KR100907913B1 - Tensile Strain Measurement Method Using Carbon Nanotubes - Google Patents
Tensile Strain Measurement Method Using Carbon Nanotubes Download PDFInfo
- Publication number
- KR100907913B1 KR100907913B1 KR1020070052103A KR20070052103A KR100907913B1 KR 100907913 B1 KR100907913 B1 KR 100907913B1 KR 1020070052103 A KR1020070052103 A KR 1020070052103A KR 20070052103 A KR20070052103 A KR 20070052103A KR 100907913 B1 KR100907913 B1 KR 100907913B1
- Authority
- KR
- South Korea
- Prior art keywords
- carbon nanotubes
- tensile strain
- tensile
- measuring
- resistance value
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 62
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 62
- 238000000691 measurement method Methods 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 11
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/16—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
- G01B7/18—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
- G01N27/125—Composition of the body, e.g. the composition of its sensitive layer
- G01N27/127—Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
본 발명은 탄소나노튜브의 전기적인 저항값 변화로서 인가된 인장변형률을 측정할 수 있는 측정방법 및 그 측정장치를 제공하기 위한 것으로, 일실시예로서 탄소나노튜브의는 인장변형률을 측정하기 위한 방법은, (a) 상기 탄소나노튜브를 인장력의 작용 방향과 일치되게 배치하는 단계와; (b) 상기 탄소나노튜브에 인장력을 작용시킴과 함께 탄소나노튜브의 양단에 전류를 인가시키는 단계와; (c) 상기 탄소나노튜브의 양단에서 변화되는 저항값을 멀티미터로 검출하는 단계와; (d) 상기 멀티미터에 검출된 저항값의 변화를 컴퓨터로 입력받아 인장변형률을 산출하는 단계로 이루어지는 것을 특징으로 한다.The present invention is to provide a measuring method and a measuring apparatus capable of measuring the tensile strain applied as a change in the electrical resistance value of the carbon nanotubes, in one embodiment a method for measuring the tensile strain of carbon nanotubes (A) disposing the carbon nanotubes to match the direction of action of the tensile force; (b) applying a current to both ends of the carbon nanotubes while exerting a tensile force on the carbon nanotubes; (c) detecting a resistance value changed at both ends of the carbon nanotubes with a multimeter; (d) calculating a tensile strain by receiving a change in resistance detected by the multimeter into a computer.
Description
본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어서 해석되어서는 아니된다.The following drawings, which are attached in this specification, illustrate preferred embodiments of the present invention, and together with the detailed description of the present invention, serve to further understand the technical spirit of the present invention. It should not be construed as limited to.
도 1은 본 발명에 따른 탄소나노튜브를 이용한 인장변형률 측정장치의 개념도.1 is a conceptual diagram of a tensile strain measurement device using carbon nanotubes according to the present invention.
도 2는 본 발명에 따른 탄소나노튜브를 이용한 인장변형률 측정방법의 흐름도.Figure 2 is a flow chart of the tensile strain measurement method using carbon nanotubes according to the present invention.
도 3은 탄소나노튜브의 인장력 노출시간에 따른 저항값 선도.Figure 3 is a resistance value diagram according to the tensile exposure time of carbon nanotubes.
도 4는 탄소나노튜브의 인장력 증가 반복 노출시간에 따른 저항값 변화 선도.Figure 4 is a change in resistance value with repeated exposure time increase tensile strength of carbon nanotubes.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
1: 나노조작기1: Nano Manipulator
2: 텅스텐 팁2: tungsten tip
3: 탄소나노튜브3: carbon nanotube
6: 멀티미터6: multimeter
7: 인장변형률 측정 컴퓨터7: tensile strain measurement computer
8: 나노조작용 컴퓨터8: nanooperation computer
본 발명은 탄소나노튜브의 변화되는 저항값을 이용하여 인장변형률을 얻을 수 있도록 한 탄소나노튜브를 이용한 인장변형률 측정방법에 관한 것이다.The present invention relates to a method for measuring tensile strain using carbon nanotubes to obtain a tensile strain using the resistance value of the carbon nanotubes.
탄소나노튜브의 특이한 구조 및 물성이 보여주는 다기능성은 정보통신기기의 필수인 평면표시소자, 고집적 메모리소자, 2차 전지 및 초고용량 캐패시터(supercapacitor), 수소저장 물질, 화학 센서, 고강도/초경량 복합재료, 정전기 제거 복합재료, 전자파 차폐(EMI/RFI shielding) 물질 등에 응용성이 뛰어나며 기존의 소자가 갖는 한계를 넘어설 가능성을 갖고 있다.The versatility of the carbon nanotubes' unique structure and physical properties shows that flat display devices, highly integrated memory devices, secondary batteries and supercapacitors, hydrogen storage materials, chemical sensors, and high strength / light weight composite materials are essential for information and communication devices. It has excellent applicability in static elimination composites, EMI / RFI shielding materials, etc., and has the potential to overcome the limitations of existing devices.
탄소나노튜브의 이러한 뛰어난 응용성을 확장시키기 위해 그 물리적 특성에 대한 연구가 계속 진행되고 있다.In order to extend this outstanding application of carbon nanotubes, research on physical properties is ongoing.
이에 본 발명은 나노소자 등에 이용될 수 있는 나노소재 특히 탄소나노튜브의 전기적인 저항값 변화로서 인가된 인장변형률을 측정할 수 있는 측정방법 및 그 측정장치를 제공함에 그 목적이 있다. 또 한 이러한 측정 시스템을 이용하여 나노 영역의 인장하중을 산출할 수 있는 시스템까지 발전할 수 있는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a measuring method and a measuring apparatus capable of measuring a tensile strain applied as a change in electrical resistance of a nanomaterial, in particular carbon nanotubes, which can be used in nano devices. In addition, this measurement system can be used to develop a system that can calculate the tensile load of the nano-area has the purpose.
나아가 본 발명은 이러한 측정방법 및 측정장치를 이용하여 나노스케일의 스트레인 게이지(strain gauge)나 고감도 압력센서 등으로 용용할 수 있는데 그 목적이 있다.Furthermore, the present invention can be used as a strain gauge or a high-sensitivity pressure sensor of the nanoscale by using such a measuring method and a measuring device.
상기의 목적을 달성하기 위한 본 발명의 구체적인 수단은,Specific means of the present invention for achieving the above object,
탄소나노튜브에 작용하는 인장변형률을 측정하기 위한 방법에 있어서,In the method for measuring the tensile strain acting on the carbon nanotubes,
(a) 상기 탄소나노튜브를 인장력 작용 방향과 일치되게 배치하는 단계와;(a) arranging the carbon nanotubes to coincide with a direction of tensile force action;
(b) 상기 탄소나노튜브에 인장력을 작용시킴과 함께 탄소나노튜브의 양단에 전류를 인가시키는 단계와;(b) applying a current to both ends of the carbon nanotubes while exerting a tensile force on the carbon nanotubes;
(c) 상기 탄소나노튜브의 양단에서 변화되는 저항값을 멀티미터로 검출하는 단계와;(c) detecting a resistance value changed at both ends of the carbon nanotubes with a multimeter;
(d) 상기 멀티미터에 검출된 저항값의 변화를 컴퓨터로 입력받아 인장변형률값을 산출하는 단계로 이루어지는 것을 특징으로 한다.(d) receiving a change in the resistance value detected by the multimeter by a computer and calculating a tensile strain value.
또한, 본 발명에 따르면,In addition, according to the present invention,
상기 (b) 단계에서 인장변형률은 탄소나노튜브의 탄성영역 내에서 이루어지는 것을 특징으로 한다.In the step (b), the tensile strain is characterized in that made in the elastic region of the carbon nanotubes.
또한, 본 발명에 따르면,In addition, according to the present invention,
상기 (b) 단계에서 인장변형률의 작용시간은 5분 이내에서 이루어지는 것을 특징으로 한다.In step (b), the action time of the tensile strain is characterized in that made within 5 minutes.
또한, 탄소나노튜브에 작용하는 인장변형률을 측정하기 위한 장치는In addition, the device for measuring the tensile strain acting on the carbon nanotubes
탄소나노튜브의 일단에 연결되어 인장변형률을 부여하는 나노조작기와;A nanomanipulator connected to one end of the carbon nanotubes to impart a tensile strain;
상기 탄소나노튜브의 양단에 전기적으로 연결되어 탄소나노튜브의 전기 저항값을 측정하는 멀티미터와;A multimeter electrically connected to both ends of the carbon nanotubes to measure an electric resistance value of the carbon nanotubes;
상기 멀티미터에 검출된 저항값의 변화를 입력받아 인장변형률값을 산출하는 인장변형률산출용 컴퓨터를 포함하여 구성된 것을 특징으로 한다.And a tensile strain calculation computer for calculating a tensile strain value by receiving a change in the resistance value detected by the multimeter.
또한, 상기 나노조작기에는 인장변형률을 변화시키기 위한 나노조작용 컴퓨터가 더 연결되어 있는 것을 특징으로 한다.In addition, the nanomanipulator is characterized in that the nano-operation computer for changing the tensile strain is further connected.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1에 탄소나노튜브에 작용하는 인장변형률을 측정하기 위한 개략적인 시스템이 구성되어 있고, 도 2는 본 발명에 따른 탄소나노튜브를 이용한 인장변형률 측정방법의 흐름도를 나타낸다.Figure 1 is a schematic system for measuring the tensile strain acting on the carbon nanotubes, Figure 2 shows a flow chart of the tensile strain measurement method using the carbon nanotubes according to the present invention.
도 1에 도시된 바와 같이 나노조작기(1)에는 인장력 인가를 받는 탄소나노튜브(3)가 연결된다. 이때 탄소나노튜브(3)는 일측의 텅스텐 팁(2)을 통해 일직되게 배치되어 나노조작기(1)에 연결된다.As shown in FIG. 1, the nanomanipulator 1 is connected to the
이때 텅스텐 팁(2)과 탄소나노튜브(3)의 연결은 전자 빔에 의해 이루어진다.At this time, the connection of the tungsten tip (2) and the carbon nanotubes (3) is made by an electron beam.
탄소나노튜브(3)의 타측에 연결된 텅스텐 팁(2)은 지그(4)를 통해 전자현미경 시편 스테이지(5)에 지지된다.The
또한 탄소나노튜브(3)측 양단의 텅스텐 팁(2)(2)에는 전기저항을 측정하기 위한 멀티미터(multi-meter)(6)가 전기적으로 연결된다.In addition, a
이때 시편 스테이지(5)로부터 나노조작기(1)로 연결되는 구성요소들은 SEM(주사전자현미경)장비에서 이루어질 수 있다.In this case, the components connected to the nanomanipulator 1 from the
상기 멀티미터(6)에는 멀티미터에서 검출된 저항값의 변화를 입력받아 인장변형률을 산출하는 인장변형률 산출용 컴퓨터(7)가 연결된다.The
또한 상기 나노조작기(1)에는 탄소나노튜브(3)에 인가되는 인장변형률을 변화시키기 위한 나노조작용 컴퓨터(8)가 더 연결될 수 있다.In addition, the nanomanipulator 1 may be further connected to the nano-
이와 같은 장치를 이용하여 탄소나노튜브에 작용하는 인장변형률을 측정하는 방법은 다음과 같다.The method of measuring the tensile strain acting on the carbon nanotubes by using such a device is as follows.
상기 탄소나노튜브(3)를 인장변형률 작용 방향과 일치되게 배치하여 나노조작기(1)에 연결한 상태에서, 나노조작기(1)를 조작시켜 상기 탄소나노튜브(3)에 인장변형률을 작용시킨다. 이와 동시에 탄소나노튜브(3)의 양단에 전류를 인가시킨다.The
이때 나노조작기(1)를 통하여 작용하는 인장변형률은 인장변형률으로 탄소나노튜브(3)에 미치게 된다.In this case, the tensile strain acting through the nanomanipulator 1 extends to the
따라서 탄소나노튜브(3)는 물리적으로 탄성 변형이 일어나고, 이로 인해 멀티미터(6)에서는 탄소나노튜브의 양단에서 변화되는 저항값을 검출하게 된다.Therefore, the
또한 상기 멀티미터(6)에 검출된 저항값의 변화를 컴퓨터(7)로 데이타 저장하여 인장변형률값을 산출하게 된다. 이때 데이타 처리시에는 프로그램의 한 종류인 Labview가 이용될 수 있다.In addition, the change in the resistance value detected by the
이때 상기 탄소나노튜브(6)에 인가되는 인장변형률은 탄소나노튜브의 탄성영역내에서 이루어짐이 바람직하다.At this time, the tensile strain applied to the carbon nanotubes (6) is preferably made in the elastic region of the carbon nanotubes.
이같이 탄성영역내에서 탄소나노튜브(6)에 인가되는 인장변형률을 측정하려면 설정 시간 이내에 함이 좋다. 바람직하게는 도 3에서와 같이 5분 이내가 바람직하다.As described above, in order to measure the tensile strain applied to the
이는 도 3 에서와 같이 25 분을 가리키는 첫번째 화살표 부분(5 분 정도 인장변형력을 가했을 경우)에서는 그 직후 원래의 전기저항값으로 회복되었으나 45 분을 가리치는 두번째 화살표의 경우(10 분 정도 인장변형력을 가했을 경우) 그 직후 원래의 전기저항값으로 회복되지 않았기 때문이다.As shown in Fig. 3, the first arrow portion indicating 25 minutes (when tensile strain was applied for about 5 minutes) was restored to the original electrical resistance immediately thereafter, but the second arrow indicating 45 minutes (tensile stress about 10 minutes) was used. If it does not return to its original electrical resistance immediately after that.
도 4 는 인장 인장력을 4회에 걸쳐 증가시키면서 탄소나노튜브의 저항 변화값을 측정한 것이다.Figure 4 is a measure of the resistance change of the carbon nanotubes while increasing the tensile tension four times.
도 4의 좌측 그래프에서 알 수 있는 바와 같이, 인장 인장력을 가하는 5분 이내에서는 처음 저항값으로 회복되어 나타남을 알 수 있고, 이렇게 4회를 실시한 후 탄소나노튜브(3)가 그의 길이 방향으로 파단될때까지 인장 인장력을 가했을 때의 전기저항 값의 변화가 선형적으로 나타냄을 도 4 의 우측 그래프에서 확인할 수 있다.As can be seen in the graph on the left side of Figure 4, it can be seen that within 5 minutes of applying the tensile tension, the initial resistance value is recovered, and after 4 times, the
결국, 탄소나노튜브의 탄성영역 내에서는 인장 인장변형률을 가하는 정도에 따라 전기저항 값은 선형적인 영역 내에 있는 것이고, 탄소나노튜브의 원래 길이로 회복되었을 때 전기저항값은 원래 값으로 회복된다.As a result, in the elastic region of the carbon nanotubes, the electrical resistance value is in a linear region depending on the degree of tensile strain applied, and when the carbon nanotubes are restored to their original length, the electrical resistance values are restored to the original values.
따라서 탄소나노튜브를 길이방향으로 인장력을 가하면서 실시간으로 전기저 항 값의 변화추이를 보면서 탄소나노튜브의 인장 인장변형률의 정도를 측정할 수 있는 것이다.Therefore, it is possible to measure the tensile tensile strain of the carbon nanotubes while applying the tensile force in the longitudinal direction of the carbon nanotubes while looking at the change in the electrical resistance value in real time.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and the following by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.
상술한 바와 같이 본 발명의 탄소나노튜브를 이용한 인장변형률 측정방법 및 그 측정장치에 따르면, 탄소나노튜브를 길이방향으로 인장변형률을 가하면서 실시간으로 전기저항 값의 변화추이를 보면서 탄소나노튜브의 인장 인장변형 정도를 간단하게 측정할 수 있다.As described above, according to the tensile strain measuring method using the carbon nanotubes of the present invention and the measuring apparatus thereof, the tensile strength of carbon nanotubes while the carbon nanotubes are subjected to tensile strain in the longitudinal direction while watching the change in electric resistance values in real time. The degree of tensile strain can be measured simply.
또한 본 발명은 탄소나노튜브 뿐만 아니라 나노스케일의 나노소재에 대해서도 이러한 측정 기술을 이용해서 인장변형률을 측정할 수 있다.In addition, the present invention can measure the tensile strain not only carbon nanotubes but also nanoscale nanomaterials using such a measurement technique.
또한 본 발명의 이러한 물성 측정결과를 이용해서 나노스케일의 스트레인 게이지(strain gauge)나 고감도 압력센서 등으로 응용할 수 있는 이점을 갖는다.In addition, by using the measurement results of the physical properties of the present invention has the advantage that can be applied to the strain gauge (strain gauge), high sensitivity pressure sensor and the like of the nanoscale.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070052103A KR100907913B1 (en) | 2007-05-29 | 2007-05-29 | Tensile Strain Measurement Method Using Carbon Nanotubes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070052103A KR100907913B1 (en) | 2007-05-29 | 2007-05-29 | Tensile Strain Measurement Method Using Carbon Nanotubes |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080104791A KR20080104791A (en) | 2008-12-03 |
KR100907913B1 true KR100907913B1 (en) | 2009-07-16 |
Family
ID=40366351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070052103A KR100907913B1 (en) | 2007-05-29 | 2007-05-29 | Tensile Strain Measurement Method Using Carbon Nanotubes |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100907913B1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8671769B2 (en) | 2009-02-27 | 2014-03-18 | Industry Academic Cooperation Foundation | Device for measuring deformation of a structure and a method for measuring deformation of a structure using the same |
KR101396201B1 (en) * | 2012-09-20 | 2014-05-20 | 국립대학법인 울산과학기술대학교 산학협력단 | Strain sensor of hybrid sheet including conductive nano-materials and the manufacturing method of the same |
CN103808248A (en) * | 2013-07-31 | 2014-05-21 | 镇江市高等专科学校 | Large-span steel structure bridge resistance strain type safety detection device |
CN104406512B (en) * | 2014-09-05 | 2017-03-22 | 西北工业大学 | Strain gauge calibration equipment and method |
KR101952933B1 (en) * | 2017-12-01 | 2019-05-23 | 울산과학기술원 | Sensitivity design method of conductive composite sensor |
KR101964880B1 (en) * | 2017-12-22 | 2019-08-07 | 울산과학기술원 | System and method for diagnosing crack propagation of CFRP structures |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002000408A (en) * | 2000-06-20 | 2002-01-08 | Toyobo Co Ltd | Vehicle seat |
JP2004001231A (en) * | 2003-08-19 | 2004-01-08 | Kamei Tekkosho:Kk | Abrasive material |
JP2006000630A (en) * | 2004-06-15 | 2006-01-05 | Samsung Electronics Co Ltd | Washing machine with detergent feeder |
-
2007
- 2007-05-29 KR KR1020070052103A patent/KR100907913B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002000408A (en) * | 2000-06-20 | 2002-01-08 | Toyobo Co Ltd | Vehicle seat |
JP2004001231A (en) * | 2003-08-19 | 2004-01-08 | Kamei Tekkosho:Kk | Abrasive material |
JP2006000630A (en) * | 2004-06-15 | 2006-01-05 | Samsung Electronics Co Ltd | Washing machine with detergent feeder |
Non-Patent Citations (4)
Title |
---|
논문1999.12.31 |
논문2002.04.08 |
논문2004.12.31 |
논문2006.06.30* |
Also Published As
Publication number | Publication date |
---|---|
KR20080104791A (en) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kuronuma et al. | Electrical resistance-based strain sensing in carbon nanotube/polymer composites under tension: Analytical modeling and experiments | |
Grammatikos et al. | On the electrical properties of multi scale reinforced composites for damage accumulation monitoring | |
Vemuru et al. | Strain sensing using a multiwalled carbon nanotube film | |
KR100907913B1 (en) | Tensile Strain Measurement Method Using Carbon Nanotubes | |
De Vivo et al. | Simulation and experimental characterization of polymer/carbon nanotubes composites for strain sensor applications | |
Gong et al. | On the mechanism of piezoresistivity of carbon nanotube polymer composites | |
Ku-Herrera et al. | Cyclic tension and compression piezoresistivity of carbon nanotube/vinyl ester composites in the elastic and plastic regimes | |
Gao et al. | Coupled carbon nanotube network and acoustic emission monitoring for sensing of damage development in composites | |
Theodosiou et al. | Numerical investigation of mechanisms affecting the piezoresistive properties of CNT-doped polymers using multi-scale models | |
Koecher et al. | Piezoresistive in-situ strain sensing of composite laminate structures | |
Groo et al. | Laser induced graphene for in situ damage sensing in aramid fiber reinforced composites | |
Datta et al. | Buckypaper embedded self-sensing composite for real-time fatigue damage diagnosis and prognosis | |
Pandey et al. | Localized functionally modified glass fibers with carbon nanotube networks for crack sensing in composites using time domain reflectometry | |
Zhang et al. | Impact damage localization and mode identification of CFRPs panels using an electric resistance change method | |
Sanchez-Romate et al. | An approach using highly sensitive carbon nanotube adhesive films for crack growth detection under flexural load in composite structures | |
Zhang et al. | Fracture‐Induced Mechanoelectrical Sensitivities of Paper‐Based Nanocomposites | |
Thompson et al. | Aerosol printed carbon nanotube strain sensor | |
Yao et al. | Two-probe versus van der Pauw method in studying the piezoresistivity of single-wall carbon nanotube thin films | |
Karlsson et al. | Sensing abilities of embedded vertically aligned carbon nanotube forests in structural composites: From nanoscale properties to mesoscale functionalities | |
KR100891613B1 (en) | Gripping inspection method of carbon nanotube and its system for tensile test | |
KR101051890B1 (en) | Nano-mechanics-electric composite sensor | |
JP6619811B2 (en) | Mechanical member with force sensor | |
Wang et al. | Electrical response of carbon nanotube buckypaper sensor subjected to monotonic tension, cycle tension and temperature | |
Sengezer et al. | Experimental characterization of damage evolution in carbon nanotube-polymer nanocomposites | |
KR101396201B1 (en) | Strain sensor of hybrid sheet including conductive nano-materials and the manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130605 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140625 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |