KR100900734B1 - Module for detecting electrical degradation current of metal oxide varistor - Google Patents

Module for detecting electrical degradation current of metal oxide varistor Download PDF

Info

Publication number
KR100900734B1
KR100900734B1 KR1020070048441A KR20070048441A KR100900734B1 KR 100900734 B1 KR100900734 B1 KR 100900734B1 KR 1020070048441 A KR1020070048441 A KR 1020070048441A KR 20070048441 A KR20070048441 A KR 20070048441A KR 100900734 B1 KR100900734 B1 KR 100900734B1
Authority
KR
South Korea
Prior art keywords
surge protection
leakage current
protection device
capacitive
voltage divider
Prior art date
Application number
KR1020070048441A
Other languages
Korean (ko)
Other versions
KR20080102083A (en
Inventor
이재복
장석훈
명성호
조연규
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020070048441A priority Critical patent/KR100900734B1/en
Publication of KR20080102083A publication Critical patent/KR20080102083A/en
Application granted granted Critical
Publication of KR100900734B1 publication Critical patent/KR100900734B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1236Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of surge arresters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/10Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess voltage, e.g. for lightning protection

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

본 발명은 서지보호소자의 열화상태 검출모듈에 관한 것이다.

본 발명이 개시하는 검출모듈은, 서지보호소자의 양단에 병렬·접속되어 서지보호소자에 인가된 전압을 분압하는 용량성 분압부와, 이 용량성 분압부의 분압노드에 접속되어 용량성 분압부에 흐르는 용량성 누설전류를 검출하는 미분형 전류검출부와, 서지보호소자에 흐르는 전체 누설전류를 검출하는 CT, 그리고 서지보호소자 내부의 표유정전용량과 용량성 분압부의 합성정전용량에 의한 비례상수를 반영한 용량성 누설전류에 전체 누설전류를 가산하여 서지보호소자의 저항성 누설전류를 산출하는 연산부를 구성한다.

본 발명에 의하면, 서지보호소자의 열화상태를 검출할 수 있으므로 서지보호기에 대한 객관적이고 원활한 유지관리를 도모할 수 있음은 물론이고 단락사고를 미연에 예방할 수 있다.

Figure R1020070048441

서지보호기, 서지보호소자, MOV, 누설전류, 저항성 누설전류

The present invention relates to a deterioration detection module of a surge protection device.

The detection module disclosed in the present invention includes a capacitive voltage divider connected in parallel to both ends of a surge protection device to divide a voltage applied to the surge protection device, and a voltage divider connected to the voltage divider node of the capacitive voltage divider. The proportionality constant is determined by the differential current detection unit for detecting the flowing capacitive leakage current, the CT for detecting the total leakage current flowing in the surge protection device, and the combined capacitance of the surface static capacitance and the capacitive voltage divider inside the surge protection device. An arithmetic unit for calculating the resistive leakage current of the surge protection device is added by adding the total leakage current to the reflected capacitive leakage current.

According to the present invention, since the deterioration state of the surge protection device can be detected, the objective and smooth maintenance of the surge protection device can be achieved as well as the short circuit accident can be prevented in advance.

Figure R1020070048441

Surge Protector, Surge Protector, MOV, Leakage Current, Resistive Leakage Current

Description

서지보호소자의 열화상태 검출모듈{MODULE FOR DETECTING ELECTRICAL DEGRADATION CURRENT OF METAL OXIDE VARISTOR}Deterioration detection module of surge protection device {MODULE FOR DETECTING ELECTRICAL DEGRADATION CURRENT OF METAL OXIDE VARISTOR}

도 1은 본 발명의 열화상태 검출모듈에 대한 기능구성도,1 is a functional configuration diagram of a deterioration state detection module of the present invention,

도 2는 본 발명의 용량성 분압부에 대한 개략적 회로구성도,2 is a schematic circuit diagram of a capacitive voltage divider of the present invention;

도 3은 서지보호소자에 대한 등가회로도,3 is an equivalent circuit diagram of a surge protection device;

도 4는 본 발명의 미분형 전류검출부에 대한 개략적 회로구성도,4 is a schematic circuit diagram of a differential current detector of the present invention;

도 5는 본 발명의 연산부에 대한 개략적 회로구성도,5 is a schematic circuit diagram of an operation unit of the present invention;

도 6은 본 발명에 따른 누설전류 파형 예시도,6 is an exemplary leakage current waveform diagram according to the present invention;

도 7은 본 발명에 따른 저항성 누설전류 파형 예시도,7 is an exemplary resistive leakage current waveform according to the present invention;

도 8은 본 발명에 따른 열화상태 검출방법에 대한 주요 흐름도.8 is a main flowchart of the deterioration state detection method according to the present invention;

** 도면의 주요 부분에 대한 부호의 설명 ** ** Description of symbols for the main parts of the drawing **

100 : 열화상태 검출모듈100: deterioration detection module

110 : 용량성 분압부 120 : 미분형 전류검출부110: capacitive voltage divider 120: differential current detector

L1 : 제1 저역필터 130 : CTL1: first low pass filter 130: CT

F : 차동 증폭부 L2 : 제2 저역필터F: differential amplifier L2: second low pass filter

140 : 연산부 150 : 출력부140: calculator 150: output unit

디지털 기술이 급속이 진보함에 따라 각종 전기·전자기기는 고집적화, 다기능화, 소형화되는 추세에 있다. 이러한 전기·전자기기는 낙뢰, 서지 등과 같이 외부에서 발생하는 이상 과전압에 대한 대책이 요구되며, 주로 서지보호기를 채용함으로써 해결하고 있다.With the rapid advance of digital technology, various electric and electronic devices are on the trend of high integration, multifunctionalization and miniaturization. Such electric and electronic devices require countermeasures against abnormal overvoltages, such as lightning and surges, which are mainly solved by employing surge protectors.

서지보호기는 이상 과전압 발생시 기기의 내전압 이하로 억제하여 기기의 소손을 예방하고 정상 동작을 유지토록 하는 장치이다. 서지보호기는 MOV(Metal Oxide Varistor)로 지칭되는 서지보호소자로 구성되는데, 이 서지보호소자는 서지 등의 이상 과전압에 대해서는 전압 억제 기능을 원활히 수행하지만, 정격을 초과하는 상용주파수의 일시적 과전압(예컨대, 계통의 지락이나 고장시)에 대해서는 그 기능을 수행하지 못하고 열화됨은 물론이고, 큰 서지전류에 대한 빈번한 동작에 의해서도 열화가 진행된다. 이와 같이 열화된 서지보호소자는, 임피던스가 매우 낮은 상태로 그 특성이 변화하게 되는바, 단락이나 화재와 같은 2차적인 사고로 이어질 가능성이 있다.A surge protector is a device that prevents damage to the device and maintains normal operation by suppressing it below the withstand voltage of the device when an abnormal overvoltage occurs. The surge protector consists of a surge protection device called MOV (Metal Oxide Varistor). The surge protection device smoothly performs voltage suppression function against abnormal overvoltage such as surge, but the transient overvoltage of commercial frequency exceeding the rated voltage (eg, In case of a ground fault or failure, the system may not perform its function and may be deteriorated, and the deterioration may be caused by frequent operation for a large surge current. Since the deteriorated surge protection device changes its characteristics with a very low impedance, it may lead to secondary accidents such as a short circuit and a fire.

현재 국내외에서 적용되고 있는 서지보호기는 대부분 서지보호 기능만을 갖추고 있을 뿐이다. 따라서 서지보호소자의 열화상태를 파악하기가 용이치 않다.Most surge protectors currently applied at home and abroad have only a surge protection function. Therefore, it is not easy to grasp the deterioration state of the surge protection device.

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 서지보호소자의 열화상태를 용이하게 검출할 수 있는 모듈을 제공한다.The present invention has been made in view of the above problems, and provides a module that can easily detect a deterioration state of a surge protection device.

이를 위한 본 발명의 열화상태 검출모듈은 기본적으로, 서지보호소자의 양단에 병렬·접속되어 서지보호소자에 인가된 전압을 분압하는 용량성 분압부와, 용량성 분압부의 분압노드에 접속되어 용량성 분압부에 흐르는 용량성 누설전류를 검출하는 미분형 전류검출부와, 서지보호소자에 흐르는 전체 누설전류를 검출하는 CT, 그리고 서지보호소자 내부의 표유정전용량과 용량성 분압부의 합성정전용량에 의한 비례상수를 반영한 용량성 누설전류에 전체 누설전류를 가산하여 서지보호소자의 저항성 누설전류를 산출하는 연산부를 포함한다.The deterioration detection module of the present invention basically has a capacitive voltage divider which is connected in parallel to both ends of the surge protection device to divide the voltage applied to the surge protection device, and is connected to the voltage divider node of the capacitive voltage divider. The differential current detection unit detects the capacitive leakage current flowing in the voltage dividing unit, the CT detecting the total leakage current flowing in the surge protection element, and the surface capacitance capacitance inside the surge protection element and the combined capacitance of the capacitive voltage dividing unit. And a calculation unit for calculating the resistive leakage current of the surge protection device by adding the total leakage current to the capacitive leakage current reflecting the proportional constant.

한편, 본 발명의 열화상태 검출방법은 크게, 서지보호소자에 병렬·접속된 용량성 분압부로부터 용량성 누설전류를 산출하고, CT로부터 서지보호소자에 흐르는 전체 누설전류를 산출하는 제1 과정과, 서지보호소자의 표유정전용량과 용량성 분압부의 합성정전용량으로부터 비례상수를 산출하는 제2 과정, 그리고 용량성 누설전류에 비례상수를 반영한 후, 전체 누설전류와 가산하여 서지보호소자의 저항성 누설전류를 산출하는 제3 과정으로 이루어진다.On the other hand, the deterioration state detection method of the present invention is largely the first process of calculating the capacitive leakage current from the capacitive voltage divider connected in parallel to the surge protection element, and calculating the total leakage current flowing through the surge protection element from the CT; In the second process of calculating the proportional constant from the surface capacitance of the surge protection device and the composite capacitance of the capacitive voltage divider, and reflecting the proportional constant to the capacitive leakage current, the resistance of the surge protection device is added to the total leakage current. The third process is to calculate the leakage current.

본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. In the meantime, when it is determined that the detailed description of the known functions and configurations related to the present invention may unnecessarily obscure the subject matter of the present invention, it should be noted that the detailed description is omitted.

첨부도면 도 1은 본 발명의 열화상태 검출모듈에 대한 기능적 블록도이다. 도면과 같이 열화상태 검출모듈(100)은, 서지보호소자(MOV)에 병렬·접속되는 용량 성 분압부(110), 미분형 전류검출부(120), 제1 저역필터(L1), CT(130), 차동 증폭부(F), 제2 저역필터(L2), 연산부(140) 및 출력부(150)를 포함한다.1 is a functional block diagram of a degradation state detection module of the present invention. As shown in the drawing, the deterioration state detection module 100 includes a capacitive voltage divider 110, a differential current detector 120, a first low pass filter L1, and a CT 130 connected in parallel with a surge protection device MOV. ), A differential amplifier (F), a second low pass filter (L2), the calculation unit 140 and the output unit 150.

구체적으로, 용량성 분압부(110)는 서지보호소자(MOV)의 양단에 병렬·접속되어 상기 서지보호소자에 인가된 전압을 분압한다. 용량성 분압부(110)는 도 2에 예시된 바와 같이 커패시터 C1 및 커패시터 C2의 일단이 분압노드를 형성토록 구성된다. 여기서, 서지보호소자(MOV)는 양단에 걸리는 전압에 따라 비선형적으로 임피던스가 변하는 특성을 이용하여 서지전압을 제한하는 소자로서, 도 3과 같은 등가회로로 표현할 수 있다. 서지보호소자는 '저항 R'과 '커패시터 CS'의 병렬로 표현된다. Specifically, the capacitive voltage divider 110 is connected in parallel to both ends of the surge protection device MOV to divide the voltage applied to the surge protection device. The capacitive voltage divider 110 is configured such that one end of the capacitor C 1 and the capacitor C 2 form a divided node as illustrated in FIG. 2. Here, the surge protection device (MOV) is a device for limiting the surge voltage by using the characteristic that the impedance varies nonlinearly according to the voltage applied to both ends, it can be represented by an equivalent circuit as shown in FIG. The surge protection device is represented by the parallel of 'resistance R' and 'capacitor C S '.

도 3에서 서지보호소자에 앞서 언급한 용량성 분압부(110)가 병렬·접속되어 있는데, 이때 서지보호소자에 흐르는 전체 누설전류 Itotal은 다음의 수학식과 같이 저항 R에 흐르는 저항성 누설전류 IR, 표유정전용량 CS에 흐르는 표유정전용량성 누설전류 ICS, 그리고 용량성 분압부(110)에 흐르는 용량성 누설전류 IC12의 합으로 산출된다.In FIG. 3, the capacitive voltage divider 110 described above is connected in parallel and connected to the surge protection device. In this case, the total leakage current I total flowing through the surge protection device is the resistive leakage current I R flowing through the resistor R as shown in the following equation. Is calculated by the sum of the surface static capacitance leakage current I CS flowing in the surface static capacitance C S and the capacitive leakage current I C12 flowing in the capacitive voltage divider 110.

Figure 112007036566119-pat00001
....................................... [수학식 1]
Figure 112007036566119-pat00001
....................................... Equation 1

위 [수학식 1]에서 저항성 누설전류 IR을 알게 되면, 서지보호소자의 열화상태를 측정할 수 있게 되는 것이다. [수학식 1]은 아래의 [수학식 2]로 정리될 수 있으며, 용량성 누설전류 IC12는 [수학식 3]과 같이 분압된 전압 VC2의 미분형으로 정리될 수 있다.Knowing the resistive leakage current I R in [Equation 1], it is possible to measure the deterioration state of the surge protection device. Equation 1 may be summarized as Equation 2 below, and the capacitive leakage current I C12 may be summarized as a differential form of the divided voltage V C2 as shown in Equation 3.

Figure 112007036566119-pat00002
....................................... [수학식 2]
Figure 112007036566119-pat00002
....................................... Equation (2)

Figure 112007036566119-pat00003
........................................... [수학식 3]
Figure 112007036566119-pat00003
................................. [ Equation 3 ]

[수학식 3]에서 분압된 전압 VC2는 다음의 [수학식 4]로부터 계산될 수 있다.The voltage V C2 divided in [Equation 3] can be calculated from the following [Equation 4].

Figure 112007036566119-pat00004
........................................... [수학식 4]
Figure 112007036566119-pat00004
................................. [ Equation 4 ]

한편, 미분형 전류검출부(120)는 용량성 분압부(110)의 분압노드에 접속되어 상기한 용량성 누설전류(IC12)를 산출한다. 이를 위한 개략적 회로구성은 첨부도면 도 4와 같다. 도 4에서 미분형 전류검출부(120)는, 그 일단이 용량성 분압부(110)의 분압노드와 접속된 커패시터 C3, 그리고 C3의 타단을 반전입력으로 받고 피드백 저항 R1을 구성한 증폭기 A1로 이루어진다.On the other hand, the differential current detector 120 is connected to the divided node of the capacitive voltage divider 110 to calculate the capacitive leakage current I C12 described above. A schematic circuit configuration for this is shown in FIG. 4. A differential current detector 120 in Fig. 4, and one end of the capacitance of the capacitor connected to the partial pressure node of St. partial portion (110), C 3, and an amplifier receiving the other end of the C 3 to the inverting input configured feedback resistor R 1 A Consists of 1

상기한 미분형 전류검출부(120)의 입력전압을 VI, 출력전압을 VO라 하면 아래의 [수학식 5]로 표현된다.When the input voltage of the differential current detection unit 120 is V I and the output voltage is V O , it is represented by Equation 5 below.

Figure 112007036566119-pat00005
......................................... [수학식 5]
Figure 112007036566119-pat00005
................................... [Equation 5]

이 식을 [수학식 3]에 대입하여 정리하면, 용량성 누설전류(IC12)는 아래와 같이 미분형 전류검출부(120)의 출력전압의 비로 나타낼 수 있다.By substituting this equation into [Equation 3], the capacitive leakage current I C12 can be expressed as the ratio of the output voltage of the differential current detection unit 120 as follows.

Figure 112007036566119-pat00006
......................................... [수학식 6]
Figure 112007036566119-pat00006
................................... [Equation 6]

또한, 용량성 분압부(110)의 합성정전용량을 C12라 하면 표유정전용량성 누설전류(ICS)는 다음의 [수학식 7]로 표현된다.In addition, when the composite capacitance of the capacitive voltage divider 110 is C 12 , the surface static capacitive leakage current I CS is expressed by Equation 7 below.

Figure 112007036566119-pat00007
............................................ [수학식 7]
Figure 112007036566119-pat00007
............................................ [Equation 7]

여기서,

Figure 112007036566119-pat00008
이다. 따라서 [수학식 2]의 저항성 누설전류(IR)는 아래의 [수학식 8]로 정리된다.here,
Figure 112007036566119-pat00008
to be. Therefore, the resistive leakage current I R of Equation 2 is summarized by Equation 8 below.

Figure 112007036566119-pat00009
.................................... [수학식 8]
Figure 112007036566119-pat00009
......................... [Equation 8]

위 [수학식 8]을 고찰해 보면, CS는 임피던스 분석기(또는 제조사가 제공하는 데이터시트 이용)로 측정할 수 있는 기지의 값이며, C1 및 C2, 그리고 C12 역시 기지의 값이다. 전체 누설전류(Itotal)는 아래의 CT(130)를 통해 용이하게 검출된다. 또한, [수학식 8]에서

Figure 112007036566119-pat00010
는 비례상수로서 설정할 수 있으며 이는 후술하는 연산부에서 이용된다. 즉, 상술한 미분형 전류검출부(120)가 검출한 용량성 누설전류(IC12)와, CT(140)가 검출한 전체 누설전류(Itotal)를 통해 서지보호소자(MOV)의 저항성 누설전류(IR)를 산출할 수 있게 되는 것이다.Considering Equation 8 above, C S is a known value that can be measured by an impedance analyzer (or a data sheet provided by the manufacturer), and C 1 and C 2 , and C 12 are also known values. . The total leakage current I total is easily detected through the CT 130 below. In addition, in [Equation 8]
Figure 112007036566119-pat00010
May be set as a proportional constant, which is used in a calculation unit described later. That is, the resistive leakage current of the surge protection device MOV through the capacitive leakage current I C12 detected by the differential current detection unit 120 described above and the total leakage current I total detected by the CT 140. (I R ) can be calculated.

한편, 도 1에 도시된 제1 저역필터(L1)는 미분형 전류검출부(120)로부터 출 력되는 신호에서 노이즈를 제거하는 기능을 수행한다.Meanwhile, the first low pass filter L1 illustrated in FIG. 1 performs a function of removing noise from a signal output from the differential current detector 120.

CT(140)는 'Current Transformer'로서 앞서 언급한 바와 같이 전체 누설전류(Itotal)를 검출하며, 검출된 전체 누설전류는 차동 증폭부(F)를 통해 동상모드 노이즈가 제거되고, 제2 저역필터(L2)를 거쳐 연산부(140)로 인가된다.The CT 140 detects the total leakage current I total as described above as a 'Current Transformer', and the detected total leakage current is removed from the common-mode noise through the differential amplification unit F, and the second low range. The filter L2 is applied to the calculation unit 140.

연산부(140)는 첨부도면 도 5에 예시한 개략적 회로구성과 같이, 제1 저역필터(L1)와 제2 저역필터(L2)의 출력신호(전체 누설전류, 용량성 누설전류)를 가산하여 출력한다. 도 5를 살피면, 각 일단이 제1 저역필터(L1)와 제2 저역필터(L2)에 각각 접속되며 각 타단이 가산노드로서 접속되는 저항 R2 및 저항 R3, 그리고 가산노드를 반전으로 입력받고 피드백 저항 R4를 구성한 증폭기 A2로 이루어진다. The calculating unit 140 adds and outputs the output signals (total leakage current, capacitive leakage current) of the first low pass filter L1 and the second low pass filter L2, as shown in the schematic circuit illustrated in FIG. 5. do. Referring to FIG. 5, each end is connected to the first low pass filter L1 and the second low pass filter L2, and the other end is connected to the resistor R 2 and the resistor R 3 , and the addition node is inverted. And amplifier A 2 which constitutes feedback resistor R 4 .

미분형 전류검출부(120)는 반전증폭 회로를 형성하기 때문에 도 6과 같이 용량성 누설전류는 전체 누설전류와 약 180도의 위상차를 갖는다. 따라서 연산부(140)는 도 5에 예시한 가산기의 회로구성으로 구현될 수 있다. 여기서, 저항 R2와 R4, 그리고 저항 R3과 R4의 비율을 통해 [수학식 8]의 비례상수를 용이하게 설정할 수 있다.Since the differential current detector 120 forms an inverted amplifier circuit, as shown in FIG. 6, the capacitive leakage current has a phase difference of about 180 degrees with the total leakage current. Therefore, the calculating unit 140 may be implemented by the circuit configuration of the adder illustrated in FIG. 5. Here, the proportional constant of [Equation 8] can be easily set through the ratio of the resistors R 2 and R 4 , and the resistors R 3 and R 4 .

출력부(150)는 연산부(140)로부터 출력되는 저항성 누설전류를 LCD와 등의 표시수단으로 출력한다. 이에 의해 사용자(또는 관리자)는 서지보호기의 상태를 비롯한 교체시기 등의 정보를 용이하게 파악할 수 있게 됨으로, 유지관리의 편의성은 물론이고 열화된 서지보호기의 방치에 따른 단락사고 등을 예방할 수 있게 된다.The output unit 150 outputs the resistive leakage current output from the calculating unit 140 to display means such as an LCD and the like. As a result, the user (or administrator) can easily grasp information such as the status of the surge protector and the replacement time, thereby making it easy to maintain and prevent short circuit accidents due to the neglect of the deteriorated surge protector. .

참고적으로 첨부도면 도 7은 서지보호소자(MOV)에 대한 뇌임펄스 인가시험 후, 정격전압 인가시 측정된 저항성 누설전류 파형의 예를 보이고 있다. For reference, FIG. 7 shows an example of a resistive leakage current waveform measured when a rated voltage is applied after a brain impulse application test for a surge protection device (MOV).

이하, 서지보호소자의 열화상태 검출방법에 대해 도 8을 참조하여 정리한다.Hereinafter, the deterioration state detection method of the surge protection device will be described with reference to FIG.

먼저, 서지보호소자(MOV)에 병렬·접속된 용량성 분압부(110)로부터 용량성 누설전류를 산출하고(S110), CT(130)로부터 상기 서지보호소자(MOV)에 흐르는 전체 누설전류를 산출한다(S120).First, a capacitive leakage current is calculated from the capacitive voltage divider 110 connected in parallel to the surge protection device MOV (S110), and the total leakage current flowing from the CT 130 to the surge protection device MOV is calculated. It calculates (S120).

서지보호소자 내부의 표유정전용량 CS와 용량성 분압부의 합성정전용량 C12로부터 비례상수를 산출한다(S130). 이때의 비례상수는 [수학식 8]에서 보인 바와 같은

Figure 112007036566119-pat00011
이다.The proportionality constant is calculated from the surface static capacitance C S inside the surge protection device and the composite capacitance C 12 of the capacitive voltage divider (S130). The proportional constant at this time is as shown in [Equation 8]
Figure 112007036566119-pat00011
to be.

이어서, 전체 누설전류와 용량성 누설전류를 가산하여 서지보호소자(MOV)의 저항성 누설전류를 산출한다(S140). 여기서 용량성 누설전류에는 S130 과정의 비례상수가 반영된다.Subsequently, the total leakage current and the capacitive leakage current are added to calculate the resistive leakage current of the surge protection device MOV (S140). The capacitive leakage current reflects the proportional constant of the S130 process.

상술한 본 발명에 따르면, 서지보호소자의 열화상태를 검출할 수 있으므로 서지보호기에 대한 객관적이고 원활한 유지관리를 도모할 수 있다.According to the present invention described above, since the deterioration state of the surge protection device can be detected, objective and smooth maintenance of the surge protection device can be achieved.

이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다. As described above and described with reference to a preferred embodiment for illustrating the technical idea of the present invention, the present invention is not limited to the configuration and operation as shown and described as described above, it is a deviation from the scope of the technical idea It will be understood by those skilled in the art that many modifications and variations can be made to the invention without departing from the scope of the invention. Accordingly, all such suitable changes and modifications and equivalents should be considered to be within the scope of the present invention.

Claims (9)

서지보호소자의 열화상태를 검출하기 위한 모듈에 있어서,A module for detecting a deterioration state of a surge protection device, 상기 서지보호소자의 양단에 병렬·접속되어 서지보호소자에 인가된 전압을 분압하는 용량성 분압부;A capacitive voltage divider which is connected in parallel to both ends of the surge protection device to divide the voltage applied to the surge protection device; 상기 용량성 분압부의 분압노드에 접속되어 용량성 분압부에 흐르는 용량성 누설전류를 검출하는 미분형 전류검출부;A differential current detection unit connected to the voltage dividing node of the capacitive voltage divider and detecting a capacitive leakage current flowing in the capacitive voltage divider; 상기 서지보호소자에 흐르는 전체 누설전류를 검출하는 CT;A CT for detecting a total leakage current flowing through the surge protection element; 상기 서지보호소자 내부의 표유정전용량과 용량성 분압부의 합성정전용량에 의한 비례상수를 반영한 용량성 누설전류에 상기 전체 누설전류를 가산하여 상기 서지보호소자의 저항성 누설전류를 산출하는 연산부;A calculation unit for calculating the resistive leakage current of the surge protection element by adding the total leakage current to the capacitive leakage current reflecting a proportional constant by the surface static capacitance inside the surge protection element and the composite capacitance of the capacitive voltage divider; 상기 미분형 전류검출부의 출력으로부터 노이즈를 제거하는 제1 저역필터;A first low pass filter for removing noise from an output of the differential current detector; 상기 CT의 출력으로부터 동상모드 노이즈를 제거하는 차동 증폭부;A differential amplifier for removing in-phase mode noise from the output of the CT; 상기 차동 증폭부의 출력으로부터 노이즈를 제거하는 제2 저역필터; 및 A second low pass filter for removing noise from an output of the differential amplifier; And 상기 연산부의 출력을 인가받아 표시수단으로 출력하는 출력부; 를 포함하되,An output unit receiving the output of the operation unit and outputting the output to the display unit; Including but not limited to: 상기 연산부는, 일단이 상기 미분형 전류검출부의 출력을 인가받는 저항 R2 및 저항 R3, 상기 저항 R2 및 저항 R3의 타단을 반전입력으로 받고 피드백 저항 R4를 구성한 증폭기 A2를 포함하여 구성되는 것을 특징으로 하는 서지보호소자의 열화상태 검출모듈.The calculation unit includes an amplifier A 2 having one end configured to receive a resistor R 2 and a resistor R 3 to which the output of the differential current detection unit is applied, the other end of the resistor R 2 and the resistor R 3 as an inverting input, and configure a feedback resistor R 4 . Deterioration detection module of the surge protection device, characterized in that configured to. 삭제delete 삭제delete 청구항 1에 있어서,The method according to claim 1, 상기 용량성 분압부는,The capacitive partial pressure unit, 각 일단이 분압노드로서 접속되는 커패시터 C1 및 커패시터 C2를 포함하여 구성되는 것을 특징으로 하는 서지보호소자의 열화상태 검출모듈.And a capacitor C 1 and a capacitor C 2 , each end of which is connected as a voltage divider node. 청구항 1에 있어서,The method according to claim 1, 상기 미분형 전류검출부는,The differential current detection unit, 일단이 상기 용량성 분압부의 분압노드와 접속되는 커패시터 C3, 및 상기 커패시터 C3의 타단을 반전입력으로 받고 피드백 저항 R1을 구성한 증폭기 A1을 포함하여 구성되는 것을 특징으로 하는 서지보호소자의 열화상태 검출모듈.A capacitor C 3 , one end of which is connected to the voltage dividing node of the capacitive voltage divider, and an amplifier A 1 receiving the other end of the capacitor C 3 as an inverting input and configured a feedback resistor R 1 . Deterioration detection module. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020070048441A 2007-05-18 2007-05-18 Module for detecting electrical degradation current of metal oxide varistor KR100900734B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070048441A KR100900734B1 (en) 2007-05-18 2007-05-18 Module for detecting electrical degradation current of metal oxide varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070048441A KR100900734B1 (en) 2007-05-18 2007-05-18 Module for detecting electrical degradation current of metal oxide varistor

Publications (2)

Publication Number Publication Date
KR20080102083A KR20080102083A (en) 2008-11-24
KR100900734B1 true KR100900734B1 (en) 2009-06-05

Family

ID=40288045

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070048441A KR100900734B1 (en) 2007-05-18 2007-05-18 Module for detecting electrical degradation current of metal oxide varistor

Country Status (1)

Country Link
KR (1) KR100900734B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268355B1 (en) 2013-02-15 2013-06-04 선광엘티아이(주) Failure prediction system of spd

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938460B1 (en) * 2009-03-12 2010-01-25 (주)서일유니컴 Portable apparatus for inspecting surge protector
KR101182596B1 (en) 2010-12-28 2012-09-18 주식회사 성진테크윈 Apparatus and Method for displaying life of a surge protector
KR101413561B1 (en) * 2012-11-14 2014-07-04 한국전기연구원 Reliability Estimation Apparatus and Method of Surge Protective Device for Power and Signal
KR101324086B1 (en) * 2013-04-15 2013-10-31 한국산업은행 Multi-mode tov testing system
CN107144745A (en) * 2017-05-08 2017-09-08 台州学院 A kind of intelligent on-line detection method of low-tension supply Surge Protector performance
KR102395261B1 (en) * 2020-06-09 2022-05-10 한국전자통신연구원 Apparatus and method of degradation diagnosis for a power-line filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000037145A (en) * 2000-04-10 2000-07-05 정재기 A new diagnostic technique and equipment for lightning arrester by leakage current harmonic analysis on power service
JP2004120833A (en) * 2002-09-24 2004-04-15 Toko Electric Corp Voltage detection and deterioration diagnostic device
KR20040061774A (en) * 2002-12-31 2004-07-07 주식회사 효성 Deterioration daiagnosis measuring apparatus for lightning arrester according by using leakage current wave height analysis
KR20050003804A (en) * 2003-07-04 2005-01-12 학교법인 인하학원 Method and Device for measuring resistive leakage current by time-delay synthesis method in deciding the deterioration diagnosis of arrester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000037145A (en) * 2000-04-10 2000-07-05 정재기 A new diagnostic technique and equipment for lightning arrester by leakage current harmonic analysis on power service
JP2004120833A (en) * 2002-09-24 2004-04-15 Toko Electric Corp Voltage detection and deterioration diagnostic device
KR20040061774A (en) * 2002-12-31 2004-07-07 주식회사 효성 Deterioration daiagnosis measuring apparatus for lightning arrester according by using leakage current wave height analysis
KR20050003804A (en) * 2003-07-04 2005-01-12 학교법인 인하학원 Method and Device for measuring resistive leakage current by time-delay synthesis method in deciding the deterioration diagnosis of arrester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268355B1 (en) 2013-02-15 2013-06-04 선광엘티아이(주) Failure prediction system of spd

Also Published As

Publication number Publication date
KR20080102083A (en) 2008-11-24

Similar Documents

Publication Publication Date Title
KR100900734B1 (en) Module for detecting electrical degradation current of metal oxide varistor
KR101086878B1 (en) Method for measuring resistive leakage current of nonlinear device lightning arrester with differential and apparatus thereof
JP6422642B2 (en) Battery tester
JP5075930B2 (en) Output circuit of charge change type sensor
CN102156241B (en) On-line monitoring unit for leakage current of zinc oxide arrester
US5914662A (en) Circuit and method for indicating the remaining suppressing capacity of a multiple-element transient-voltage protection device
JP5253687B1 (en) Voltage detector
KR20130090776A (en) Apparatus and method for measuring the dissipation factor of an insulator
JP5106266B2 (en) Lightning arrester leakage current condition monitoring device
KR100930552B1 (en) Surge protection device and remote monitoring system for it
JPWO2013179479A1 (en) Voltage detector for substation equipment
US8952825B2 (en) Monitoring device for an ungrounded power network of a photovoltaic system
CN110907713A (en) Surge protector detection
CN110907797A (en) Method and apparatus for circuit detection
US10345372B2 (en) Devices and methods for surge protection device monitoring
CN109900985A (en) The decision-making system and determination method of surge protector degradation
KR100925342B1 (en) Surge protector for power with power state quality monitoring function
KR101253226B1 (en) Low capacitance type surge protect for communication and tm/tc communication line
JP3602296B2 (en) Lightning arrester leakage current measuring device
KR102634953B1 (en) Portable test device for Surge protective device
JP5348695B2 (en) Overvoltage protection element failure detection circuit and subscriber circuit
JP2943465B2 (en) Lightning arrester failure monitoring device
US8995623B2 (en) Communication line testing with protective devices in place
CN209055594U (en) A kind of lightning arrester monitoring device and system
US10700508B2 (en) Protection apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130528

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140528

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150528

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160525

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170524

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180524

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190528

Year of fee payment: 11