중량비로 5~50%인 것을 특징으로 한다.In addition, the DeNOx composite catalyst according to the present invention is characterized in that the mixing ratio of the DeNOx catalyst and the WGSR catalyst is 1: 0.1 to 10 by weight ratio, and the content of Pd in the DeNOx catalyst Pd / TiO2 / Al2O3 is based on the total weight of the DeNOx catalyst. 0.5% to 5% by weight, the content of TiO2 of the WGSR catalyst is characterized in that 5 to 50% by weight relative to the weight of TiO2 / Al2O3.

본 발명에 의한 DeNOx 복합촉매는 과잉 산소 조건에서 운전되는 엔진 배기가스 조성 조건에서 별도의 환원제 도입 없이 자체 CO만을 환원제로 이용하여 배기가스 조성 중에 포함된 NOx의 촉매 환원 반응을 촉진시켜 NOx 제거에 효율적인 효과를 제공한다.The DeNOx composite catalyst according to the present invention is effective for NOx removal by promoting the catalytic reduction reaction of NOx contained in exhaust gas composition by using only CO as a reducing agent without introducing a separate reducing agent under engine exhaust gas composition conditions operating in excess oxygen conditions. Provide effect.

이하 본 발명을 구체적인 실시예로 설명하고자 한다. 본 발명에 의한 DeNOx 복합촉매는 DeNOx 촉매 및 WGSR 촉매 혼합물이며, 이하 별도의 설명이 없는 한, DeNOx 촉매는 DeNOx 복합촉매에 포함되는 일 촉매로 이해되어야 한다.Hereinafter, the present invention will be described with specific examples. The DeNOx complex catalyst according to the present invention is a DeNOx catalyst and a WGSR catalyst mixture, and unless otherwise stated, the DeNOx catalyst should be understood as one catalyst included in the DeNOx complex catalyst.

먼저, DeNOx 복합촉매의 일 촉매인 DeNOx 촉매 제조예를 설명하고, 이후 DeNOx 복합촉매의 다른 일 촉매인 WGSR 촉매 제조예를 기술하고, 이들의 혼합물인 DeNOx 복합촉매 제조예를 설명한다.First, an example of preparing a DeNOx catalyst which is one catalyst of a DeNOx complex catalyst will be described. Next, an example of preparing a WGSR catalyst, which is another catalyst of the DeNOx complex catalyst, will be described, and an example of preparing a DeNOx complex catalyst as a mixture thereof will be described.

실시예Example

1. DeNOx 촉매 제조예1. Example of DeNOx Catalyst Preparation

1) TiO2/Al2O3 담지체의 제조1) Preparation of TiO2 / Al2O3 Support

TiO2/Al2O3 담지체는 티타니아 졸(titania sol)과 γ-Al2O3 powder (Sasol, Disperal P3)의 혼합으로 제조하였다. TiO2의 전구체인, 티타늄 테트라이소프로폭사이드(titanium tetraisopropoxide, Sigma-Aldrich, 97%) 및 소정 비율의 이소프로판올(isopropanol, Sigma-Aldrich, 99%), 아세틸아세톤(acetylacetone, Sigma-Aldrich, 99%)을 혼합하여 상온에서 15분 동안 교반한 후, γ-Al2O3 파우더를 넣고 염산 (Sigma-Aldrich, 37%) 및 물을 서서히 가하고 교반하면서 80℃에서 16시간 동안 반응시켰다. 여과를 통해 용매를 제외한 물질만을 걸러낸 후 110℃에서 12시간 동안 건조시켰다. 이후 공기 조건에서 550℃, 3시간 동안 소성시켜 10 wt% TiO2/Al2O3 담지체를 제조하였다.The TiO 2 / Al 2 O 3 carrier was prepared by mixing titania sol and γ-Al 2 O 3 powder (Sasol, Disperal P3). Titanium tetraisopropoxide (Sigma-Aldrich, 97%) and a certain proportion of isopropanol (isopropanol, Sigma-Aldrich, 99%), acetylacetone (acetylacetone, Sigma-Aldrich, 99%) The mixture was stirred for 15 minutes at room temperature, γ-Al2O3 powder was added thereto, and hydrochloric acid (Sigma-Aldrich, 37%) and water were added slowly and reacted at 80 ° C. for 16 hours while stirring. After filtering only the material except the solvent and dried at 110 ℃ for 12 hours. After calcination for 3 hours at 550 ℃ in air conditions to prepare a 10 wt% TiO2 / Al2O3 carrier.

2) Pd 담지 DeNOx 촉매의 제조 (Pd/Al2O3 및 Pd/TiO2/Al2O3)2) Preparation of Pd Supported DeNOx Catalyst (Pd / Al2O3 and Pd / TiO2 / Al2O3)

Pd/Al2O3 및 Pd/TiO2/Al2O3 촉매는 각각 γ-Al2O3 powder와 상기 1)에서 제조된 TiO2/Al2O3 파운더 담지체에 Pd을 담지시켜 제조하였다. Pd의 전구체는 팔라듐 클로라이드(palladium chloride, Sigma-Aldrich, 99.9+%)가 사용되었으며 palladium chloride 전구체의 수용액을 γ-Al2O3 및 1)에서 제조된 TiO2/Al2O3 담지체에 초기 함침(incipient wetness) 담지법을 통해 담지 및 건조의 과정을 반복하여 일정한 질량비를 맞춘 후 공기 조건, 550℃에서 4시간 동안 소성하여 2.0 wt% Pd/Al2O3와 2.0 wt% Pd/TiO2/Al2O3 촉매를 각각 제조하였다.Pd / Al2O3 and Pd / TiO2 / Al2O3 catalysts were prepared by supporting Pd on the γ-Al2O3 powder and the TiO2 / Al2O3 founder carrier prepared in 1), respectively. Pd precursor was used as palladium chloride (Sigma-Aldrich, 99.9 +%), and the initial wet impregnation method was applied to the TiO2 / Al2O3 carrier prepared from γ-Al2O3 and 1) with an aqueous solution of palladium chloride precursor. After repeating the process of supporting and drying to meet a constant mass ratio and calcined for 4 hours at air conditions, 550 ℃ to prepare a 2.0 wt% Pd / Al 2 O 3 and 2.0 wt% Pd / TiO 2 / Al 2 O 3 catalyst, respectively.

2. 수성가스 전이반응(WGSR) 촉매 (Au/Ru/Fe2O3) 제조예2. Preparation Example of Water Gas Transfer Reaction (WGSR) Catalyst (Au / Ru / Fe2O3)

WGSR (Water-Gas Shift Reaction) 촉매인 Au/Ru/Fe2O3 촉매는 증착-침전(deposition-precipitation)법을 이용하여 제조되었다. 정해진 양의 iron nitrate nonahydrate (Sigma-Aldrich, 98+%) 수용액을 상온에서 pH 8.6이 될 때까지 암모늄 하이드록사이드(ammonium hydroxide, Sigma-Aldrich, Reagent grade)를 가하며 침전시켜 겔(gel)를 형성하였다. 형성된 gel에 gold chloride (Aldrich, 99.99+%)와 ruthenium chloride hydrate (Aldrich)를 첨가하고 강하게 교반하면서 상온에서 6시간 동안 두었다. 이 gel을 필터를 통해 걸러내고 증류수로 세척하였다. 이후 120℃에서 12시간 동안 건조하고 공기 조건, 400℃에서 3시간 동안 소성하여 3, 3 wt% Au/Ru/Fe2O3 촉매를 제조하였다.Au / Ru / Fe2O3 catalyst, which is a Water-Gas Shift Reaction (WGSR) catalyst, was prepared using a deposition-precipitation method. A predetermined amount of iron nitrate nonahydrate (Sigma-Aldrich, 98 +%) aqueous solution is precipitated with ammonium hydroxide (ammonium hydroxide, Sigma-Aldrich, Reagent grade) until it reaches pH 8.6 at room temperature to form a gel. It was. Gold chloride (Aldrich, 99.99 +%) and ruthenium chloride hydrate (Aldrich) were added to the formed gel and placed at room temperature for 6 hours with vigorous stirring. The gel was filtered through a filter and washed with distilled water. After drying for 12 hours at 120 ℃ and calcined for 3 hours at 400 ℃ in air, to prepare a 3, 3 wt% Au / Ru / Fe 2 O 3 catalyst.

3. DeNOx 복합촉매 제조예3. Example of DeNOx Complex Catalyst Preparation

WGSR 촉매는 상용 LTS (Low Temperature Shift) 촉매인 Cu/ZnO/Al2O3 (ICI)및 상기 2에서 제조된 Au/Ru/Fe2O3를 사용하였으며, 상기 1에서 제조된 Pd/TiO2/Al2O3와 WGSR 촉매의 비를 각각 1:0.5, 1:1, 1:1.5가 되도록 혼합하여 DeNOx 복합촉매를 제조하였다.As the WGSR catalyst, Cu / ZnO / Al2O3 (ICI), a commercially available LTS (Low Temperature Shift) catalyst, and Au / Ru / Fe2O3 prepared in 2 were used, and the ratio of Pd / TiO2 / Al2O3 and WGSR catalyst prepared in 1 was used. Were mixed to be 1: 0.5, 1: 1, 1: 1.5, respectively, to prepare a DeNOx complex catalyst.

한편, 이러한 단일 혼합촉매로 사용하는 방식과는 달리, 전단부에 WGSR 촉매를 위치시키고 후단부에 DeNOx 촉매를 위치시키는 2단 촉매층 방식으로 구현하였다.On the other hand, unlike the method used as a single mixed catalyst, it was implemented in a two-stage catalyst layer method in which the WGSR catalyst is located at the front end and the DeNOx catalyst is located at the rear end.

DeNOx 복합촉매의 (N2로의) NOx 전환율은 다음과 같은 장치에 의해 테스트하였다.The NOx conversion (to N2) of the DeNOx complex catalyst was tested by the following apparatus.

DeNOx 반응 실험예DeNOx Reaction Experimental Example

1. 실험 장치1. Experiment apparatus

사용된 가스는 NO, CO, O2, CO2, H2, N2 (balance), He (balance), H2O이다. 반응 가스들은 압력조절기(pressure regulator)와 유량제어장치 (MFC, Mass Flow Controller)를 통하여 일정한 유속을 유지하며 안정적으로 반응기에 공급되었다. H2O는 실린저 펌프(syringe pump)를 이용하여 주입하였으며, H2O가 주입되는 부분부터 반응기 상단 입구까지는 히팅밴드(heating band)를 이용하여 100℃로 가열하였다. 반응 가스는 린(lean) NOx 조건(500 ppm NOx) 및 N2 측정을 위한 조건(2000 ppm NOx)의 두 가지 조성으로 진행되었다. 반응기는 일반적으로 사용되는 연속 흐름식 고정층 반응기(continuous fixed bed reactor)를 사용하였고, 반응기 내부에 quartz wool로 촉매를 지지하였다. 반응기 내부 온도는 열전대(thermocouple)을 촉매층 중앙에 위치시켜 측정하였으며, 히터 및 온도조절기를 사용하여 반응 온도를 제어하였다. 반응기 후단에는 수분을 응축시켜주기 위한 cold trap을 설치하였고, 이를 거쳐서 온라인으로 분석이 가능하도록 NOx 분석기(Thermo Environmental Instruments, Model 42h) 및 가스크로마토그래프(Gas Chromatograph, Younglin, 600D)를 설치하여 반응을 통한 NOx (NO+NO2), N2, CO의 변화를 정량적으로 분석하였다. GC (Gas Chromatograph)의 분석 컬럼은 Washed Molecular Sieve 5A 80/100 (Alltech) 물질이 충전된 충전 컬럼(packed column)을 사용하였고 TCD (Thermal Conductivity detector)를 검출기로 사용하였다.Gases used are NO, CO, O2, CO2, H2, N2 (balance), He (balance), H2O. The reaction gases were supplied to the reactor stably at a constant flow rate through a pressure regulator and a mass flow controller (MFC). H 2 O was injected using a syringe pump, and heated to 100 ° C. using a heating band from the portion where H 2 O was injected to the upper inlet of the reactor. The reaction gas proceeded in two compositions: lean NOx conditions (500 ppm NOx) and conditions for N2 measurement (2000 ppm NOx). The reactor used a commonly used continuous fixed bed reactor, and supported the catalyst with quartz wool inside the reactor. The reactor internal temperature was measured by placing a thermocouple in the center of the catalyst bed and controlling the reaction temperature using a heater and thermostat. A cold trap was installed at the rear of the reactor to condense moisture, and a NOx analyzer (Thermo Environmental Instruments, Model 42h) and a gas chromatograph (Gas Chromatograph, Younglin, 600D) were installed to enable online analysis. Quantitative analysis of changes in NOx (NO + NO2), N2, and CO was performed. The analytical column of Gas Chromatograph (GC) used a packed column filled with Washed Molecular Sieve 5A 80/100 (Alltech) material and a TCD (Thermal Conductivity detector) as a detector.

2. 실험 조건와 방법2. Experimental conditions and methods

피험 촉매 0.5g을 반응기 내부에 quartz wool로 고정시키고, 반응 전에 반응 기 내부의 촉매를 10% H2/N2으로 350℃에서 1시간 동안 환원하였다. DeNOx 반응의 엔진 모사가스 조건을 정하기 전에 먼저 Euro-IV 기준에 맞춘 소형 디젤 자동차의 엔진 배기가스의 경우, NOx는 200 ppm 미만, CO는 0.04~0.8%가 배출됨을 확인하였다. Euro-IV 기준의 소형 디젤 엔진 배기가스에는 NOx의 환원제로 사용 가능한 CO가 평균적으로 NOx의 16배 존재함을 알 수 있었으므로 이를 바탕으로 반응 가스의 조건을 설정하였다. 촉매 반응은 300℃에서 100℃까지의 온도 구간에서 25℃씩 하강시키면서 진행되도록 하였고, 반응기의 촉매층을 통과하고 배출되는 가스는 NOx 분석기와 GC를 통해 NOx (NO+NO2), N2, CO를 분석하도록 하였다. WGSR+DeNOx 실험시, WGSR 촉매는 상용 LTS (Low Temperature Shift) 촉매인 Cu/ZnO/Al2O3 (ICI)와 상기 제조한 Au/Ru/Fe2O3를 사용하였으며, Pd/TiO2/Al2O3와 WGSR 촉매의 비를 각각 1:0.5, 1:1, 1:1.5가 되도록 혼합하여 단일 촉매층으로 사용하는 방식과 전단부에 WGSR 촉매를 위치시키고 후단부에 DeNOx 촉매를 위치시키는 2단 촉매층 방식으로 실험하였다.0.5 g of the test catalyst was fixed with quartz wool inside the reactor, and the catalyst inside the reactor was reduced at 350 ° C. with 10% H 2 / N 2 for 1 hour before the reaction. Before setting the engine simulation gas condition for the DeNOx reaction, it was confirmed that the engine exhaust gas of a small diesel vehicle that meets the Euro-IV standard produces less than 200 ppm of NOx and 0.04-0.8% of CO. In the small diesel engine exhaust gas based on Euro-IV, it was found that CO, which can be used as a reducing agent of NOx, was found to be 16 times the average of NOx. Catalytic reaction was carried out while descending by 25 ℃ in the temperature range from 300 ℃ to 100 ℃, the gas passing through the catalyst bed of the reactor and the exhaust gas analyzed NOx (NO + NO 2), N 2, CO through the NOx analyzer and GC I did it. In the WGSR + DeNOx experiment, the WGSR catalyst was a commercially available low temperature shift (LTS) catalyst, Cu / ZnO / Al2O3 (ICI), and Au / Ru / Fe2O3 prepared above. The ratio of Pd / TiO2 / Al2O3 and WGSR catalyst The mixing was performed in a manner of using a single catalyst layer by mixing 1: 0.5, 1: 1, and 1: 1.5, and a two-stage catalyst layer in which the WGSR catalyst was placed at the front end and the DeNOx catalyst was placed at the rear end.

이하, DeNOx 촉매의 전환율 결과를 기술하고, 본 발명에 의한 DeNOx 복합촉매 실험 결과를 정리한다.Hereinafter, the conversion result of the DeNOx catalyst will be described, and the results of the DeNOx complex catalyst experiment according to the present invention will be summarized.

1.DeNOx 촉매 (Pd/TiO2/Al2O3 촉매)의 NOx에서 N2로의 환원성능 평가1.Evaluation of NOx to N2 of DeNOx Catalyst (Pd / TiO2 / Al2O3 Catalyst)

CO만을 NOx의 환원제로 사용할 때의 효과를 평가하기 위하여 NOx 농도의 16배인 32000 ppm의 CO를 공급하는 DeNOx 반응 실험을 수행한 결과를 도 2에 나타내었다. 촉매는 2 wt% Pd/TiO2/Al2O3를 사용하였으며 반응 실험은 물이 없는 조건과 물이 있는 조건에 대해 수행되었다. 반응온도 225℃에서 최대 Total NOx 전환율을 나타내는 활성 온도 영역의 특징을 보였으며, 물이 있는 조건과 물이 없는 조건 모두 전 온도 범위에서 N2가 측정이 되지 않았다. 이를 통해 CO/NOx=16의 CO 단독 환원제 조건에서는 DeNOx 촉매만을 통하여는 NOx->N2의 전환 반응이 진행되지 않는 것으로 확인할 수 있다.In order to evaluate the effect of using only CO as a reducing agent of NOx, the results of a DeNOx reaction experiment supplying 32000 ppm of CO, which is 16 times the NOx concentration, are shown in FIG. 2. The catalyst was used 2 wt% Pd / TiO2 / Al2O3 and the reaction experiment was carried out for the condition of no water and with water. At the reaction temperature of 225 ℃, N2 was not measured at all temperature ranges. Through this, it can be seen that the conversion reaction of NOx-> N2 does not proceed only through the DeNOx catalyst under the condition of reducing CO / NOx = 16 alone CO.

2. DeNOx 복합촉매 (Cu/ZnO/Al2O3+Pd/TiO2/Al2O3)의 DeNOx 성능 평가2. DeNOx performance evaluation of DeNOx complex catalyst (Cu / ZnO / Al2O3 + Pd / TiO2 / Al2O3)

대표적인 상용 LTS (Low Temperature Shift) 촉매인 Cu/ZnO/Al2O3를 WGSR 촉매로 사용하고, 2 wt% Pd/TiO2/Al2O3을 DeNOx 촉매로 사용하는 WGSR+DeNOx 반응 실험을 수행하였다. Cu/ZnO/Al2O3와 2 wt% Pd/TiO2/Al2O3의 조합 방식은 두 촉매를 혼합하여 단일 촉매층으로 사용하는 방식과 전단부에 Cu/ZnO/Al2O3를 위치시키고 후단부에 2 wt% Pd/TiO2/Al2O3를 위치시키는 2단 촉매층 방식의 두 가지 형태로 적용되었다. WGSR 촉매로 Cu/ZnO/Al2O3가 혼합되어 단일 촉매층 방식으로 사용된 경우의 반응 실험 결과를 도 3, 4, 5에 나타내었으며, Cu/ZnO/Al2O3가 2단 촉매층 방식으로 사용된 경우의 반응 실험 결과를 도 6에 나타내었다. 단일 촉매층 방식의 경우에 Cu/ZnO/Al2O3와 2 wt% Pd/TiO2/Al2O3의 혼합 비율은 질량비로 0.5:1, 1:1, 1.5:1이며, 2단 촉매층 방식의 경우에 Cu/ZnO/Al2O3와 2 wt% Pd/TiO2/Al2O3의 비율은 질량비로 1:1이었다. WGSR + DeNOx reaction experiments using Cu / ZnO / Al2O3, a typical commercially available LTS (Low Temperature Shift) catalyst, as the WGSR catalyst and 2 wt% Pd / TiO2 / Al2O3 as the DeNOx catalyst were carried out. The combination method of Cu / ZnO / Al2O3 and 2 wt% Pd / TiO2 / Al2O3 is used as a single catalyst layer by mixing the two catalysts, placing Cu / ZnO / Al2O3 at the front end and 2 wt% Pd / TiO2 at the rear end. It has been applied in two forms of the two-stage catalyst bed method for placing / Al2O3. Reaction experiments when Cu / ZnO / Al2O3 was mixed with the WGSR catalyst and used as a single catalyst layer method are shown in FIGS. 3, 4, and 5, and when Cu / ZnO / Al2O3 was used as the two-stage catalyst layer method. The results are shown in FIG. In the case of the single catalyst layer method, the mixing ratio of Cu / ZnO / Al2O3 and 2 wt% Pd / TiO2 / Al2O3 is 0.5: 1, 1: 1, 1.5: 1 by mass ratio, and Cu / ZnO / in case of the two-stage catalyst layer method. The ratio of Al 2 O 3 and 2 wt% Pd / TiO 2 / Al 2 O 3 was 1: 1 by mass ratio.

도 3, 4, 5에 나타낸 바와 같이, Cu/ZnO/Al2O3와 2 wt% Pd/TiO2/Al2O3의 복합촉매는 Pd/TiO2/Al2O3의 단독 사용시 결과와 유사하게 특정 활성 온도 영역이 있는 특성을 보였으며 Cu/ZnO/Al2O3의 비율이 증가할수록 활성 온도 영역이 저온으로 이동하는 것이 확인되었다. 이 활성 온도 영역에서 NOx->N2의 전환이 이루어지는 것이 확인되었는데, 이는 WGSR 촉매인 Cu/ZnO/Al2O3에 의해 H2가 생성되어 O2가 존재하는 조건임에도 불구하고, 생성된 H2가 DeNOx 반응의 환원제로 사용되었음을 의미한다. Pd/TiO2/Al2O3의 단독 사용시 결과와 비교하여 Cu/ZnO/Al2O3의 도입에 의해 Total NOx 전환율이 감소하는 경향을 보였는데, 이는 H2가 생성되는 반면 반응물에 공존하는 CO의 농도가 줄어들기 때문인 것으로 예상된다. As shown in Figs. 3, 4 and 5, the composite catalyst of Cu / ZnO / Al2O3 and 2 wt% Pd / TiO2 / Al2O3 exhibited a characteristic of having a specific active temperature region similar to the result of using Pd / TiO2 / Al2O3 alone. As the ratio of Cu / ZnO / Al2O3 increased, it was confirmed that the active temperature range moved to low temperature. It was confirmed that the conversion of NOx-> N2 occurred in this active temperature range, although the H2 was produced by the WGSR catalyst Cu / ZnO / Al2O3 to generate O2, but the generated H2 was used as a reducing agent for the DeNOx reaction. Means used. Compared with the results of using Pd / TiO2 / Al2O3 alone, the introduction of Cu / ZnO / Al2O3 tended to decrease the total NOx conversion rate because the concentration of CO coexisting in the reactants was reduced while H2 was produced. It is expected.

한편, 도 6에 나타낸 바와 같이, 단일 촉매층 방식의 경우와 비교하여 Cu/ZnO/Al2O3와 2 wt% Pd/TiO2/Al2O3 (질량비=1:1)의 2단 촉매층 방식의 경우에 전체 반응 온도 영역에서 Total NOx 전환율이 감소하였으며, NOx->N2 전환율 또한 감소하여 최고 Total NOx 전환율을 보이는 온도인 200℃에서만 NOx->N2의 전환이 진행되는 것으로 확인되었다. 이는 Cu/ZnO/Al2O3에 의해 CO가 소모되었고 이때 생성된 H2가 대부분 O2와 반응하면서 DeNOx 반응의 환원제로 사용되지 못했기 때문인 것으로 예상된다. 이를 통해 Cu/ZnO/Al2O3와 2 wt% Pd/TiO2/Al2O3를 조합하는 WGSR+DeNOx 복합촉매에서는 두 촉매를 분리하여 배치시키는 2단 촉매층 방식보다 두 촉매를 혼합하는 단일촉매층 방식이 더 높은 DeNOx 성능을 보이는 것으로 확인되었다. On the other hand, as shown in Figure 6, compared to the case of the single catalyst layer system, the reaction temperature range of the entire reaction temperature in the case of the two-stage catalyst layer system of Cu / ZnO / Al 2 O 3 and 2 wt% Pd / TiO 2 / Al 2 O 3 (mass ratio = 1: 1) The total NOx conversion was decreased at, and the NOx-> N2 conversion was also decreased, and it was confirmed that the conversion of NOx-> N2 was performed only at the temperature of 200 ° C., which showed the highest total NOx conversion. It is expected that this is because CO was consumed by Cu / ZnO / Al 2 O 3, and the generated H 2 was not used as a reducing agent of the DeNO x reaction while reacting with most O 2. As a result, in the WGSR + DeNOx complex catalyst combining Cu / ZnO / Al2O3 and 2 wt% Pd / TiO2 / Al2O3, the single catalyst layer method combining the two catalysts has a higher DeNOx performance than the two-stage catalyst layer method in which the two catalysts are separated and disposed. It was confirmed to show.

또한, 상기 2에서 제조된 3, 3 wt% Au/Ru/Fe2O3를 WGSR 촉매로 사용하고, 2 wt% Pd/TiO2/Al2O3을 DeNOx 촉매로 사용하는 WGSR+DeNOx 반응 실험을 수행하였다. 3, 3 wt% Au/Ru/Fe2O3와 2 wt% Pd/TiO2/Al2O3의 조합 방식은 두 촉매를 혼합하여 단일 촉매층으로 사용하는 방식과 전단부에 3, 3 wt% Au/Ru/Fe2O3를 위치시키고 후단부에 2 wt% Pd/TiO2/Al2O3를 위치시키는 2단 촉매층 방식의 두 가지 형태로 적용되었다. WGSR 촉매로 3, 3 wt% Au/Ru/Fe2O3가 혼합되어 단일 촉매층 방식으로 사용 된 경우의 반응 실험 결과를 도 7, 8, 9에 나타내었으며, 3, 3 wt% Au/Ru/Fe2O3가 2단 촉매층 방식으로 사용된 경우의 반응 실험 결과를 도 10에 나타내었다. 단일 촉매층 방식의 경우에 3, 3 wt% Au/Ru/Fe2O3와 2 wt% Pd/TiO2/Al2O3의 혼합 비율은 질량비로 0.5:1, 1:1, 1.5:1이며, 2단 촉매층 방식의 경우에 3, 3 wt% Au/Ru/Fe2O3와 2 wt% Pd/TiO2/Al2O3의 비율은 질량비로 1:1이었다. In addition, a WGSR + DeNOx reaction experiment using 3, 3 wt% Au / Ru / Fe2O3 prepared in 2 as the WGSR catalyst and 2 wt% Pd / TiO2 / Al2O3 as the DeNOx catalyst was performed. The combination method of 3, 3 wt% Au / Ru / Fe2O3 and 2 wt% Pd / TiO2 / Al2O3 uses a mixture of two catalysts as a single catalyst layer and places 3, 3 wt% Au / Ru / Fe2O3 at the front end. It was applied in two forms of a two-stage catalyst layer method in which 2 wt% Pd / TiO 2 / Al 2 O 3 was placed at the rear end. The reaction test results when 3, 3 wt% Au / Ru / Fe2O3 were mixed with the WGSR catalyst and used as a single catalyst layer method are shown in FIGS. 7, 8, and 9, and 3, 3 wt% Au / Ru / Fe2O3 was 2 However, the reaction test results when used in the catalyst layer method is shown in FIG. In the case of the single catalyst layer method, the mixing ratio of 3, 3 wt% Au / Ru / Fe2O3 and 2 wt% Pd / TiO2 / Al2O3 is 0.5: 1, 1: 1, 1.5: 1 by mass ratio. The ratio of 3, 3 wt% Au / Ru / Fe2O3 to 2 wt% Pd / TiO2 / Al2O3 was 1: 1 in mass ratio.

도 7, 8, 9에 나타낸 바와 같이, Pd/TiO2/Al2O3의 단독 사용 시 결과와 비교하여 3, 3 wt% Au/Ru/Fe2O3와 2 wt% Pd/TiO2/Al2O3의 혼합 촉매 사용시 고온 영역(250℃~300℃)에서의 Total NOx 전환율이 향상되어 200℃~300℃의 비교적 넓은 범위의 활성 온도 영역이 형성되는 것이 확인되었다. 그리고 이 활성 온도 영역에서 높은 수준의 NOx->N2 전환율도 나타내었는데, 이는 WGSR 촉매인 3, 3 wt% Au/Ru/Fe2O3에 의해 H2가 생성되고 O2가 존재하면서 비교적 높은 온도 조건임에도 불구하고 생성된 H2가 효과적으로 DeNOx 반응의 환원제로 사용되었음을 의미한다. 7, 8, and 9, compared with the results of using Pd / TiO2 / Al2O3 alone, the high temperature region when using a mixed catalyst of 3, 3 wt% Au / Ru / Fe2O3 and 2 wt% Pd / TiO2 / Al2O3 ( It was confirmed that the total NOx conversion at 250 ° C to 300 ° C was improved to form a relatively wide range of active temperature ranges of 200 ° C to 300 ° C. In this active temperature range, high levels of NOx-> N2 conversion were also shown, which was produced by the WGSR catalyst 3, 3 wt% Au / Ru / Fe2O3, despite the relatively high temperature conditions with the presence of O2. H2 was effectively used as a reducing agent in the DeNOx reaction.

도 10에 나타난 바와 같이, 단일 촉매층 방식의 경우와 비교하여 3, 3 wt% Au/Ru/Fe2O3와 2 wt% Pd/TiO2/Al2O3 (질량비=1:1)의 2단 촉매층 방식의 경우에 전체 반응 온도 영역에서 Total NOx 전환율이 감소하였으며 특히 250℃~300℃의 고온 영역에서의 Total NOx 전환율이 크게 감소하였다. NOx->N2 전환율 또한 전체적으로 감소하였는데 이 역시 WGSR에 의해 CO의 농도가 줄어들었으며 이때 생성된 H2의 효 과적인 활용이 이루어지지 못했음을 의미한다. 이를 통해 3, 3 wt% Au/Ru/Fe2O3와 2 wt% Pd/TiO2/Al2O3를 조합하는 WGSR+DeNOx system도 Cu/ZnO/Al2O3와 조합하는 경우와 같이 두 촉매를 분리하여 배치시키는 2단 촉매층 방식보다 두 촉매를 혼합하는 단일 촉매층 방식이 더 높은 DeNOx 성능을 보이는 것으로 확인되었다. 그러나 동일한 촉매 양을 비교할 경우에, Cu/ZnO/Al2O3 + 2 wt% Pd/TiO2/Al2O3 복합촉매보다 3, 3 wt% Au/Ru/Fe2O3 + 2 wt% Pd/TiO2/Al2O3 복합촉매가 더 우수한 DeNOx 성능을 보이는 것이 확인되었다.As shown in FIG. 10, the two-stage catalyst layer method of 3, 3 wt% Au / Ru / Fe2O3 and 2 wt% Pd / TiO2 / Al2O3 (mass ratio = 1: 1) compared to the case of the single catalyst bed method The total NOx conversion was decreased in the reaction temperature range, and the total NOx conversion was particularly decreased in the high temperature range of 250 ° C to 300 ° C. The overall NOx-> N2 conversion was also reduced, which also means that the concentration of CO was reduced by WGSR and that the effective utilization of H2 produced was not achieved. Through this, the WGSR + DeNOx system, which combines 3, 3 wt% Au / Ru / Fe2O3 and 2 wt% Pd / TiO2 / Al2O3, is also a two-stage catalyst layer in which two catalysts are separated and disposed as in the case of combining Cu / ZnO / Al2O3. It was found that the single catalyst bed method of mixing the two catalysts showed higher DeNOx performance than the method. However, when comparing the same amount of catalyst, 3, 3 wt% Au / Ru / Fe2O3 + 2 wt% Pd / TiO2 / Al2O3 composite catalysts are better than Cu / ZnO / Al2O3 + 2 wt% Pd / TiO2 / Al2O3 composite catalysts. It was confirmed to exhibit DeNOx performance.

실제 과잉 산소 조건에서 운전되는 엔진 배기가스 조성 조건에서 별도의 환원제 도입 없이 자체 CO만을 환원제로 이용하는 NOx의 촉매 환원 반응에 대해 다음과 같이 결론을 얻을 수 있다.The following conclusions can be drawn about the catalytic reduction of NOx using only its own CO as a reducing agent in the engine exhaust gas composition operating in the actual excess oxygen conditions without the introduction of a separate reducing agent.

1. Cu/ZnO/Al2O3를 WGSR 촉매로, 2 wt% Pd/TiO2/Al2O3을 DeNOx 촉매로 사용하고 CO만을 NOx의 환원제로 공급해주는 WGSR+DeNOx 반응 실험 결과, 두 촉매를 혼합하여 사용하는 단일 촉매층 방식의 경우에 Pd/TiO2/Al2O3의 단독 사용시 결과와 유사하게 특정 활성 온도 영역이 있는 특성을 보였으며 이 활성 온도 영역에서 NOx->N2의 전환 반응이 진행되는 것이 확인되었다. 두 촉매를 분리하여 배치하는 2단 촉매층 방식의 경우에는 단일 촉매층 방식의 경우와 비교하여 전체 반응 온도 영역에서 Total NOx 전환율이 감소하였으며, NOx->N2의 전환율 또한 감소하여 최고 Total NOx 전환율을 보이는 200℃에서만 NOx->N2의 전환이 진행되는 것을 확인하였다. 1.WGSR + DeNOx reaction experiment using Cu / ZnO / Al2O3 as WGSR catalyst and 2 wt% Pd / TiO2 / Al2O3 as DeNOx catalyst and supplying only CO as reducing agent of NOx. In the case of the method, Pd / TiO2 / Al2O3 alone showed a specific active temperature range similar to the results, and it was confirmed that the conversion reaction of NOx-> N2 proceeded in this active temperature range. In the case of the two-stage catalyst bed method in which the two catalysts are disposed separately, the total NOx conversion was decreased in the entire reaction temperature range compared to the case of the single catalyst bed method, and the conversion rate of NOx-> N2 was also reduced to show the highest total NOx conversion rate. It was confirmed that the conversion of NOx-> N2 only proceeded at ℃.

2. 3, 3 wt% Au/Ru/Fe2O3를 WGSR 촉매로, 2 wt% Pd/TiO2/Al2O3을 DeNOx 촉매로 사용하고 CO만을 NOx의 환원제로 공급해주는 WGSR+DeNOx 반응 실험 결과, 두 촉매를 혼합하여 사용하는 단일 촉매층 방식의 경우에 Pd/TiO2/Al2O3의 단독 사용시 결과와 비교하여 고온 영역(250℃~300℃)에서의 Total NOx 전환율이 향상되어 200℃~300℃의 비교적 넓은 범위의 활성 온도 영역이 형성되는 것을 확인하였으며 이 활성 온도 영역에서 높은 수준의 NOx->N2 전환이 진행되는 것이 확인되었다. 두 촉매를 분리하여 배치하는 2단 촉매층 방식의 경우에는 단일 촉매층 방식의 경우와 비교하여 전체 반응 온도 영역에서 Total NOx 전환율이 감소하였으며, 특히 250℃~300℃의 고온 영역에서의 Total NOx 전환율이 크게 감소하였다. NOx->N2의 전환율 또한 감소하여 225℃에서 최고 20% 정도인 것이 확인되었다.2. As a result of the WGSR + DeNOx reaction experiment using 3, 3 wt% Au / Ru / Fe2O3 as the WGSR catalyst, 2 wt% Pd / TiO2 / Al2O3 as the DeNOx catalyst, and supplying only CO as the reducing agent of NOx, the two catalysts were mixed. In the case of using a single catalyst layer method, the total NOx conversion in the high temperature range (250 ° C to 300 ° C) is improved compared to the result of using Pd / TiO2 / Al2O3 alone, and thus, a relatively wide range of active temperatures of 200 ° C to 300 ° C It was confirmed that a zone was formed and a high level of NOx-> N2 conversion proceeded in this active temperature zone. In the case of the two-stage catalyst bed system in which the two catalysts are disposed separately, the total NOx conversion was reduced in the entire reaction temperature range compared to the case of the single catalyst bed method. Decreased. The conversion of NOx-> N2 was also reduced, confirming that it was up to 20% at 225 ° C.

3. WGSR 촉매와 DeNOx 촉매를 조합하여 사용하는 WGSR+DeNOx 반응 실험에서는 두 촉매를 분리하여 배치하는 2단 촉매층 방식보다 두 촉매를 혼합하여 사용하는 단일 촉매층 방식이 더 우수한 DeNOx 성능을 보이는 것으로 확인되었다. 3. In the WGSR + DeNOx reaction experiment using a combination of WGSR and DeNOx catalysts, it was found that a single catalyst layer method using a mixture of two catalysts showed better DeNOx performance than a two-stage catalyst layer method in which two catalysts were separated. .

도 1은, 유로 IV 기준의 디젤엔진 배기가스 중의 (a) UHC/NOx 비율 및 (b) CO/NOx 비율을 도시한 것이다.FIG. 1 shows (a) UHC / NOx ratio and (b) CO / NOx ratio in diesel engine exhaust gas based on flow path IV.

도 2는, 2 wt% Pd/TiO2/Al2O3 DeNOx 촉매의 온도에 따른 NOx 전환율을 도시한 것이다 (조건: 2000ppm NO, 8% O2, 5% CO2, 32000ppm CO, 10% H2O 존재 유무, He 밸런스, flow rate = 300 ml min-1, w/f = 0.1 g s ml-1).FIG. 2 shows NOx conversion with temperature of 2 wt% Pd / TiO2 / Al2O3 DeNOx catalyst (conditions: 2000 ppm NO, 8% O2, 5% CO2, 32000 ppm CO, 10% H2O present, He balance, flow rate = 300 ml min-1, w / f = 0.1 gs ml-1).

도 3, 4, 5는, 각각 2 wt% Pd/TiO2/Al2O3 (0.25g) + Cu/ZnO/Al2O3 (0.125g, 0.25g, 0.375g) 혼합된 단일층의 DeNOx 복합촉매의 온도에 따른 NOx 전환율을 도시한 것이다 (조건: 2000 ppm NO, 8% O2, 5% CO2, 32000 ppm CO, 10% H2O, He balance, flow rate = 150 ml min-1, w/f = 0.1 g s ml-1).3, 4, and 5 show NOx according to the temperature of the DeNOx composite catalyst of the mixed single layer 2 wt% Pd / TiO2 / Al2O3 (0.25g) + Cu / ZnO / Al2O3 (0.125g, 0.25g, 0.375g), respectively. Conversion rate is shown (conditions: 2000 ppm NO, 8% O2, 5% CO2, 32000 ppm CO, 10% H2O, He balance, flow rate = 150 ml min-1, w / f = 0.1 gs ml-1) .

도 6은 Cu/ZnO/Al2O3 (0.25g) + 2 wt% Pd/TiO2/Al2O3 (0.25g) 일렬로 배치된 촉매의 온도에 따른 NOx 전환율을 도시한 것이다 (도 3과 동일 조건).FIG. 6 shows NOx conversion with temperature of catalysts arranged in a line with Cu / ZnO / Al2O3 (0.25g) + 2 wt% Pd / TiO2 / Al2O3 (0.25g) (same conditions as in FIG. 3).

도 7, 8, 9는, 각각 2 wt% Pd/TiO2/Al2O3 (0.25g) + 3, 3 wt% Au/Ru/Fe2O3(0.125g, 0.25g, 0.375g) 혼합된 단일층의 DeNOx 복합촉매의 온도에 따른 NOx 전환율을 도시한 것이다 (조건: 2000 ppm NO, 8% O2, 5% CO2, 32000 ppm CO, 10% H2O, He balance, flow rate = 150 ml min-1, w/f = 0.1 g s ml-1).7, 8, and 9, 2 wt% Pd / TiO 2 / Al 2 O 3 (0.25 g) + 3, 3 wt% Au / Ru / Fe 2 O 3 (0.125 g, 0.25 g, 0.375 g) mixed single layer DeNOx complex catalyst, respectively Shows NOx conversion with temperature (conditions: 2000 ppm NO, 8% O2, 5% CO2, 32000 ppm CO, 10% H2O, He balance, flow rate = 150 ml min-1, w / f = 0.1 gs ml-1).

도 10은 Cu/ZnO/Al2O3 (0.25g) + 3, 3 wt% Au/Ru/Fe2O3 (0.25g) 일렬로 배치된 촉매의 온도에 따른 NOx 전환율을 도시한 것이다 (도 7과 동일 조건).FIG. 10 shows NOx conversion with temperature of catalysts arranged in a line of Cu / ZnO / Al2O3 (0.25g) + 3, 3 wt% Au / Ru / Fe2O3 (0.25g) (same conditions as in FIG. 7).

Claims (5)

디젤 또는 린번(Lean-burn) 엔진 배기가스에 포함된 질소산화물(NOx) 제거용 DeNOx 촉매, 및 Cu/ZnO/Al2O3 또는 Au/Ru/Fe2O3 에서 선택되는 수성가스 전이반응(WGSR) 촉매가 혼합된 것을 특징으로 하는, DeNOx 복합촉매.DeNOx catalyst for NOx removal in diesel or lean-burn engine exhaust, and water gas transition reaction selected from Cu / ZnO / Al 2 O 3 or Au / Ru / Fe 2 O 3 WGSR) catalyst, characterized in that the mixed catalyst DeNOx. 제1항에 있어서, 상기 DeNOx 촉매는 Pd/TiO2/Al2O3인 것을 특징으로 하는, DeNOx 복합촉매.The DeNOx complex catalyst of claim 1, wherein the DeNOx catalyst is Pd / TiO 2 / Al 2 O 3 . 삭제delete 제1항 또는 제2항에 있어서, 상기 DeNOx 촉매 및 상기 WGSR 촉매의 혼합비율은 중량비로 1: 0.1~10인 것을 특징으로 하는, DeNOx 복합촉매.The DeNOx complex catalyst according to claim 1 or 2, wherein the mixing ratio of the DeNOx catalyst and the WGSR catalyst is 1: 0.1 to 10 by weight ratio. 삭제delete
KR1020070134191A 2007-12-20 2007-12-20 Diesel catalysts for removing nitrogen oxides from diesel or lean burn engines KR100909989B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070134191A KR100909989B1 (en) 2007-12-20 2007-12-20 Diesel catalysts for removing nitrogen oxides from diesel or lean burn engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070134191A KR100909989B1 (en) 2007-12-20 2007-12-20 Diesel catalysts for removing nitrogen oxides from diesel or lean burn engines

Publications (2)

Publication Number Publication Date
KR20090066586A KR20090066586A (en) 2009-06-24
KR100909989B1 true KR100909989B1 (en) 2009-07-29

Family

ID=40994562

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070134191A KR100909989B1 (en) 2007-12-20 2007-12-20 Diesel catalysts for removing nitrogen oxides from diesel or lean burn engines

Country Status (1)

Country Link
KR (1) KR100909989B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106492793B (en) * 2016-09-21 2019-01-18 中国科学院高能物理研究所 A kind of electron beam irradiation modified material improves the active methods and applications of its catalytic denitration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577837B1 (en) * 2005-01-27 2006-05-12 (주)이엔디솔루션 The catalyst and apparatus for reducing exhaust gas of diesel engine
KR100664906B1 (en) * 2005-10-24 2007-01-09 삼양전력(주) Exhaust gas purification system of nano-metallic DOC/NOx catalyst combined with electric discharge filter in diesel automobile
KR100752520B1 (en) 2005-03-07 2007-08-29 (주)케이에이치 케미컬 Acid resistant ceramic materials, filter using the same, and preparation of them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100577837B1 (en) * 2005-01-27 2006-05-12 (주)이엔디솔루션 The catalyst and apparatus for reducing exhaust gas of diesel engine
KR100752520B1 (en) 2005-03-07 2007-08-29 (주)케이에이치 케미컬 Acid resistant ceramic materials, filter using the same, and preparation of them
KR100664906B1 (en) * 2005-10-24 2007-01-09 삼양전력(주) Exhaust gas purification system of nano-metallic DOC/NOx catalyst combined with electric discharge filter in diesel automobile

Also Published As

Publication number Publication date
KR20090066586A (en) 2009-06-24

Similar Documents

Publication Publication Date Title
Li et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—A review
CN100467837C (en) Reducing NOx emissions with a staged catalyst
CN101564646B (en) Method for purification of an exhaust gas from a diesel engine
RU2505686C2 (en) Catalytic system for control over emission of ice running on natural gas
EP2678095B1 (en) Exhaust system including nox reduction catalyst and egr circuit
EP2993322B1 (en) On-site regeneration method for denitrification catalyst in exhaust gas purification systems
CN103386252A (en) Nitric oxide oxidation over silver-based catalyst
US7678734B2 (en) Oxidation catalysts
RU2592791C2 (en) METHOD OF PROCESSING NOx OF EXHAUST GASES USING THREE CONSECUTIVE ZONES OF SCR CATALYSTS
RU2635092C2 (en) Catalytic composition
US20140154160A1 (en) Bimetallic catalyst
KR101191883B1 (en) Diesel vehicles exhaust gas purification device and control method thereof
Gunnarsson et al. Combining HC-SCR over Ag/Al2O3 and hydrogen generation over Rh/CeO2-ZrO2 using biofuels: An integrated system approach for real applications
EP2225442A1 (en) Methods for reducing emissions from diesel engines
KR100909989B1 (en) Diesel catalysts for removing nitrogen oxides from diesel or lean burn engines
Heimrich Diesel NOx catalytic converter development: A review
Schmieg et al. Catalysts for lean-burn engine exhaust aftertreatment using hydrocarbon selective catalytic reduction
KR20130060028A (en) Construction method of twc producing ammonia for passive ammonia scr technology and the twc thereof
KR20080101451A (en) Purifying device for exhaust gas of internal combusition engine
Sandhu et al. Catalytic NOx Aftertreatment—Towards Ultra-Low NOx Mobility
KR101266397B1 (en) After―treatment system for reducing nitrogen oxide in dimethylether fueled vehicles
Foo et al. 5th International Conference on Environmental Catalysis
JPH09253499A (en) Denitrification catalyst, denitrification catalyst-coated structure and method for denitrification by using it
JPH0970539A (en) Denitrification catalyst and denitrification method using that

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130723

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150723

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160725

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170724

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180723

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190723

Year of fee payment: 11