KR100906153B1 - Protein for inhibiting PKC activity and pharmaceutical composition including the same - Google Patents

Protein for inhibiting PKC activity and pharmaceutical composition including the same Download PDF

Info

Publication number
KR100906153B1
KR100906153B1 KR1020070067249A KR20070067249A KR100906153B1 KR 100906153 B1 KR100906153 B1 KR 100906153B1 KR 1020070067249 A KR1020070067249 A KR 1020070067249A KR 20070067249 A KR20070067249 A KR 20070067249A KR 100906153 B1 KR100906153 B1 KR 100906153B1
Authority
KR
South Korea
Prior art keywords
protein
pkc
nucleic acid
gst
acid molecule
Prior art date
Application number
KR1020070067249A
Other languages
Korean (ko)
Other versions
KR20090002886A (en
Inventor
이수재
박문택
김민정
황상구
박인철
Original Assignee
재단법인 한국원자력의학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국원자력의학원 filed Critical 재단법인 한국원자력의학원
Priority to KR1020070067249A priority Critical patent/KR100906153B1/en
Publication of KR20090002886A publication Critical patent/KR20090002886A/en
Application granted granted Critical
Publication of KR100906153B1 publication Critical patent/KR100906153B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 PKC의 활성을 억제할 수 있는 단백질 및 이를 포함하는 약제학적 조성물에 관한 것으로, 보다 구체적으로는 PKC 활성을 억제할 수 있는 단백질을 코딩하는 핵산 분자, 상기 핵산 분자를 포함하는 벡터 및 이에 의해 형질전환된 세포를 제공하며, 본 발명의 단백질 및 조성물은 PKC 활성으로 유발되는 종양을 예방 또는 치료할 수 있다.The present invention relates to a protein capable of inhibiting the activity of PKC and a pharmaceutical composition comprising the same, more specifically, a nucleic acid molecule encoding a protein capable of inhibiting PKC activity, a vector comprising the nucleic acid molecule and Cells provided herein, the proteins and compositions of the present invention can prevent or treat tumors caused by PKC activity.

p47phox, PKC, 세포암화유전자 p47phox, PKC, cell carcinogen

Description

프로테인 카이네즈 씨 활성 저해용 단백질 및 이를 포함하는 약제학적 조성물 {Protein for inhibiting PKC activity and pharmaceutical composition including the same}Protein for inhibiting PKC activity and pharmaceutical composition including the same

본 발명은 PKC 활성을 억제하는 단백질에 관한 것이다.The present invention relates to proteins that inhibit PKC activity.

또한, 본 발명은 PKC 활성을 억제하는 단백질을 코딩하는 핵산 분자에 관한 것이다.The present invention also relates to nucleic acid molecules encoding proteins that inhibit PKC activity.

또한, 본 발명은 상기 단백질을 포함하는 종양의 예방 또는 치료용 약제학적 조성물에 관한 것이다.The present invention also relates to a pharmaceutical composition for preventing or treating a tumor containing the protein.

지금까지 밝혀진 종양의 발생 경로에 있어서 전달체계가 주된 역할을 담당하 있으며, 이러한 작용 기전에 근거하여 여러 경로의 분자표적 항암제가 개발되고 있다. 종양의 성장에 주요한 역할을 담당하는 타이로신 카이네이즈 (tyrosine kinase), Ras, PKC (protein kinase C), MAPK (mitogen-activated proteinin kinase)등을 표적으로 하는 억제제는 모두 세포내 종양 발생 기전에서의 신호전달을 차단하여 항암제로 개발될 수 있는 가능성이 크다. 예를 들어, 백혈병 치료제 “글리벡”은 만성 골수성 백혈병의 발암기전에 관여하는 p120 이라는 단백질 효소 의 타이로신 인산화 작용을 차단함으로써 항암효과를 나타내는 치료제이다. EGFR (epidermal growth factor receptor) 또한 발암기전에 작용하는 타이로신 카이네이즈에 해당하는 것으로, 이레사 (Iressa)는 EGFR을 특이적으로 억제함으로써 종양의 성장과 혈관 신생을 차단시켜 항암효과를 나타낸다. 상기의 p120 및 EGFR과 마찬가지로 종양의 발생에 중요한 영향을 미치는 Ras, MAPK, PKC 등과 같은 단백질에 대한 억제제 역시 또 다른 항암제로 사용될 수 있는 가능성이 부각되고 있다. The delivery system plays a major role in the pathogenesis of tumors so far identified, and molecular target anticancer drugs of various pathways have been developed based on this mechanism of action. Inhibitors that target tyrosine kinase (RA), Ras, protein kinase C (PKC), and mitogen-activated proteinin kinase (MAPK), all of which play a major role in tumor growth, all signal transduction in intracellular tumor development mechanisms. There is a high possibility that it can be developed as an anticancer drug. For example, the leukemia treatment drug “Gleevec” is an anticancer agent that blocks the tyrosine phosphorylation of the protein enzyme p120, which is involved in the carcinogenic mechanism of chronic myelogenous leukemia. EGFR (epidermal growth factor receptor) also corresponds to a tyrosine kinase that acts on a carcinogenic mechanism. Irressa specifically inhibits EGFR to block tumor growth and angiogenesis, thereby showing anticancer effects. Like p120 and EGFR, inhibitors to proteins such as Ras, MAPK, and PKC, which have a significant effect on tumor development, are also emerging as potential anticancer drugs.

이 중, 동물의 조직이나 기관에서 많이 볼 수 있는 PKC 뇌, 비장, 심장 과 같은 동물의 조직 또는 기관에서 많이 나타나는 단백질이다. 일반적으로 PKC는 신호 전달 (signal transdution), 세포의 성장, 유전자의 발현, 종양 프로모터 (tumor promotor)의 기능을 가진 것으로 알려져 있다. Among these, PKC, which is found in many tissues and organs of animals, is a protein that appears in many tissues or organs of animals such as the brain, spleen, and heart. In general, PKC is known to have a function of signal transdution, cell growth, gene expression, and tumor promotor.

많은 동물세포에서 PKC가 인산화 및 Na+, H+의 농도변화에 의한 pH 변화로 세포 활성에 관여하는 것으로 알려져 있으며, 어떤 세포에서는 증식 (proliferation)의 신호가 되기도 하는 것으로 알려져 있다. 또한, PKC는 특정 유전자의 전사를 증가시키기도 한다. 특히 포스파티딜리노시톨 (phosphatidylinositol)의 가수분해에 의해 생성되는 2차 전달자 중 DAG에 의한 PKC의 활성은 모노아실글리세롤 (monoacylglycerol) 또는 포르볼 에스테르 (phorbol ester)의 결합에 의해서도 유사하게 나타날 수 있다. 포르볼 에스테르는 동물세포에서 암 프로모터의 기능을 보유하고 있어 암 세포의 성장을 유도하는 것으로 알려져 있다. 이러한 포르볼 에스테르뿐만 아니라 발암 유전자는 PKC를 활성화시키고 암세포의 성장에 관여하는 세포 내의 신호전달체계를 강력하게 활성화 시 킨다.  In many animal cells, PKC is known to be involved in cell activity due to phosphorylation and pH change due to changes in Na + and H + concentrations, and in some cells it is known to be a signal of proliferation. PKC also increases the transcription of certain genes. In particular, the activity of PKC by DAG in secondary messengers produced by the hydrolysis of phosphatidylinositol can be similarly expressed by the binding of monoacylglycerol or phorbol ester. Phorbol esters have the function of a cancer promoter in animal cells and are known to induce the growth of cancer cells. These phorbol esters as well as oncogenic genes activate PKC and strongly activate the signaling system in cells involved in the growth of cancer cells.

또한, PKC는 세포 내의 활성산소 (ROS)의 생성에도 중요한 역할을 한다고 알려져 있다. 세포 내에서 초과산소 (superoxide) 음이온과 같은 활성산소의 생성은 황색단백질 (flavoprotein) 함유 효소인 NADPH oxidase, xanthine oxidase, NO synthase, 및 미토콘드리아 전자전달계를 통해 이루어지는 것으로 알려져 있다. 이런 다양한 효소 중 NADPH oxidase는 세포막에 존재는 cytochrome b558, gp91phox, p22phox 또는 Nox1, 및 세포질에서 존재하는 p47phox, p67phox와 small G protein인 Rac과 같은 몇 가지 소단위체로 구성되어 있다. 세포질 내에서 신호전달기전에 의해 p47phox 또는 p67phox가 인산화되면 이는 세포막으로 이동하여 cytochrome b558과 결합을 하게 된다. 그 결과 활성화된 NADPH oxidase로부터 초과산소 음이온과 같은 활성산소 (ROS)가 발생하게 된다. PKC is also known to play an important role in the production of free radicals (ROS) in cells. The production of free radicals such as superoxide anions in cells is known to occur through the enzyme NADPH oxidase, xanthine oxidase, NO synthase, and mitochondrial electron transfer system. Among these various enzymes, NADPH oxidase consists of several subunits such as cytochrome b558, gp91phox, p22phox or Nox1 in the cell membrane, and p47phox, p67phox and small G protein Rac in the cytoplasm. Phosphorylation of p47phox or p67phox by signaling mechanisms in the cytoplasm moves to the cell membrane and binds to cytochrome b558. As a result, active oxygen (ROS) such as excess oxygen anion is generated from the activated NADPH oxidase.

이러한 세포 내 활성산소의 생성에 관여하는 p47phox의 인산화 및 세포막으로의 이동이 활성화된 PKC의 직접적인 결합에 의해 조절된다고 보고된 바가 있다. It has been reported that the phosphorylation of p47phox, which is involved in the production of free radicals in cells, and the migration to cell membranes are regulated by direct binding of activated PKC.

이에, p47phox의 몇 가지 영역 (domain)들이 PKC의 활성에 미치는 영향을 살펴보고자, in vitro 및 in vivo 실험을 통하여 살펴본 결과, p47phox의 아미노산 서열 156 내지 215에 해당하는 부위가 PKC 활성의 저해에 관여하며, 이 부위에 해당하는 펩타이드 서열을 세포에 투여할 경우, PKC 활성으로 유발되는 발암기전을 저해하여, 종양의 예방 또는 치료의 효과를 나타낼 수 있다는 것을 확인하고, PKC 활성을 억제하는 단백질에 대한 본 발명을 완성하였다. In order to examine the effects of several domains of p47phox on the activity of PKC, in vitro and in vivo experiments showed that the sites corresponding to amino acid sequences 156-215 of p47phox were involved in the inhibition of PKC activity. When the peptide sequence corresponding to this site is administered to the cells, it is confirmed that the carcinogenic mechanisms induced by PKC activity may be inhibited and thus the effect of preventing or treating tumors may be exhibited. The present invention has been completed.

본 발명의 하나의 목적은, PKC 활성을 억제하는 단백질을 코딩하는 핵산 분자를 제공하는 것이다.One object of the present invention is to provide a nucleic acid molecule encoding a protein that inhibits PKC activity.

본 발명의 또 다른 목적은 PKC 활성을 억제하는 단백질을 제공하는 것이다.Another object of the present invention is to provide a protein that inhibits PKC activity.

발명의 또 다른 목적은 상기 핵산 분자에 의해 코딩되는 단백질을 포함하는 종양의 예방 또는 치료용 약제학적 조성물을 제공하는 것이다.Another object of the invention to provide a pharmaceutical composition for the prevention or treatment of a tumor comprising a protein encoded by the nucleic acid molecule.

본 발명은 서열번호 2의 아미노산 서열로 이루어진 PKC 활성을 억제할 수 있는 단백질을 코딩하는 핵산 분자에 관한 것이다.The present invention relates to a nucleic acid molecule encoding a protein capable of inhibiting PKC activity consisting of the amino acid sequence of SEQ ID NO: 2.

본 발명은 상기의 핵산 분자가 DNA, 바람직하게는 cDNA인 것이다.In the present invention, the nucleic acid molecule is DNA, preferably cDNA.

본 발명은 서열번호 4의 뉴클레오티드 서열로 이루어진 PKC 활성을 억제할 수 있는 단백질을 코딩하는 핵산 분자에 관한 것이다.The present invention relates to a nucleic acid molecule encoding a protein capable of inhibiting PKC activity consisting of the nucleotide sequence of SEQ ID NO: 4.

본 발명은 상기의 핵산 분자를 포함하는 재조합 벡터에 관한 것이다.The present invention relates to a recombinant vector comprising the nucleic acid molecule described above.

본 발명은 발현 벡터에 의해 형질전환된 형질전환체에 관한 것이다.The present invention relates to a transformant transformed with an expression vector.

본 발명은 상기의 핵산 분자에 의해 코딩되는 PKC 활성을 억제할 수 있는 단백질에 관한 것이다.The present invention relates to a protein capable of inhibiting PKC activity encoded by the nucleic acid molecule.

본 발명은 서열번호 2의 아미노산 서열로 이루어진 PKC 활성을 억제할 수 있는 단백질에 관한 것이다.The present invention relates to a protein capable of inhibiting PKC activity consisting of the amino acid sequence of SEQ ID NO: 2.

본 발명은 상기 핵산 분자에 의해 코딩되는 단백질 및 약제학적으로 허용되 는 담체를 포함하는 종양의 예방 또는 치료용 약제학적 조성물에 관한 것이다.The present invention relates to a pharmaceutical composition for the prevention or treatment of a tumor, comprising a protein encoded by the nucleic acid molecule and a pharmaceutically acceptable carrier.

본 발명은 PKC 활성을 억제할 수 있는 단백질을 코딩하는 핵산 분자에 관한 것으로, 이 핵산 분자는 PKC의 활성을 억제하여 PKC 활성으로 유발되는 발암기전을 억제하여 종양의 예방 또는 치료에 효과가 있다.The present invention relates to a nucleic acid molecule encoding a protein capable of inhibiting PKC activity. The nucleic acid molecule inhibits the activity of PKC, thereby inhibiting the carcinogenic mechanism induced by PKC activity, and is effective in preventing or treating tumors.

하나의 양태로서, 본 발명은 PKC 활성을 억제할 수 있는 단백질을 코딩하는 핵산 분자를 제공한다. 상기 단백질은 서열번호 2의 아미노산 서열로 이루어진다. In one embodiment, the present invention provides nucleic acid molecules encoding proteins that can inhibit PKC activity. The protein consists of the amino acid sequence of SEQ ID NO.

본 발명에서 “PKC"는 단백질 카이네이즈 C (protein kinase C)이다. PKC의 활성화 단계를 구체적으로 살펴보면, 세포 외부의 신호가 원형질막의 수용체를 거쳐 G-단백질 (G-protein)을 활성화시키고, 활성화된 G-단백질은 연쇄작용으로 포스포리파제 C (phospholipase C)를 활성화시키게 된다. 이러한 일련의 과정에서 포스파티딜리노시톨 (phosphatidylinositol)이 가수 분해되면서 디아실글리세롤 (diacylglycerol, DAG)과 이노시톨-1,4,5-트리포스페이트 (inositol 1,4,5-triphosphate, IP3)의 2차 전달자가 만들어지며 이것이 세포의 활성에 직?간접적인 영향을 주게 된다. 2차 전달자 중 하나인 IP3는 세포 외액 (extracellula fluid)으로부터 원형질 내로 Ca2 +의 이동을 유발하여 세포내에 Ca2 +의 농도를 높게 하며, 다른 하나인 DAG는 세포내의 특정한 단백질 카이네이즈인 PKC를 활성화 시킨다. In the present invention, "PKC" is a protein kinase C. Looking specifically at the activation stage of PKC, signals outside the cell activate G-proteins through receptors of the plasma membrane and activate the G-proteins. G-proteins are chained to activate phospholipase C. In this series of processes, phosphatidylinositol is hydrolyzed, resulting in diacylglycerol (DAG) and inositol-1,4. Secondary transporters of, 5-triphosphate (inositol 1,4,5-triphosphate (IP3) are produced, which directly or indirectly affect cell activity, one of the second transporters, IP3, extracellula by causing the movement of Ca + 2 into the plasma from the fluid), and increasing the concentration of Ca 2 + in the cell, and the other of DAG activates protein kinase of particular PKC in the cells.

본 발명에서 “단백질”, “폴리펩타이드” 또는 “아미노산 서열”은 동일한 아미노산 서열뿐만 아니라 그것의 이성체를 포함하고 그에 추가하여 보존적인 아미노산 치환을 포함하는 자연적인 아미노산 서열로부터 소수의 아미노산 변이를 포함한다. 또한 자연적 아미노산으로부터 변이되었지만 자연적으로 발생하는 서열에 의하여 코딩되는 폴리펩타이드와 면역학적으로 동일하거나 비슷한 폴리펩타이드를 생성하는 아미노산 서열도 포함된다. 바람직하게는 본 발명에서 “아미노산 서열”은 p47phox 단백질의 156 내지 215의 아미노산 서열을 의미하며, KIRAMS-NP47-SH3N이라 한다. In the present invention a “protein”, “polypeptide” or “amino acid sequence” includes minor amino acid variations from natural amino acid sequences which include not only identical amino acid sequences but also isomers thereof and which include conservative amino acid substitutions. . Also included are amino acid sequences that produce polypeptides that are immunologically identical or similar to polypeptides that are mutated from naturally occurring amino acids but encoded by naturally occurring sequences. Preferably "amino acid sequence" in the present invention refers to the amino acid sequence of 156 to 215 of the p47phox protein, referred to as KIRAMS-NP47-SH3N.

본 발명의 “핵산 서열”은 서열번호 4, 그의 기능적 동등물 및 기능적 유도체를 코드하는 서열이 포함된다. The “nucleic acid sequence” of the present invention includes the sequence encoding SEQ ID NO: 4, its functional equivalents and functional derivatives.

또 다른 양태로서, 본 발명은 상기 PKC 활성 억제 단백질을 코딩하는 핵산서열을 포함하는 재조합 벡터에 관한 것이다.In another aspect, the present invention relates to a recombinant vector comprising a nucleic acid sequence encoding the PKC activity inhibitory protein.

본 발명에서 “재조합 벡터”란 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다. As used herein, a "recombinant vector" refers to a gene construct that is capable of expressing a protein of interest in a suitable host cell, and includes a gene construct that contains essential regulatory elements operably linked to express the gene insert.

본 발명에서 용어, “작동가능하게 연결된(operably linked)"이란 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것을 말한다. 예를 들어 프로모터와 단백질을 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩하는 핵산 서열의 발현에 영향을 미칠 수 있다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소등을 사용한다. As used herein, the term “operably linked” refers to a functional linkage of a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function. The promoter and the nucleic acid sequence encoding the protein may be operably linked to affect the expression of the encoding nucleic acid sequence.Operative linkage with the recombinant vector may be prepared using genetic recombination techniques well known in the art. Site-specific DNA cleavage and ligation uses enzymes generally known in the art.

본 발명의 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 발현벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한 벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택 마커를 포함하고, 복제 가능한 벡터인 경우 복제 기원을 포함한다.Vectors of the invention include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, viral vectors, and the like. Suitable expression vectors include signal sequences or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals and enhancers and can be prepared in various ways depending on the purpose. The promoter of the vector may be constitutive or inducible. The vector also includes a selection marker for selecting a host cell containing the vector and, in the case of a replicable vector, the origin of replication.

또 다른 양태로서, 본 발명은 상기 재조합 벡터로 형질전환된 형질전환체에 관한 것이다.In another aspect, the present invention relates to a transformant transformed with the recombinant vector.

형질전환은 핵산을 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 숙주 세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기충격유전자전달법(electroporation), 원형질 융합, 인산 칼슘(CaPO4) 침전, 염화 칼슘(CaCl2) 침전, 실리콘 카바이드 섬유 이용한 교반, 아그로 박테리아 매개된 형질전환, PEG, 덱스트란 설페이트, 리포펙타민 등이 포함되나 이로 제한되지 않는다. Transformation includes any method of introducing nucleic acids into an organism, cell, tissue or organ, and can be carried out by selecting appropriate standard techniques according to the host cell as known in the art. These methods include electroporation, plasma fusion, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, agitation with silicon carbide fibers, agro bacterial mediated transformation, PEG, dextran sulfate, Lipofectamine and the like, but is not limited thereto.

숙주세포에 따라서 단백질의 발현량과 수식 등이 다르게 나타나므로, 목적에 가장 적합한 숙주세포를 선택하여 사용하면 된다. 숙주세포로는 에스케리치아 콜라이(Escherichia coli), 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스(Streptomyces), 슈도모나스(Pseudomonas), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스(Staphylococcus)와 같은 원핵 숙주 세포가 있으나 이로 제한되는 것은 아니다. 또한, 진균(예를 들어, 아스페르길러스(Aspergillus)), 효모(예를 들어, 피치아 파스토리스(Pichia pastoris), 사카로마이세스 세르비시애(Saccharomyces cerevisiae), 쉬조사카로마세스(Schizosaccharomyces), 뉴로스포라 크라사(Neurospora crassa))등과 같은 하등 진핵 세포, 곤충 세포, 식물 세포, 포유동물 등을 포함하는 고등 진핵생물 유래의 세포를 숙주세포로 사용할 수 있다. Depending on the host cell, the expression level and the expression of the protein are different, so you can select and use the most suitable host cell for the purpose. Host cells include Escherichia coli, Bacillus subtilis, Streptomyces, Pseudomonas, Proteus mirabilis or Staphylococcus. Prokaryotic host cells such as, but are not limited to. In addition, fungi (eg Aspergillus), yeast (eg Pichia pastoris, Saccharomyces cerevisiae) Cells derived from higher eukaryotes, including lower eukaryotic cells such as Schizosaccharomyces and Neurospora crassa, insect cells, plant cells, mammals and the like, can be used as host cells.

또 다른 양태에서, 본 발명은 상기 핵산 분자에 의해 코딩되는 단백질을 포함하는 PKC 활성을 억제하는 조성물을 제공한다. In another aspect, the invention provides a composition for inhibiting PKC activity comprising a protein encoded by said nucleic acid molecule.

PKC 활성의 증가는 유방암 (breast carcinoma), 폐암 (lung carcinoma), 위암 (gastric carcinoma), 교모세포종 (glioblatoma), 방광암 (bladder carcinoma), 결장암 (colon carcinoma), 전립선암 (prostate carcinoma), 골수성 백혈병 (myeloid leukemia) 등에서 발견된다. Increases in PKC activity include breast carcinoma, lung carcinoma, gastric carcinoma, glioblastoma, bladder carcinoma, colon carcinoma, prostate carcinoma, and myeloid leukemia. (myeloid leukemia).

따라서, 본 발명의 조성물은 바람직하게는 종양을 예방 또는 치료하는 조성물이다. Thus, the composition of the present invention is preferably a composition for preventing or treating tumors.

상기 단백질을 유효성분으로 포함하는 조성물은 일반적인 의약품 제제의 형태로 사용될 수 있다. 비경구투여용 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함될 수 있다. 비수성용제, 현탁용제로는 프로필렌글리콜(Propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다. 또한, 상기 펩타이드는 생리식염수 또는 유기용매와 같이 약제로 허용된 여러 전달체(carrier)와 혼합하여 사용될 수 있고, 억제제의 안정성이나 흡수성을 증가시키기 위하여 글루코스, 수크로스 또는 덱스트란과 같은 카보하이드레이트, 아스코르빅산(ascorbic acid) 또는 글루타치온과 같은 항산화제(antioxidants), 킬레이팅 물질(chelating agents), 저분자 단백질 또는 다른 안정화제(stabilizers)들이 약제로 사용될 수 있다.The composition containing the protein as an active ingredient may be used in the form of a general pharmaceutical formulation. Formulations for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories. As the non-aqueous solvent and the suspension solvent, propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used. As the base of the suppository, witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used. In addition, the peptide may be used in admixture with a number of carriers (pharmaceutically acceptable) such as physiological saline or organic solvents, and carbohydrates such as glucose, sucrose or dextran to increase the stability or absorption of the inhibitor. Antioxidants such as ascorbic acid or glutathione, chelating agents, small molecule proteins or other stabilizers can be used as medicaments.

적절한 방법으로 환자에게 소정의 물질을 도입되는 일반적인 경로를 통하여 투여된다.  복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비내 투여, 폐내 투여, 직장내 투여 될 수 있으나, 이에 제한되지는 않는다.  그러나 경구 투여시, 펩티드는 소화가 되기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화 하는 것이 바람직하다.  또한, 제약 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.  바람직한 투여방식 및 제제는 정맥 주사제, 피하 주사제, 피내 주사제, 근육 주사제, 점적 주사제 등이다. 주사제는 생리식염액, 링겔액 등의 수성 용제, 식물유, 고급 지방산 에스텔(예, 올레인산에칠 등), 알코올류(예, 에탄올, 벤질알코올, 프로필렌글리콜, 글리세린 등) 등의 비수성 용제 등을 이용하여 제조할 수 있고, 변질 방지를 위한 안정화제(예, 아스코르빈산, 아황산수소나트퓸, 피로아황산나트륨, BHA, 토코페롤, EDTA 등), 유화제, pH 조절을 위한 완충제, 미생물 발육을 저지하기 위한 보존제(예, 질산페닐수은, 치메로살, 염화벤잘코늄, 페놀, 크레솔, 벤질알코올 등) 등의 약제학적 담체를 포함할 수 있다.  Administration is by the usual route of introducing the desired substance to the patient in a suitable manner. Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, nasal administration, pulmonary administration, rectal administration, but is not limited thereto. However, upon oral administration, since the peptide is digested, it is desirable to formulate the oral composition to coat the active agent or to protect it from degradation in the stomach. In addition, the pharmaceutical composition may be administered by any device in which the active agent may migrate to the target cell. Preferred modes of administration and preparations are intravenous, subcutaneous, intradermal, intramuscular, injectable and the like. Injectables include non-aqueous solvents such as aqueous solvents such as physiological saline solution and ring gel solution, vegetable oils, higher fatty acid esters (e.g., oleic acid, etc.), and alcohols (e.g., ethanol, benzyl alcohol, propylene glycol, glycerin, etc.). Stabilizers (e.g. ascorbic acid, sodium bisulfite, sodium pyrosulfite, BHA, tocopherol, EDTA, etc.), emulsifiers, buffers for pH control, to prevent microbial development Preservatives such as mercury nitrate, chimerosal, benzalkonium chloride, phenol, cresol, benzyl alcohol, and the like.

이하 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to non-limiting examples.

실시예 1: GST 융합 PX, SH3-N, SH3-C, PP 단백질 (GST-PX, GST-SH3-N, GST-SH3-C, GST-PP)의 제조 Example 1: Preparation of GST Fusion PX, SH3-N, SH3-C, PP Protein (GST-PX, GST-SH3-N, GST-SH3-C, GST-PP)

(1) 재조합 DNA의 클로닝(1) Cloning of Recombinant DNA

인간 p47phox cDNA (독일 RZPD사) (서열번호 3)를 주형으로 하고, 하기와 같이 각각의 정방향 및 역방향 프라이머에 해당하는 올리고뉴클레오타이드를 합성한 후 중합효소 연쇄반응 (PCR)을 수행하여 p47phox의 아미노산(서열번호 1)을 코딩하는 PX(p47phox의 아미노산 1~125 부위 코딩)(서열번호 5), SH3-N(p47phox의 아미노산 156~215 부위 코딩)(서열번호 4), SH3-C(p47phox의 아미노산 226~285 부위 코딩)(서열번호 6) 및 PP (p47phox의 아미노산 292~390 부위 코딩)(서열번호 7) 영역에 해당하는 cDNA를 클로닝하였다. 이를 각각 T4 DNA ligase로 발현벡터(pGEX4T-2)에 클로닝하였다. Human p47phox cDNA (Germany RZPD Co., Ltd.) (SEQ ID NO: 3) was used as a template, and oligonucleotides corresponding to the respective forward and reverse primers were synthesized as described below, followed by polymerase chain reaction (PCR) to obtain amino acids of p47phox ( PX encoding SEQ ID NO: 1) (amino acid 1-125 site coding of p47phox) (SEQ ID NO: 5), SH3-N (amino acid 156-215 site coding of p47phox) (SEQ ID NO: 4), SH3-C (amino acid of p47phox) CDNAs corresponding to 226-285 site coding) (SEQ ID NO: 6) and PP (amino acid 292-390 site coding of p47phox) (SEQ ID NO: 7) regions were cloned. These were cloned into expression vectors (pGEX4T-2) with T4 DNA ligase, respectively.

PX의 cDNA에 대한 프라이머Primer for PX cDNA

F: 5'-AAACCGGAATTCGGGGACACCTTCATC-3'(서열번호 8)F: 5'-AAACCGGAATTCGGGGACACCTTCATC-3 '(SEQ ID NO: 8)

R: 5'-AAACCGGAATTCTCACAAGTATGTCTCTGG-3'(서열번호 9)R: 5'-AAACCGGAATTCTCACAAGTATGTCTCTGG-3 '(SEQ ID NO: 9)

SH3-N(KIRAMS-NP47-SH3N)의 cDNA에 대한 프라이머Primer for cDNA of SH3-N (KIRAMS-NP47-SH3N)

F: 5'-AAACCGGAATTCCCCAAAGATGGCAAG-3'(서열번호 10)F: 5'-AAACCGGAATTCCCCAAAGATGGCAAG-3 '(SEQ ID NO: 10)

R: 5'-AAACCGGAATTCTCATTCCGTCTCGTCAGG-3'(서열번호 11)R: 5'-AAACCGGAATTCTCATTCCGTCTCGTCAGG-3 '(SEQ ID NO: 11)

SH3-C의 cDNA에 대한 프라이머Primer for cDNA of SH3-C

F: 5'-AAACCGGAATTCGACCCTGAGCCCAAC-3'(서열번호 12)F: 5'-AAACCGGAATTCGACCCTGAGCCCAAC-3 '(SEQ ID NO: 12)

R: 5'-AAACCGGAATTCTCAGGCCTGGGACACGTC-3'(서열번호 13)R: 5'-AAACCGGAATTCTCAGGCCTGGGACACGTC-3 '(SEQ ID NO: 13)

PP의 cDNA에 대한 프라이머Primer for PP cDNA

F: 5'-AAACCGGAATTCGGGGACACCTTCATC-3'(서열번호 14)F: 5'-AAACCGGAATTCGGGGACACCTTCATC-3 '(SEQ ID NO: 14)

R: 5'-AAACCGGAATTCTCACAAGTATGTCTCTGG-3'(서열번호 15)R: 5'-AAACCGGAATTCTCACAAGTATGTCTCTGG-3 '(SEQ ID NO: 15)

이 재조합 DNA 1μl을 C-cell (Bl 21) 100μl에 혼합하고 얼음에서 30분간 반응시켰다. 42℃ 수조에서 90초 동안 열충격 (heat shock)을 준 뒤, 다시 5분간 얼음에 보관하였다. 이 중 3μl을 3ml의 LB배지에 넣고 인큐베이터에서 37℃로 1 시간 배양시켰다. 이렇게 배양된 LB배지 100μl를 암피실린이 첨가된 LB 플레이트에 트랜스포메이션 (transformation)하여 16시간 동안 배양하였다. LB 플레이트에 생성된 클론으로부터 DNA를 추출하여 PX, SH3-N, SH3-C 및 PP의 cDNA가 정상적으로 클로닝되었음을 확인하였다.1 μl of this recombinant DNA was mixed with 100 μl of C-cell (Bl 21) and allowed to react on ice for 30 minutes. Heat shock was applied for 90 seconds in a 42 ° C. water bath, and then stored on ice for 5 minutes. 3 μl of this was put in 3 ml of LB medium and incubated at 37 ° C. for 1 hour in an incubator. 100 μl of the cultured LB medium was transformed on the LB plate to which ampicillin was added and cultured for 16 hours. DNA was extracted from the clones generated on the LB plate to confirm that the cDNA of PX, SH3-N, SH3-C and PP was normally cloned.

(2) 글루타치온-S-트랜스퍼라제 (GST) 융합 PX, SH3-N, SH3-C, PP의 정제 및 확인(2) Purification and Identification of Glutathione-S-Transferase (GST) Fusion PX, SH3-N, SH3-C, PP

실시예 1(1)에서 클로닝 한 PX, SH3-N, SH3-C 및 PP의 cDNA를 GST서열을 포함하고 있는 pGEX 벡터에 클로닝하고 (도 1A), E.coli 균주인 BL21 (DE3) 에 형질전환을 시켰다. 그 후 이소프로필-1-티오-β-D-갈락토피라노시드 (isopropyl-1-thio-β-D-galactopyranoside, IPTG)로 37℃에서 4시간 동안 배양하여 단백질 발현을 유도하고, 글루타티온-세파로오스 비즈 (glutathione sepharose bead)로 단백질을 분리하였다. 샘플 버퍼 (sample buffer)를 분리된 단백질과 동량으로 첨가하고 100℃에서 3분간 끓인 후, 웨스턴 블랏 (Western blotting)을 수행하여 유도된 GST 융합 PX, SH3-N, SH3-C, PP 단백질 (GST-PX, GST-SH3-N, GST-SH3-C, GST-PP)을 확인하였다 (도 1B). The cDNAs of PX, SH3-N, SH3-C and PP cloned in Example 1 (1) were cloned into a pGEX vector containing a GST sequence (FIG. 1A) and transformed into BL21 (DE3), an E. coli strain. The conversion was made. Then, incubated with isopropyl-1-thio-β-D-galactopyranoside (IPTG) at 37 ° C. for 4 hours to induce protein expression, and glutathione- Proteins were isolated with sepharose beads (glutathione sepharose bead). Sample buffer was added in equal amounts to the isolated protein and boiled at 100 ° C. for 3 minutes and then subjected to Western blotting to induce GST fusion PX, SH3-N, SH3-C, PP protein (GST -PX, GST-SH3-N, GST-SH3-C, GST-PP) were confirmed (FIG. 1B).

실시예Example 2:  2: SH3SH3 -N(-N ( KIRAMSKIRAMS -- NP47NP47 -- SH3NSH3N )의 )of PKCdPKCd 활성 억제 효과 확인 Confirmation of active inhibitory effect

(1) GST-pull down assay(1) GST-pull down assay

용해시킨 세포의 용해물 (lysate)을 글루타티온-세파로오스 비즈에 연결된 GST 융합 단백질과 4℃에서 2시간동안 반응을 시킨 다음, 용해 버퍼 (lysis buffer)로 5번 세척한 후 1X SDS 샘플 버퍼를 첨가하여 전기영동을 한 다음, 웨스턴 블롯팅 (western blotting)을 수행하였다.The lysate of the lysed cells was reacted with GST fusion protein connected to glutathione-sepharose beads for 2 hours at 4 ° C, washed 5 times with lysis buffer, and then lysed with 1X SDS sample buffer. After electrophoresis by addition, western blotting was performed.

(2) kinase assay down (2) kinase assay down

정제된 GST-PX, GST-SH3-N, GST-SH3-C 및 GST-PP를 1μg, 활성화된 PKC α, β, δ 단백질 1μg, PKC의 기질인 MBP (myelin basic protein) 1μg을 2 마이크로 큐리의 방사선 동위 원소인 감마(gamma) 32P ATP가 함유된 20 ml의 카이네즈 반응 버퍼 (kinase reaction buffer) (50mM HEPES (pH 7.5), 10mM MgCl2, 1mM dithiothreitol, 2.5mM EGTA, 1mM NaF, 0.1mM Na3VO4 및 10mM b-glycerophosphate)와 혼합하여 30°C 에서 30분간 반응을 시킨 후, 2X SDS 샘플 버퍼를 20μl 첨가하여 반응을 종료시켰다. 그 후, 90℃에서 5분간 끓이고, 전기영동과 방사능사진법 (autoradiograpy)을 수행하였다. 1 μg of purified GST-PX, GST-SH3-N, GST-SH3-C and GST-PP, 1 μg of activated PKC α, β, δ proteins, 1 μg of myelin basic protein (MBP), a substrate of PKC 20 ml of kinase reaction buffer (50 mM HEPES (pH 7.5), 10 mM MgCl 2 , 1 mM dithiothreitol, 2.5 mM EGTA, 1 mM NaF, 0.1) containing gamma 32 P ATP mM Na 3 VO 4 And 10mM b-glycerophosphate) and reacted at 30 ° C. for 30 minutes, and then 20 μl of 2X SDS sample buffer was added to terminate the reaction. Thereafter, the mixture was boiled at 90 ° C. for 5 minutes, followed by electrophoresis and autoradiograpy.

(3) SH3-N(KIRAMS-NP47-SH3N)의 PKCd 활성 억제 효과(3) Inhibitory Effect of SH3-N (KIRAMS-NP47-SH3N) on PKCd Activity

정제된 GST-융합 단백질 (GST-PX, GST-SH3-N, GST-SH3-C, GST-PP), 활성화된 PKC α, β, δ 단백질, MBP을 혼합하여 실시예 4의 kinase assay를 수행한 결과, GST-PX, GST-SH3-C 및 GST-PP을 PKC/MBP와 혼합한 경우에는 많은 양의 PKC 및 MBP 가 [g-32P]ATP로 인산화가 많이 되는데 반해, GST-SH3-N를 PKC/MBP와 혼합한 경우에는 PKC 및 MBP가 [g-32P]ATP로 거의 인산화가 되지 않는 것을 확인하였다. 즉, GST-PX 단백질, GST-SH3-C 단백질 및 GST-PP 단백질은 PKCd의 활성에 영향을 주지 못하는데 반해, GST-SH3-N 단백질이 PKCd의 자체 활성뿐 아니라, PKCd의 기질인 MBP의 인산화를 저해시킬 수 있음을 확인하였다 (도 2A). 또한, GST-SH3-N 단백질을 0.5, 1, 2mg으로 처리를 하였을 때, PKCd의 자체 활성과 MBP의 인산화가 농도에 따라 저해될 수 있음을 확인하였다 (도 2B). The kinase assay of Example 4 was performed by mixing purified GST-fusion protein (GST-PX, GST-SH3-N, GST-SH3-C, GST-PP), activated PKC α, β, δ protein, and MBP. As a result, when GST-PX, GST-SH3-C and GST-PP were mixed with PKC / MBP, a large amount of PKC and MBP phosphorylated to [g- 32 P] ATP, whereas GST-SH3- When N was mixed with PKC / MBP, it was confirmed that PKC and MBP hardly phosphorylated with [g- 32 P] ATP. That is, GST-PX protein, GST-SH3-C protein and GST-PP protein do not affect PKCd activity, whereas GST-SH3-N protein phosphorylates MBP, a substrate of PKCd, as well as its own activity. It was confirmed that it can be inhibited (Fig. 2A). In addition, when treated with 0.5, 1, 2mg of GST-SH3-N protein, it was confirmed that the PKCd itself and the phosphorylation of MBP may be inhibited depending on the concentration (Fig. 2B).

또한, PKCδ의 동질효소 (isozyme)인 PKCα, PKCβ, PKCζ를 GST-SH3-N와 혼합하여 실시예 4의 kinase assay를 수행한 결과, PKCδ의 경우에서와 마찬가지로 GST-SH3-N 단백질에 의해 PKCα, PKCβ, PKCζ의 활성과 이것들의 기질인 MBP의 인산화가 저해되는 것을 확인하였다 (도 3). In addition, PKCα, PKCβ, and PKCζ, which are isozymes of PKCδ, were mixed with GST-SH3-N, and the kinase assay of Example 4 was performed. It was confirmed that the activity of PKCβ, PKCζ and the phosphorylation of MBP, which is their substrate (Fig. 3).

실시예Example 3: K- 3: K- RasRas 에 의한 On by PKCPKC 활성 증대 효과 확인 Check the activity boost effect

(1) 세포배양 방법(1) Cell culture method

Rat2 fibroblast 세포와 oncogenic K-Ras를 트랜스팩션시킨 Rat2 fibroblat 세포를 5%의 FBS와 페니실린 스트렙토마이신 (penicillin streptomycin)이 함유된 RPMI 1640 배지를 사용하여 배양하였다.Rat2 fibroblat cells transfected with rat2 fibroblast cells and oncogenic K-Ras were cultured using RPMI 1640 medium containing 5% FBS and penicillin streptomycin.

(2) 플라스미드 제조 및 트랜스팩션 방법(2) Plasmid Preparation and Transfection Methods

MFG 레트로바이러스 벡터 (retroviral vector)에 K-Ras 및 PKC 유전자 및 선별 마커 (selection marker)인 puromycin N-acetyl-transferase 유전자를 클로닝하여 재조합 DNA를 제조하였으며, 이를 각각 MFG-K-Ras(V12)-puro 및 MFG-DN-PKCd puro라고 명명하였다. K-Ras 및 PKC 유전자는 없이 puro 유전자만 클로닝된 MFG-puro를 대조군으로 사용하였다. Recombinant DNA was prepared by cloning the K-Ras and PKC genes and the selection marker puromycin N-acetyl-transferase gene in the MFG retroviral vector, and each of them was MFG-K-Ras (V12)-. puro and MFG-DN-PKCd were named puro. MFG-puro cloned with only the puro gene without K-Ras and PKC genes was used as a control.

이러한 레트로바이러스 벡터들을 리포펙타민 (Lipofectamine) 2000 (Invitrogen, Carlsbad, CA)을 이용하여 293pgp 레트로바이러스 팩키징 (retrovirus packaging) 세포주에 트랜스팩션을 시키고 72시간 후에 바이러스를 수확하였다. 이러한 바이러스 1ml과 polybrene (Sigma Chemical Co., St. Louis, MO) 8mg/ml를 첨가하여 Rat2 fibroblast에 트랜스덕션하고 K-Ras와 DN-PKCd를 과발현시켰다.These retroviral vectors were transfected into a 293pgp retrovirus packaging cell line using Lipofectamine 2000 (Invitrogen, Carlsbad, Calif.) And harvested after 72 hours. 1 ml of this virus and 8 mg / ml of polybrene (Sigma Chemical Co., St. Louis, Mo.) were added to transduce Rat2 fibroblast and overexpress K-Ras and DN-PKCd.

또한, 실시예 1(1)에서 클로닝한 SH3-N의 cDNA를 flag가 tag로 존재하는 pFLAGN1 벡터에 삽입시켜 Flag-SH3-N 벡터를 제조하였으며, 이 벡터를 리포펙타민 2000을 이용하여 Rat2 fibroblast 세포에 트랜스팩션시켜 세포내에서 SH3-N의 과발현을 유도하였다. In addition, Flag-SH3-N vector was prepared by inserting the cDNA of SH3-N cloned in Example 1 (1) into the pFLAGN1 vector having the tag as a tag, and using this lipofectamine 2000, Rat2 fibroblast Transfection of cells induced overexpression of SH3-N in cells.

(3) 웨스턴 블럿 (Western blot) 분석(3) Western blot analysis

실시예 3(2)에서 재조합 DNA가 트랜스덕션된 Rat2 fibroblast를 단백질 분해 효소(protease)의 저해제가 첨가된 용해 버퍼 (40 mM Tris-Cl (pH 8.0), 120 mM NaCl, 0.1% Nonidet-P4)로 용해시킨 후, 원심분리를 하여 단백질을 포함하는 상등 액을 얻었다. 분리된 단백질들을 SDS-전기영동을 통하여 분리하여, 니트로셀룰로오즈 막(nitrocellulose membrane)에 부착시켰다. 단백질들이 부착된 막을 5% 무지방 밀크 용액을 이용하여 차단 (blocking)시킨 후에 실온에서 1차 항체를 1시간동안 반응시켰다. 이것을 3번 세척한 후에 2차 항체를 1시간 동안 반응을 시켜 ECL방법을 이용하여 단백질들의 발현 정도를 확인하였다. In Example 3 (2), a recombinant DNA-transduced Rat2 fibroblast was added to a lysis buffer (40 mM Tris-Cl (pH 8.0), 120 mM NaCl, 0.1% Nonidet-P4) to which an inhibitor of protease was added. After dissolving, the mixture was centrifuged to obtain a supernatant containing protein. The separated proteins were separated by SDS-electrophoresis and attached to nitrocellulose membrane. The protein-attached membrane was blocked with a 5% fat free milk solution and then reacted with the primary antibody for 1 hour at room temperature. After washing this three times, the secondary antibody was reacted for 1 hour to confirm the expression level of proteins using the ECL method.

(4) Soft agar colony formation(4) Soft agar colony formation

1.8%와 0.9%의 노블 아가(Noble agar) 용액을 준비하였다. 1.8%의 노블 아가 용액과 2X RPMI(10% FBS)를 1:1로 혼합하여 바닥 아가(bottom agar)를 제조하였으며, 이렇게 혼합한 것 2ml을 60mm 디쉬에 골고루 넣어 준 뒤 약 10분 동안 굳게 하였다. 0.9%의 노블 아가 용액과 2X RPMI(10% FBS)를 1:1로 혼합한 뒤 Rat2 fibroblast를 104 cells/dish로 첨가하고, 디쉬의 바닥 아가 위에 2ml씩 골고루 넣어 준다. 그 후 37℃, 5% CO2 배양기 안에 배양한 다음 콜로니(colony) 형성의 크기가 0.3mm 이상인 콜로니의 수를 측정하였다.1.8% and 0.9% of Noble agar solutions were prepared. A bottom agar was prepared by mixing 1.8% of the noble agar solution and 2X RPMI (10% FBS) in a 1: 1 ratio. 2 ml of this mixture was evenly added to a 60 mm dish and hardened for about 10 minutes. . Mix 0.9% noble agar solution with 2X RPMI (10% FBS) in a 1: 1 ratio, add Rat2 fibroblast at 10 4 cells / dish, and evenly put 2ml on the bottom agar of the dish. Thereafter, the cells were cultured in a 37 ° C., 5% CO 2 incubator, and the number of colonies whose colony formation was 0.3 mm or larger was measured.

(5) 면역 침강법 (Immunoprecipitation) 및 Immune Complex Kinase Assay(5) Immunoprecipitation and Immune Complex Kinase Assay

세포 용해 결과 얻어진 단백질 300mg을 1차 항체 (anti-PKC α, anti-PKC β, anti-PKC δ)와 함께 4℃에서 2시간 동안 반응을 시킨 다음 단백질 A 아가로즈 비드 (protein A agarose bead)를 첨가하여 면역침강 시킨다. 면역 침강된 단백질 을 용해 버퍼로 3회, 카이네즈 반응 버퍼 (50mM HEPES (pH 7.5), 10mM MgCl2, 1mM dithiothreitol, 2.5mM EGTA, 1mM NaF, 0.1mM Na3VO4, and 10mM b-glycerophosphate)로 2회 세척한 후, 1μg의 MBP와 2μCi of [g-32P]ATP가 함유된 20μl의 카이네즈 반응 버퍼를 첨가하여 30℃에서 30분간 반응을 시킨 뒤에 2X SDS 샘플 버퍼 20μl를 첨가하여 반응을 종료시켰다. 그 후, 90℃에서 5분간 끓이고 난 뒤에 전기영동과 방사능 사진법을 수행하였다. 300 mg of the protein obtained as a result of the cell lysis was reacted with the primary antibodies (anti-PKC α, anti-PKC β, anti-PKC δ) at 4 ° C. for 2 hours, followed by protein A agarose beads. Immunoprecipitate by addition. Three times immunoprecipitated protein with lysis buffer, kinese reaction buffer (50 mM HEPES (pH 7.5), 10 mM MgCl 2 , 1 mM dithiothreitol, 2.5 mM EGTA, 1 mM NaF, 0.1 mM Na 3 VO 4 , and 10 mM b-glycerophosphate) After washing twice with 20 μl of kinase reaction buffer containing 1 μg of MBP and 2 μCi of [g- 32 P] ATP, the reaction was carried out at 30 ° C. for 30 minutes, and then 20 μl of 2X SDS sample buffer was added. Was terminated. Then, after boiling for 5 minutes at 90 ℃ electrophoresis and radiographic methods were performed.

(6) K-Ras에 의한 PKC 활성 증대 효과(6) effect of increasing PKC activity by K-Ras

실시예 3(2)에서와 같이 Rat2 fibroblast을 MFG-K-Ras(V12)-puro을 함유하는 바이러스로 트랜스덕션시켜 세포암화유전자인 K-Ras를 과발현시킨 후, Immune Complex Kinase Assay 수행한 결과 PKCδ의 활성이 증가하는 것을 확인하였다 (도 4A 및 B). K-Ras를 과발현시킨 Rat2 fibroblast 또는 이 Rat2 fibroblast와 동시에 PKCδ 억제 유전자인 DN-PKCδ를 혼합하여 콜로니 포밍 어세이를 수행한 결과 K-Ras에 의해 생성되었던 콜로니의 수가 DN-PKCδ 유전자를 첨가한 경우에는 감소하는 것을 확인하였다 (도 4C). As in Example 3 (2), the rat2 fibroblast was transduced with a virus containing MFG-K-Ras (V12) -puro to overexpress K-Ras, a cell carcinogenic gene, and then subjected to Immune Complex Kinase Assay. PKCδ It was confirmed that the activity of the increased (Fig. 4A and B). When the colony forming assay was performed by mixing DN-PKCδ, which is a PKCδ inhibitory gene, with Rat2 fibroblast overexpressing K-Ras or adding DN-PKCδ gene. It was confirmed that the decrease (Fig. 4C).

실험예Experimental Example 1: in vitro에서  1: in vitro SH3SH3 -N의 Of -N PKCPKC 활성 억제 효과 Active inhibitory effect

실시예 3(2)에서와 같이 Flag-SH3-N를 Rat2 fibroblast 세포에 트랜스팩션을 하고, Flag 항체를 이용한 웨스턴 블럿을 수행한 결과 SH3-N이 정상적으로 발현되 는 것을 확인하였다. 또한, SH3-N가 정상적으로 발현되는 경우에는 PKCδ 및 그의 기질인 MBP의 인산화가 크게 억제되는 것을 관찰하였다 (도 5A). MFG-K-Ras(V12)-puro를 Rat2 fibroblast 세포에 트랜스팩션하여 K-Ras를 세포내에 과발현시킨 경우 생성된 세포 콜로니는 약 140개 정도였으나, MFG-K-Ras(V12)-puro 및 Flag-SH3-N를 동시에 트랜스팩션한 경우에는 콜로니의 수가 약 20개로 감소하였다 (도 5B 및 C). As in Example 3 (2), Flag-SH3-N was transfected into Rat2 fibroblast cells, and Western blot using Flag antibody confirmed that SH3-N was normally expressed. In addition, when SH3-N is normally expressed, it was observed that phosphorylation of PKCδ and its substrate MBP is greatly suppressed (FIG. 5A). When MFG-K-Ras (V12) -puro was transfected into Rat2 fibroblast cells and overexpressed K-Ras intracellularly, about 140 cell colonies were produced, but MFG-K-Ras (V12) -puro and Flag Transfection of -SH3-N simultaneously reduced the number of colonies to about 20 (FIGS. 5B and C).

실험예Experimental Example 2: in  2: in vivovivo 에서 in SH3SH3 -N의 Of -N PKCPKC 활성 억제 효과  Active inhibitory effect

(1) 동물 실험 (in vivo test) 방법(1) In vivo test method

K-Ras를 과발현시킨 Rat2 fibroblast와, Flag-SH3-N과 K-Ras를 동시에 과발현시킨 Rat2 fibroblast를 누드생쥐의 대퇴부에 이식시킨 후 3일 간격으로 종양의 부피를 측정하였다.Tumor volume was measured at 3 days intervals after transplanting the rat2 fibroblasts overexpressing K-Ras and the rat2 fibroblasts overexpressing Flag-SH3-N and K-Ras in the femur of nude mice.

(2) in vivo에서 SH3-N의 PKC 활성 억제 효과(2) Inhibitory Effect of SH3-N on PKC Activity in Vivo

K-Ras가 과발현된 Rat2 fibroblast 세포를 누드 생쥐에 이식하여, 이식 후 9일째 되는 시점부터 종양이 생성됨을 확인하였다. K-Ras 및 SH3-N이 동시에 과발현된 세포를 이식한 누드 생쥐의 경우는, 이식 후 9일째 되는 시점부터 K-Ras만 과발현된 경우에 비하여 종양의 성장이 느리게 진행되는 것을 확인하였다 (도 6). Rat2 fibroblast cells overexpressed K-Ras were transplanted into nude mice, and it was confirmed that tumors were generated from 9 days after transplantation. Nude mice transplanted with cells overexpressing K-Ras and SH3-N simultaneously showed slower tumor growth compared to the case where only K-Ras was overexpressed at 9 days after transplantation (FIG. 6). ).

도 1A는 본 발명의 GST-융합 단백질의 구조이며, 도 1B는 GST 융합 PX, SH3-N, SH3-C, PP 단백질에 대한 웨스턴 블럿 결과이다. 여기서 *가 표시된 부분이 GST 융합 단백질을 의미한다.FIG. 1A shows the structure of the GST-fusion protein of the present invention, and FIG. 1B shows Western blot results for the GST fusion PX, SH3-N, SH3-C, PP proteins. Where * denotes a GST fusion protein.

도 2A는 GST-융합 단백질 (GST-PX, GST-SH3-N, GST-SH3-C, GST-PP)과 PKC 및 MBP를 혼합한 경우의 웨스턴 블럿 결과이며, 도 2B는 PKC 및 MBP와 GST-SH3-N를 농도별로 혼합한 경우의 웨스턴 블럿 결과이다. FIG. 2A is a result of Western blot when GST-fusion protein (GST-PX, GST-SH3-N, GST-SH3-C, GST-PP) is mixed with PKC and MBP, and FIG. 2B is PKC, MBP and GST Western blot result of mixing -SH3-N by concentration.

도 3은 GST-SH3-N을 PKCα, PKCβ, PKCδ, PKCζ와 MBP에 첨가한 경우의 웨스턴 블럿 결과이다.3 is a Western blot result when GST-SH3-N is added to PKCα, PKCβ, PKCδ, PKCζ and MBP.

도 4A는 K-Ras의 과발현에 의해 활성화되는 PKC 보여주는 웨스턴 블럿 결과이며, 도 4B는 DN-PKCδ에 의한 K-Ras 발현 감소 효과를 보여주는 Immune Complex Kinase Assay 결과이다. 또한, 도 4C는 DN-PKCδ에 의한 K-Ras 발현 감소 효과를 보여주는 콜로니 포밍 어세이 결과이다.4A is a Western blot result showing PKC activated by overexpression of K-Ras, and FIG. 4B is an Immune Complex Kinase Assay result showing the effect of reducing K-Ras expression by DN-PKCδ. In addition, Figure 4C is a colony forming assay results showing the effect of reducing K-Ras expression by DN-PKCδ.

도 5A는 Flag-SH3-N을 Rat2 fibroblast 세포에 트랜스팩션시킨 후 Flag 항체를 이용한 웨스턴 블럿 결과이다. 또한, 도 5B 및 C는 SH3-N의 PKC의 활성을 보여주는 콜로니 포밍 어세이 결과이다. 여기서, PCDNA는 SH3-N의 cDNA를 삽입하지 않은 pFLAGN1 자체를 의미한다.5A is a result of Western blot using Flag antibody after transfecting Flag-SH3-N into Rat2 fibroblast cells. 5B and C are also results of colony forming assays showing the activity of PKC of SH3-N. Here, PCDNA means pFLAGN1 itself which does not insert cDNA of SH3-N.

도 6은 K-Ras가 과발현된 Rat2 fibroblast 세포를 이식받은 누드 생쥐에서 종양 크기의 변화를 나타내는 결과이다.Figure 6 shows the change in tumor size in nude mice receiving K-Ras overexpressed Rat2 fibroblast cells.

<110> Korea Institute of Radiological and Medical Sciences <120> Protein for inhibiting PKC activity and pharmaceutical composition including the same <130> PC07-0253 <160> 15 <170> KopatentIn 1.71 <210> 1 <211> 390 <212> PRT <213> Homo sapiens <400> 1 Met Gly Asp Thr Phe Ile Arg His Ile Ala Leu Leu Gly Phe Glu Lys 1 5 10 15 Arg Phe Val Pro Ser Gln His Tyr Val Tyr Met Phe Leu Val Lys Trp 20 25 30 Gln Asp Leu Ser Glu Lys Val Val Tyr Arg Arg Phe Thr Glu Ile Tyr 35 40 45 Glu Phe His Lys Thr Leu Lys Glu Met Phe Pro Ile Glu Ala Gly Ala 50 55 60 Ile Asn Pro Glu Asn Arg Ile Ile Pro His Leu Pro Ala Pro Lys Trp 65 70 75 80 Phe Asp Gly Gln Arg Ala Ala Glu Asn Arg Gln Gly Thr Leu Thr Glu 85 90 95 Tyr Cys Ser Thr Leu Met Ser Leu Pro Thr Lys Ile Ser Arg Cys Pro 100 105 110 His Leu Leu Asp Phe Phe Lys Val Arg Pro Asp Asp Leu Lys Leu Pro 115 120 125 Thr Asp Asn Gln Thr Lys Lys Pro Glu Thr Tyr Leu Met Pro Lys Asp 130 135 140 Gly Lys Ser Thr Ala Thr Asp Ile Thr Gly Pro Ile Ile Leu Gln Thr 145 150 155 160 Tyr Arg Ala Ile Ala Asp Tyr Glu Lys Thr Ser Gly Ser Glu Met Ala 165 170 175 Leu Ser Thr Gly Asp Val Val Glu Val Val Glu Lys Ser Glu Ser Gly 180 185 190 Trp Trp Phe Cys Gln Met Lys Ala Lys Arg Gly Trp Ile Pro Ala Ser 195 200 205 Phe Leu Glu Pro Leu Asp Ser Pro Asp Glu Thr Glu Asp Pro Glu Pro 210 215 220 Asn Tyr Ala Gly Glu Pro Tyr Val Ala Ile Lys Ala Tyr Thr Ala Val 225 230 235 240 Glu Gly Asp Glu Val Ser Leu Leu Glu Gly Glu Ala Val Glu Val Ile 245 250 255 His Lys Leu Leu Asp Gly Trp Trp Val Ile Arg Lys Asp Asp Val Thr 260 265 270 Gly Tyr Phe Pro Ser Met Tyr Leu Gln Lys Ser Gly Gln Asp Val Ser 275 280 285 Gln Ala Gln Arg Gln Ile Lys Arg Gly Ala Pro Pro Arg Arg Ser Ser 290 295 300 Ile Arg Asn Ala His Ser Ile His Gln Arg Ser Arg Lys Arg Leu Ser 305 310 315 320 Gln Asp Ala Tyr Arg Arg Asn Ser Val Arg Phe Leu Gln Gln Arg Arg 325 330 335 Arg Gln Ala Arg Pro Gly Pro Gln Ser Pro Gly Ser Pro Leu Glu Glu 340 345 350 Glu Arg Gln Thr Gln Arg Ser Lys Pro Gln Pro Ala Val Pro Pro Arg 355 360 365 Pro Ser Ala Asp Leu Ile Leu Asn Arg Cys Ser Glu Ser Thr Lys Arg 370 375 380 Lys Leu Ala Ser Ala Val 385 390 <210> 2 <211> 60 <212> PRT <213> Homo sapiens <400> 2 Ile Ile Leu Gln Thr Tyr Arg Ala Ile Ala Asp Tyr Glu Lys Thr Ser 1 5 10 15 Gly Ser Glu Met Ala Leu Ser Thr Gly Asp Val Val Glu Val Val Glu 20 25 30 Lys Ser Glu Ser Gly Trp Trp Phe Cys Gln Met Lys Ala Lys Arg Gly 35 40 45 Trp Ile Pro Ala Ser Phe Leu Glu Pro Leu Asp Ser 50 55 60 <210> 3 <211> 1340 <212> DNA <213> Homo sapiens <400> 3 ccacccagtc atgggggaca ccttcatccg tcacatcgcc ctgctgggct ttgagaagcg 60 cttcgtaccc agccagcact atgtgtacat gttcctggtg aaatggcagg acctgtcgga 120 gaaggtggtc taccggcgct tcaccgagat ctacgagttc cataaaacct taaaagaaat 180 gttccctatt gaggcagggg cgatcaatcc agagaacagg atcatccccc acctcccagc 240 tcccaagtgg tttgacgggc agcgggccgc cgagaaccgc cagggcacac ttaccgagta 300 ctgcagcacg ctcatgagcc tgcccaccaa gatctcccgc tgtccccacc tcctcgactt 360 cttcaaggtg cgccctgatg acctcaagct ccccacggac aaccagacaa aaaagccaga 420 gacatacttg atgcccaaag atggcaagag taccgcgaca gacatcaccg gccccatcat 480 cctgcagacg taccgcgcca ttgccgacta cgagaagacc tcgggctccg agatggctct 540 gtccacgggg gacgtggtgg aggtcgtgga gaagagcgag agcggttggt ggttctgtca 600 gatgaaagca aagcgaggct ggatcccagc atccttcctc gagcccctgg acagtcctga 660 cgagacggaa gaccctgagc ccaactatgc aggtgagcca tacgtcgcca tcaaggccta 720 cactgctgtg gagggggacg aggtgtccct gctcgagggt gaagctgttg aggtcattca 780 caagctcctg gacggctggt gggtcatcag gaaagacgac gtcacaggct actttccgtc 840 catgtacctg caaaagtcgg ggcaagacgt gtcccaggcc caacgccaga tcaagcgggg 900 ggcgccgccc cgcaggtcgt ccatccgcaa cgcgcacagc atccatcagc ggtcgcggaa 960 gcgcctcagc caggacgcct atcgccgcaa cagcgtccgt tttctgcagc agcgacgccg 1020 ccaggcgcgg ccgggaccgc agagccccgg gagcccgctc gaggaggagc ggcagacgca 1080 gcgctctaaa ccgcagccgg cggtgccccc gcggccgagc gccgacctca tcctgaaccg 1140 ctgcagcgag agcaccaagc ggaagctggc gtctgccgtc tgaggctgga gcgcagtccc 1200 cagctagcgt ctcggccctt gccgccccgt gcctgtacat acgtgttcta tagagcctgg 1260 cgtctggacg ccgagggcag ccccgacccc tgtccagcgc ggctcccgcc accctcaata 1320 aatgttgctt ggagtggaag 1340 <210> 4 <211> 183 <212> DNA <213> Homo sapiens <400> 4 atcatcctgc agacgtaccg cgccattgcc gactacgaga agacctcggg ctccgagatg 60 gctctgtcca cgggggacgt ggtggaggtc gtggagaaga gcgagagcgg ttggtggttc 120 tgtcagatga aagcaaagcg aggctggatc ccagcatcct tcctcgagcc cctggacagt 180 cct 183 <210> 5 <211> 375 <212> DNA <213> Homo sapiens <400> 5 atgggggaca ccttcatccg tcacatcgcc ctgctgggct ttgagaagcg cttcgtaccc 60 agccagcact atgtgtacat gttcctggtg aaatggcagg acctgtcgga gaaggtggtc 120 taccggcgct tcaccgagat ctacgagttc cataaaacct taaaagaaat gttccctatt 180 gaggcagggg cgatcaatcc agagaacagg atcatccccc acctcccagc tcccaagtgg 240 tttgacgggc agcgggccgc cgagaaccgc cagggcacac ttaccgagta ctgcagcacg 300 ctcatgagcc tgcccaccaa gatctcccgc tgtccccacc tcctcgactt cttcaaggtg 360 cgccctgatg acctc 375 <210> 6 <211> 183 <212> DNA <213> Homo sapiens <400> 6 tatgcaggtg agccatacgt cgccatcaag gcctacactg ctgtggaggg ggacgaggtg 60 tccctgctcg agggtgaagc tgttgaggtc attcacaagc tcctggacgg ctggtgggtc 120 atcaggaaag acgacgtcac aggctacttt ccgtccatgt acctgcaaaa gtcggggcaa 180 gac 183 <210> 7 <211> 297 <212> DNA <213> Homo sapiens <400> 7 cgccagatca agcggggggc gccgccccgc aggtcgtcca tccgcaacgc gcacagcatc 60 catcagcggt cgcggaagcg cctcagccag gacgcctatc gccgcaacag cgtccgtttt 120 ctgcagcagc gacgccgcca ggcgcggccg ggaccgcaga gccccgggag cccgctcgag 180 gaggagcggc agacgcagcg ctctaaaccg cagccggcgg tgcccccgcg gccgagcgcc 240 gacctcatcc tgaaccgctg cagcgagagc accaagcgga agctggcgtc tgccgtc 297 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PX primer forward <400> 8 aaaccggaat tcggggacac cttcatc 27 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PX primer reverse <400> 9 aaaccggaat tctcacaagt atgtctctgg 30 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> SH3-N(KIRAMS-NP47-SH3N) primer forward <400> 10 aaaccggaat tccccaaaga tggcaag 27 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SH3-N(KIRAMS-NP47-SH3N) primer reverse <400> 11 aaaccggaat tctcattccg tctcgtcagg 30 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> SH3-C primer forward <400> 12 aaaccggaat tcgaccctga gcccaac 27 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SH3-C primer reverese <400> 13 aaaccggaat tctcaggcct gggacacgtc 30 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PP primer forward <400> 14 aaaccggaat tcggggacac cttcatc 27 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PP primer reverse <400> 15 aaaccggaat tctcacaagt atgtctctgg 30 <110> Korea Institute of Radiological and Medical Sciences <120> Protein for inhibiting PKC activity and pharmaceutical          composition including the same <130> PC07-0253 <160> 15 <170> KopatentIn 1.71 <210> 1 <211> 390 <212> PRT <213> Homo sapiens <400> 1 Met Gly Asp Thr Phe Ile Arg His Ile Ala Leu Leu Gly Phe Glu Lys   1 5 10 15 Arg Phe Val Pro Ser Gln His Tyr Val Tyr Met Phe Leu Val Lys Trp              20 25 30 Gln Asp Leu Ser Glu Lys Val Val Tyr Arg Arg Phe Thr Glu Ile Tyr          35 40 45 Glu Phe His Lys Thr Leu Lys Glu Met Phe Pro Ile Glu Ala Gly Ala      50 55 60 Ile Asn Pro Glu Asn Arg Ile Ile Pro His Leu Pro Ala Pro Lys Trp  65 70 75 80 Phe Asp Gly Gln Arg Ala Ala Glu Asn Arg Gln Gly Thr Leu Thr Glu                  85 90 95 Tyr Cys Ser Thr Leu Met Ser Leu Pro Thr Lys Ile Ser Arg Cys Pro             100 105 110 His Leu Leu Asp Phe Phe Lys Val Arg Pro Asp Asp Leu Lys Leu Pro         115 120 125 Thr Asp Asn Gln Thr Lys Lys Pro Glu Thr Tyr Leu Met Pro Lys Asp     130 135 140 Gly Lys Ser Thr Ala Thr Asp Ile Thr Gly Pro Ile Ile Leu Gln Thr 145 150 155 160 Tyr Arg Ala Ile Ala Asp Tyr Glu Lys Thr Ser Gly Ser Glu Met Ala                 165 170 175 Leu Ser Thr Gly Asp Val Val Glu Val Val Glu Lys Ser Glu Ser Gly             180 185 190 Trp Trp Phe Cys Gln Met Lys Ala Lys Arg Gly Trp Ile Pro Ala Ser         195 200 205 Phe Leu Glu Pro Leu Asp Ser Pro Asp Glu Thr Glu Asp Pro Glu Pro     210 215 220 Asn Tyr Ala Gly Glu Pro Tyr Val Ala Ile Lys Ala Tyr Thr Ala Val 225 230 235 240 Glu Gly Asp Glu Val Ser Leu Leu Glu Gly Glu Ala Val Glu Val Ile                 245 250 255 His Lys Leu Leu Asp Gly Trp Trp Val Ile Arg Lys Asp Asp Val Thr             260 265 270 Gly Tyr Phe Pro Ser Met Tyr Leu Gln Lys Ser Gly Gln Asp Val Ser         275 280 285 Gln Ala Gln Arg Gln Ile Lys Arg Gly Ala Pro Pro Arg Arg Ser Ser     290 295 300 Ile Arg Asn Ala His Ser Ile His Gln Arg Ser Arg Lys Arg Leu Ser 305 310 315 320 Gln Asp Ala Tyr Arg Arg Asn Ser Val Arg Phe Leu Gln Gln Arg Arg                 325 330 335 Arg Gln Ala Arg Pro Gly Pro Gln Ser Pro Gly Ser Pro Leu Glu Glu             340 345 350 Glu Arg Gln Thr Gln Arg Ser Lys Pro Gln Pro Ala Val Pro Pro Arg         355 360 365 Pro Ser Ala Asp Leu Ile Leu Asn Arg Cys Ser Glu Ser Thr Lys Arg     370 375 380 Lys Leu Ala Ser Ala Val 385 390 <210> 2 <211> 60 <212> PRT <213> Homo sapiens <400> 2 Ile Ile Leu Gln Thr Tyr Arg Ala Ile Ala Asp Tyr Glu Lys Thr Ser   1 5 10 15 Gly Ser Glu Met Ala Leu Ser Thr Gly Asp Val Val Glu Val Val Glu              20 25 30 Lys Ser Glu Ser Gly Trp Trp Phe Cys Gln Met Lys Ala Lys Arg Gly          35 40 45 Trp Ile Pro Ala Ser Phe Leu Glu Pro Leu Asp Ser      50 55 60 <210> 3 <211> 1340 <212> DNA <213> Homo sapiens <400> 3 ccacccagtc atgggggaca ccttcatccg tcacatcgcc ctgctgggct ttgagaagcg 60 cttcgtaccc agccagcact atgtgtacat gttcctggtg aaatggcagg acctgtcgga 120 gaaggtggtc taccggcgct tcaccgagat ctacgagttc cataaaacct taaaagaaat 180 gttccctatt gaggcagggg cgatcaatcc agagaacagg atcatccccc acctcccagc 240 tcccaagtgg tttgacgggc agcgggccgc cgagaaccgc cagggcacac ttaccgagta 300 ctgcagcacg ctcatgagcc tgcccaccaa gatctcccgc tgtccccacc tcctcgactt 360 cttcaaggtg cgccctgatg acctcaagct ccccacggac aaccagacaa aaaagccaga 420 gacatacttg atgcccaaag atggcaagag taccgcgaca gacatcaccg gccccatcat 480 cctgcagacg taccgcgcca ttgccgacta cgagaagacc tcgggctccg agatggctct 540 gtccacgggg gacgtggtgg aggtcgtgga gaagagcgag agcggttggt ggttctgtca 600 gatgaaagca aagcgaggct ggatcccagc atccttcctc gagcccctgg acagtcctga 660 cgagacggaa gaccctgagc ccaactatgc aggtgagcca tacgtcgcca tcaaggccta 720 cactgctgtg gagggggacg aggtgtccct gctcgagggt gaagctgttg aggtcattca 780 caagctcctg gacggctggt gggtcatcag gaaagacgac gtcacaggct actttccgtc 840 catgtacctg caaaagtcgg ggcaagacgt gtcccaggcc caacgccaga tcaagcgggg 900 ggcgccgccc cgcaggtcgt ccatccgcaa cgcgcacagc atccatcagc ggtcgcggaa 960 gcgcctcagc caggacgcct atcgccgcaa cagcgtccgt tttctgcagc agcgacgccg 1020 ccaggcgcgg ccgggaccgc agagccccgg gagcccgctc gaggaggagc ggcagacgca 1080 gcgctctaaa ccgcagccgg cggtgccccc gcggccgagc gccgacctca tcctgaaccg 1140 ctgcagcgag agcaccaagc ggaagctggc gtctgccgtc tgaggctgga gcgcagtccc 1200 cagctagcgt ctcggccctt gccgccccgt gcctgtacat acgtgttcta tagagcctgg 1260 cgtctggacg ccgagggcag ccccgacccc tgtccagcgc ggctcccgcc accctcaata 1320 aatgttgctt ggagtggaag 1340 <210> 4 <211> 183 <212> DNA <213> Homo sapiens <400> 4 atcatcctgc agacgtaccg cgccattgcc gactacgaga agacctcggg ctccgagatg 60 gctctgtcca cgggggacgt ggtggaggtc gtggagaaga gcgagagcgg ttggtggttc 120 tgtcagatga aagcaaagcg aggctggatc ccagcatcct tcctcgagcc cctggacagt 180 cct 183 <210> 5 <211> 375 <212> DNA <213> Homo sapiens <400> 5 atgggggaca ccttcatccg tcacatcgcc ctgctgggct ttgagaagcg cttcgtaccc 60 agccagcact atgtgtacat gttcctggtg aaatggcagg acctgtcgga gaaggtggtc 120 taccggcgct tcaccgagat ctacgagttc cataaaacct taaaagaaat gttccctatt 180 gaggcagggg cgatcaatcc agagaacagg atcatccccc acctcccagc tcccaagtgg 240 tttgacgggc agcgggccgc cgagaaccgc cagggcacac ttaccgagta ctgcagcacg 300 ctcatgagcc tgcccaccaa gatctcccgc tgtccccacc tcctcgactt cttcaaggtg 360 cgccctgatg acctc 375 <210> 6 <211> 183 <212> DNA <213> Homo sapiens <400> 6 tatgcaggtg agccatacgt cgccatcaag gcctacactg ctgtggaggg ggacgaggtg 60 tccctgctcg agggtgaagc tgttgaggtc attcacaagc tcctggacgg ctggtgggtc 120 atcaggaaag acgacgtcac aggctacttt ccgtccatgt acctgcaaaa gtcggggcaa 180 gac 183 <210> 7 <211> 297 <212> DNA <213> Homo sapiens <400> 7 cgccagatca agcggggggc gccgccccgc aggtcgtcca tccgcaacgc gcacagcatc 60 catcagcggt cgcggaagcg cctcagccag gacgcctatc gccgcaacag cgtccgtttt 120 ctgcagcagc gacgccgcca ggcgcggccg ggaccgcaga gccccgggag cccgctcgag 180 gaggagcggc agacgcagcg ctctaaaccg cagccggcgg tgcccccgcg gccgagcgcc 240 gacctcatcc tgaaccgctg cagcgagagc accaagcgga agctggcgtc tgccgtc 297 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PX primer forward <400> 8 aaaccggaat tcggggacac cttcatc 27 <210> 9 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PX primer reverse <400> 9 aaaccggaat tctcacaagt atgtctctgg 30 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> SH3-N (KIRAMS-NP47-SH3N) primer forward <400> 10 aaaccggaat tccccaaaga tggcaag 27 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SH3-N (KIRAMS-NP47-SH3N) primer reverse <400> 11 aaaccggaat tctcattccg tctcgtcagg 30 <210> 12 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> SH3-C primer forward <400> 12 aaaccggaat tcgaccctga gcccaac 27 <210> 13 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> SH3-C primer reverese <400> 13 aaaccggaat tctcaggcct gggacacgtc 30 <210> 14 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> PP primer forward <400> 14 aaaccggaat tcggggacac cttcatc 27 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PP primer reverse <400> 15 aaaccggaat tctcacaagt atgtctctgg 30  

Claims (9)

서열번호 2의 아미노산 서열로 이루어진 PKC 활성을 억제할 수 있는 단백질을 코딩하는 핵산 분자.A nucleic acid molecule encoding a protein capable of inhibiting PKC activity consisting of the amino acid sequence of SEQ ID NO: 2. 제1항에 있어서, 서열번호 2의 아미노산 서열을 코딩하는 핵산 분자가 DNA 서열인 핵산 분자.The nucleic acid molecule of claim 1, wherein the nucleic acid molecule encoding the amino acid sequence of SEQ ID NO: 2 is a DNA sequence. 제2항에 있어서, cDNA인 핵산 분자.The nucleic acid molecule of claim 2 which is cDNA. 서열번호 4의 뉴클레오티드 서열로 이루어진 PKC 활성을 억제할 수 있는 단백질을 코딩하는 핵산 분자.A nucleic acid molecule encoding a protein capable of inhibiting PKC activity consisting of the nucleotide sequence of SEQ ID NO: 4. 제4항에 따른 핵산 분자를 포함하는 재조합 벡터.A recombinant vector comprising the nucleic acid molecule of claim 4. 제5항의 발현 벡터에 의해 형질전환된 형질전환체.A transformant transformed by the expression vector of claim 5. 제1항 내지 제4항 중 어느 한 항에 따른 핵산 분자로 코딩되는 PKC 활성을 억제할 수 있는 단백질.A protein capable of inhibiting PKC activity encoded by the nucleic acid molecule according to any one of claims 1 to 4. 제7항에 있어서, 서열번호 2의 아미노산 서열로 이루어진 PKC 활성을 억제할 수 있는 단백질.8. The protein according to claim 7, which can inhibit PKC activity consisting of the amino acid sequence of SEQ ID NO: 2. 제1항 내지 제4항 중 어느 한 항의 핵산 분자에 의해 코딩되는 PKC 활성을 억제할 수 있는 단백질 및 약제학적으로 허용되는 담체를 포함하는 종양의 예방 또는 치료용 약제학적 조성물.A pharmaceutical composition for preventing or treating tumors, comprising a protein capable of inhibiting PKC activity encoded by the nucleic acid molecule of any one of claims 1 to 4 and a pharmaceutically acceptable carrier.
KR1020070067249A 2007-07-04 2007-07-04 Protein for inhibiting PKC activity and pharmaceutical composition including the same KR100906153B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070067249A KR100906153B1 (en) 2007-07-04 2007-07-04 Protein for inhibiting PKC activity and pharmaceutical composition including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070067249A KR100906153B1 (en) 2007-07-04 2007-07-04 Protein for inhibiting PKC activity and pharmaceutical composition including the same

Publications (2)

Publication Number Publication Date
KR20090002886A KR20090002886A (en) 2009-01-09
KR100906153B1 true KR100906153B1 (en) 2009-07-03

Family

ID=40485804

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070067249A KR100906153B1 (en) 2007-07-04 2007-07-04 Protein for inhibiting PKC activity and pharmaceutical composition including the same

Country Status (1)

Country Link
KR (1) KR100906153B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990082528A (en) * 1996-02-14 1999-11-25 한스 루돌프 하우스, 아네트 와너 Methoxyethoxy oligonucleotides to regulate protein kinase seed expression
US6855693B2 (en) 2001-01-18 2005-02-15 The Board Of Trustees Of The Leland Stanford Junior University Peptides for activation and inhibition of δPKC
US6893833B2 (en) 2002-04-17 2005-05-17 Glucox Ab Identification of agents that increase glucose uptake
US6942999B2 (en) 2001-03-29 2005-09-13 Applera Corporation Isolated human enzyme proteins, nucleic acid molecules encoding human enzyme proteins, and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990082528A (en) * 1996-02-14 1999-11-25 한스 루돌프 하우스, 아네트 와너 Methoxyethoxy oligonucleotides to regulate protein kinase seed expression
US6855693B2 (en) 2001-01-18 2005-02-15 The Board Of Trustees Of The Leland Stanford Junior University Peptides for activation and inhibition of δPKC
US6942999B2 (en) 2001-03-29 2005-09-13 Applera Corporation Isolated human enzyme proteins, nucleic acid molecules encoding human enzyme proteins, and uses thereof
US6893833B2 (en) 2002-04-17 2005-05-17 Glucox Ab Identification of agents that increase glucose uptake

Also Published As

Publication number Publication date
KR20090002886A (en) 2009-01-09

Similar Documents

Publication Publication Date Title
Leung et al. The p160 RhoA-binding kinase ROKα is a member of a kinase family and is involved in the reorganization of the cytoskeleton
Sood et al. Pancreatic eukaryotic initiation factor-2α kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress
Voit et al. The nucleolar transcription factor mUBF is phosphorylated by casein kinase II in the C‐terminal hyperacidic tail which is essential for transactivation.
TWI480048B (en) Activin-actriia antagonists and uses for treating or preventing breast cancer
US20080051556A1 (en) Novel PTP-20, PCP-2, BDP1, CLK, and SIRP proteins and related products and methods
JP2000517165A (en) Novel lipid kinase
PL219845B1 (en) Anticancer fusion protein
JP2005323611A (en) Phosphatidyl 3,4,5-triphosphate-dependent protein kinase
US7018631B1 (en) Compositions and methods for sensitizing and inhibiting growth of human tumor cells
EP0914450A1 (en) MITOGEN-ACTIVATED PROTEIN KINASE p38-2 AND METHODS OF USE THEREFOR
US5948885A (en) Mitogen-activated protein kinase p38-2 and methods of use therefor
AU3560599A (en) Tao protein kinases and methods of use therefor
KR100906153B1 (en) Protein for inhibiting PKC activity and pharmaceutical composition including the same
JP4651617B2 (en) Method for assaying LKB1 phosphorylation activity
AU771307B2 (en) Identification and functional characterization of a novel ribosomal S6 protein kinase
US20040005688A1 (en) Isolated dishevelled associated kinases, polynucleotides encoding the kinases, and methods of use thereof
KR100740342B1 (en) 1 A composition for the treatment of cancer comprising the HSPB1 binding site of PKC delta
WO1999053057A1 (en) Protein and gene participating in the differentiation of immortalized cells
EP1745801A1 (en) Method of inhibiting telomerase activity and inhibitor
US6830909B1 (en) Identification and functional characterization of a novel ribosomal S6 protein kinase
US6677130B1 (en) Mitogen-activated protein kinase p38-2 and methods of use therefor
CA2524528A1 (en) Truncated forms of human dbf4, complexes with their interacting partners and methods for identification of inhibitors thereof
US20030181366A1 (en) Peptide inhibitors of Akt and uses thereof
KR100573737B1 (en) Human phosphoserine aminotransferase and uses thereof
Ostrowska The structure and activity of cyclic AMP-dependent protein kinase A

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130327

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140303

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150825

Year of fee payment: 19