KR100896401B1 - Nanocomposite for multi layer container having excellent resistance against exfoliation - Google Patents

Nanocomposite for multi layer container having excellent resistance against exfoliation Download PDF

Info

Publication number
KR100896401B1
KR100896401B1 KR1020070141594A KR20070141594A KR100896401B1 KR 100896401 B1 KR100896401 B1 KR 100896401B1 KR 1020070141594 A KR1020070141594 A KR 1020070141594A KR 20070141594 A KR20070141594 A KR 20070141594A KR 100896401 B1 KR100896401 B1 KR 100896401B1
Authority
KR
South Korea
Prior art keywords
nanocomposite
group
layered silicate
layer
mxd6
Prior art date
Application number
KR1020070141594A
Other languages
Korean (ko)
Inventor
남경우
김정곤
김태훈
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020070141594A priority Critical patent/KR100896401B1/en
Priority to RU2008150428/04A priority patent/RU2430939C2/en
Priority to CN2008101894985A priority patent/CN101475745B/en
Application granted granted Critical
Publication of KR100896401B1 publication Critical patent/KR100896401B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Abstract

본 발명은 박리저항성이 우수한 다층용기용 나노복합재 조성물에 관한 것으로서, 상세하게는 내구성, 투명성, 가스차단성, 박리저항성이 우수한 다층용기를 제조하기 위한 나노복합재 조성물에 관한 것이다.The present invention relates to a nanocomposite composition for multilayer containers excellent in peel resistance, and more particularly, to a nanocomposite composition for producing a multilayer container excellent in durability, transparency, gas barrier properties, and peel resistance.

상기된 목적을 달성하기 위하여, 본 발명에 의한 나노복합재 조성물은 메타크실렌기를 함유한 폴리아미드 수지인 MXD6 또는 메타크실렌기와 아이소프탈릭 에시드를 함유하고 있는 MXDI 60 내지 99wt%에 다층용기에서의 박리저항성향상용으로 Nylon6, Nylon66, Nylon6/12, 6I/6T 및 이의 공중합체로 구성된 일군으로부터 선택된 1종이상 40 내지 1wt%를 혼합한 혼합물에 유기화 처리된 층상 실리케이트가 상기 혼합물 100중량부에 대하여 0.5 내지 10중량부 첨가된 것을 특징으로 한다. In order to achieve the above object, the nanocomposite composition according to the present invention is a resistance to peeling in a multi-layer container in MXD6, which is a polyamide resin containing a metha xylene group, or MXDI 60 to 99 wt% containing a methaxylene group and an isophthalic acid. Organic silicate layered silicate in a mixture of at least one selected from the group consisting of Nylon6, Nylon66, Nylon6 / 12, 6I / 6T, and copolymers thereof, for improving, from 40 to 1 wt%, from 0.5 to 100 parts by weight of the mixture. It is characterized by the addition of 10 parts by weight.

나노복합재, 다층용기, 박리, MXD6, MXDI Nanocomposite, Multi-layer Container, Peeling, MXD6, MXDI

Description

박리저항성이 우수한 다층용기용 나노복합재 조성물{Nanocomposite for multi layer container having excellent resistance against exfoliation } Nanocomposite for multi layer container having excellent resistance against exfoliation

본 발명은 박리저항성이 우수한 다층용기용 나노복합재 조성물에 관한 것으로서, 상세하게는 내구성, 투명성, 가스차단성, 박리저항성이 우수한 다층용기를 제조하기 위한 나노복합재 조성물에 관한 것이다.The present invention relates to a nanocomposite composition for multilayer containers excellent in peel resistance, and more particularly, to a nanocomposite composition for producing a multilayer container excellent in durability, transparency, gas barrier properties, and peel resistance.

종래 PET계 수지제의 용기는, 성형성, 투명성, 내약품성, 내열성, 기계적 강도 등이 우수하기 때문에 식료품, 음료, 약품등에 포장용 필름이나 용기등으로 널리 사용되고 있다. 그러나 이러한 PET계 수지는 기체 차단성에 한계가 있기 때문에 토마토 함유 제품(케찹, 토마토 소스), 쥬스(과일 및 채소 쥬스), 알콜계 탄산 음료(맥주, 맥아음료, 샴페인) 및 온장고용 음료(커피, 차) 등처럼 높은 기체 차단성이 요구되는 분야에는 사용이 제한되는 문제점이 있었다.Conventionally, PET-based resin containers are widely used in foodstuffs, beverages, medicines, etc. as packaging films, containers, etc. because of their excellent moldability, transparency, chemical resistance, heat resistance, mechanical strength, and the like. However, these PET-based resins have limited gas barrier properties, such as tomato-containing products (ketchup, tomato sauce), juices (fruit and vegetable juice), alcoholic carbonated drinks (beer, malt drink, champagne), and beverages for warming up (coffee, There is a problem that the use is limited in the field that requires high gas barrier properties such as car.

이러한 문제를 해결하기 위한 방안의 하나로서, 다층용기를 제조하는 방법이 제시되었다. 즉, 열가소성 폴리에스테르 수지층 안에 1층의 배리어물질을 중간층으로 구성되는 구조를 갖는 다층용기를 제조하여 용기의 가스차단성을 극대화시키는 것이다.As one of the methods for solving this problem, a method of manufacturing a multilayer container has been proposed. In other words, to maximize the gas barrier properties of the container by producing a multilayer container having a structure consisting of an intermediate layer of one layer of barrier material in the thermoplastic polyester resin layer.

일본 공개특허공보 소56-64839호에는, 외층 및 내층이 PET층으로 이루어지고, 중간층이 메타크실렌기 함유 폴리아미드 수지로 구성된 다층구조의 프리폼을 형성하고, 이축 연신 블로우 성형하여 다층용기를 제조하는 방법이 제안되어 있다. MXD6 나일론은 융점이 PET의 융점에 가깝기 때문에, 폴리에스트레르와의 조합으로 매우 양호한 성형성을 나타낸다. 또한 두 수지의 유리온도가 비슷하기 때문에 연신 블로우 성형시의 적정 성형온도의 설정이 용이하다. Japanese Laid-Open Patent Publication No. 56-64839 discloses a multi-layer container which forms a preform having a multi-layer structure consisting of a polyamide resin containing an outer layer and an inner layer with a PET layer, and an intermediate layer made of a methacrylic group-containing polyamide resin. A method is proposed. Since MXD6 nylon has a melting point close to that of PET, it shows very good moldability in combination with polyester. In addition, since the glass temperatures of the two resins are similar, it is easy to set an appropriate molding temperature at the time of blow blow molding.

그러나 일반적으로 사용되는 가스배리어수지(MXD6, Aegis)등을 사용하여 다층용기를 제조할 경우 단층 PET 용기보다는 우수한 가스 배리어성을 확보할 수 있으나, 상기된 가스에 민감한 프리미엄급 음료, 즉, 맥주, 커피, 차등의 음료에 적용시 다층용기의 차단성을 강화시키기 위하여 사용되는 가스배리어 수지의 함량을 증량하여 코스트 증가하고 재활용 문제가 발생할 수 있으며, 배리어 수지 증량에 따른 유사융착성 저하로 배리어성 수지(MDX6, Aegis)와 PET층의 박리저항성이 약해진다.However, when manufacturing multi-layer containers using gas barrier resins (MXD6, Aegis), which are generally used, it is possible to secure superior gas barrier properties than single-layer PET containers. When applied to beverages such as tea and other beverages, increasing the content of the gas barrier resin used to enhance the barrier properties of the multi-layer container may increase the cost and may cause recycling problems, and the barrier resin ( Peeling resistance of MDX6, Aegis) and PET layer becomes weak.

따라서 상기 공보에 기술된 나타난 방법으로 프리폼을 제조할 경우, 폴리에스테르층과 폴리아미드층의 접착성이 불량하여, 프리폼 구성상태가 불량해져 최종 성형된 다층용기의 내구성이 불량해져 폴리에스테르층과 폴리아미드층의 층분리 및 다층용기 성형성이 불량할 수 있다. 또한 배리어성이 취약하여 고차단성을 요구하 는 음료의 가스차단성을 유지하기 위하여 많은 함량의 배리어 물질을 사용하여 고가의 비용이 필요하다. Therefore, when the preform is manufactured by the method described in the above publication, the adhesion between the polyester layer and the polyamide layer is poor, the preform configuration is poor, and the durability of the final molded multi-layer container is poor. Layer separation of the amide layer and multi-layer container formability may be poor. In addition, a high barrier cost is required to maintain the gas barrier properties of beverages that require high barrier properties due to their poor barrier properties.

본 발명은 상기된 문제점을 해결하기 위하여 발명된 것으로서, 다층용기에서 적은 량을 사용하면서도 우수한 가스차단성을 유지하고 다른 층과 쉽게 박리되지 않는 배리어물질을 제조하기 위한 나노복합재 조성물을 제공함에 그 목적이 있다. The present invention has been invented to solve the above problems, the object of the present invention is to provide a nanocomposite composition for producing a barrier material that maintains excellent gas barrier properties and does not easily peel off from other layers while using a small amount in a multilayer container. have.

상기된 목적을 달성하기 위하여, 본 발명에 의한 나노복합재 조성물은 메타크실렌기를 함유한 폴리아미드 수지인 MXD6 또는 메타크실렌기와 아이소프탈릭 에시드를 함유하고 있는 MXDI 60 내지 99wt%에 다층용기에서의 박리저항성향상용으로 Nylon6, Nylon66, Nylon6/12, 6I/6T 및 이의 공중합체로 이루어진 군으로부터 선택되어지는 1종이상 40 내지 1wt%를 혼합한 혼합물에 유기화 처리된 층상 실리케이트가 상기 혼합물 100중량부에 대하여 0.5 내지 10중량부 첨가된 것을 특징으로 한다. In order to achieve the above object, the nanocomposite composition according to the present invention is a resistance to peeling in a multi-layer container in MXD6, which is a polyamide resin containing a metha xylene group, or MXDI 60 to 99 wt% containing a methaxylene group and an isophthalic acid. For the improvement, 100% by weight of the organic layered silicate was added to a mixture of at least one selected from the group consisting of Nylon6, Nylon66, Nylon6 / 12, 6I / 6T, and copolymers thereof. 0.5 to 10 parts by weight is added.

이하 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.

MXD6는 메타크실렌기를 함유하는 폴리아미드 수지로서, m-크실렌디아민과 아디프산으로부터 제조되며, 산소, 이산화탄소, 수증기등의 기체에 대한 차단성이 우수하여 포장용 필름 및 다층용기의 용도로 널리 사용되고 있다. 또한 MXD-6수지는 폴리에스테르 수지와의 사용성이 우수하고, 유리전이온도, 융점, 결정화속도가 폴리에스테르 수지와 비슷하기 때문에 폴리에스테르 수지와 조합하여 사용하기에 적 합한 수지이다. MXD6 is a polyamide resin containing a metha xylene group. It is made from m-xylenediamine and adipic acid, and has excellent barrier property against gases such as oxygen, carbon dioxide, and water vapor, and is widely used for packaging films and multilayer containers. . In addition, MXD-6 resin is suitable for use in combination with polyester resin because it has excellent usability with polyester resin and its glass transition temperature, melting point and crystallization rate are similar to polyester resin.

MXDI는 메카크실렌기와 아이소프탈릭 에시드를 함유하는 폴리 수지로서 m-크실렌디아님과 아이소프탈릭 에시드가 반응한 MXDI과 아디프산으로부터 MXD6가 제조된다. MXDI is a poly resin containing mechaxylene and isophthalic acid, and MXD6 is prepared from MXDI and adipic acid reacted with m-xylenedianim and isophthalic acid.

이러한 MXD6 또는 MXDI는 공지된 수지로서 공지의 방법에 의해 제조하거나 상업적인 공급처로부터 얻을 수 있는데, 그 중량비는 60 내지 99wt%이다. 나노 복합재 조성물 중 MXD6 또는 MXDI의 함량이 99wt%를 초과할 경우 유기화 층상실리케이트로 인하결정화도 증가를 제어 할수 없기 때문에 제병공정중 IR 가열공정 중 급속하게 결정화도가 증가하여 최종 성형된 용기의 내구성 및 안정성이 저하를 초례하게 된다. 이와 반대로 MXD6 또는 MXDI의 함량이 60wt% 미만일 경우 구성 성분 중 아로마틱 나일론 비율의 감소로 가스차단성의 급격한 감소가 발생된다. Such MXD6 or MXDI is a known resin which can be prepared by a known method or obtained from a commercial supplier, with a weight ratio of 60 to 99 wt%. When the content of MXD6 or MXDI in the nanocomposite composition exceeds 99wt%, it is not possible to control the increase of the crystallinity lowered by the organic layered silicate. The degradation is preceded. On the contrary, when the content of MXD6 or MXDI is less than 60wt%, a decrease in gas barrier property occurs due to a decrease in the ratio of aromatic nylon in the component.

유기화 처리된 층상실리케이트는 두께가 1nm, 길이는 500~1000nm정도의 나노크기의 클레이이다. 층상 실리케이트는 층과 층사이의 강한 인력으로 인하여 고분자 수지에 박리, 분산시키기가 어려우므로, 이를 해결하기 위하여 저분자량의 유기화제를 실리케이트 층상구조사이에 삽입시켜 유기화시켜서 유기화 처리된 층상실리케이트를 얻는다. 층상 실리케이트는 몬모릴로나이트(montmorllonite), 헥토라이트(hectorite), 바이델라이트(beidelite), 사포나이트(saponite), 노트로나이 트(nontronite), 마이카(mica), 불소화 마이카(fluoromica)등이 있으며, 이들 중에서 1종이상을 선택하는 것이 바람직하며, 유기물은 4차 암모늄(quaternary ammonium), 포스포늄(Phosphonium), 말레이에이트(maleate), 석시네이트(succinate), 아크릴레이트(acrylate), 벤질릭 하이드로젠(benzyic hydrogens) 및 옥사졸린(oxazoline)으로 이루어진 군의 작용기를 포함하는 유기물인 것이 바람직하다. The organically treated layered silicate is a nano-sized clay having a thickness of 1 nm and a length of 500 to 1000 nm. Since the layered silicate is difficult to peel and disperse in the polymer resin due to the strong attraction between the layers, in order to solve this problem, a low molecular weight organizing agent is intercalated between the silicate layered structures to give an organicized layered silicate. Layered silicates include montmorllonite, hectorite, beidelite, saponite, nontronite, mica and fluorinated mica. It is preferable to select one or more of them, and the organic material is quaternary ammonium, phosphonium, maleate, succinate, acrylate, acrylate, benzylic hydrogen ( It is preferable that the organic material including a functional group of the group consisting of benzyic hydrogens) and oxazoline.

이러한 유기화 처리된 층상실리케이트는 공지된 방법에 의해 생산되어지거나 상업적인 공급처로부터 얻을 수 있는데, 그 중량비는 상기 혼합물100중량부에 대하여 0.5 내지 10중량부이다. 유기화 처리된 층상실리케이트의 함량이 나노복합체의 10중량부를 초과할 경우 나노크기의 층상실리케이트가 고분자 수지내에 박리(exfoliated), 중간 삽입(intercalated) 형태의 박층(patelets)를 이루지 못하여 결정화도 향상으로 인한 투명도 저하 오히려 원하는 수준의 기체차단성을 확보할 수 없게 된다. 또한 1 중량부 미만인 경우는 본 발명에서 원하는 효과를 얻기 힘들다. Such organically treated layered silicates can be produced by known methods or obtained from commercial sources, the weight ratio being 0.5 to 10 parts by weight with respect to 100 parts by weight of the mixture. When the content of the organically treated layered silicate exceeds 10 parts by weight of the nanocomposite, the nano-sized layered silicate does not form exfoliated or intercalated forms of laminates in the polymer resin, thereby improving transparency due to improved crystallinity. Deterioration Rather, the desired level of gas barrier properties cannot be obtained. In addition, less than 1 part by weight, it is difficult to obtain the desired effect in the present invention.

폴리아미드는 그 주쇄를 이루는 구조단위가 아미드기에 의해 연결된 합성고분자를 말하여 아미드기로 연결된 구조단위가 주로 지방족 단량체로 이루어진 폴리아미드를 나일론이라고 한다. Polyamide refers to synthetic polymers in which the structural units constituting the main chain are linked by amide groups, and polyamides in which the structural units linked by amide groups mainly consist of aliphatic monomers are called nylon.

나일론은 나일론mn 및 나일론m으로 다시 나누어지는데 전자는 디카르복시산 및 디아민이 반응하여 아미드기를 형성하는 경우로 디아민에 포함된 탄소의 수를 m, 디카르복시산에 포함된 탄소의 수를 n으로 나타낸다. 또한, 아미드기는 아미민기와 카르복실산기를 동시에 갖는 단량체로부터도 형성될 수 있으며, 이때 단량체에 포함된 탄소의 수를 m이라고 하며, 이러한 폴리아미드는 나일론 m이라고 한다.Nylon is further subdivided into nylonmn and nylonm. In the former, dicarboxylic acid and diamine react to form an amide group. The number of carbons contained in diamine is represented by m and the number of carbons contained in dicarboxylic acid is represented by n. In addition, the amide group may be formed from a monomer having both an amine group and a carboxylic acid group, wherein the number of carbons contained in the monomer is called m, and such polyamide is called nylon m.

Nylon6은 카프로락탐을 개환중합하여 제조한다. Nylon66은 헥사메틸렌디아민과 아디핀산의 중축합 반응에 의해서 제조된다. Nylon12은 라우로락탐(Laurolatam) 개환중합하여 제조한다. 6I/6T는 헥사메틸렌디아민과 아이소프탈릭산 및 테레프탈릭산의 중축합 반응에 의해 제조된다. 공중합체는 2종 이상의 호모나일론의 원료로 제조되며, 결정성의 저하로 인하여 융점의 저하, 투명성 향상되는 특징을 가진다. Nylon 6 is prepared by ring-opening polymerization of caprolactam. Nylon66 is prepared by the polycondensation reaction of hexamethylenediamine with adipic acid. Nylon 12 is prepared by ring-opening polymerization of Laurolactam. 6I / 6T is prepared by the polycondensation reaction of hexamethylenediamine with isophthalic acid and terephthalic acid. The copolymer is made of two or more kinds of homonylon raw materials, and has a feature of lowering melting point and improving transparency due to a decrease in crystallinity.

본 발명에 의한 나노복합재 조성물의 제조방법은 Method for producing a nanocomposite composition according to the present invention

ⅰ) 메타크실렌기를 함유한 폴리아미드 수지인 MXD6 또는 메타크실렌기와 아이소프탈릭 에시드를 함유하고 있는 MXDI 60 내지 99wt%에 Nylon6, Nylon66, Nylon6/12, 6I/6T 및 이의 공중합체로 이루어진 군으로부터 선택되어지는 1종이상 40 내지 1wt%를 혼합한 혼합물을 80 ~ 90℃의 온도 조건에서 4~5시간 건조하고 이때 수분율은 50~400ppm로 건조하는 단계; Iii) selected from the group consisting of nylon 6, nylon 66, nylon 6/12, 6I / 6T and copolymers thereof in MXD6, a polyamide resin containing metha xylene, or MXDI 60-99 wt% containing methaxylene and isophthalic acid Drying at least one mixture of 40 to 1wt% of the mixture at a temperature of 80 to 90 ° C. for 4 to 5 hours, wherein the moisture content is dried to 50 to 400 ppm;

ⅱ) 상기 건조된 혼합물에 유기화 처리된 층상 실리케이드를 상기 혼합물 100중량부에 대하여 0.5 내지 10중량부로 첨가 혼합하여 혼합물과 유기화 처리된 층상실리케이트를 혼합하는 단계;와 Ii) adding the organically treated layered silicate to the dried mixture at 0.5 to 10 parts by weight based on 100 parts by weight of the mixture to mix the mixture and the organically treated layered silicate; and

ⅲ) 상기 혼합물과 유기화 처리된 층상실리케이트를 압출기를 이용 층상실리케이트를 포함하는 나노복합재를 제조하는 단계를 포함한다.Iii) preparing a nanocomposite comprising the layered silicate using the mixture and the organically treated layered silicate using an extruder.

건조단계에서는 나일론 조성물의 수분함량이 50ppm 미만일 경우는 나일론의 압출가공 중 열분해가 발생하고, 또한 수분함량이 400ppm 초과할 경우에는 수분에 의하여 압출 공정 중 가수분해가 발생하여 층상 실리케이트 나노 복합재 제작에 문제를 야기시킬 수 있다. In the drying step, when the moisture content of the nylon composition is less than 50 ppm, pyrolysis occurs during the extrusion process of nylon, and when the moisture content exceeds 400 ppm, hydrolysis occurs during the extrusion process due to water, which is a problem in manufacturing the layered silicate nanocomposite. May cause.

80 ~ 90℃ 에서 4시간미만에서 나일론 수지를 건조를 할 경우 50ppm의 수준의 적정 수분율에 도달할 수 없어, 압출가공 공정중 층상 실리케이트가 고분자 수지내 적절하게 박리 및 층간삽입이 일어 나지 않을 뿐더러, 열분해를 가속시킨다. 이와 반대로 80 ~ 90℃에서 5시간초과하여 건조를 할 경우 나일론 수지 자체의 황변이 발생되어 상기 건조 조건을 준수하여야 한다. When nylon resin is dried at 80 ~ 90 ℃ for less than 4 hours, the proper moisture content of 50ppm cannot be reached, and the layered silicate does not adequately peel and intercalate in the polymer resin during the extrusion process. Accelerate pyrolysis On the contrary, when drying for more than 5 hours at 80-90 ° C., yellowing of the nylon resin itself occurs, and the above drying conditions must be observed.

혼합단계에서는 나노복합체의 함량이 10중량부를 초과할 경우 나노크기의 층상실리케이트가 고분자 수지내에 박리(exfoliated), 중간 삽입(intercalated) 형태의 박층(patelets)를 이루지 못하여 결정화도 향상으로 인한 투명도 저하 오히려 원하는 수준의 기체차단성을 확보할 수 없게 된다. 또한 1중량부 미만인 경우는 본 발명에서 원하는 효과를 얻기 힘들다. In the mixing step, when the content of the nanocomposite exceeds 10 parts by weight, the nano-sized layered silicate does not form exfoliated or intercalated forms of thin layers, thereby decreasing transparency due to improved crystallinity. It will not be possible to secure the level of gas barrier properties. In addition, less than 1 part by weight, it is difficult to obtain the desired effect in the present invention.

압출기는 투윈 스크류로, L/D가 35이상이며(L:스크류의 길이, D:스크류의 지 름), 나노크기의 층상 실리케이트를 박리시켜 MXD6 또는 MXDI 사이에 분산도를 증가시키기 위하여 니딩블럭을 4새이상과 리버스블럭을 2개이상 포함하고 있어야 한다. 또한 압출속도를 300RPM 이상으로 설정하여 박리되어진 나노 층상 실리케이트와 MXD6 또는 MXDI가 잘 혼련되어지게 한다.The extruder is a twin screw, with an L / D of 35 or more (L: screw length, D: screw diameter), and a kneading block to increase the degree of dispersion between the MXD6 or MXDI by peeling nano-sized layered silicates. It must contain at least 4 birds and at least 2 reverse blocks. In addition, the extrusion rate is set to 300RPM or more so that the exfoliated nano-layered silicate and MXD6 or MXDI are well mixed.

압출기의 온도는 표 1과 같이 로 설정, 압출기에서 MXD6 또는 MXDI와 나노 층상 실리케이트를 혼합한 후에 압출물을 다이 플레이트로 통과시키고, 수조에서 냉각하고 최종적으로 나노 복합재를 제조하게 된다.The temperature of the extruder is set as shown in Table 1, after mixing the MXD6 or MXDI and the nano-layered silicate in the extruder, the extrudate is passed through the die plate, cooled in a water bath and finally to produce a nanocomposite.

표 1.Table 1.

Figure 112007095070787-pat00001
Figure 112007095070787-pat00001

본 발명에 의한 나노복합재 조성물로 이루어진 배리어층과 양면에 폴리에스 테르수지층을 접합시킨 3층구조의 다층용기 제조방법은 용융, 다층프리폼 사출, 다층프리폼 재가열 및 블로우 성형하는 단계를 포함하는 다층용기 제조에 있어서, The method for manufacturing a multilayer container having a three-layer structure in which a barrier layer made of a nanocomposite composition according to the present invention and a polyester resin layer are bonded to both surfaces thereof includes a multi-layer container including melting, multi-layer preform injection, multi-layer preform reheating and blow molding. In manufacturing,

ⅰ)상기 나노복합재를 사출전 80~90 ℃ 건조기에서 4~5시간 건조시키고, 이 때 수분율은 50~400ppm으로 유지하고 더욱 바람직하게는 50~200ppm으로 유지하면서 나노복합재를 건조하여 전처리하는 단계;와 Iii) drying the nanocomposite in an 80-90 ° C. dryer for 4-5 hours before injection, wherein the moisture content is maintained at 50-400 ppm and more preferably 50-200 ppm, followed by drying and pretreating the nanocomposite; Wow

ⅱ)다층프리폼 제조공정에서 폴리에스테르 배럴의 사출온도는 290~295℃, 나노복합재 사출온도는 270~285℃로 각각의 수지를 용융하여 폴리에스테르는 1300~1900psi, 나노복합재는 1000~1200psi의 사출압력으로 동시 사출을 하여 다층프리폼 성형하는 단계를 포함한다.Ii) The injection temperature of polyester barrel is 290 ~ 295 ℃ and nanocomposite injection temperature is 270 ~ 285 ℃ in the multi-layer preform manufacturing process, and each resin is melted to inject polyester at 1300 ~ 1900psi and nanocomposite at 1000 ~ 1200psi. Co-injection with pressure to form a multilayer preform.

수분이 제거된 나노복합재와 폴리에스테르 수지는 건조기에서 사출기 호퍼내로 이송하였으며 일정량씩 연이어 왕복스크류 사출성형기내로 공급되게 하고 용융가소화 고정을 거쳐 몰드내로 사출성형하게 한다. 사출과정이 완전히 완료되기까지는 소정의 시간이 필요하므로 사출기 호퍼내에는 상당량의 수지가 잔류하게 되며 수분의 재흡습을 막고자 좋기로는 100℃ 이상, 더욱 좋기로는 160℃으로 보온한다. 또한 나노 복합재를 투입 사출기 호퍼내의 온도는 70℃ 이상으로 관리하여 수분에 의한 결정화도 향상의 효과를 제거한다.The nanocomposite and polyester resin from which moisture is removed are transferred from the dryer to the injection machine hopper, and are continuously supplied into the reciprocating screw injection molding machine by a predetermined amount and injected into the mold through melt plasticization fixing. Since a predetermined time is required until the injection process is completely completed, a considerable amount of resin remains in the injection machine hopper and is preferably maintained at 100 ° C. or higher, more preferably 160 ° C., to prevent moisture reabsorption. In addition, the temperature of the nanocomposite injector hopper is controlled at 70 ° C. or higher to remove the effect of improving the crystallinity by moisture.

나노복합재의 수분함량이 50ppm 이하일 경우는 나노복합재의 기본 물질인 MXD6 용융화 공정 중 마찰에 의하여 열화되거나 또한 수분함량이 400ppm 이상 증가 시 나노 복합재내의 수분이 결정핵제로 작용하여 사출성형된 프리폼의 결정화도가 과도하여 블로우 성형시 박리를 발생케 한다.If the moisture content of the nanocomposite is 50ppm or less, the crystallization degree of the injection molded preform is deteriorated by friction during the MXD6 melting process, which is the basic material of the nanocomposite, or when the water content increases more than 400ppm, the water in the nanocomposite acts as a crystal nucleating agent. Excessive causes peeling during blow molding.

사출성형시 배럴의 온도가 너무 높을 경우는 사출후 프리폼의 냉각이 제대로 되지 않을 가능성이 높아, 프리폼의 결정성을 증대시켜 블로우 성형 후 박리의 문제가 있으며, 배럴의 온도가 너무 낮으면 고분자 수지가 적절하게 용융되지 않아 과도한 쉬어 비스코시티(shear viscosity)를 발생하여 연속적인 사출성형을 할 수 없다. If the barrel temperature is too high during injection molding, there is a high possibility that the preform is not cooled properly after injection.Therefore, there is a problem of exfoliation after blow molding by increasing the crystallinity of the preform.If the barrel temperature is too low, the polymer resin It does not melt properly, resulting in excessive shear viscosity, which prevents continuous injection molding.

또한 사출 압력이 PET쪽의 사출압력이 1300psi 이하일 경우 프리폼 목표 무게와 모형으로 성형되지 않아 미성형(short shot)이 발생하고 1900psi 이상을 경우에는 과도한 사출압력으로 인하여 슛 사이즈(shot size) 대비 많은 양은 PET가 사출되어 바(bar)등의 품질 문제를 야기 시킨다. 프리폼내 배리어층의 위치 및 두께는 PET층 대비 배리어층의 속도로 의하여 결정된다. 이런 이유로 배리어쪽의 사출압이 너무 크거나 작을 경우 배리어 속도의 적절한 조절이 힘들어 배리어층의 위치를 프리폼의 서포트(support) 이하에서 바닥 파팅라인(Bottom Parting Line) 이하로 조절하기가 힘들다. In addition, if the injection pressure is less than 1300psi on the PET side, short shot occurs because it is not molded into the target weight and model. PET is injected, causing quality problems such as bars. The location and thickness of the barrier layer in the preform is determined by the speed of the barrier layer relative to the PET layer. For this reason, if the injection pressure on the barrier side is too large or too small, it is difficult to properly adjust the barrier speed, and thus it is difficult to adjust the position of the barrier layer below the support of the preform and below the bottom parting line.

본 발명에서는 Kostec 48캐비티 멀티 사출성형기(도 2)를 사용하였다. 멀티사출기는 스크류 2개를 사용하여 열린 노즐형태로 두 종류의 폴리에스테르와 배리어 수지인 나노복합재를 동시에 캐비티 내부로 사출하는 방식의 성형시스템이고, 하기의 조건으로 사출성형조건을 사용하여 예비성형품 프리폼을 제조하였다. 이 때 도 2와 같이 프리폼은 플리에스테르 외층사이에 배리어물질인 나노복합재를 내층으로 포함하는 구조이다. 멀티사출성형기의 사출성형조건을 표 2에 정리하였다.In the present invention, a Kostec 48 cavity multi injection molding machine (FIG. 2) was used. Multi-injector is a molding system in which two kinds of polyester and barrier resin nanocomposite are injected into the cavity at the same time in the form of an open nozzle using two screws. Was prepared. In this case, as shown in FIG. 2, the preform has a structure including a nanocomposite as a barrier material between the polyester outer layers as an inner layer. The injection molding conditions of the multi-injection molding machine are summarized in Table 2.

표 2.Table 2.

Figure 112007095070787-pat00002
Figure 112007095070787-pat00002

상기 조건으로 사출성형된 프리폼을 도 3과 같은 프리폼 가열장치를 이용하여 다층 프리폼은 온도가 104℃가 되게 히터로 가열하고, 1차 압력 9bar, 2차 압력 40bar 조건으로 연신 블로우 성형을 한다. 이때 횡축의 연신비는 2배이상, 종축의 연신비는 4배이상을 유지한다.The preform injection-molded under the above conditions is preheated by using a preform heating apparatus as shown in FIG. 3 using a heater such that the temperature is 104 ° C., and stretch blow molding is performed under conditions of a primary pressure of 9 bar and a secondary pressure of 40 bar. At this time, the stretching ratio of the abscissa is more than two times, and the stretching ratio of the ordinate is four times or more.

본 발명에 의한 박리저항성이 우수한 다층용기용 나노복합재 조성물을 이용하여 생산된 다층용기는 종래 다층용기 대비 가스차단성 및 박리가 개선되어 내구 성이 우수하고, 형태안정성이 우수하다. 또한 이러한 나노복합재 조성물을 사용함으로서 배리어수지의 사용량을 줄일 수 있어서 재활용 문제를 제기시키지 않으며 가격 경쟁력을 가지며 현 사출/블로우 가공설비를 이용할 수 있다는 장점이 있다. 따라서 탄산용 맥주용기나 핫필이 요구되는 커피, 차 온장고, 산소음료등의 용기로 유용하게 사용되어 질 수 있다The multilayer container produced using the nanocomposite composition for multilayer container having excellent peeling resistance according to the present invention has improved gas barrier properties and peeling compared to the conventional multilayer container, and thus has excellent durability and excellent shape stability. In addition, the use of such a nanocomposite composition can reduce the amount of barrier resin used, does not pose a recycling problem, has a price competitiveness and has the advantage of using the current injection / blow processing equipment. Therefore, it can be usefully used as a container for carbonated beer containers or hot-filled coffee, tea storage, oxygen drinks, etc.

이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니다. Hereinafter, the structure and effect of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention, and are not intended to limit the scope of the present invention.

[실시예]EXAMPLE

본 발명에 따라 제조된 나노복합재 및 이를 이용하여 생산된 다층용기의 층상실리케이트의 분상정도와 내구성(박리성 개선), 가스차단성은 아래와 같이 평가하였다.Nanocomposite prepared according to the present invention and the degree of separation, durability (improving peelability), gas barrier properties of the layered silicate of the multilayer container produced using the same were evaluated as follows.

1) 나노복합재의 나노물질의 분산성 평가1) Evaluation of Dispersibility of Nanomaterials in Nanocomposites

압출가공된 나노복합재 수지를 싸이크로제닉 울트라마이크로토미를 이용하여 30㎛ 크기로 시편을 준비하여 FE-TEM을 이용하여 MXD6 수지 매트릭스내에 나노실리케이트 입자의 분산정도를 측정한다.The extruded nanocomposite resin was prepared with a size of 30 μm using a microgenic ultramicrotome, and the degree of dispersion of the nanosilicate particles in the MXD6 resin matrix was measured using FE-TEM.

2) 프리폼 배리어층의 결정성 평가 2) Crystallinity Evaluation of Preform Barrier Layer

사출성형된 프리폼 바디부를 절단하여 배리어층의 시편을 채취후 X-ray를 이용하여 결정의 크가와 분자간의 거리로서 결정화도를 평가한다. After the injection molded preform body was cut, specimens of the barrier layer were taken and the crystallinity was evaluated as the size of the crystal and the distance between molecules using X-ray.

3) 프리폼 배리어층의 DSC측정3) DSC measurement of preform barrier layer

시차주사열량계를 사용하여 20의 승온속도로 가열하는 과정에서 검출되는 결정의 융해의 의한 흡열 피크의 그대점으서 정의되는 융점 Tm과 용융상태에서부터 10℃/min분의 강온속도로 냉각하는 과정에서 검출되는 결정화에 의한 발영 피크의 극대점으로 정의되는 결정화온도 Tc2의 차로 결정화를 평가한다. Detecting during cooling at 10 ° C / min from melting state and melting point Tm defined as the end point of endothermic peak due to melting of crystals detected during heating at 20 heating rate using differential scanning calorimeter The crystallization is evaluated by the difference of the crystallization temperature Tc2 defined as the maximum point of the emission peak due to the crystallization.

4) 프리폼 배리어층의 Haze 평가4) Haze evaluation of preform barrier layer

사출 성형된 프리폼 바디부를 절단하여 배리어층의 시편을 채취 후 시편의 Haze를 측정한다.The injection molded preform body was cut to take a specimen of the barrier layer, and the haze of the specimen was measured.

5) 바틀의 낙하테스트5) Drop test of bottle

블로우 성형된 다층용기를 50Cm 높이에서 낙하테스트 실시후 다층용기의 박리발생 여부를 검사한다.After blow test of blow molded multi-layer container at 50Cm height, the multi-layer container is examined for peeling.

6) 산소투과도 테스트6) Oxygen Permeability Test

산소투과도 측정장치(Mocon사, OX-TRAN 2/20)에 블로우 성형성 다층용기를 거치한 후 23℃, 50RH%의 온도에서 24시간 질소로 안정화 과정을 거친 후, 산소 투과도량이 평형상태에 도달할 때까지의 산소투과도를 측정한다. Oxygen permeability measuring device (Mocon, OX-TRAN 2/20) was placed in a blow moldable multi-layer container and stabilized with nitrogen for 24 hours at a temperature of 23 ° C and 50 RH%, and the oxygen permeability reached an equilibrium state. Measure the oxygen permeability until

7) 이산화탄소 투과도 테스트7) Carbon Dioxide Permeability Test

이산화탄소 투과도 측정장치(Mocon사, PermatranC 4/41)에 블로우 성형성 다층용기를 거치한 후 다층용기 외부를 비닐캡을 이용 100% 이산화탄소 분위기를 만들어 주어 23℃, 50RH%의 온도에서 24시간 다층용기 내부를 질소로 안정화 과정을 거친 후, 다층용기 외부의 이산화탄소가 용기 내부로 투과되어 평형상태에 도달할 때까지의 이산화탄소투과도를 측정한다. After the blow moldable multi-layer container is mounted on the carbon dioxide permeability measuring device (Mocon, PermatranC 4/41), the 100% carbon dioxide atmosphere is made by using a vinyl cap on the outside of the multi-layer container. After stabilizing the inside with nitrogen, the carbon dioxide permeability is measured until the carbon dioxide outside the multi-layer container penetrates into the container and reaches an equilibrium state.

실시예와Examples and 비교예Comparative example

폴리아미드 수지를 90℃에서 4시간동안 건조한 후 블랜더에 폴리아미드와 층상 실리케이트를 표 3과 같이 종류 및 투입하여 50rpm의 속도로 교반하여 폴리아미드 표면에 나노 층상 실리케이트가 코팅될 수 있도록 전처리를 수행한다. 준비된 수지를 L/D가 35인 투인 스크류를 이용하여, 245℃ 온도 조건에서 표 3과 같은 압출속도로 가공하여 압출물을 다이 플레이트로 통과시키고 수조에서 냉각하고 최종적으로 나노 복합재를 제조한다.After drying the polyamide resin at 90 ° C. for 4 hours, the polyamide and the layered silicates were added and blended as shown in Table 3 at a speed of 50 rpm, followed by pretreatment to coat the nano-layered silicates on the polyamide surface. . The prepared resin was processed using a screw screw having a L / D of 35 at an extrusion rate as shown in Table 3 at 245 ° C. temperature to pass the extrudate through a die plate, cooled in a water bath, and finally to prepare a nanocomposite.

고유점도가 0.8dl/g인 폴리에틸렌테레프탈레이트를 선정하여 160℃에서 4시간 건조한다. , 하기표와 같은 구성비의 나노 복합재 수지를 건조하고, 상기의 건 조된 수지를 이용하여 나노 복합재의 함량이 7%가 되게 다층 프리폼을 사출성형한다. Polyethylene terephthalate having an intrinsic viscosity of 0.8 dl / g was selected and dried at 160 ° C. for 4 hours. , The nanocomposite resin of the composition ratio as shown in the following table is dried, and the multilayer preform is injection-molded so that the content of the nanocomposite is 7% using the dried resin.

이 때 다층 프리폼의 표면 온도가 104℃가 되게 히터로 가열하고, 1차 압력 9 bar, 2차 압력 40 bar 조건으로 연신 블로우 성형을 한다.At this time, the surface temperature of the multilayer preform is heated by a heater so as to be 104 ° C, and stretch blow molding is performed under conditions of a primary pressure of 9 bar and a secondary pressure of 40 bar.

표 3.Table 3.

폴리아미드(wt%)Polyamide (wt%) 층상실리케이트(wt%)Layered Silicate (wt%) MXD6MXD6 6I/6T6I / 6T NY66NY66 30B30B 93A93A 20A20A 15A15A 실시예1Example 1 9090 1010 33 -- -- -- 실시예2Example 2 9090 1010 33 -- -- 실시예3Example 3 9090 1010 -- 33 -- -- 실시예4Example 4 9090 55 55 -- -- 33 -- 실시예5Example 5 9090 1010 -- -- -- 33 실시예6Example 6 9090 1010 -- -- -- 33 비교예1Comparative Example 1 5050 5050 33 -- -- -- 비교예2Comparative Example 2 9090 1010 1515 -- -- -- 비교예3Comparative Example 3 100100 33 -- -- -- 비교예4Comparative Example 4 100100 -- -- -- --

나노 복합재 상에 층상 실리케이트가 박리되어 MXD6 수지 매트릭스 내에 분산된 상태를 나타내며(실시예), 층상 실리케이트가 고분자내에 균일하게 분상되지 않은 비교예 3은 나노 복합재를 이용하여 다층 바틀을 성형시 가스 차단성의 증대 효과가 미미하며, 층상 실리케이트가 결정핵제로 작용하여 다층병의 박리 발생의 원인으로 작용한다. The layered silicate was separated on the nanocomposite to show a state dispersed in the MXD6 resin matrix (Example), and the comparative example 3 in which the layered silicate was not uniformly powdered in the polymer was compared with the gas barrier property when forming the multilayer bottle using the nanocomposite. Increasing effect is insignificant, and the layered silicate acts as a nucleating agent, causing the peeling of the multilayered disease.

표 4. 결정분석/DSC/HazeTable 4. Crystal Analysis / DSC / Haze

Figure 112007095070787-pat00003
Figure 112007095070787-pat00003

주> C.S(Å): 나노복합재층의 결정의 크기로 결정화도가 높을수록 큼.Note> C.S (Å): The larger the crystallinity, the larger the crystallinity of the nanocomposite layer.

d002(Å): 나노복합재층의 분자쇄간의 거리로 배향도(결정화도)가 높을수록 큼.d002 (iii): The distance between the molecular chains of the nanocomposite layer, the higher the degree of orientation (crystallinity).

Tm-Tc2: 온도차가 작을 수촉 일반적으로 사출성형하는 경우에 결정화 속도가 빠르기 때문에 결정이 쉽게 생길수 있기 때문에 결정화도가 높음.Tm-Tc2: The temperature difference is small. In general, in the case of injection molding, the crystallization rate is high because the crystallization rate is high, so the crystallinity is high.

상기 표에서 볼 수 있듯이, Tm-Tc2의 차이가 적어져 블로우 성형시 연신성이 불량하여져 불로우성형후 용기의 박리성이 불량해 진다. As can be seen from the above table, the difference in Tm-Tc2 decreases, resulting in poor elongation during blow molding, and poor peelability of the container after blow molding.

본 개발은 나노 복합재 개발에 있어서 배리어물질의 건조 시간과 온도조건의 조절 및 사출조건을 조절하여 다층용기의 약점인 박리발생을 개선하여 용기의 내구성이 우수해짐을 확인하였다. In this development, it was confirmed that the durability of the container was improved by improving the peeling occurrence, which is a weak point of the multilayer container, by controlling the drying time, temperature condition, and injection condition of the barrier material in developing the nanocomposite.

표 5. 가스투과도/박리저항성Table 5. Gas Permeability / Releasing Resistance

Figure 112007095070787-pat00004
Figure 112007095070787-pat00004

비교예1은 박리저항성은 우수하나 가스차단성 측면에서 불리하다. 본 개발구성을 통하여 박리저항성과 가스차단성이 우수한 용기를 제조할 수 있다.Comparative Example 1 has excellent peeling resistance but is disadvantageous in terms of gas barrier properties. Through this development configuration, it is possible to manufacture a container excellent in peel resistance and gas barrier properties.

도 1은 본 발명의 실시예와 비교예를 통하여 얻어진 성형 시편의 나노실리케이트의 분산성을 확인하기 위한 싸이크로제닉 울트라마이크로토미를 이용한 사진들,1 is a photograph using a microgenic ultramicrotomy to confirm the dispersibility of the nanosilicate of the molded specimen obtained through the Examples and Comparative Examples of the present invention,

도 2는 Kortec 48 Cavity 다층 사출기의 개략도,2 is a schematic view of a Kortec 48 Cavity multi-layer injection machine,

도 3은 프리폼 가열장치의 개략도이다.3 is a schematic view of a preform heater.

Claims (3)

메타크실렌기를 함유한 폴리아미드 수지인 MXD6 또는 메타크실렌기와 아이소프탈릭 에시드를 함유하고 있는 MXDI 60 내지 99wt%에 다층용기에서의 박리저항성향상용으로 나이론6, 나이론66, 나이론6/12, 6I/6T 및 이의 공중합체로 이루어진 군으로부터 선택되어지는 1종이상 40 내지 1wt%를 혼합시킨 혼합물에 유기화 처리된 층상 실리케이트가 상기 혼합물 100중량부에 대하여 0.5 내지 10중량부 첨가된 것을 특징으로 하는 박리저항성이 우수한 다층용기용 나노복합재 조성물.A polyamide resin containing methaxylene group MXD6 or MXDI containing methaxylene group and isophthalic acid 60 to 99wt% of nylon 6, nylon 66, nylon 6/12, 6I / Peeling resistance, characterized in that 0.5 to 10 parts by weight of an organically treated layered silicate is added to 100 parts by weight of the mixture to a mixture of at least one selected from the group consisting of 6T and copolymers thereof. This excellent nanocomposite composition for multilayer containers. 제1항에 있어서, 상기 유기화처리된 층상실리케이트는 유기물을 층상실리케이트 구조에 삽입한 것으로서, 상기 유기물은 4차 암모늄(quaternary ammonium), 포스포늄(Phosphonium), 말레이에이트(maleate), 석시네이트(succinate), 아크릴레이트(acrylate), 벤질릭 하이드로젠(benzyic hydrogens) 및 옥사졸린(oxazoline)으로 이루어진 군의 작용기를 포함하는 유기물로 구성된 일군으로부터 선택된 1종이상인 것을 특징으로 하는 박리저항성이 우수한 다층용기용 나노복합재 조성물.The method of claim 1, wherein the organically treated layered silicate is to insert an organic material in the layered silicate structure, the organic material is quaternary ammonium (quaternary ammonium), phosphonium (Phosphonium), maleate, succinate (succinate) ), At least one member selected from the group consisting of organic substances including functional groups of the group consisting of acrylate, benzylic hydrogens, and oxazoline. Nanocomposite Compositions. 제2항에 있어서, 상기 층상실리케이트는 몬모릴로나이트(montmorllonite), 헥토라이트(hectorite), 바이델라이트(beidelite), 사포나이트(saponite), 노트로나이트(nontronite), 마이카(mica), 불소화 마이카(fluoromica)로 구성된 일 군으로부터 선택된 1종이상인 것을 특징으로 하는 박리저항성이 우수한 다층용기용 나 노복합재 조성물.The method of claim 2, wherein the layered silicate is montmorllonite, hectorite, beidelite, saponite, nontronite, mica, fluorinated mica The nanocomposite composition for multilayer containers having excellent peel resistance, characterized in that at least one selected from the group consisting of.
KR1020070141594A 2007-12-31 2007-12-31 Nanocomposite for multi layer container having excellent resistance against exfoliation KR100896401B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020070141594A KR100896401B1 (en) 2007-12-31 2007-12-31 Nanocomposite for multi layer container having excellent resistance against exfoliation
RU2008150428/04A RU2430939C2 (en) 2007-12-31 2008-12-19 Nanocomposite and production method thereof
CN2008101894985A CN101475745B (en) 2007-12-31 2008-12-29 Nano composite material synthetic compound and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070141594A KR100896401B1 (en) 2007-12-31 2007-12-31 Nanocomposite for multi layer container having excellent resistance against exfoliation

Publications (1)

Publication Number Publication Date
KR100896401B1 true KR100896401B1 (en) 2009-05-08

Family

ID=40836526

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070141594A KR100896401B1 (en) 2007-12-31 2007-12-31 Nanocomposite for multi layer container having excellent resistance against exfoliation

Country Status (2)

Country Link
KR (1) KR100896401B1 (en)
CN (1) CN101475745B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106589351A (en) * 2015-10-14 2017-04-26 上海杰事杰新材料(集团)股份有限公司 Semi-aromatic transparent nylon material PA6I and preparing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780522B1 (en) 1998-10-16 2004-08-24 Wolff Walsrode Ag Transparent high strength polyamide film
KR20040089129A (en) * 2002-01-30 2004-10-20 이엠에스-케미에 아게 Method for the production of polyamide nanocomposites, corresponding packaging materials and moulded bodies
JP2005067637A (en) * 2003-08-21 2005-03-17 Mitsubishi Gas Chem Co Inc Hollow container

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100671666B1 (en) * 2004-12-30 2007-01-19 주식회사 효성 The method of manufacturing a preform for multi-layered plastic bottle
CN1865349B (en) * 2006-05-08 2010-05-12 陶光 Polyamide polymerization or co polymerization / clay nano composite materials and process for preparing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780522B1 (en) 1998-10-16 2004-08-24 Wolff Walsrode Ag Transparent high strength polyamide film
KR20040089129A (en) * 2002-01-30 2004-10-20 이엠에스-케미에 아게 Method for the production of polyamide nanocomposites, corresponding packaging materials and moulded bodies
JP2005067637A (en) * 2003-08-21 2005-03-17 Mitsubishi Gas Chem Co Inc Hollow container

Also Published As

Publication number Publication date
CN101475745A (en) 2009-07-08
CN101475745B (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP5416516B2 (en) Preform, biaxially stretched film and container
EP2025718B1 (en) Polyamide resin composition
CA1279811C (en) Gas-barrier multilayered structure
KR101272057B1 (en) Polyamide blend composition having excellent gas barrier performance
US8192676B2 (en) Container having barrier properties and method of manufacturing the same
EP2402396B1 (en) Oxygen scavenging plastic material
JP2004532296A (en) Oxygen scavenging polyamide composition suitable for PET bottle use
KR20060132553A (en) Multi-layered biaxial stretch blow molded bottle and method for production thereof
WO2017010516A1 (en) Multilayer preform and multilayer stretch blow molded container
JP4821353B2 (en) Multilayer bottle
KR100896401B1 (en) Nanocomposite for multi layer container having excellent resistance against exfoliation
KR100885617B1 (en) Manufacturing method of nanocomposite for multi layer container having excellent resistance against exfoliation
KR20090073704A (en) Multi layer container comprising nanocomposition having excellent resistance against exfoliation
JP4720102B2 (en) Multi-layer container
TW587980B (en) Processes for producing PET preforms and containers such as food bottles, containers and intermediate preforms obtained
RU2412095C2 (en) Method of producing multilayer container containing nanocomposite material
KR20090073721A (en) Manufacturing method of multi layer container comprising nanocomposition having excellent resistance against exfoliation
RU2430939C2 (en) Nanocomposite and production method thereof
JP2004160935A (en) Multilayered container
JP2000290500A (en) Molded product of polyamide
KR20090021521A (en) Manufacturing method for preform for multi-layered bottle having excellent transparency and gas barrier properties
CN112771117B (en) Method for manufacturing stretched body, plastic bottle and container
KR100671666B1 (en) The method of manufacturing a preform for multi-layered plastic bottle
KR20090021520A (en) Manufacturing method for preform for multi-layered bottle and multi-layered bottle having excellent gas barrier properties
KR20060077983A (en) Method for preparing multilayer container

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140305

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160304

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180305

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190307

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200304

Year of fee payment: 12