KR100907459B1 - Complex of ionic liquid-silica support containing immobilized metallic nanoparticles and method for immobilizing metallic nanoparticles thereto - Google Patents

Complex of ionic liquid-silica support containing immobilized metallic nanoparticles and method for immobilizing metallic nanoparticles thereto Download PDF

Info

Publication number
KR100907459B1
KR100907459B1 KR1020070080539A KR20070080539A KR100907459B1 KR 100907459 B1 KR100907459 B1 KR 100907459B1 KR 1020070080539 A KR1020070080539 A KR 1020070080539A KR 20070080539 A KR20070080539 A KR 20070080539A KR 100907459 B1 KR100907459 B1 KR 100907459B1
Authority
KR
South Korea
Prior art keywords
metal nanoparticles
ionic liquid
silica
immobilized
silica support
Prior art date
Application number
KR1020070080539A
Other languages
Korean (ko)
Other versions
KR20090016126A (en
Inventor
이상기
신주연
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to KR1020070080539A priority Critical patent/KR100907459B1/en
Publication of KR20090016126A publication Critical patent/KR20090016126A/en
Application granted granted Critical
Publication of KR100907459B1 publication Critical patent/KR100907459B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0292Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate
    • B01J31/0295Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature immobilised on a substrate by covalent attachment to the substrate, e.g. silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체 및 금속 나노입자의 고정화방법에 관한 것으로, 더욱 상세하게는 하기 화학식 1로 표시되는 이미다졸 염과 우레아기를 포함하는 실리카 지지체에 금속 나노입자가 고정화된 복합체 및 이의 고정화 방법에 관한 것이다. 본 발명에 의하면 금속 나노입자를 실리카표면에 고정화함으로써 금속 나노입자를 안정시켜 입자간 응집을 방지함과 동시에 수 회 반복하여 사용하여도 촉매 효율을 98%이상으로 유지하여 경제적이고 친환경적인 공정을 수행할 수 있게 한다. The present invention relates to a method of immobilizing an ionic liquid-silica support complex and a metal nanoparticle to which metal nanoparticles are immobilized. A composite in which particles are immobilized and a method of immobilization thereof. According to the present invention, by immobilizing the metal nanoparticles on the silica surface, the metal nanoparticles are stabilized to prevent agglomeration between particles and at the same time, the catalyst efficiency is maintained at 98% or more even after repeated use. Make it possible.

<화학식 1><Formula 1>

Figure 112007058115292-pat00001
Figure 112007058115292-pat00001

(상기 X, M, n, m 및 l은 명세서에서 정의된 바와 같다.) (X, M, n, m and l are as defined in the specification.)

이온성 액체, 금속 나노입자, 실리카 지지체, 촉매 Ionic liquids, metal nanoparticles, silica supports, catalysts

Description

금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체 및 금속 나노입자의 고정화방법{Complex of ionic liquid-silica support containing immobilized metallic nanoparticles and method for immobilizing metallic nanoparticles thereto}Complex of ionic liquid-silica support containing immobilized metallic nanoparticles and method for immobilizing metallic nanoparticles

본 발명은 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체 및 상기 복합체에 금속 나노입자를 고정화시키는 방법에 관한 것이다.The present invention relates to an ionic liquid-silica support complex to which metal nanoparticles are immobilized and a method of immobilizing metal nanoparticles to the complex.

금속 나노입자가 독특한 물리화학적, 전기적 성질을 갖는 사실이 보고됨에 따라, 금속 나노입자를 이용한 새로운 나노기술의 개발에 관한 연구가 매우 활발히 진행되고 있다. As it is reported that metal nanoparticles have unique physicochemical and electrical properties, researches on the development of new nanotechnology using metal nanoparticles are being actively conducted.

특히 금속 나노입자는 나노입자의 넓은 표면적을 이용한 높은 촉매 반응 시스템의 개발에 있어서 매우 중요하다. 그러나 금속 나노입자는 동역학적(kinetically)으로 매우 불안정하여 금속 나노입자간 응집(aggregation)으로 동역학적 안정화를 이루려는 경향이 매우 크다. 이로 인해 금속 나노입자를 촉매로 사용하였을 경우 촉매의 반응효율을 감소시키는 현상을 초래한다. In particular, metal nanoparticles are very important in the development of high catalytic reaction systems utilizing the large surface area of nanoparticles. However, metal nanoparticles are kinematically very unstable and have a high tendency to achieve dynamic stabilization by aggregation between metal nanoparticles. This results in a phenomenon in which the reaction efficiency of the catalyst is reduced when the metal nanoparticles are used as the catalyst.

이에, 종래의 기술에서는 금속 나노입자의 응집현상을 방지하기 위해서 4차 아민 염, 고분자 등과 같은 안정제를 사용하는 방법들이 연구되었다. 그러나 안정제를 사용한 금속 나노입자는 안정제에 의한 입체 장애로 금속 나노입자 자체의 기능이 저해되고, 그 결과로 촉매로 사용되었을 경우 반응 효율이 감소하는 문제를 발생시켰다. Therefore, in the related art, methods for using stabilizers such as quaternary amine salts and polymers have been studied to prevent aggregation of metal nanoparticles. However, the metal nanoparticles using the stabilizer caused a problem that the function of the metal nanoparticles is inhibited due to steric hindrance caused by the stabilizer, and as a result, the reaction efficiency decreases when used as a catalyst.

따라서, 금속 나노입자 연구는 나노입자 촉매를 효과적으로 안정화시켜 응집현상을 방지함과 동시에 촉매로 사용될 경우 촉매의 회수 및 재사용이 가능한 금속 나노입자 고정화에 관한 연구 또한 활발하게 진행되고 있다. Therefore, research on metal nanoparticles has been actively conducted on immobilization of metal nanoparticles, which effectively recovers and reuses catalysts when used as catalysts, while effectively stabilizing nanoparticle catalysts to prevent aggregation.

최근 상기 문제를 해결하기 위해, 이미다졸 염을 바탕으로 하는 이온성 액체가 금속 나노입자를 안정화시킴과 동시에 금속 나노입자를 고정화시킬 수 있는 연구가 보고되었다. 이온성 액체란 순수하게 이온으로만 구성된 액체로 분자성 용매를 전혀 함유하지 않고 있기 때문에 증기압이 거의 없고 진공 중에서도 액상을 유지하는 독특한 물성을 갖는 액체이다. 특히, 이온성 액체는 이온으로 이루어진 유기물로서 여러 가지 유도체를 얻을 수 있다. 그러나 상기 이온성 액체에 안정화된 금속 나노입자 또한 응집현상이 일부 발생되고, 이온성 액체에 고정화된 금속 나노입자를 이용한 촉매반응의 경우 금속 나노입자와 이온성 액체 및 생성물을 분리시키는데 어려움이 있다. Recently, in order to solve the problem, a study has been reported that an ionic liquid based on imidazole salts can stabilize metal nanoparticles and at the same time fix the metal nanoparticles. Ionic liquids are purely ionic liquids and contain no molecular solvent at all, so they have little vapor pressure and have a unique physical property that maintains a liquid state in vacuum. In particular, the ionic liquid can be obtained various derivatives as an organic material consisting of ions. However, the metal nanoparticles stabilized in the ionic liquid also generate some agglomeration, and in the case of the catalytic reaction using the metal nanoparticles immobilized in the ionic liquid, it is difficult to separate the metal nanoparticles from the ionic liquid and the product.

종래, 금속 나노입자를 고정화시키는 방법으로는 실리카, 탄소나노튜브, 고 분자 등의 지지체에 금속 나노입자를 고정화시키는 방법이 보고된 바 있었으나 회수된 금속 나노입자를 촉매로 반복 사용할 때, 금속 나노입자의 응집현상이 일어날 뿐만 아니라 지지체에 고정화된 금속 나노 입자가 지지체로부터 이탈(leaching out)되어 촉매의 손실이 매우 큰 문제점이 있다. Conventionally, as a method of immobilizing metal nanoparticles, a method of immobilizing metal nanoparticles on a support such as silica, carbon nanotubes, and high molecules has been reported, but when the recovered metal nanoparticles are repeatedly used as a catalyst, the metal nanoparticles In addition to the coagulation of the metal nanoparticles immobilized on the support (leaching out) from the support (loss) there is a problem that the loss of the catalyst is very large.

이에 본 발명자들은 금속 나노입자를 안정화시키는 이미다졸염과 우레아기를 포함하는 이온성 액체를 이용하여 금속 나노입자를 안정화시킴과 동시에 실리카 지지체에 영구적으로 고정화시킨 이온성 액체-실리카 지지체 복합체와 상기 복합체에 금속 나노입자를 고정화시키는 방법을 개발하여 금속 나노입자가 응집현상을 일으키지 않을 뿐만 아니라, 수 회 사용한 후에도 98%이상의 수득률로 회수하여 재사용할 수 있음을 확인하고 본 발명을 완성하였다. The present inventors stabilize the metal nanoparticles by using an ionic liquid containing an imidazole salt and a urea group to stabilize the metal nanoparticles, and at the same time, the ionic liquid-silica support complexes permanently immobilized on a silica support and the complexes. The method of immobilizing the metal nanoparticles was developed to confirm that the metal nanoparticles not only cause agglomeration, but also can be recovered and reused at a yield of 98% or more even after several uses, thereby completing the present invention.

본 발명의 목적은 동역학적으로 불안정한 금속 나노입자들은 안정화시킬 뿐만 아니라 높은 수득률로 회수하여 재사용할 수 있는 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체를 제공하는데 있다. It is an object of the present invention to provide an ionic liquid-silica support composite in which metal nanoparticles are immobilized that can be stabilized as well as recovered and reused at high yield.

본 발명의 다른 목적은 상기 이온성 액체-실리카 지지체 복합체에 금속 나노입자를 고정화시키는 방법을 제공하는데 있다. Another object of the present invention is to provide a method for immobilizing metal nanoparticles on the ionic liquid-silica support composite.

상기 목적을 달성하기위해, 본 발명은 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체 및 금속 나노입자의 고정화방법을 제공한다.In order to achieve the above object, the present invention provides an ionic liquid-silica support complex and metal nanoparticle immobilization method of the metal nanoparticles are immobilized.

본 발명에 따른 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체 및 금속 나노입자의 고정화방법은 고정화된 금속 나노입자의 손실이 없고, 촉매로 사용될 경우 금속 나노입자의 뭉침현상이 없어져 촉매효율이 증가되며, 재사용이 가능하여 비용절감과 친환경적인 공정을 수행할 수 있도록 한다. The ionic liquid-silica support composite and the metal nanoparticle immobilization method according to the present invention have no loss of immobilized metal nanoparticles, and when used as a catalyst, there is no agglomeration of metal nanoparticles and thus catalyst efficiency It is increased and can be reused to reduce costs and carry out environmentally friendly processes.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 하기 화학식 1로 표시되는 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체를 제공한다. The present invention provides an ionic liquid-silica support complex to which metal nanoparticles represented by the following Chemical Formula 1 are immobilized.

<화학식 1><Formula 1>

Figure 112007058115292-pat00002
Figure 112007058115292-pat00002

상기 화학식 1에서,In Chemical Formula 1,

상기 X는 Cl, Br, BF4, PF6, SbF6, NO3, ClO4, OSO2CF3 및 N(SO2CF3)2로 이루어지는 군으로부터 선택되는 어느 하나이고; X is any one selected from the group consisting of Cl, Br, BF 4 , PF 6 , SbF 6 , NO 3 , ClO 4 , OSO 2 CF 3 and N (SO 2 CF 3 ) 2 ;

상기 M은 Pd, Pt, Rh 및 Ru로 이루어지는 군으로부터 선택되는 어느 하나이고;M is any one selected from the group consisting of Pd, Pt, Rh and Ru;

상기 n, m 및 l은 서로 독립적으로 1 ~ 10인 정수이다.N, m, and l are each independently an integer of 1 to 10.

바람직하게는Preferably

상기 X는 Cl, Br, BF4, PF6, SbF6, NO3, ClO4, OSO2CF3 또는 N(SO2CF3)2이고;X is Cl, Br, BF 4 , PF 6 , SbF 6 , NO 3 , ClO 4 , OSO 2 CF 3 or N (SO 2 CF 3 ) 2 ;

상기 M은 Pd, Pt, Rh 또는 Ru이고;M is Pd, Pt, Rh or Ru;

상기 n 및 m은 서로 독립적으로 2 ~ 4의 정수이고;N and m are each independently an integer of 2 to 4;

상기 l은 3 ~ 6의 정수이다. L is an integer of 3-6.

또한, 하기 화학식 2로 표시되는 이온성 액체를 이용하여 실리카표면을 개질하는 단계(단계 1);In addition, the step of modifying the silica surface using the ionic liquid represented by the formula (2) (step 1);

상기 단계 1에 의해 개질된 실리카 표면 말단의 알킬카르복시기로 보호되어 있는 아민을 탈보호시키는 단계(단계 2);Deprotecting the amine protected with an alkylcarboxyl group at the surface end of silica modified by step 1 (step 2);

상기 단계 2에서 탈보호된 아민이 이웃 아민과 고리화반응을 하여 이온성 액체-실리카지지체 복합체가 금속 나노입자를 고정화시키는 단계(단계 3)를 포함하여 이루어지는 금속 나노입자의 고정화 방법을 제공한다.The deprotected amine in Step 2 is cyclized with a neighboring amine, thereby providing a method of immobilizing the metal nanoparticles comprising the step (step 3) of the ionic liquid-silica support complex immobilizing the metal nanoparticles.

<반응식 1><Scheme 1>

Figure 112007058115292-pat00003
Figure 112007058115292-pat00003

상기 반응식 1에서 M, X, n, m 및 l은 화학식 1에서 정의한 바와 같고, In Scheme 1, M, X, n, m and l are the same as defined in Formula 1,

MY는 Pd(OAc)2, PdCl2, RuCl3 또는 RhCl3이고;MY is Pd (OAc) 2 , PdCl 2 , RuCl 3 Or RhCl 3 ;

R1은 C1 ~ C4 직쇄 또는 측쇄 알킬기이며;R 1 is a C 1 to C 4 straight or branched alkyl group;

R2는 C1 ~ C4 직쇄 또는 측쇄의 알킬기, C5 ~ C6의 시클로알킬 또는 C5 ~ C6의 아릴이다.R 2 is a C 1 to C 4 straight or branched alkyl group, C 5 to C 6 cycloalkyl or C 5 to C 6 aryl.

바람직하게는, Preferably,

상기 R1은 메틸 또는 에틸이고;R 1 is methyl or ethyl;

상기 R2는 메틸, 에틸, 프로필, 1,1-디메틸에틸 또는 벤젠이다. R 2 is methyl, ethyl, propyl, 1,1-dimethylethyl or benzene.

이하, 본 발명에 따른 금속 나노입자의 고정화방법을 단계별로 상세히 설명한다. Hereinafter, the method of immobilizing the metal nanoparticles according to the present invention will be described in detail step by step.

먼저, 본 발명에 따른 상기 단계 1은 상기 화학식 2로 표시되는 이온성 액체를 이용하여 실리카표면을 개질하는 단계이다. First, step 1 according to the present invention is a step of modifying the silica surface using the ionic liquid represented by the formula (2).

상기 단계 1의 실리카 지지체로는 일반적인 졸-겔(Sol-gel)법으로 제조된 약 200 nm의 구형 실리카를 사용할 수 있다. As the silica support of step 1, about 200 nm spherical silica prepared by a general sol-gel method may be used.

상기 실리카 지지체의 표면을 개질하기위해, 사용되는 화학식 2의 이온성 액체로는 In order to modify the surface of the silica support, the ionic liquid of formula 2 is used

1)1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 클로라이드; 1) 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium chloride;

2)1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 헥사플루오르포스페이트;2) 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium hexafluorophosphate;

3)1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 테트라플루오르보레이트; 및3) 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium tetrafluoroborate; And

4)1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프 로필이미다졸륨 비스트리플루오르메탄술포닐아미드로 이루어지는 군으로부터 선택되는 것을 사용할 수 있다. 4) 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium bistrifluoromethanesulfonylamide One selected from the group can be used.

상기 단계 1에서 용매로는 톨루엔(Toluene), 클로로포름(Chloroform) 또는 트리클로로메탄(Trichloromethane)을 사용할 수 있다. 상기 단계 1의 개질반응은 가열 환류 조건 하에 수행될 수 있다. Toluene (Toluene), chloroform (Chloroform) or trichloromethane (Trichloromethane) may be used as the solvent in step 1. The reforming reaction of step 1 may be performed under heated reflux conditions.

다음으로, 본 발명에 따른 상기 단계 2는 상기 단계 1에 의해 개질된 실리카 표면 말단의 알킬카르복시기로 보호되어 있는 아민기를 탈보호시키는 단계이다. Next, step 2 according to the present invention is a step of deprotecting an amine group which is protected by an alkylcarboxyl group of the silica surface terminal modified by step 1.

상기 개질된 실리카 표면 말단의 알킬카르복시기로 보호되어 있는 아민기를 탈보호시키는 방법은 본 발명의 기술분야에서 공지된 통상의 탈보호 방법을 이용할 수 있으며, 바람직하게는 트리플루오로 아세트산(Trifluoro acetic acid), 염화수소(Hydrogen chloride) 또는 아세트산(Acetic acid)등을 사용하여 탈보호시킬 수 있다.The method for deprotecting the amine group protected by the alkyl carboxyl group of the modified silica surface terminal may use a conventional deprotection method known in the art, preferably trifluoro acetic acid It may be deprotected using, for example, hydrogen chloride or acetic acid.

다음으로, 본 발명에 따른 상기 단계 3은 상기 단계 2에서 탈보호된 아민이 이웃 아민과 고리화반응을 하여 이온성 액체-실리카지지체 복합체가 금속 나노입자를 고정화시키는 단계이다. Next, step 3 according to the present invention is a step in which the deprotected amine in step 2 is cyclized with neighboring amines to immobilize the metal nanoparticles in the ionic liquid-silica support complex.

상기 금속 나노입자 전구체(MY)로는 Pd(OAc)2, PdCl2, RuCl3 또는 RhCl3 등을 사용할 수 있으나, 고리 내에 포획될 수 있는 금속 나노입자 전구체라면 이에 제한 되지 않는다. As the metal nanoparticle precursor (MY), Pd (OAc) 2 , PdCl 2 , RuCl 3 Or RhCl 3 Or the like, but is not limited to any metal nanoparticle precursor that can be trapped in the ring.

상기 고리화는 2개의 이웃하는 아민기와 반응하여 고리화를 수행할 수 있는 적절한 길이의 연결자(linker)에 의해 수행될 수 있다. 예를 들면, 연결자로서 디이소시아네이트를 상기 아민과 반응시켜 우레아기를 도입시킴으로써 고리화를 수행할 수 있으나, 이에 제한되지 않는다. The cyclization can be carried out by a linker of the appropriate length that can react with two neighboring amine groups to effect cyclization. For example, cyclization may be performed by reacting diisocyanate with the amine as a linker to introduce urea groups, but is not limited thereto.

고리화가 유도된 후, 금속 나노입자 전구체를 적절한 환원제를 사용하여 환원시켜 금속 나노입자로 전환시킴으로써 본 발명에 따른 금속 나노입자와 고정화가 완료된다. 상기 환원제로는 수소, 수소화붕소나트륨(NaBH4) 또는 하이드라진(H2NNH2) 등을 할 수 있으나, 이에 제한되지 않는다. After cyclization is induced, immobilization with the metal nanoparticles according to the present invention is completed by reducing the metal nanoparticle precursors with suitable reducing agents to convert them into metal nanoparticles. The reducing agent may be hydrogen, sodium borohydride (NaBH 4 ) or hydrazine (H 2 NNH 2 ), but is not limited thereto.

이하 본 발명을 실시예를 통해 더욱 상세히 설명한다. 단 하기 실시예는 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are merely to illustrate the invention, the present invention is not limited by the following examples.

출발물질의 제조: 이중 작용기를 갖는 이온성 액체의 제조 Preparation of Starting Material: Preparation of Ionic Liquids with Double Functional Groups

<제조예 1> 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 클로라이드의 제조Preparation Example 1 Preparation of 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium chloride

1) 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필이미다졸의 제조1) Preparation of 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propylimidazole

1-(3-아미노프로필)이미다졸(100 mmol)과 당량의 t-부틸 디카보네이트(t-butyl dicarbonate,BoC2O)를 디클로로메탄에 용해시킨 후, 실온에서 5시간 동안 교 반 시켰다. 반응 종결 후, 용매를 감압증류로 제거하여 목적 화합물(수율 98%, 21.1 g)을 얻었다. After dissolving 1- (3-aminopropyl) imidazole (100 mmol) and an equivalent amount of t-butyl dicarbonate (BoC 2 O) in dichloromethane, the mixture was stirred at room temperature for 5 hours. After completion of the reaction, the solvent was removed by distillation under reduced pressure to give the target compound (yield 98%, 21.1 g) was obtained.

1H-NMR (250 MHz, CDCl3) δ: 7.46 (s, 1H), 7.01(s, 1H), 6.96 (s, 1H), 5.88 (bs, 1H), 5.48 (bs, 1H), 4.00 (t, J = 7.5 Hz, 2H), 3.12 (m, 4H), 1.94 (m, 2H), 1.49 (m, 2H), 0.88 (t, J = 7.5 Hz, 3H); 1 H-NMR (250 MHz, CDCl 3 ) δ: 7.46 (s, 1H), 7.01 (s, 1H), 6.96 (s, 1H), 5.88 (bs, 1H), 5.48 (bs, 1H), 4.00 ( t, J = 7.5 Hz, 2H), 3.12 (m, 4H), 1.94 (m, 2H), 1.49 (m, 2H), 0.88 (t, J = 7.5 Hz, 3H);

13C NMR (63 MHz,CDCl3) δ: 159.1, 137.0, 129.0, 119.0, 44.3, 41.8, 36.7, 31.7, 23.4, 11.2. 13 C NMR (63 MHz, CDCl 3 ) δ: 159.1, 137.0, 129.0, 119.0, 44.3, 41.8, 36.7, 31.7, 23.4, 11.2.

2) 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 클로라이드의 제조2) Preparation of 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium chloride

상기 1)에서 제조한 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필이미다졸(0.247 m㏖)과 당량의 트리에톡시실리 프로필 클로라이드를 아세토니트릴 용매 하에서 12시간 동안 가열 환류한 후, 용매를 감압증류로 제거하여 목적 화합물(수율 99%, 0.11 g)을 얻었다.  1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propylimidazole (0.247 mmol) and the equivalent of triethoxysilyl propyl chloride prepared in 1) were added under acetonitrile solvent. After heating to reflux for a time, the solvent was removed by distillation under reduced pressure to obtain the target compound (yield 99%, 0.11 g).

1H-NMR (250 MHz, CDCl3) δ: 10.42 (s, 1H), 7.87(s, 1H), 7.35 (s, 1H), 5.92 (bs, 1H), 5.64 (bs, 1H), 4.43 (t, J = 7.2 Hz, 2H), 4.25 (t, J = 7.5 Hz, 2H), 3.74 (q, J = 7.2 Hz, 6H), 3.11 (m, 4H), 2.11 (m, 2H),1.94 (m, 4H), 1.49 (m, 2H), 1. 15 (t, J = 7.2 Hz, 9H), 0.88 (t, J = 7.5 Hz, 3H); 1 H-NMR (250 MHz, CDCl 3 ) δ: 10.42 (s, 1H), 7.87 (s, 1H), 7.35 (s, 1H), 5.92 (bs, 1H), 5.64 (bs, 1H), 4.43 ( t, J = 7.2 Hz, 2H), 4.25 (t, J = 7.5 Hz, 2H), 3.74 (q, J = 7.2 Hz, 6H), 3.11 (m, 4H), 2.11 (m, 2H), 1.94 ( m, 4H), 1.49 (m, 2H), 1. 15 (t, J = 7.2 Hz, 9H), 0.88 (t, J = 7.5 Hz, 3H);

13C-NMR (63 MHz,CDCl3) δ: 159.1, 137.1, 122.9, 121.4, 78.7, 58.3, 51.4, 46.9, 36.3, 30.4, 28.1, 24.0, 23.4, 11.2, 6.8. 13 C-NMR (63 MHz, CDCl 3 ) δ: 159.1, 137.1, 122.9, 121.4, 78.7, 58.3, 51.4, 46.9, 36.3, 30.4, 28.1, 24.0, 23.4, 11.2, 6.8.

<제조예 2> 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 헥사플루오루포스페이트의 제조Preparation Example 2 Preparation of 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium hexafluoroluphosphate

상기 제조예 1의 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 클로라이드(0.22 mmol)와 3 당량의 소듐헥사플루오르포스페이트(NaPF6)를 아세톤 용매 하에서 상온에서 24시간 동안 교반하고 반응 부결과물로서 침전된 염화나트륨을 여과하였다. 여과 후, 상기 여과액을 감압 증류하여 클로라이드 음이온을 PF6 음이온으로 치환하여 목적 화합물(수율 99%, 0.12 g)을 얻었다. 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium chloride (0.22 mmol) and 3 of Preparation Example 1 Equivalent sodium hexafluorophosphate (NaPF 6 ) was stirred for 24 hours at room temperature under acetone solvent and the precipitated sodium chloride was filtered off as reaction side product. After filtration, the filtrate was distilled under reduced pressure to give chloride anion PF 6. Substitution with anion gave the target compound (yield 99%, 0.12 g).

1H-NMR (250 MHz, CDCl3) δ: 10.21 (s, 1H), 7.70(s, 1H), 7.30 (s, 1H), 5.92 (bs, 1H), 5.64 (bs, 1H), 4.43 (t, J = 7.2 Hz, 2H), 4.25 (t, J = 7.5 Hz, 2H), 3.74 (q, J = 7.2 Hz, 6H), 3.11 (m, 4H), 2.11 (m, 2H),1.94 (m, 4H), 1.49 (m, 2H), 1. 15 (t, J = 7.2 Hz, 9H), 0.88 (t, J = 7.5 Hz, 3H). 1 H-NMR (250 MHz, CDCl 3 ) δ: 10.21 (s, 1H), 7.70 (s, 1H), 7.30 (s, 1H), 5.92 (bs, 1H), 5.64 (bs, 1H), 4.43 ( t, J = 7.2 Hz, 2H), 4.25 (t, J = 7.5 Hz, 2H), 3.74 (q, J = 7.2 Hz, 6H), 3.11 (m, 4H), 2.11 (m, 2H), 1.94 ( m, 4H), 1.49 (m, 2H), 1. 15 (t, J = 7.2 Hz, 9H), 0.88 (t, J = 7.5 Hz, 3H).

<제조예 3> 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 테트라플루오르보레이트의 제조Preparation Example 3 Preparation of 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium tetrafluoroborate

상기 제조예 1에서 제조한 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 클로라이드(0.22 mmol)와 소듐테트라플루오르보레이트(NaBF4)(3 당량)를 아세톤 용매 하에서 상온에서 24시간 동안 교반하였다. 반응 종결 후, 고체 침전물인 염화나트륨을 여과하여 제거하고, 여과된 용액을 감압 증류하여 클로라이드 음이온을 사플루오르화붕소 음이온(BF4 -)으로 치환하여 목적 화합물(수율 99%, 0.11 g)을 제조하였다. 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium chloride prepared in Preparation Example 1 (0.22 mmol) And sodium tetrafluoroborate (NaBF 4 ) (3 equivalents) were stirred for 24 hours at room temperature under acetone solvent. After completion of the reaction, the solid precipitate sodium chloride was filtered off, and the filtered solution was distilled under reduced pressure to replace the chloride anion with boron tetrafluoride anion (BF 4 ) to prepare a target compound (yield 99%, 0.11 g). .

1H-NMR (250 MHz, CDCl3) δ: 10.01 (s, 1H), 7.77(s, 1H), 7.45 (s, 1H), 5.92 (bs, 1H), 5.64 (bs, 1H), 4.43 (t, J = 7.2 Hz, 2H), 4.25 (t, J = 7.5 Hz, 2H), 3.74 (q, J = 7.2 Hz, 6H), 3.11 (m, 4H), 2.11 (m, 2H),1.94 (m, 4H), 1.49 (m, 2H), 1. 15 (t, J = 7.2 Hz, 9H), 0.88 (t, J = 7.5 Hz, 3H). 1 H-NMR (250 MHz, CDCl 3 ) δ: 10.01 (s, 1H), 7.77 (s, 1H), 7.45 (s, 1H), 5.92 (bs, 1H), 5.64 (bs, 1H), 4.43 ( t, J = 7.2 Hz, 2H), 4.25 (t, J = 7.5 Hz, 2H), 3.74 (q, J = 7.2 Hz, 6H), 3.11 (m, 4H), 2.11 (m, 2H), 1.94 ( m, 4H), 1.49 (m, 2H), 1. 15 (t, J = 7.2 Hz, 9H), 0.88 (t, J = 7.5 Hz, 3H).

<제조예 4> 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 비스트리플루오르메탄술포닐아미드의 제조Production Example 4 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium bistrifluoromethanesulfonylamide Manufacture

상기 제조예 1에서 제조한 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 클로라이드(0.22 mmol)와 3 당량의 리튬비스트리플루오르메탄술포닐아미드(LiN(SO2CF3)2)를 아세톤 용매 하에서 상온에서 24시간 동안 교반한 후, 고체 침전물인 염화나트륨을 여과하여 제거하였다. 여과 후, 그 여액을 감압 증류하여 클로라이드 음이온을 NTf2 음이온으로 치환하여 목적 화합물(수율 99%, 0.13 g)을 얻었다. 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium chloride prepared in Preparation Example 1 (0.22 mmol) And 3 equivalents of lithium bistrifluoromethanesulfonylamide (LiN (SO 2 CF 3 ) 2 ) were stirred for 24 hours at room temperature under acetone solvent, and then the solid precipitate sodium chloride was filtered off. After filtration, the filtrate was distilled under reduced pressure to replace the chloride anion with NTf 2 anion to obtain the target compound (yield 99%, 0.13 g).

1H-NMR (250 MHz, CDCl3) δ: 10.21 (s, 1H), 7.67(s, 1H), 7.60 (s, 1H), 5.92 (bs, 1H), 5.64 (bs, 1H), 4.43 (t, J = 7.2 Hz, 2H), 4.25 (t, J = 7.5 Hz, 2H), 3.74 (q, J = 7.2 Hz, 6H), 3.11 (m, 4H), 2.11 (m, 2H), 1.94 (m, 4H), 1.49 (m, 2H), 1. 15 (t, J = 7.2 Hz, 9H), 0.88 (t, J = 7.5 Hz, 3H). 1 H-NMR (250 MHz, CDCl 3 ) δ: 10.21 (s, 1H), 7.67 (s, 1H), 7.60 (s, 1H), 5.92 (bs, 1H), 5.64 (bs, 1H), 4.43 ( t, J = 7.2 Hz, 2H), 4.25 (t, J = 7.5 Hz, 2H), 3.74 (q, J = 7.2 Hz, 6H), 3.11 (m, 4H), 2.11 (m, 2H), 1.94 ( m, 4H), 1.49 (m, 2H), 1. 15 (t, J = 7.2 Hz, 9H), 0.88 (t, J = 7.5 Hz, 3H).

<실시예 1> 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체의 제조 1Example 1 Preparation of Ionic Liquid-Silica Support Composites on Which Metal Nanoparticles are Immobilized 1

단계 1: 실리카 지지체의 표면개질 Step 1: Surface Modification of the Silica Support

상기 제조예 4에서 제조한 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 비스트리플루오르메탄술포닐아미드와 졸-겔법으로 제조된 구형 실리카를 1 : 1 무게 비로 혼합한 혼합물이 클로로포름 용매에 1 M이 되도록 첨가하여 혼합 용액을 제조하였다. 상기 혼합 용액을 24시간 동안 가열 환류하여 상기 실리카에 상기 이온성 액체을 개질시키고, 감압 여과하여 개질된 실리카를 제조하였다. 상기 개질된 실리카를 디클로로메탄과 에탄올로 수 회 반복해서 세척한 후 감압 건조하여 최종적으로 상기 이온성 액체로 개질된 구형 나노 실리카를 제조하였다. 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium bistrifluoromethanesulfurate prepared in Preparation Example 4 A mixture solution was prepared by adding a mixture of polyvinylamide and spherical silica prepared by the sol-gel method in a 1: 1 weight ratio to 1 M in a chloroform solvent. The mixed solution was heated to reflux for 24 hours to modify the ionic liquid on the silica, and filtered under reduced pressure to produce modified silica. The modified silica was repeatedly washed with dichloromethane and ethanol several times and dried under reduced pressure to finally prepare spherical nano silica modified with the ionic liquid.

실리카 1 g 당 20 mmol의 우레아 작용기를 포함하는 이미다졸 염이 실리카 표면에 개질된 구형 나노 실리카를 제조하였음을 원소 분석기를 통해 확인하였다. It was confirmed by an elemental analyzer that spherical nano-silica was prepared by modifying the imidazole salt containing 20 mmol of urea functionality per gram of silica on the silica surface.

단계 2: 개질된 실리카 표면에 있는 보호된 아민기의 탈보호화 Step 2 : Deprotection of Protected Amine Groups on Modified Silica Surface

상기 단계 1에서 개질된 실리카에 존재하는 아민기를 보호하고 있는 카르보닐기를 제거하기위해, 트리플루오루 아세트산에 단계 1에서 개질된 실리카 1.0 g을 넣고 2시간 동안 실온에서 교반시켰다. In order to remove the carbonyl group protecting the amine group present in the silica modified in step 1, 1.0 g of the silica modified in step 1 was added to trifluoroacetic acid and stirred at room temperature for 2 hours.

상기 단계 2의 실리카 복합체는 IR 분석을 통해 카르보닐 그룹을 나타내는 피크(νC=O 1681 cm-1)가 사라지는 것을 확인하여 아민기가 탈보호되었음을 확인하였다. Silica complex of step 2 is to determine that the disappearance of the peak (ν C = O 1681 cm -1 ) represents the carbonyl group through IR analysis, it was confirmed that the de-protected amine groups.

단계 3: 실리카 표면에 금속 나노입자의 고정화 Step 3 : Immobilization of Metal Nanoparticles on Silica Surface

상기 단계 2에서 아민기가 탈보호화된 실리카 (0.1 g, 우레아 작용기의 함량: 20 mmol/g)와 우레아 작용기에 해당하는 당량의 팔라듐아세테이트[Pd(OAc)2](5 g)를 디클로로메탄 용매에서 혼합한 후 고리화 반응을 유도하기 위해 디이소시아네이트 등을 첨가하고 팔라듐아세테이트[Pd(OAc)2]를 환원하기 위해 수소, 수소화붕소나트륨(NaBH4) 또는 하이드라진(H2NNH2) 등의 환원제를 첨가하여 상온에서 12시간 동안 교반하고 상기 용액을 여과하여 수득한 금속 나노입자가 고정화된 실리카를 제조하였다. 상기 팔라듐 나노입자가 고정화된 실리카를 디클로로메탄과 메탄올을 이용하여 차례로 수회 세척시키고 상온에서 감압건조시켜 7 mmol/g의 농도로 팔라듐이 실리카에 고정화된 팔라듐 촉매를 제조하여 투과전자 현미경으로 관찰한 것을 도 2에 나타내었다. In step 2, silica (0.1 g, urea functional group: 20 mmol / g) and an equivalent amount of palladium acetate [Pd (OAc) 2 ] (5 g) corresponding to urea functional group were removed in a dichloromethane solvent. After mixing, diisocyanate or the like is added to induce a cyclization reaction, and a reducing agent such as hydrogen, sodium borohydride (NaBH 4 ) or hydrazine (H 2 NNH 2 ) is added to reduce palladium acetate [Pd (OAc) 2 ]. After addition, stirring at room temperature for 12 hours and filtering the solution to obtain a silica to which the metal nanoparticles were immobilized. The palladium nanoparticle-immobilized silica was washed several times in succession with dichloromethane and methanol, and dried under reduced pressure at room temperature to prepare a palladium catalyst immobilized on silica at a concentration of 7 mmol / g, and observed with a transmission electron microscope. 2 is shown.

도 2에 나타낸 바와 같이, 본 발명에 따른 이온성 액체-실리카 지지체 복합 체에 팔라듐 나노입자가 균일하게 고정되어 있음을 알 수 있다. As shown in Figure 2, it can be seen that the palladium nanoparticles are uniformly fixed to the ionic liquid-silica support composite according to the present invention.

<실시예 2> 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체의 제조 2Example 2 Preparation of an Ionic Liquid-Silica Support Composite Immobilized with Metal Nanoparticles 2

제조예 1의 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 클로라이드를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 팔라듐 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체를 제조하였다. Except that 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium chloride of Preparation Example 1 was used. An ionic liquid-silica support composite to which palladium nanoparticles were immobilized was prepared in the same manner as in Example 1.

<실시예 3> 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체의 제조 3Example 3 Preparation of an Ionic Liquid-Silica Support Composite on Which Metal Nanoparticles were Immobilized 3

제조예 2의 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 헥사플루오루포스페이트를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 팔라듐 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체를 제조하였다. Except for using 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium hexafluoroluphosphate of Preparation Example 2 By the same method as in Example 1 was prepared an ionic liquid-silica support complex to which the palladium nanoparticles were immobilized.

<실시예 4> 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체의 제조 4Example 4 Preparation of an Ionic Liquid-Silica Support Composite on Which Metal Nanoparticles were Immobilized 4

제조예 3의 1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 테트라플루오르보레이트를 사용한 것을 제외하고는 실시 예 1과 동일한 방법에 의해 팔라듐 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체를 제조하였다. Except that 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium tetrafluoroborate of Preparation Example 3 was used The ionic liquid-silica support composite to which palladium nanoparticles were immobilized was prepared in the same manner as in Example 1.

<실험예 1> 이온성 액체-실리카 지지체 복합체에 고정화된 금속 나노입자의 촉매효능측정Experimental Example 1 Catalytic Activity of the Metal Nanoparticles Immobilized on an Ionic Liquid-Silica Support Composite

스즈키-미야우라 커플링 반응(Suzuki-Miyaura coupling reaction)은 팔라듐(Pd)촉매를 이용해서 방향족 할라이드(aryl halide)와 방향족 붕산 유도체(arylboronic acid) 사이에 탄소-탄소 결합을 만들어내는 대표적인 합성방법으로 실험예 2에서 제조한 실리카에 고정화된 팔라듐 촉매를 사용하여 하기 반응식 2와 같이 페닐보로닉산과 파라-브로모아세토페닐의 탄소-탄소 결합을 위한 스즈키-미야우라 커플링 반응을 수행하였다.The Suzuki-Miyaura coupling reaction is a representative synthesis method for producing carbon-carbon bonds between an aryl halide and an aromatic boric acid derivative using a palladium (Pd) catalyst. Suzuki-Miyaura coupling reaction for carbon-carbon bonds of phenylboronic acid and para-bromoacetophenyl was carried out using a palladium catalyst immobilized on silica prepared in Experimental Example 2 as shown in Scheme 2 below.

<반응식 2><Scheme 2>

Figure 112007058115292-pat00004
Figure 112007058115292-pat00004

디메틸포름 아미드 5 mL에 페닐보로닉산(0.017 g, 0.14 mmol)과 파라-브로모아세토페닐(para-bromoacetophenyl)(0.028 g, 0.14 mmol)을 용해시킨 혼합 용액에 포타슘 아세테이트 1.5 당량(0.02 g)과 실험예 2에서 제조된 팔라듐이 고정화된 실 리카(0.1 g, 5 mol% Pd)를 상온에서 첨가시킨 후, 120 ℃에서 5시간 동안 가열 환류시켰다. 반응이 종결된 후, 상기 혼합물을 실온으로 냉각한 다음, 생성된 실리카를 여과 회수하였다. 여과된 용액으로부터 용매를 제거시킨 후 반응 생성물을 관 크로마토그래피를 수행하여 분리, 정제하였다(0.026 g, 95%). 상기 여과에 의해서 회수된 팔라듐이 고정화된 실리카는 물과 메탄올로 차례로 세척한 다음 감압상태에서 건조 및 회수하여 스즈키-미야우라 커플링 반응을 반복 수행하고 각 시행에 따른 수득률을 표 1에 나타내었다.Acid phenyl beam in 5 mL of dimethylformamide (0.017 g, 0.14 mmol) and para-bromo-phenyl collected Seto (para -bromoacetophenyl) (0.028 g, 0.14 mmol) was 1.5 equivalents potassium acetate (0.02 g) in a mixed solution of the Palladium-immobilized silica (0.1 g, 5 mol% Pd) prepared in Experimental Example 2 was added at room temperature, and then heated to reflux at 120 ° C. for 5 hours. After the reaction was completed, the mixture was cooled to room temperature, and the resulting silica was collected by filtration. After the solvent was removed from the filtered solution, the reaction product was separated and purified by column chromatography (0.026 g, 95%). The palladium-immobilized silica recovered by the filtration was washed sequentially with water and methanol, dried and recovered under reduced pressure to repeat the Suzuki-Miyaura coupling reaction, and the yields according to each run are shown in Table 1.

수행회수Performance 1One 22 33 44 55 66 77 88 99 1010 수득률 (%)Yield (%) 9999 9999 9898 9999 9999 9898 9898 9999 9898 9898

표 1에 나타난 바와 같이, 상기 실험예 1에서 제조한 고정화된 팔라듐 촉매를 이용하여 페닐보로닉산과 파라-브로모아세토페닐의 탄소-탄소 결합을 위한 스즈키 미야우라 커플링 반응을 10회 수행한 결과 98% 이상의 반응 수득률을 나타내었으며, 이로써 실리카에 고정화된 팔라듐 금속은 여과에 의해서 회수가 가능할 뿐만 아니라 반복 사용하여도 촉매 효능이 유지됨을 확인할 수 있었다.As shown in Table 1, the Suzuki Miyaura coupling reaction for the carbon-carbon bond of phenylboronic acid and para-bromoacetophenyl was performed 10 times using the immobilized palladium catalyst prepared in Experimental Example 1. The result showed a reaction yield of 98% or more, and thus, the palladium metal immobilized on silica was not only recoverable by filtration but also confirmed that the catalytic efficacy was maintained even after repeated use.

분석analysis

1. X선 흡수 단근 구조(XANES)X-ray Absorption Short-term Structure (XANES)

본 발명에 따라 고정화된 팔라듐 금속, 팔라듐 금속의 전구체인 염화팔라듐 및 상용적인 팔라듐 금속의 X선 흡수 단근 구조(X-ray absorption near-edge structure, XANES)를 분석하여 도 3에 나타내었다.The X-ray absorption near-edge structure (XANES) of the palladium metal immobilized according to the present invention, the palladium chloride precursor of the palladium metal and the commercially available palladium metal was analyzed and shown in FIG. 3.

도 3에 나타낸 바와 같이, 상기 고정화된 팔라듐 금속은 상용적인 팔라듐 금속과 염화 팔라듐 사이에서 엣지-점프(edge-jump)가 나타났으며, 이를 통해 상기 고정화된 팔라듐 금속이 2가 팔라듐 및 0가 팔라듐으로 구성되어 있음을 확인하였다. As shown in FIG. 3, the immobilized palladium metal showed an edge-jump between commercial palladium metal and palladium chloride, whereby the immobilized palladium metal is divalent palladium and zero valent palladium. It was confirmed that the configuration.

2. X-선 광전자 분광기(XPS)2. X-ray photoelectron spectroscopy (XPS)

본 발명에 따른 팔라듐 금속이 고정화된 실리카복합체를 이용하여 스즈키-미야우라 커플링 반응을 한 후, 팔라듐의 변화를 X-선 광전자 분광기(X-ray photoelectron spectroscopy, XPS)으로 분석하여 도 4에 나타내었다.  After the Suzuki-Miyaura coupling reaction using the silica complex immobilized with the palladium metal according to the present invention, the change of palladium is analyzed by X-ray photoelectron spectroscopy (XPS) and is shown in FIG. 4. It was.

도 4에 나타낸 바와 같이, 상기 실리카 표면에 고정화된 팔라듐은 2가 팔라듐(Pd)(피크: 336.5 ± 0.5 eV 및 341.5 ± 0.5 eV ) 및 0가 팔라듐(PdO)(피크: 334.5 ± 0.5 eV 및 339.5 ± 0.5 eV)이 1.2:1의 비율로 혼재되어 있으며, 상기 팔라듐을 촉매로 재사용함에 따라 0가 팔라듐의 비율이 약간 증가하는 것을 확인하였다. 상기 XPS의 결과는 XANES의 결과와 일치하는 것이다.As shown in Figure 4, the palladium immobilized on the silica surface is divalent palladium (Pd II ) (peak: 336.5 ± 0.5 eV and 341.5 ± 0.5 eV) and zero palladium (Pd O ) (peak: 334.5 ± 0.5 eV And 339.5 ± 0.5 eV) were mixed in a ratio of 1.2: 1, and it was confirmed that the proportion of zero-valent palladium slightly increased as the palladium was reused as a catalyst. The result of the XPS is consistent with the result of XANES.

3. 유도결합 플라즈마 원자방출분광기(ICP-AES)3. Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)

본 발명에 따른 고정화된 팔라듐 금속이 촉매로 재사용됨에 따라 손실되는 양을 측정하기 위해 유도결합 플라즈마 원자방출분광기(Inductively Coupled Plasma-Atomic Emission Spectrometry, ICP-AES)으로 분석하였다. The immobilized palladium metal according to the present invention was analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) to determine the amount lost as the catalyst is reused.

촉매로 사용되고 회수된 팔라듐 금속이 고정화된 실리카 복합체의 농도는 두번째 커플링 반응에 사용하고 회수했을 경우 4.94 ×10-2 mmol/g이고, 세번째 사용 후, 회수했을 경우에는 4.83 ×10-2 mmol/g으로 측정되어, 수 회 반복하여 커플링 반응을 진행시켰음에도 농도가 거의 변하지 않는 것을 확인하였다. The concentration of the silica complex immobilized and recovered as a catalyst was 4.94 × 10 −2 mmol / g when used and recovered in the second coupling reaction and 4.83 × 10 −2 mmol / when recovered after the third use. It was measured by g and confirmed that the concentration hardly changed even though the coupling reaction was advanced several times.

따라서, 본 발명에 따른 금속 나노입자가 고정화된 실리카복합체는 재사용함에 따라 형태 및 손실되는 금속을 최소화함으로써 고정화된 금속의 효율을 극대화할 수 있는 것을 확인하고 본 발명을 완성하였다. Therefore, the silica composite in which the metal nanoparticles are immobilized according to the present invention has been confirmed that the efficiency of the immobilized metal can be maximized by minimizing the shape and loss of the metal as it is reused.

도 1은 본 발명에 따른 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체의 개념도이고;1 is a conceptual diagram of an ionic liquid-silica support composite to which metal nanoparticles are immobilized according to the present invention;

도 2는 본 발명의 일실시형태에 따른 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체의 전자투과현미경(TEM)사진이고;((a): 눈금자의크기 200 nm, (b): 눈금자의 크기 50 nm)이고; 2 is an electron transmission microscope (TEM) photograph of an ionic liquid-silica support composite to which metal nanoparticles are immobilized according to an embodiment of the present invention; ((a): size of the ruler 200 nm, (b): ruler The size of 50 nm);

도 3은 본 발명의 일실시형태에 따른 금속 나노입자가 고정화된 이온성 액체-실리카 지지체 복합체의 X선 흡수 단근 구조(X-ray absorption near-edge structure, XANES) 분석 그래프이고;((a) 실시예 1,(b) 염화팔라듐,(c) 팔라듐 금속)이고;3 is an X-ray absorption near-edge structure (XANES) analysis graph of the ionic liquid-silica support composite to which metal nanoparticles are immobilized according to an embodiment of the present invention; ((a) Example 1, (b) palladium chloride, (c) palladium metal);

도 4는 본 발명의 일실시형태에 따른 금속 나노입자가 공정화된 이온성 액체-실리카 지지체 복합체로 스즈끼-미야우라 커플링 반응에 사용한 회수에 따른 금속의 X-선 광전자 분광기(X-ray photoelectron spectroscopy, XPS) 분석 그래프((a) 촉매로 사용하기 전 고정화된 팔라듐 금속, (b) 1회 커플링 반응 수행 후 팔라듐 금속, (b) 2회 커플링 반응 수행 후 팔라듐 금속)이다. Figure 4 is an X-ray photoelectron spectroscopy of the metal according to the recovery of the metal nanoparticles according to one embodiment of the present invention used in the Suzuki-Miyaura coupling reaction with the ionic liquid-silica support complex , XPS) analysis graph ((a) immobilized palladium metal before use as catalyst, (b) palladium metal after one coupling reaction, and (b) palladium metal after two coupling reactions).

Claims (8)

금속 나노입자가 고정화된, 하기 화학식 1로 표시되는 이온성 액체-실리카 지지체 복합체 :An ionic liquid-silica support complex represented by the following Chemical Formula 1, to which metal nanoparticles are immobilized: <화학식 1><Formula 1>
Figure 112009010904917-pat00005
Figure 112009010904917-pat00005
상기 화학식에서,In the above formula, 상기 X는 Cl, Br, BF4, PF6, SbF6, NO3, ClO4, OSO2CF3 및 N(SO2CF3)2으로 이루어진 군으로부터 선택되어지는 어느 하나이고;X is any one selected from the group consisting of Cl, Br, BF 4 , PF 6 , SbF 6 , NO 3 , ClO 4 , OSO 2 CF 3 and N (SO 2 CF 3 ) 2 ; 상기 n, m 및 l은 서로 독립적으로 1 ~ 10인 정수이고;N, m and l are each independently an integer of 1 to 10; 상기 금속 나노입자는 Pd, Pt, Rh 및 Ru으로 이루어진 군으로부터 선택되어지는 어느 하나이다.The metal nanoparticle is any one selected from the group consisting of Pd, Pt, Rh and Ru.
제1항에 있어서, 상기 X는Cl, Br, BF4, PF6, SbF6, NO3, ClO4, OSO2CF3 또는 N(SO2CF3)2이고;The compound of claim 1, wherein X is Cl, Br, BF 4 , PF 6 , SbF 6 , NO 3 , ClO 4 , OSO 2 CF 3 or N (SO 2 CF 3 ) 2 ; 상기 금속 나노입자는 Pd, Pt, Rh 또는 Ru이고;The metal nanoparticle is Pd, Pt, Rh or Ru; 상기 n 및 m은 서로 독립적으로 2 ~ 4의 정수이고;N and m are each independently an integer of 2 to 4; 상기 l은 3 ~ 6의 정수인 것을 특징으로 하는 금속 나노입자가 고정화된 복합체.Wherein l is an integer of 3 to 6 characterized in that the metal nanoparticles immobilized complex. 하기 화학식 2로 표시되는 이온성 액체를 이용하여 실리카표면을 개질하는 단계(단계 1);Modifying a silica surface using an ionic liquid represented by Formula 2 (step 1); 상기 단계 1에 의해 개질된 실리카 표면 말단의 알킬카르복시기로 보호되어 있는 아민을 탈보호시키는 단계(단계 2);Deprotecting the amine protected with an alkylcarboxyl group at the surface end of silica modified by step 1 (step 2); 상기 단계 2에서 탈보호된 아민기가 이웃 아민기와 고리화반응을 하여 이온성 액체-실리카지지체 복합체가 금속 나노입자를 고정화시키는 단계(단계 3)를 포함하여 이루어지는 이온성 액체-실리카 지지체 복합체에 금속 나노입자의 고정화 방법.In the step 2, the deprotected amine group is cyclized with a neighboring amine group so that the ionic liquid-silica support complex is immobilized with the metal nanoparticles (step 3). Method of Immobilization of Particles. <반응식 1><Scheme 1>
Figure 112009010904917-pat00006
Figure 112009010904917-pat00006
상기 반응식 1에서 M, X, n, m 및 l은 제1항의 화학식 1에서 정의한 바와 같고, In Scheme 1, M, X, n, m and l are as defined in Formula 1 of claim 1, MY는 Pd(OAc)2, PdCl2, RuCl3 또는 RhCl3이고;MY is Pd (OAc) 2 , PdCl 2 , RuCl 3 or RhCl 3 ; R1은 C1 ~ C4 직쇄 또는 측쇄 알킬이며;R 1 is C 1 to C 4 straight or branched alkyl; R2는 C1 ~ C4 직쇄 또는 측쇄의 알킬, C5 ~ C6의 시클로알킬 또는 C5 ~ C6의 아릴이다.R 2 is C 1 to C 4 straight or branched alkyl, C 5 to C 6 cycloalkyl or C 5 to C 6 aryl.
제3항에 있어서, 상기 R1은 메틸 또는 에틸이고; 상기 R2는 메틸, 에틸, 프로필, 1,1-디메틸에틸 또는 벤젠인 것을 특징으로 하는 이온성 액체-실리카 지지체 복합체에 금속 나노입자의 고정화 방법. The compound of claim 3, wherein R 1 is methyl or ethyl; Wherein R 2 is methyl, ethyl, propyl, 1,1-dimethylethyl or benzene, wherein the metal nanoparticles are immobilized in the ionic liquid-silica support composite. 제3항에 있어서, 상기 단계 1에 사용되는 화학식 2의 이온성 액체는 According to claim 3, wherein the ionic liquid of formula 2 used in Step 1 1)1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 클로라이드; 1) 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium chloride; 2)1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 헥사플루오르포스페이트;2) 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium hexafluorophosphate; 3)1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 테트라플루오르보레이트; 및3) 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium tetrafluoroborate; And 4)1-[3-N-(1,1-디메틸에톡시카보닐)아미노]프로필-3-[3-(트리에톡시실릴)]프로필이미다졸륨 비스트리플루오르메탄술포닐아미드로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 이온성 액체-실리카 지지체 복합체에 금속 나노입자의 고정화 방법.4) Group consisting of 1- [3-N- (1,1-dimethylethoxycarbonyl) amino] propyl-3- [3- (triethoxysilyl)] propylimidazolium bistrifluoromethanesulfonylamide The method of immobilizing the metal nanoparticles in the ionic liquid-silica support composite, characterized in that any one selected from. 제3항에 있어서, 상기 단계 1에서 사용되는 용매로는 톨루엔, 클로로포름, 트리클로로메탄 또는 이들의 혼합용매인 것을 특징으로 하는 이온성 액체-실리카 지지체 복합체에 금속 나노입자의 고정화 방법.The method of claim 3, wherein the solvent used in step 1 is toluene, chloroform, trichloromethane, or a mixed solvent thereof. The method of immobilizing metal nanoparticles in an ionic liquid-silica support composite. 제3항에 있어서, 상기 단계 2의 탈보호는 트리플루오로아세트산, 염화수소 또는 아세트산과의 반응에 의해 수행되는 것을 특징으로 하는 이온성 액체-실리카 지지체 복합체에 금속 나노입자의 고정화 방법.The method of claim 3, wherein the deprotection of step 2 is carried out by reaction with trifluoroacetic acid, hydrogen chloride or acetic acid. 제3항에 있어서, 상기 단계 3에서 포획된 금속 나노입자 전구체는 고리화 반응이 유도된 후 환원제를 사용하여 환원시킴으로써 금속 나노입자로 전환되는 것을 특징으로 하는 이온성 액체-실리카 지지체 복합체에 금속 나노입자의 고정화 방법.The metal nanoparticles of the ionic liquid-silica support composite according to claim 3, wherein the metal nanoparticle precursor captured in step 3 is converted to metal nanoparticles by reduction using a reducing agent after the cyclization reaction is induced. Method of Immobilization of Particles.
KR1020070080539A 2007-08-10 2007-08-10 Complex of ionic liquid-silica support containing immobilized metallic nanoparticles and method for immobilizing metallic nanoparticles thereto KR100907459B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070080539A KR100907459B1 (en) 2007-08-10 2007-08-10 Complex of ionic liquid-silica support containing immobilized metallic nanoparticles and method for immobilizing metallic nanoparticles thereto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070080539A KR100907459B1 (en) 2007-08-10 2007-08-10 Complex of ionic liquid-silica support containing immobilized metallic nanoparticles and method for immobilizing metallic nanoparticles thereto

Publications (2)

Publication Number Publication Date
KR20090016126A KR20090016126A (en) 2009-02-13
KR100907459B1 true KR100907459B1 (en) 2009-07-13

Family

ID=40685406

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070080539A KR100907459B1 (en) 2007-08-10 2007-08-10 Complex of ionic liquid-silica support containing immobilized metallic nanoparticles and method for immobilizing metallic nanoparticles thereto

Country Status (1)

Country Link
KR (1) KR100907459B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105801615A (en) * 2014-12-31 2016-07-27 中国科学院兰州化学物理研究所 Silica immobilized double-acid functionalized ionic liquid, preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660151B (en) * 2012-04-28 2013-12-04 江苏科技大学 Ion nanometer material with fluid behavior at room temperature and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033102A1 (en) 2003-08-06 2005-02-10 Randolph Bruce B. Supported ionic liquid and the use thereof in the disproportionation of isopentane
KR20060086361A (en) * 2003-09-29 2006-07-31 토탈 페트로케미칼스 리서치 펠루이 Ionic liquids as supports

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033102A1 (en) 2003-08-06 2005-02-10 Randolph Bruce B. Supported ionic liquid and the use thereof in the disproportionation of isopentane
KR20060086361A (en) * 2003-09-29 2006-07-31 토탈 페트로케미칼스 리서치 펠루이 Ionic liquids as supports

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Angewandte Chemie, International Edition, 2004, pp. 1397-1399
Angewandte Chemie, International Edition, 2006, pp. 266-269

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105801615A (en) * 2014-12-31 2016-07-27 中国科学院兰州化学物理研究所 Silica immobilized double-acid functionalized ionic liquid, preparation method and application thereof

Also Published As

Publication number Publication date
KR20090016126A (en) 2009-02-13

Similar Documents

Publication Publication Date Title
US20060258875A1 (en) Methods for manufacturing supported nanocatalysts and methods for using supported nanocatalysts
Kandathil et al. Immobilized N-heterocyclic carbene-palladium (II) complex on graphene oxide as efficient and recyclable catalyst for Suzuki–Miyaura cross-coupling and reduction of nitroarenes
Sadjadi et al. Palladated nanocomposite of halloysite–nitrogen-doped porous carbon prepared from a novel cyano-/nitrile-free task specific ionic liquid: An efficient catalyst for hydrogenation
US8097229B2 (en) Methods for manufacturing functionalized inorganic oxides and polymers incorporating same
Alex et al. Highly efficient and sustained electrochemical hydrogen evolution by embedded Pd-nanoparticles on a coordination polymer—reduced graphene oxide composite
KR20100123702A (en) Process for the preparation of an aqueous colloidal precious metal suspension
Mirhosseyni et al. Fe/N co-doped mesoporous carbon derived from cellulose-based ionic liquid as an efficient heterogeneous catalyst toward nitro aromatic compound reduction reaction
Xiao et al. Phenanthroline functionalized polyacrylonitrile fiber with Pd (0) nanoparticles as a highly active catalyst for the Heck reaction
Dongil et al. Graphite oxide as support for the immobilization of Ru-BINAP: Application in the enantioselective hydrogenation of methylacetoacetate
US9844774B2 (en) Process for preparing catalyst loaded polyphenylene particles, the obtained polyphenylene particles and their use as catalysts
Rabiei et al. Palladium Schiff base complex-modified Cu (BDC-NH 2) metal–organic frameworks for C–N coupling
KR100907459B1 (en) Complex of ionic liquid-silica support containing immobilized metallic nanoparticles and method for immobilizing metallic nanoparticles thereto
Chandra et al. Ag nanoparticles grafted porous organic polymer as an efficient heterogeneous catalyst for solvent-free A3 coupling reactions
Rosati et al. Zirconium potassium phosphate methyl and/or phenyl phosphonates as heterogeneous catalysts for Knoevenagel condensation under solvent free conditions
Antony et al. Magnetic nanoparticles embedded hexagonal boron nitride tethered N-heterocyclic carbene-palladium (II): An efficient and reusable magnetic catalyst for fluoride-free Hiyama cross-coupling and 4-nitrophenol reduction reactions
Fan et al. Pd/Cu bimetallic catalyst immobilized on PEI capped cellulose-polyamidoamine dendrimer: Synthesis, characterization, and application in Sonogashira reactions for the synthesis of alkynes and benzofurans
Du et al. Hemicelluloses supported palladium/xylan nanocomposites containing N and O ligands: highly-performance heterogeneous catalysts for Suzuki reaction
Kiani et al. Pd nanoparticles catalyst supported on TMU-16-NH2 metal-organic framework for Sonogashira cross-coupling reaction
Zang et al. Synthesis of Pd/conjugated microporous polymer heterogeneous catalysts via imine groups and high catalytic efficiency on Suzuki–Miyaura coupling reaction
Lakshminarayana et al. Switching of support materials for the hydrogenation of nitroarenes: A review
Cheng et al. Palladium nanoparticles-decorated graphene nanosheets as highly regioselective catalyst for cyclotrimerization reaction
Bai et al. Thiadiazol-based conjugated organic polymer anchoring Ag nanoparticles for efficient conversion of CO2 into oxazolidinones from propargylic amines
CN114106052B (en) Tetranuclear platinum carboxylate, synthesis method and application thereof in preparation of platinum black
Sharma et al. A novel core–shell Pd (0)@ enSiO 2–Ni–TiO 2 nanocomposite with a synergistic effect for efficient hydrogenations
KR100867978B1 (en) Novel bi-functional ionic liquids and the preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170706

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee