KR100907491B1 - Fluororubber composion for encapsulating semiconductor parts - Google Patents

Fluororubber composion for encapsulating semiconductor parts Download PDF

Info

Publication number
KR100907491B1
KR100907491B1 KR1020070096222A KR20070096222A KR100907491B1 KR 100907491 B1 KR100907491 B1 KR 100907491B1 KR 1020070096222 A KR1020070096222 A KR 1020070096222A KR 20070096222 A KR20070096222 A KR 20070096222A KR 100907491 B1 KR100907491 B1 KR 100907491B1
Authority
KR
South Korea
Prior art keywords
weight
butylperoxy
tert
peroxide
filler
Prior art date
Application number
KR1020070096222A
Other languages
Korean (ko)
Other versions
KR20090030729A (en
Inventor
김형규
Original Assignee
주식회사 엠앤이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠앤이 filed Critical 주식회사 엠앤이
Priority to KR1020070096222A priority Critical patent/KR100907491B1/en
Publication of KR20090030729A publication Critical patent/KR20090030729A/en
Application granted granted Critical
Publication of KR100907491B1 publication Critical patent/KR100907491B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4838Halogenated polymers
    • C04B41/4842Fluorine-containing polymers
    • C04B41/4846Perfluoro-compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 반도체 장비 실링에 사용되는 내열성이 개선된 불소고무에 관한 것으로, 더욱 상세하게는 종래 불소고무에 이산화규소(SiO2), 이산화티타늄(TiO2), 수산화알루미늄(Al(OH)3), 산화아연(ZnO)의 혼합으로 조성되는 충전제를 사용하는 것으로, 특히 수산화 알루미늄(Al(OH)3)계 난연제를 최적합 비율로 첨가함으로써 내열특성이 개선된 반도체 고온공정의 장비에 사용되는 불소고무에 관한 것이다.The present invention relates to fluorine rubber with improved heat resistance used for sealing semiconductor equipment, and more particularly, to silicon fluorine rubber (SiO 2 ), titanium dioxide (TiO 2 ), aluminum hydroxide (Al (OH) 3 ). Fluorine used in the semiconductor high temperature process equipment having improved heat resistance by using a filler composed of a mixture of zinc oxide (ZnO) and especially adding an aluminum hydroxide (Al (OH) 3 ) -based flame retardant at an optimum ratio. It is about rubber.

반도체, 불소, 고무, 내열, 실링, 폴리머, 고온, 충전제, 가류제 Semiconductor, Fluorine, Rubber, Heat Resistant, Sealing, Polymer, High Temperature, Filler, Vulcanizer

Description

내열성이 개선된 반도체 장비 실링에 사용되는 불소고무{FLUORORUBBER COMPOSION FOR ENCAPSULATING SEMICONDUCTOR PARTS}Fluorine rubber for sealing semiconductor equipment with improved heat resistance {FLUORORUBBER COMPOSION FOR ENCAPSULATING SEMICONDUCTOR PARTS}

본 발명은 반도체 장비 실링에 사용되는 불소고무에 난연제를 첨가함으로써, 내열성이 개선된 불소고무에 관한 것이다.The present invention relates to a fluorine rubber having improved heat resistance by adding a flame retardant to the fluorine rubber used for sealing semiconductor equipment.

불소고무(Perfluoro-elastomer)는 사플루오르에틸렌(tetrafluroethylene, TFE), 퍼플루오로메틸비닐에테르(Perfluoromethylvinyl-ether,PFMVE)와 CSM(Cure Site Monomer)와 같은 단량체의 3원 공중합체 고분자 화합물로써 다음의 구조를 갖는다.Perfluoro-elastomer is a terpolymer copolymer of monomers such as tetrafluroethylene (TFE), perfluoromethylvinyl ether (PFMVE) and CSM (Cure Site Monomer). Has a structure.

Figure 112007068542220-pat00001
Figure 112007068542220-pat00001

위의 불소고무의 성형 가류(curing)에는 비스페놀 가류(Bisphenol curing), 과산화물 가류(Peroxide curing), 트리아진 가류(Triazine curing) 세 가지 가류 공법이 사용되며, 이와 같은 가류 공법을 통해 실링(Seal)재를 성형한다.The curing vulcanization of the above fluorine rubber uses three vulcanization methods such as bisphenol curing, peroxide curing, and triazine curing. Mold the ash.

상기 가류공정 중에 과산화물 가류(Peroxide curing)는 과불소 원료의 CSM(Cure Site Monomer)에서 폴리머(Polymer)와 폴리머(Polymer)의 연결고리를 과산화물(Poxide)류의 컴파운드(compound)를 이용하여 가류하는 방법을 말한다.Peroxide curing during the vulcanization process is to vulcanize the link between the polymer and the polymer in the CSM (Cure Site Monomer) of the perfluorine raw material using a compound of the peroxide. Say how.

그런데 이러한 과산화물 가류(Peroxide curing)의 가장 큰 단점은 300℃ 이상의 고온상태에서는 폴리머(Polymer)와 폴리머(Polymer) 사이의 결합 구조가 쉽게 깨어져 실링(Sealing)재로 사용되는 고무자체의 성능을 잃어버린다는 것이다.However, the biggest disadvantage of the peroxide curing is that the bonding structure between the polymer and the polymer is easily broken at a high temperature of 300 ° C. or higher, and the performance of the rubber itself used as a sealing material is lost. .

이러한 문제점은 현재 반도체 공정이 고집적화와 고온, 고밀도 공정 및 고플라즈마 공정의 사용으로 반도체 장비의 실링(Sealing)재로 사용되는 고무재질의 성 능도 고온, 내 플라즈마성 및 내화학성에서 사용가능해야 한다는 요구와 맞물려 반도체 공정에서 많은 문제점을 발생시키고 있는 실정이다.This problem requires that the current semiconductor process should be usable at high temperature, plasma resistance and chemical resistance due to the high integration, high temperature, high density process and high plasma process. In combination with the present invention, many problems are generated in the semiconductor process.

난연제는 연소하기 쉬운 성질을 가진 고분자 재료에 할로겐, 인, 질소, 그리고 금속화합물등 난연성 부여효과가 큰 화합물을 첨가함으로써 발화를 늦춰주고, 연소의 확대를 막아주는 물질을 말한다. 이는 가열, 분해, 발열 등의 특정한 연소단계를 방해함으로써 이루어지며, 최근에는 단순한 난연 효과뿐만 아니라 low-toxicity, low-smoke, low-corrosiveness를 겸비한 제품들이 개발되고 있다.Flame retardants are materials that slow down the ignition and prevent the expansion of combustion by adding compounds with high flame retardant effects such as halogen, phosphorus, nitrogen, and metal compounds to polymer materials having easy burning properties. This is achieved by interfering with certain combustion stages such as heating, decomposition, and heat generation. Recently, products that combine low-toxicity, low-smoke, and low-corrosiveness as well as simple flame retardant effects have been developed.

난연제는 크게 첨가형과 반응형으로 나뉘고, 첨가형은 다시 유기와 무기 난연제로 구분된다. 무기계(첨가형)는 난연제 시장의 가장 큰 부분을 차지하는데 가격이 싸고 할로겐화 유기화합물과 상승작용을 일으키며 필러(Filler)로 사용할 수 있기 때문이다. 유기계(첨가형)는 고분자와 컴파운딩 쉽다는 장점이 있으며, 반응형은 난연 효과는 뛰어나지만 실제로는 코폴리머로서 작용하기 때문에 비용이 비싸고 제조하는 데 시간이 많이 드는 단점이 있다.Flame retardants are divided into additive type and reactive type, and the additive type is divided into organic and inorganic flame retardant. Inorganic systems (additives) account for the largest portion of the flame retardant market because of their low cost and synergism with halogenated organic compounds and their use as fillers. The organic type (addition type) has the advantage of easy compounding with the polymer, the reaction type is excellent in flame retardant effect, but it is expensive and expensive to manufacture because it actually acts as a copolymer.

상기 무기계 난연제는 열에 의해 휘발되지 않으며 분해되어 물, 이산화탄소,이산화황, 염화수소와 같은 불연성 기체를 방출하게 되며 흡열반응을 한다. 기체상에서는 가연성 기체를 희석시켜 플라스틱 표면을 도포하여 산소의 접근을 방지하고, 동시에 고체상 표면에서 흡열반응을 통하여 플라스틱 냉각 및 열분해 생성물의 생성을 감소시키는 효과가 있다. 수산화알미늄, 수산화마그네슘, 산화안티몬, 수산화주석, 산화주석, 산화몰리브덴, 지르코늄화합물, 붕산염, 칼슘염 등이 있는데 그 중에서 수산화알미늄, 산화안티몬, 수산화마그네슘의 수요가 가장 크다.The inorganic flame retardant is not volatilized by heat and decomposes to release incombustible gases such as water, carbon dioxide, sulfur dioxide, and hydrogen chloride, and undergoes endothermic reaction. In the gas phase, the flammable gas is diluted to coat the plastic surface to prevent the access of oxygen, and at the same time, there is an effect of reducing the generation of plastic cooling and pyrolysis products through endothermic reactions on the solid phase surface. There are aluminum hydroxide, magnesium hydroxide, antimony oxide, tin hydroxide, tin oxide, molybdenum oxide, zirconium compound, borate, calcium salt, etc. Among them, the demand for aluminum hydroxide, antimony oxide, magnesium hydroxide is the highest.

본 발명에서는 종래 불소고무에 이산화규소(SiO2), 이산화티타늄(TiO2), 수산화알루미늄(Al(OH)3), 산화아연(ZnO)으로 조성되는 충전제의 혼합비율, 특히, 수산화 알루미늄(Al(OH)3)계 난연제의 최적합 비율을 이용하여 반도체 장비 실링에 이용되는 내열특성이 향상된 불소고무를 제공하는 것을 그 목적으로 한다.In the present invention, a conventional mixing ratio of a filler composed of silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), aluminum hydroxide (Al (OH) 3 ), and zinc oxide (ZnO) in fluorine rubber, in particular, aluminum hydroxide (Al) It is an object of the present invention to provide fluorine rubber having improved heat resistance characteristics used for sealing semiconductor equipment by using an optimum ratio of (OH) 3 ) flame retardants.

상기와 같은 목적을 달성하기 위해, 본 발명은In order to achieve the above object, the present invention

불소고무 원료(raw material) 40 ~ 90중량%, Fluorine rubber raw material 40 ~ 90% by weight,

충전제 5 ~ 50중량%,Filler 5-50% by weight,

가교제인 트리알릴 이소시아누레이트(triallyl isocyanurate;Taic) 2 ~ 5중량%2-5 wt% of triallyl isocyanurate (Taic) as a crosslinking agent

사이클로헥사논퍼옥사이드, t-부틸퍼옥시이소프로필카르보네이트, t-부틸퍼옥시라우릴레이트, t-부틸퍼옥시아세테이트, 디-t-부틸디퍼옥시프탈레이트, t-디브틸퍼옥시말레인산, t-부틸큐밀퍼옥사이드, t-부틸하이드로퍼옥사이드, 디벤조일퍼옥사이드, 디큐밀퍼옥사이드, 1,3-비스(t-부틸퍼옥시이소프로필)벤젠, 메틸에틸케 톤퍼옥사이드, 디-(2,4-디클로로벤조일)퍼옥사이드, 1,1-디(t-부틸퍼옥시)-3,3,5-트리메틸사이클로헥산, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 디-t-부틸퍼옥사이드, n-부틸-4,4-비스(t-부틸퍼옥시)발러레이트 및 α,α'-비스(t-부틸퍼옥시)디이소프로필벤젠, 다이-(2,4-다이클로로벤조일)-퍼옥시다제(Di-(2,4-dichlorobenzoyl)-peroxide), 다이벤조일 퍼옥시다제(Dibenzoyl peroxide), 터트-부틸 퍼옥시벤조에이트(tert-Butyl peroxybenzoate), 1,1-다이-(터트-부틸퍼옥시)-3,3,5-트리메틸시클로헥산(1,1-di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane), 다이-(2-터트-부틸-퍼옥시이소프로필)-벤젠(di-(2-tert-butyl-peroxyisopropyl)-benzene), 2,5-다이메틸-2,5-다이-(터트-부틸퍼옥시)-헥산(2,5-Dimethyl-2,5-di-(tert-butylperoxy)-hexane), 다이-터트-부틸퍼옥시다제(Di-tert-butylperoxide), 2,5-다이메틸-2,5-다이(터트-부틸퍼옥시-헥산-3(2,5-dimethyl-2,5-di(tert-butylperoxy)hexyne-3) 중 선택되는 어느 1종 또는 2종 이상의 혼합으로 조성된 가류제 3 ~ 10중량%를 혼합하여 조성되는 내열성이 개선된 반도체 장비 실링에 사용되는 불소고무를 그 주요 기술적 구성으로 한다.Cyclohexanone peroxide, t-butylperoxyisopropylcarbonate, t-butylperoxylaurylate, t-butylperoxyacetate, di-t-butyldiperoxyphthalate, t-dibutylperoxymaleic acid, t- Butyl cumyl peroxide, t-butyl hydroperoxide, dibenzoyl peroxide, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, methylethylketone peroxide, di- (2,4- Dichlorobenzoyl) peroxide, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5 -Dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butylperoxide, n-butyl-4,4-bis (t-butylperoxy) valerate and α, α'-bis (t-butylperoxy) diisopropylbenzene, di- (2,4-dichlorobenzoyl) -peroxidase (Di- (2,4-dichlorobenzoyl) -peroxide), dibenzoyl peroxide Tert-Butyl peroxate ybenzoate), 1,1-di- (tert-butylperoxy) -3,3,5-trimethylcyclohexane (1,1-di- (tert-butylperoxy) -3,3,5-trimethylcyclohexane), di- (2-tert-butyl-peroxyisopropyl) -benzene (di- (2-tert-butyl-peroxyisopropyl) -benzene), 2,5-dimethyl-2,5-di- (tert-butylperoxy) -Hexane (2,5-Dimethyl-2,5-di- (tert-butylperoxy) -hexane), Di-tert-butylperoxide, 2,5-dimethyl-2,5 Vulcanizing agent composed of any one or a mixture of two or more selected from -di (tert-butylperoxy-hexane-3 (2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3) The main technical configuration is fluorine rubber, which is used for sealing semiconductor equipment with improved heat resistance, which is formed by mixing 10 wt%.

그리고, 상기 충전제는 이산화규소(SiO2) 20 ~ 86중량%, 이산화티타늄(TiO2) 7 ~ 30중량%, 수산화알루미늄(Al(OH)3) 3 ~ 30중량%, 산화아연(ZnO) 4 ~ 20중량%로 조성됨을 특징으로 한다.In addition, the filler is 20 to 86% by weight of silicon dioxide (SiO 2 ), 7 to 30% by weight of titanium dioxide (TiO 2 ), 3 to 30% by weight of aluminum hydroxide (Al (OH) 3 ), zinc oxide (ZnO) 4 Characterized in that the composition is ~ 20% by weight.

본 발명에 따른 내열특성이 향상된 불소고무는 불소고무 원료(Raw material)에 충전제, 가교제(cross linking) 및 가류제가 첨가되어 조성되는 것으로,The fluorine rubber having improved heat resistance according to the present invention is formed by adding a filler, a cross linking agent, and a vulcanizing agent to a fluorine rubber raw material.

상기 불소고무 원료(Raw material)는 내열특성이 향상된 불소고무의 전체 혼합비율에 대해 40 ~ 90중량%의 범위로 사용되는 것으로, The fluorine rubber raw material (Raw material) is used in the range of 40 to 90% by weight relative to the total mixing ratio of the fluorine rubber with improved heat resistance,

40중량% 미만으로 사용될 경우에는 성형성이 떨어지는 문제가 발생하고, 90중량%를 초과하여 사용될 경우에는 내열특성이 떨어지는 문제가 발생하므로 불소고무 원료(Raw material) 불소고무의 전체 혼합비율에 대해 40 ~ 90중량%의 범위로 사용하는 것이 바람직하다.If it is used below 40% by weight, there is a problem of poor moldability, and if it is used above 90% by weight, a problem of low heat resistance occurs, so that 40% of the total mixing ratio of the raw material of fluorine rubber It is preferable to use in the range of -90 weight%.

상기 충전제는 수산화알루미늄(Al(OH)3)이 포함되어 실링재 불소고무의 내열 특성을 향상시키는 데 있어 매우 중요한 기능을 갖는 것으로, 종래의 충전제의 경우, 상호 첨가제에 따라 물성 및 고무특성들이 연관되어 있어 한 부분의 특성을 개선하면 다른 부분들의 특성이 떨어지는 문제점이 있었다. 이와 같은 이유로 인해 적용하는 충전제의 최적 배합은 매우 중요한 문제이다.The filler includes aluminum hydroxide (Al (OH) 3 ) and has a very important function in improving the heat resistance characteristics of the sealing material fluorine rubber. In the case of the conventional filler, the physical properties and the rubber properties are related according to mutual additives. There is a problem in that the characteristics of one part is lowered when the characteristics of one part are improved. For this reason, the optimal formulation of the fillers applied is a very important issue.

본 발명에 사용되는 충전제의 구성을 살펴보면, 이산화규소(SiO2) 20 ~ 86중량%, 이산화티타늄(TiO2) 7 ~ 30중량%, 수산화알루미늄(Al(OH)3) 3 ~ 30중량%, 산화아연(ZnO) 4 ~ 20중량%로 조성된다.Looking at the configuration of the filler used in the present invention, 20 to 86% by weight of silicon dioxide (SiO 2 ), 7 to 30% by weight of titanium dioxide (TiO 2 ), aluminum hydroxide (Al (OH) 3 ) 3 to 30% by weight, Zinc oxide (ZnO) is composed of 4 to 20% by weight.

상기 이산화규소(SiO2)는 순수하게 충전제의 기능을 갖는 것으로, 충전제 전 체 배합비에 대해 20 ~ 86중량%로 사용된다. 이때 이산화규소를 20중량% 미만으로 사용하게 될 경우에는 컴파운드(compound)의 가격적인 문제가 발생하고, 86중량%를 초과하여 사용하게 되는 경우에는 컴파운드(compound)의 경도가 높아지는 문제가 발생하므로, 상기 이산화규소는 충전제의 전체배합량에 대해 20 ~ 86중량%의 범위에서 사용하는 것이 바람직하다.The silicon dioxide (SiO 2 ) is purely a filler, it is used in 20 to 86% by weight relative to the total filler. In this case, when silicon dioxide is used at less than 20% by weight, a problem of price of compound occurs, and when used in excess of 86% by weight, a problem of compound hardness is increased. The silicon dioxide is preferably used in the range of 20 to 86% by weight based on the total amount of the filler.

상기 이산화티타늄(TiO2)은 컴파운드(compound)의 제품에 광택 및 내구성에 큰 영향을 주는 것으로, 충전제의 전체중량에 대해 7 ~ 30중량%가 사용된다. 이때 이산화티타늄을 7중량% 미만으로 사용하게 될 경우에는 컴파운드(compound)의 내구성이 떨어지는 문제가 발생하고, 30중량%를 초과하여 사용하게 될 경우에는 컴파운드(compound)의 성형과정에서 문제가 발생하므로, 상기 이산화티타늄은 충전제의 전체중량에 대해 7 ~ 30중량%의 범위로 사용하는 것이 바람직하다.The titanium dioxide (TiO 2 ) is to have a great effect on the gloss and durability of the compound (compound), 7 to 30% by weight based on the total weight of the filler. In this case, when titanium dioxide is used at less than 7% by weight, a problem of compound durability decreases, and when it is used in excess of 30% by weight, a problem occurs in forming a compound. , The titanium dioxide is preferably used in the range of 7 to 30% by weight based on the total weight of the filler.

상기 수산화알루미늄(Al(OH)3)은 컴파운드(compound)의 난연성과 내열성에 큰 영향을 미치는 것으로, 충전제의 전체중량에 대해 3 ~ 30중량%가 사용된다. 이때 사용되는 수산화알루미늄이 상기 범위를 벗어나게 될 경우에는 컴파운드(compound)의 내열성이 떨어지는 문제가 발생하므로, 상기 수산화알루미늄은 충전제의 전체중량에 대해 3 ~ 30중량%의 범위로 사용하는 것이 바람직하다.The aluminum hydroxide (Al (OH) 3 ) has a great effect on the flame retardancy and heat resistance of the compound (compound), 3 to 30% by weight based on the total weight of the filler. In this case, when the aluminum hydroxide used is out of the above range, there is a problem that the heat resistance of the compound (compound) is inferior, it is preferable to use the aluminum hydroxide in the range of 3 to 30% by weight based on the total weight of the filler.

상기 산화아연(ZnO)은 컴파운드(compound) 밀링(Milling)시 내열성에 영향을 미치는 인자로써, 충전제의 전체중량에 대해 4 ~ 20중량%가 사용된다. 이때 산화아연을 4중량% 미만으로 사용할 경우에는 컴파운딩(compounding)시 문제가 발생하고, 20중량%를 초과하여 사용하게 될 경우에는 성형성이 떨어지는 문제가 발생하므로, 상기 산화아연(ZnO)은 충전제의 전체중량에 대해 4 ~ 20중량%의 범위로 사용하는 것이 바람직하다.The zinc oxide (ZnO) is a factor affecting the heat resistance during compound milling, and 4 to 20% by weight based on the total weight of the filler is used. In this case, when zinc oxide is used at less than 4% by weight, problems occur during compounding, and when used in excess of 20% by weight, poor moldability occurs, so zinc oxide (ZnO) is It is preferable to use in the range of 4-20 weight% with respect to the total weight of a filler.

이와 같은 불소고무의 제조에 첨가되는 충전제는 수산화 알루미늄(Al(OH)3)계 산화물을 상기한 바와 같은 비율로 첨가됨으로 인해, 종래 기대할 수 없었던 실링(Sealing)재의 내열 특성이 매우 개선되는 효과를 갖게 된다.Since the filler added in the production of such fluorine rubber is added with aluminum hydroxide (Al (OH) 3 ) -based oxide in the ratio as described above, the heat resistance characteristics of the sealing material, which was not previously expected, are greatly improved. Will have

앞서 살펴본 바와 같은 조성비율을 갖는 충전제는 불소고무의 전체 배합비에 대해 5 ~ 50중량%로 사용되는 것으로, 이때 충전제를 5중량% 미만으로 사용하게 될 경우에는 컴파운드(Compound)의 내열, 내화학성 그리고 가격 경쟁력에 문제가 발생하고, 50중량%를 초과하여 사용할 경우에도 내열, 내화학성 및 성형문제와 컴파운딩(Compounding)시 문제가 발생하므로, 상기 충전제는 불소고무의 전체 배합비에 대해 5 ~ 50중량% 범위로 사용하는 것이 바람직하다.As described above, the filler having the composition ratio is used in an amount of 5 to 50% by weight based on the total blending ratio of fluorine rubber, and when the filler is used in an amount less than 5% by weight, the heat resistance, chemical resistance and There is a problem in price competitiveness, and even when used in excess of 50% by weight, heat, chemical resistance and molding problems and compounding problems occur, so the filler is 5 to 50% by weight of the total compounding ratio of fluorine rubber It is preferable to use it in% range.

다음으로, 불소고무 제조에 사용되는 가교제 및 가류제에 대해 살펴보도록 한다.Next, look at the crosslinking agent and vulcanizing agent used in the production of fluororubber.

상기 가교제는 컴파운드(Compound) 가류시 가교에 영향을 미치는 기능을 갖는 것으로, 트리알릴 이소시아누레이트(Triallyl Isocyanurate;Taic)을 사용한다.The crosslinking agent has a function of affecting crosslinking during compound vulcanization, and uses triallyl isocyanurate (Taic).

그 가교제는 불소고무의 전체 배합비에 대해 2 ~ 5중량% 사용되는 것으로, 2중량% 미만으로 사용할 경우에는 컴파운드(Compound) 가류 중에 가교가 안 되는 문제가 발생하고, 5중량% 초과하여 사용시에도 마찬가지로 가교의 역반응 및 컴파운딩(Compounding)에 문제가 발생하므로, 가교제는 불소고무의 전체 배합비에 대해 2 ~ 5중량% 범위로 사용하는 것이 바람직하다.The crosslinking agent is used in an amount of 2 to 5% by weight based on the total blending ratio of fluorine rubber, and when used at less than 2% by weight, crosslinking does not occur in compound vulcanization. Since a problem occurs in the reverse reaction and compounding of the crosslinking, it is preferable to use the crosslinking agent in the range of 2 to 5% by weight based on the total blending ratio of fluorine rubber.

그리고, 상기 가류제는 제품 성형시 성형품의 가교에 중요한 기능을 갖는 것으로, 불소고무 전체 배합비에 대해 3 ~ 10중량%의 범위로 사용되며 3중량% 미만으로 사용할 경우에는 제품의 가교에 이루어지지 않아 제품의 물성에 많은 문제가 발생하므로, 상기 가류제는 불소고무 전체 배합비에 대해 3 ~ 10중량% 범위로 사용하는 것이 바람직하다.In addition, the vulcanizing agent has an important function for the crosslinking of the molded article when the product is molded, and is used in the range of 3 to 10% by weight based on the total fluorine rubber compounding ratio, and when used less than 3% by weight, the vulcanizing agent does not occur in the crosslinking of the product. Since many problems occur in the physical properties of the product, the vulcanizing agent is preferably used in the range of 3 to 10% by weight based on the total fluorine rubber compounding ratio.

이하, 내열성이 개선된 반도체 장비 실링에 사용되는 불소고무의 제조방법에 대해 살펴보도록 한다.Hereinafter, a method of manufacturing fluorine rubber used for sealing semiconductor equipment having improved heat resistance will be described.

먼저, 불소고무 원료(Raw material)를 충전제(Filler)가 침투될 수 있도록 롤(Roll)에서 충분히 돌려 얇게(1T 두께 이하) 만든다. 이와 같이 얇게 하는 이유는 롤(Roll)에서 불소고무 원료(Raw material)가 충분한 전단력을 가지고 롤(Roll) 에 감겨져야 충전제(Filler)를 침투시키는데 용이하기 때문이다.First, a raw material of fluorine rubber is made thin (less than 1T thickness) by turning it sufficiently in a roll so that filler can penetrate therein. The reason for the thinning is that the fluorine rubber raw material (Raw material) in the roll (Roll) is easy to penetrate the filler (Filler) must be wound on the roll (Roll) with sufficient shear force.

이때 사용되는 충전제는 상기한 바와 같이, 이산화규소(SiO2) 20 ~ 86중량%, 이산화티타늄(TiO2) 7 ~ 30중량%, 수산화알루미늄(Al(OH)3) 3 ~ 30중량%, 산화아연(ZnO) 4 ~ 20중량%로 조성된 것을 사용한다.The filler used at this time, as described above, 20 to 86% by weight of silicon dioxide (SiO 2 ), 7 to 30% by weight of titanium dioxide (TiO 2 ), aluminum hydroxide (Al (OH) 3 ) 3 to 30% by weight, oxidation Zinc (ZnO) 4 to 20% by weight is used.

상기 충전제는 충전제의 특성상 투입 순서가 산화아연(ZnO)를 우선 첨가하여 ZnO의 배합 Compound내의 뭉침 현상을 방지함으로써 차후에 제품 성형시 제품 내Particle의 문제를 해결하는데 도움이 되며, 나머지 충전제 SiO2, TiO2 및 Al(OH)3는 원료 내에서 특별한 반응 및 결합을 하는 것이 아니라 제품의 내열에 대한 특성을 보강해주는 역할을 하므로 투입 순서는 충전제 입자 SIZE를 체크하고 입자가 큰 Filler부터 첨가시키는 것이 배합을 진행하는데 쉽다. The filler is added in order of zinc oxide (ZnO) in order to prevent the aggregation of ZnO in the compounded compound, which helps solve the problem of particles in the product during the molding of the product, and the remaining filler SiO 2 , TiO 2 and Al (OH) 3 do not have a special reaction and bonding in the raw materials, but rather reinforce the heat resistance characteristics of the product, so the order of loading is to check the filler particle size and to add from the larger particle filler. Easy to proceed

또한, 불소고무 원료(Raw material)는 앞에서 설명 드리는 것과 같이 2원계 FKM, 3원계 FKM 재질에 모두 적용되어지며, 배합시 특정 FKM에는 기본적인 첨가물들이 명시되어 있어 그에 준해서 배합을 진행하면 된다.(2원계: 2원 공중합체 고분자 화합물, 3원계: 3원 공중합체 고분자 화합물)In addition, as described above, raw material is applied to both binary FKM and ternary FKM materials, and basic additives are specified in specific FKM. Binary system: binary copolymer polymer compound, ternary system: terpolymer copolymer polymer compound)

이상에서 살펴본 바와 같이, 본 발명에 따른 불소고무(Perfluoro-elastomer) 반도체 실링(sealing) 오링은 종래 불소고무에 이산화규소(SiO2), 이산화티타늄(TiO2), 수산화알루미늄(Al(OH)3), 산화아연(ZnO)의 혼합비율, 특히, 난연제인 수산화 알루미늄(Al(OH)3)의 최적합 비율에 의해 난연성이 크게 향상된 계 난연제의 최적합 비율을 이용하여 반도체 장비 실링에 이용되는 내열특성이 향상된 불소고무를 제공할 수 있게 되었으며, 그리고, 반도체 공정에서의 고집적화와 고온, 고밀도 공정 및 고플라즈마 공정이 요구됨에 따라 반도체 장비의 실링(Sealing)재로 사용되는 고무재질의 성능도 고온 및 내 플라즈마성 및 내화학성을 충족시켜야 하는 요구를 충족시킬 수 있게 되었다.As described above, the fluororubber (Perfluoro-elastomer) semiconductor sealing O-ring according to the present invention is a conventional fluorine rubber, silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), aluminum hydroxide (Al (OH) 3 ), Heat resistance used for sealing semiconductor equipment by using the optimum ratio of the flame retardant greatly improved flame retardancy by the mixing ratio of zinc oxide (ZnO), in particular, the optimum ratio of aluminum hydroxide (Al (OH) 3 ), a flame retardant. As the fluorine rubber with improved properties can be provided, the performance of rubber materials used as sealing materials for semiconductor equipment is also high and high due to the high integration, high temperature, high density and high plasma processes in semiconductor processes. It is now possible to meet the need to meet plasma and chemical resistance.

이하, 반도체 고온공정 장비 실링에 이용되는 내열특성이 향상된 불소고무의 배합비율에 대한 구체적인 내용을 실시 예를 통해 확인하도록 한다.Hereinafter, the specific content of the blending ratio of the fluorine rubber having improved heat resistance characteristics used for sealing the semiconductor high-temperature process equipment will be confirmed through the examples.

먼저, 종래 배합비율(비교 예 1)에 따른 불소고무의 내열 거동을 살펴본 후, 다음으로 본 발명에 따른 컴파운드(Compound)의 배합비율(실시 예 1) 및 불소고무의 내열 거동에 대해 살펴보도록 한다.First, the heat resistance behavior of the fluorine rubber according to the conventional compounding ratio (Comparative Example 1), and then look at the compounding ratio (Compound 1) and the heat resistance behavior of the fluorine rubber according to the present invention. .

비교 예 1: 종래 백색계열의 Comparative Example 1: Conventional White Series 컴파운드Compound (( CompoundCompound ) 배합 설계Formulation design

성분ingredient 함유량(%)content(%) 불소고무 원료Fluorine rubber raw material RAW MATERIALRAW MATERIAL 100100 충전제  Filler SiO2 SiO 2 2020 TiO2 TiO 2 1010 ZnOZnO 55 가교제(cross linking)Cross linking TaicTaic 33 가류제Vulcanizing agent 과산화물 화합물Peroxide compound 1One

상기 비교 예 1에서와 같은 배합비율로 조성된 불소 고무의 내열 특성을 도 1을 통해 살펴보도록 한다. 상기, 도 1은 종래 컴파운드(Compound) 배합비에 따른 불소고무의 내열 특성을 나타낸 그래프이다.The heat resistance characteristics of the fluorine rubber formed at the same compounding ratio as in Comparative Example 1 will be described with reference to FIG. 1. 1 is a graph illustrating heat resistance characteristics of fluorine rubber according to a compound compounding ratio.

도 1에 도시된 바와 같이, 종래 배합비에 따른 불소고무는 250℃ 이하에서 표면이 거의 녹지 않는 상태를 유지하고 있었으나, 250℃를 지나면서부터 조금씩 불소고무가 녹기 시작하면서 300℃까지 급격히 녹아 320℃에서는 표면 녹는 거동이 거의 100%에 달하게 된다.As shown in Figure 1, the fluorine rubber according to the conventional compounding ratio was maintained in a state that almost the surface is not melted below 250 ℃, but gradually melted up to 300 ℃ while slowly starting to melt from 250 ℃ after passing the 250 ℃ at 320 ℃ Surface melting behavior is almost 100%.

이와 같이 종래 배합비에 의한 불소고무는 그 내열특성이 매우 떨어지므로 인해 고온, 고압상태에서 사용되는 반도체 장비 실링(Sealing)재로서 사용하기 부적합하다는 것을 확인할 수 있다.As such, the fluorine rubber according to the conventional compounding ratio is very inferior in heat resistance, and thus, it may be confirmed that the fluorine rubber is not suitable for use as a sealing material for semiconductor equipment used at high temperature and high pressure.

정리하면, 상기 실시 예 1 배합비가 적용되어 과산화물 가류의 불소 고무의 사용한계 온도는 거의 300℃에 미치며, 300℃ 이상에서는 실링재의 고무 특성을 거의 상실하여 실링(Sealing)재로서의 역할을 거의 수행하지 못하여 장비 적용 사이클(cycle)이 낮아지는 결과를 초래하였다.In summary, the compounding ratio of Example 1 is applied so that the service temperature of the fluorine rubber of peroxide vulcanization reaches almost 300 ° C., and at 300 ° C. or more, the rubber properties of the sealing material are almost lost, thereby almost no role as a sealing material. This results in lower equipment application cycles.

이러한 단점을 극복하고 내열 특성을 향상시켜 고온 공정 장비 적용 한계를 극복하고, 적용 사이클(cycle) 수명을 향상시킬 수 있는 본 발명에 따른 컴파운드(Compound) 배합설계는 다음과 같다.Compound compound design according to the present invention that can overcome these disadvantages and improve the heat resistance characteristics to overcome the high temperature process equipment application limitations, and improve the application cycle (cycle) life is as follows.

실시 예 1: 본 발명에 따른 Example 1 According to the Invention 컴파운드Compound (( CompoundCompound ) 배합 설계Formulation design

성분ingredient 함유량(phr)Content (phr) 불소고무 원료Fluorine rubber raw material RAW MATERIALRAW MATERIAL 100100 충전제  Filler SiO2 SiO 2 2020 TiO2 TiO 2 55 Al(OH)3 Al (OH) 3 55 ZnOZnO 55 가교제(cross linking)Cross linking TaicTaic 33 가류제Vulcanizing agent 과산화물 화합물Peroxide compound 1One

앞서, 비교 예 1을 통해 살펴본 바와 같이, 250℃이상에서 녹기 시작하여 320℃에 가서는 거의 녹아버리는 불소 고무의 문제점을 개선하기 위해, 상기 실시 예 1에서와 같은 배합비를 제시한다.As described above through Comparative Example 1, in order to improve the problem of fluorine rubber that starts to melt at 250 ° C. or more and then melts at 320 ° C., a compounding ratio as in Example 1 is presented.

상기 충전제로 수산화알루미늄(Al(OH)3)이 5phr를 사용한 것을 제시하고 있으며, 이와 같은 수산화알루미늄이 일정 배합비로 첨가됨으로 인해 불소 고무의 내열 특성은 급격히 높아지게 됨을 확인할 수 있다.It is suggested that the aluminum hydroxide (Al (OH) 3 ) is used 5phr as the filler, it can be seen that the heat resistance of the fluorine rubber is rapidly increased due to the addition of such aluminum hydroxide in a certain ratio.

이러한 근거로써, 도 2에 도시된 도면을 통해 살펴보도록 한다.For this reason, it will be described through the drawings shown in FIG.

먼저, 도 2에 도시된 그래프는 충전제로써, 수산화알루미늄(Al(OH)3)이 5phr, 10phr, 15phr를 첨가한 것에 대해 각기 그 내열특성을 검토한 것을 나타내고 있다. 충전제로서 수산화알루미늄(Al(OH)3)이 전혀 첨가되지 않은 종래 불소고무와, 5phr, 10phr, 15phr의 비율로 수산화 알루미늄(Al(OH)3) 각각 첨가된 본 발명에 따른 불소고무를 살펴보면, 먼저, 종래 불소고무는 앞서 살펴본 바와 같이, 250℃에서부터 녹기 시작하여 320℃ 지점에서는 거의 녹아내려 고온, 고압의 반도체 장비 실링재로 사용하기 어렵다.First, the graph shown in FIG. 2 shows that the heat resistance characteristics of aluminum hydroxide (Al (OH) 3 ) added 5 phr, 10 phr, and 15 phr as fillers were examined. Looking at the fluororubber according to the present invention the aluminum hydroxide (Al (OH) 3) are each added to the conventional fluorine-containing rubber is not added at all, 5phr, 10phr, aluminum hydroxide at a ratio of 15phr (Al (OH) 3) as a filler, First, as described above, the conventional fluorine rubber starts to melt at 250 ° C. and almost melts at a point of 320 ° C., thus making it difficult to use a high temperature and high pressure semiconductor equipment sealing material.

반면, 본 발명에 따른 불소고무는, 수산화 알루미늄(Al(OH)3)이 15phr로 배합된 경우, 270℃까지 거의 녹지 않고 있으며, 300℃의 고온에서도 표면 녹는 거동이 40%에 달하지도 않아, 종래 300℃에서 거의 100% 표면 녹는 거동을 보이는 불소고무와 비교했을 때 내열특성이 매우 뛰어남을 확인할 수 있다.On the other hand, the fluorine rubber according to the present invention, when aluminum hydroxide (Al (OH) 3 ) is blended with 15phr, hardly melts up to 270 ° C, and surface melting behavior does not reach 40% even at a high temperature of 300 ° C, Compared with the conventional fluorine rubber showing almost 100% surface melting behavior at 300 ℃ it can be seen that the heat resistance is very excellent.

상기 수산화알루미늄(Al(OH)3)이 10phr로 배합된 경우, 수산화 알루미늄(Al(OH)3)이 15phr로 배합된 경우와 비슷한 거동을 보이기는 하지만 알루미나(Al2O3)가 15phr로 배합된 경우보다 내열특성이 높음을 확인할 수 있다.When the aluminum hydroxide (Al (OH) 3 ) is blended with 10 phr, the alumina (Al 2 O 3 ) is blended with 15 phr, although it exhibits similar behavior to that of aluminum hydroxide (Al (OH) 3 ) with 15 phr. It can be seen that the heat resistance is higher than the case.

수산화 알루미늄(Al(OH)3)이 5phr로 배합된 경우, 가장 높은 내열특성을 보이고 있으며, 320℃까지 거의 녹지 않고 있어, 앞서 살펴본 비교 예 1에서 확인된 종래 배합비에 따른 불소 고무에 대해 거의 50℃ 이상 차이가 나는 온도에서도 실링재로 사용 가능함을 확인할 수 있다.When aluminum hydroxide (Al (OH) 3 ) is blended at 5 phr, it exhibits the highest heat resistance and hardly dissolves up to 320 ° C., which is almost 50 to about fluorine rubber according to the conventional compounding ratios identified in Comparative Example 1 described above. It can be confirmed that it can be used as a sealing material even at a temperature difference of more than ℃.

상기 실시 예 1을 통해 확인된 바와 같이, 수산화알루미늄(Al(OH)3)의 최적 첨가량은 5phr 정도에서 가장 좋은 내열특성을 나타내었고 첨가량이 증가하면서 내열성이 떨어지고 고무의 기본 물성인 기계적 특성이나 탄성력부분이 감소하는 결과를 초래하였다.As confirmed through Example 1, the optimum amount of aluminum hydroxide (Al (OH) 3 ) showed the best heat resistance at about 5 phr, the heat resistance was lowered as the addition amount was increased, the mechanical properties or elastic force of the basic physical properties of rubber This resulted in a decrease in part.

상기 수산화알루미늄의 함량이 높아지면 다른 첨가제의 함량을 감소시켜야 기존 사용 조건에 맞는 경도를 유지하기 때문이며 첨가량의 일정부분 이상은 고무의 성질을 저하하는 결과를 가져올 수 있다. 따라서, 위의 결과와 같이 수산화알루미늄계 산화물 5phr가 최적의 특성을 발휘하고 있음을 확인하였다.When the content of the aluminum hydroxide is increased, the content of other additives must be reduced to maintain hardness in accordance with the existing use conditions, and a certain portion or more of the amount of addition may result in deterioration of the rubber properties. Therefore, it was confirmed that 5 phr of aluminum hydroxide-based oxide exhibited optimal characteristics as described above.

결과적으로, 수산화알루미늄을 5phr로 첨가함으로써, 기존 과산화물(peroxide) 공법에 의한 가류 고무가 300℃ 이상에서 사용하기 어려웠던 재질의 특성을 개선하여 종래 사용한계 온도인 300℃이상에서도 실링(Sealing)재의 특성을 사용 가능하도록 내열 특성을 개선 시켰다.As a result, the addition of aluminum hydroxide at 5 phr improves the properties of materials in which vulcanized rubbers, which are difficult to use by the conventional peroxide method, are more than 300 ° C. Improved heat resistance properties so that can be used.

도 1은 종래 컴파운드(Compound)의 내열 특성을 나타낸 그래프.1 is a graph showing the heat resistance characteristics of a conventional compound (Compound).

도 2는 본 발명에 따른 컴파운드(Compound)의 내열 특성을 나타낸 그래프.Figure 2 is a graph showing the heat resistance characteristics of the compound (Compound) according to the present invention.

Claims (2)

불소고무 원료(raw material) 40 ~ 90중량%, Fluorine rubber raw material 40 ~ 90% by weight, 충전제 5 ~ 50중량%,Filler 5-50% by weight, 트리알릴 이소시아누레이트(triallyl isocyanurate;Taic) 2 ~ 5중량%Triallyl isocyanurate (Taic) 2 to 5% by weight 사이클로헥사논퍼옥사이드, t-부틸퍼옥시이소프로필카르보네이트, t-부틸퍼옥시라우릴레이트, t-부틸퍼옥시아세테이트, 디-t-부틸디퍼옥시프탈레이트, t-디브틸퍼옥시말레인산, t-부틸큐밀퍼옥사이드, t-부틸하이드로퍼옥사이드, 디벤조일퍼옥사이드, 디큐밀퍼옥사이드, 1,3-비스(t-부틸퍼옥시이소프로필)벤젠, 메틸에틸케톤퍼옥사이드, 디-(2,4-디클로로벤조일)퍼옥사이드, 1,1-디(t-부틸퍼옥시)-3,3,5-트리메틸사이클로헥산, 2,5-디메틸-2,5-디(벤조일퍼옥시)헥산, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, 디-t-부틸퍼옥사이드, n-부틸-4,4-비스(t-부틸퍼옥시)발러레이트 및 α,α'-비스(t-부틸퍼옥시)디이소프로필벤젠, 다이-(2,4-다이클로로벤조일)-퍼옥시다제(Di-(2,4-dichlorobenzoyl)-peroxide), 다이벤조일 퍼옥시다제(Dibenzoyl peroxide), 터트-부틸 퍼옥시벤조에이트(tert-Butyl peroxybenzoate), 1,1-다이-(터트-부틸퍼옥시)-3,3,5-트리메틸시클로헥산(1,1-di-(tert-butylperoxy)-3,3,5-trimethylcyclohexane), 다이-(2-터트-부틸-퍼옥시이소프로필)-벤젠(di-(2-tert-butyl-peroxyisopropyl)-benzene), 2,5-다이메틸-2,5-다이-(터트-부틸퍼옥시)-헥산(2,5-Dimethyl-2,5-di-(tert-butylperoxy)-hexane), 다이-터트-부틸퍼옥시다제(Di-tert-butylperoxide), 2,5-다이메틸-2,5-다이(터트-부틸퍼옥시-헥산-3(2,5-dimethyl-2,5-di(tert-butylperoxy)hexyne-3) 중 선택되는 어느 1종 또는 2종 이상의 혼합으로 조성된 가류제 3 ~ 10중량%를 혼합하여 조성된 것에 있어서,Cyclohexanone peroxide, t-butylperoxyisopropylcarbonate, t-butylperoxylaurylate, t-butylperoxyacetate, di-t-butyldiperoxyphthalate, t-dibutylperoxymaleic acid, t- Butyl cumyl peroxide, t-butyl hydroperoxide, dibenzoyl peroxide, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, methylethylketone peroxide, di- (2,4- Dichlorobenzoyl) peroxide, 1,1-di (t-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2,5 -Dimethyl-2,5-di (t-butylperoxy) hexane, di-t-butylperoxide, n-butyl-4,4-bis (t-butylperoxy) valerate and α, α'-bis (t-butylperoxy) diisopropylbenzene, di- (2,4-dichlorobenzoyl) -peroxidase (Di- (2,4-dichlorobenzoyl) -peroxide), dibenzoyl peroxide Tert-Butyl peroxybenzoate benzoate), 1,1-di- (tert-butylperoxy) -3,3,5-trimethylcyclohexane (1,1-di- (tert-butylperoxy) -3,3,5-trimethylcyclohexane), di- (2-tert-butyl-peroxyisopropyl) -benzene (di- (2-tert-butyl-peroxyisopropyl) -benzene), 2,5-dimethyl-2,5-di- (tert-butylperoxy) -Hexane (2,5-Dimethyl-2,5-di- (tert-butylperoxy) -hexane), Di-tert-butylperoxide, 2,5-dimethyl-2,5 Vulcanizing agent composed of any one or a mixture of two or more selected from -di (tert-butylperoxy-hexane-3 (2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3) In the composition by mixing ~ 10% by weight, 상기 충전제는 이산화규소(SiO2) 20 ~ 86중량%, 이산화티타늄(TiO2) 7 ~ 30중량%, 수산화알루미늄(Al(OH)3) 3 ~ 30중량%, 산화아연(ZnO) 4 ~ 20중량%로 조성됨을 특징으로 하는 내열성이 개선된 반도체 장비 실링에 사용되는 불소고무.The filler is 20 to 86% by weight of silicon dioxide (SiO 2 ), 7 to 30% by weight of titanium dioxide (TiO 2 ), 3 to 30% by weight of aluminum hydroxide (Al (OH) 3 ), zinc oxide (ZnO) 4 to 20 Fluorine rubber for sealing semiconductor equipment with improved heat resistance, characterized in that it is formulated in weight percent. 삭제delete
KR1020070096222A 2007-09-21 2007-09-21 Fluororubber composion for encapsulating semiconductor parts KR100907491B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070096222A KR100907491B1 (en) 2007-09-21 2007-09-21 Fluororubber composion for encapsulating semiconductor parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070096222A KR100907491B1 (en) 2007-09-21 2007-09-21 Fluororubber composion for encapsulating semiconductor parts

Publications (2)

Publication Number Publication Date
KR20090030729A KR20090030729A (en) 2009-03-25
KR100907491B1 true KR100907491B1 (en) 2009-07-10

Family

ID=40696982

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070096222A KR100907491B1 (en) 2007-09-21 2007-09-21 Fluororubber composion for encapsulating semiconductor parts

Country Status (1)

Country Link
KR (1) KR100907491B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003382A1 (en) 2011-01-31 2012-08-02 United Initiators Gmbh & Co. Kg Peroxide blends for the accelerated crosslinking of ethylene vinyl acetate
KR101504725B1 (en) * 2014-06-23 2015-03-24 주식회사 씰테크 Sealing material for reaction chamber preparing semiconductor wafer and sealing material using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031480A (en) * 1997-11-06 2001-04-16 이노우에 노리유끼 Molding material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031480A (en) * 1997-11-06 2001-04-16 이노우에 노리유끼 Molding material

Also Published As

Publication number Publication date
KR20090030729A (en) 2009-03-25

Similar Documents

Publication Publication Date Title
CN105849180B (en) Fluoro-rubber composite and crosslinking rubber-moulding body and its manufacturing method
US9815972B2 (en) Fluoro-rubber composition and cross-linked rubber article using same
EP2718338B1 (en) Hyperbranched fluoroelastomer additive
EP1950245B1 (en) Alloyed fluorocopolymer
EP3006491B1 (en) Low smoke, flexible insulation foam
JP2006188689A (en) Dynamic vulcanization of non-nitrile rubber in fluororesin polymer
ITMI20011062A1 (en) FLUOROELASTOMERIC COMPOSITIONS
EP3013873A1 (en) Fluoroelastomers
JPWO2019009188A1 (en) Fluororubber composition, method for producing the same, and fluororubber crosslinked molded article
WO2015098337A1 (en) Perfluoroelastomer composition, sealing material and method for producing same
KR102342909B1 (en) Perfluoroelastomer composition and sealing material
KR100907491B1 (en) Fluororubber composion for encapsulating semiconductor parts
EP2824134B1 (en) Compressible fire retardant foam
KR102354539B1 (en) Perfluoroelastomer composition and sealing material
KR102414805B1 (en) Perfluoroelastomer composition and sealing material
CN109715718B (en) Fluoroelastomer composition
EP2596057B1 (en) Fluoroelastomer composition
KR100899134B1 (en) Perfluoro-elastomer and manufacturing method with improved resistance to plasma
JP2005239835A (en) Crosslinkable fluororubber composition
KR100837122B1 (en) Fluororubber having excellent thermal property for semiconductor and methodfor its manufacture
KR100870494B1 (en) Chemical resistance improved fluororubber
KR102323568B1 (en) Perfluoro elastomer composite with improved heat resistance, and method of fabricating the same
KR100894110B1 (en) Perfluoro-elastomer improved stretchflangeability using for insemiconductor device
KR20200073070A (en) Rubber composition of oil seal for cooling water opener of fuel cell vehicle
JPH10176090A (en) Production of fluorine rubber composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120514

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130708

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150706

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160525

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170706

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190708

Year of fee payment: 11