KR100895177B1 - Method and apparatus controlling switching timing for separating transmission signal in repeater using time division duplex - Google Patents

Method and apparatus controlling switching timing for separating transmission signal in repeater using time division duplex Download PDF

Info

Publication number
KR100895177B1
KR100895177B1 KR1020070036947A KR20070036947A KR100895177B1 KR 100895177 B1 KR100895177 B1 KR 100895177B1 KR 1020070036947 A KR1020070036947 A KR 1020070036947A KR 20070036947 A KR20070036947 A KR 20070036947A KR 100895177 B1 KR100895177 B1 KR 100895177B1
Authority
KR
South Korea
Prior art keywords
time
synchronization
slave node
switch
repeater
Prior art date
Application number
KR1020070036947A
Other languages
Korean (ko)
Other versions
KR20080093257A (en
Inventor
조재헌
황성택
김병직
김훈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020070036947A priority Critical patent/KR100895177B1/en
Publication of KR20080093257A publication Critical patent/KR20080093257A/en
Application granted granted Critical
Publication of KR100895177B1 publication Critical patent/KR100895177B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0095Arrangements for synchronising receiver with transmitter with mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

시분할 양방향 전송(TDD: Time Division Duplex) 방식을 사용하는 중계기에서 전송 신호를 분리하는 스위치 제어 방법에 있어서, 기지국에 위치하여 GPS 수신기를 구비한 그랜드 마스터 노드가, 상기 GPS 수신기로부터 전송받은 GPS 신호를 사용하여 슬레이브 노드의 시간 동기화를 위한 동기 메시지를 생성하여 적어도 하나 이상의 슬레이브 노드로 전송하는 과정과, TDD 방식을 사용하는 중계기에 위치하는 슬레이브 노드가 그랜드 마스터 노드 또는 다른 슬레이브 노드로부터 시간 동기화를 위한 동기 메시지를 수신하고, 타임 오프셋 및 주파수 분리 보상을 지원하는 OFCC(Offset & Frequency Compensation Clock) 동기화 기술을 사용하여 시간 동기화 연산을 수행하고, 또 다른 슬레이브 노드의 시간 동기화를 위해 동기 메시지를 생성하는 과정과, 슬레이브 노드에서 시간 동기화 연산을 수행하여 동기된 시각 정보를 미리 설정된 인터페이스를 통해 중계기 내의 스위치 제어기로 전달하는 과정과, 스위치 제어기는 동기된 시각 정보를 기준으로 상향 전송과 하향 전송을 구분하는 스위치 제어 신호를 스위치로 전달하여 스위치를 제어하는 과정을 포함함을 특징으로 하는 스위치 제어 방법.

Figure R1020070036947

GPS, TDD, 시간 동기화, IEEE 1588, TOD, 1PPS, TCXO

A switch control method for separating a transmission signal from a repeater using a time division duplex (TDD) method, wherein a grand master node located at a base station and having a GPS receiver receives a GPS signal transmitted from the GPS receiver. Generating a synchronization message for time synchronization of the slave node using the TDD scheme and transmitting the synchronization message to at least one slave node, and synchronizing the time synchronization from the grand master node or another slave node with the slave node located in the repeater using the TDD scheme. Receiving time messages, performing time synchronization operations using Offset & Frequency Compensation Clock (OFCC) synchronization technology that supports time offset and frequency separation compensation, and generating a synchronization message for time synchronization of another slave node; Timeout on slave nodes Performing synchronization operation to transmit the synchronized time information to the switch controller in the repeater through a preset interface, and the switch controller transmits a switch control signal that distinguishes the uplink transmission and the downlink transmission to the switch based on the synchronized time information. Switch control method comprising the step of controlling the switch.

Figure R1020070036947

GPS, TDD, Time Synchronization, IEEE 1588, TOD, 1PPS, TCXO

Description

TDD 방식을 사용하는 중계기에서 전송 신호를 분리하는 스위치 제어 방법 및 장치{METHOD AND APPARATUS CONTROLLING SWITCHING TIMING FOR SEPARATING TRANSMISSION SIGNAL IN REPEATER USING TIME DIVISION DUPLEX}TECHNICAL AND APPARATUS CONTROLLING SWITCHING TIMING FOR SEPARATING TRANSMISSION SIGNAL IN REPEATER USING TIME DIVISION DUPLEX}

도 1은 일반적인 GPS(Global Positioning System) 수신기의 블록 구성도 1 is a block diagram of a general GPS (Global Positioning System) receiver

도 2는 본 발명의 일 실시예에 따른 그랜드 마스터 노드의 블록 구성도2 is a block diagram of a grand master node according to an embodiment of the present invention;

도 3은 본 발명의 일 실시예에 따른 슬레이브 노드의 블록 구성도3 is a block diagram of a slave node according to an embodiment of the present invention;

도 4는 본 발명의 일 실시예에 따른 TDD(Time Division Duplex) 방식의 무선 중계기의 스위치 제어 장치의 블록 구성도4 is a block diagram of a switch control apparatus of a wireless repeater of a time division duplex (TDD) system according to an embodiment of the present invention;

도 5는 본 발명의 일 실시예에 따른 TDD 방식의 광 중계기의 스위치 제어 장치의 블록 구성도5 is a block diagram of an apparatus for controlling a switch of an optical repeater using a TDD scheme according to an embodiment of the present invention.

도 6은 본 발명의 일 실시예에 따른 시간 동기화 방법을 이용한 TDD 중계기의 스위치 제어 동작 흐름도6 is a flowchart illustrating a switch control operation of a TDD repeater using a time synchronization method according to an embodiment of the present invention.

도 7은 OFCC(Offset & Frequency Compensation Clock) 타임 동기화를 위한 타임 오프셋 및 주파수 보상 간격을 나타낸 기본적인 동작 절차 흐름도7 is a flowchart illustrating a basic operation procedure showing a time offset and a frequency compensation interval for offset & frequency compensation clock (OFCC) time synchronization.

본 발명은 시분할 양방향 전송(TDD: Time Division Duplex, 이하 'TDD'라 칭하기로 한다) 방식을 사용하는 중계기에 관한 것으로, 특히 GPS 수신기를 구비한 기지국에서 GPS 정보를 이용하여 GPS 수신기를 구비하지 않은 중계기와의 시간을 동기화(Synchronization)하고, 동기화 정보를 이용하여 중계기가 기지국 및 단말기와의 송수신시 다운링크와 업링크 방향에 따라 스위치를 제어하는 방법 및 장치에 관한 것이다. The present invention relates to a repeater using a time division duplex (TDD) method, and in particular, a base station having a GPS receiver does not include a GPS receiver using GPS information. The present invention relates to a method and apparatus for synchronizing a time with a repeater and controlling a switch according to downlink and uplink directions when the repeater transmits and receives a base station and a terminal by using synchronization information.

일반적으로 무선 통신망에 있어서 시스템 또는 망의 동기화는 매우 중요한 요소이다. 현재 무선 통신망의 동기화 방법은 GPS 위성을 이용한 동기화 방법이 대표적인 방법으로서, GPS 신호를 수신하기 위해 수신기와 GPS 위성간의 점대점(Point-to-Point) 토폴로지(Topology)를 주로 사용한다.In general, synchronization of a system or a network is a very important factor in a wireless communication network. Currently, a synchronization method using a GPS satellite is a method of synchronizing a wireless communication network, and mainly uses a point-to-point topology between a receiver and a GPS satellite to receive a GPS signal.

도 1은 일반적인 GPS 수신기의 블록 구성도이다. 시간 동기화를 위하여 GPS 위성의 정보를 이용하는 GPS 수신기는 GPS 신호 혹은 GPS 1PPS(1 Pulse Per Second)에 동기된 8KHz 신호의 입력을 기준(Reference)으로 사용하여 이에 동기된 10MHz, PP2S(Pulse Per 2 Second), 1PPS 신호를 시스템에 공급하는 기능을 수행한다.1 is a block diagram of a general GPS receiver. GPS receiver using information of GPS satellite for time synchronization uses 10MHz, Pulse Per 2 Second (PP2S) synchronized with GPS signal or 8KHz signal synchronized with GPS 1PPS (1 Pulse Per Second) as reference ), To supply 1PPS signal to the system.

도 1을 참조하여 각 구성에 대하여 좀더 상세히 살펴보면, GPS 수신기(10)는 크게 안테나 인터페이스(Antenna Interface)(110)와 FPGA(Field-Programmable Gate Array)(120)와, GPS 수신부(Receiver)(130)와, CPU(140)와, 발진기(150)와, 입출력부(160)를 포함한다.Referring to FIG. 1, the GPS receiver 10 includes an antenna interface 110, a field-programmable gate array (FPGA) 120, and a GPS receiver 130. ), A CPU 140, an oscillator 150, and an input / output unit 160.

상기 안테나 인터페이스(110)는 GPS 수신 안테나로부터 L1 신호를 수신하여 UTC(Universal Coordinated Time)에 동기된 1PPS 신호를 공급하는 기능과, GPS 수신 안테나와의 물리적 연결상태를 점검하여 이를 시스템에 보고하는 기능을 수행한다. The antenna interface 110 receives a L1 signal from a GPS receiving antenna and supplies a 1PPS signal synchronized with UTC (Universal Coordinated Time), and checks a physical connection state with the GPS receiving antenna and reports it to the system. Do this.

상기 FPGA(120)는 GPS 수신기(10) 내의 각 VCO(Voltage Controlled Oscillator)의 출력 유무, 전력(Power) 정상 동작 여부 등을 판단하여 CPU(140)에 보고하는 기능을 수행하는 알람 검출부(Alarm detector)(121)와, GPS 1PPS에 동기된 8KHz 신호 및 외부(External) 1PPS 신호를 입력받는 멀티플렉서(125)와, 선택제어신호에 따라 선택되는 상기 멀티플렉서(125)의 출력을 수신하여 수신신호의 위상 오류를 검사하는 위상 오류 검출부(Phase Error Detector)(122)와, 클럭 및 타이밍 생성기(124)와 위상 오류 검출부(122)와 알람 검출부(121)간의 오류 신호의 입출력 동작을 수행하는 이산 입출력 인터페이스(Discrete I/O Interface)(123)와, GPS 혹은 동기된 10MHz 클럭을 이용하여 시스템에서 요구하는 1PPS, PP2S 출력 신호를 생성하는 클럭 및 타이밍 생성기(CLK & Timing Generator)(124)를 포함한다.The FPGA 120 determines an output of each voltage controlled oscillator (VCO) in the GPS receiver 10, whether or not power is normally operated, and reports the CPU 140 to an alarm detector. 121, a multiplexer 125 for receiving an 8KHz signal and an external 1PPS signal synchronized with GPS 1PPS, and an output of the multiplexer 125 selected according to a selection control signal to receive a phase of a received signal. A discrete error input / output interface for performing an input / output operation of an error signal between a phase error detector 122 for checking an error, a clock and timing generator 124, a phase error detector 122, and an alarm detector 121 ( Discrete I / O Interface (123), and a clock and timing generator (CLK & Timing Generator) 124 for generating a 1PPS, PP2S output signal required by the system using GPS or a synchronized 10MHz clock.

상기 GPS 수신부(130)는 상기 안테나 인터페이스에서 수신한 GPS 신호를 처리하여 GPS 1PPS 신호를 상기 FPGA(120)로 공급한다.The GPS receiver 130 processes the GPS signal received from the antenna interface and supplies a GPS 1PPS signal to the FPGA 120.

상기 CPU(140)는 GPS 수신 동작시에 GPS 수신기(10)의 각 구성들을 제어하고, 알람 검출부(121)에서 보고된 알람을 판단하여 현재 GPS 수신기(10)의 수신 상태를 시스템에 보고한다. 상기 수신 상태는 FF(Function Failure)상태, PF(Power Failure)상태, Normal상태, Abnormal상태, Holdover상태로 설정될 수 있다. The CPU 140 controls the respective components of the GPS receiver 10 during the GPS reception operation, determines the alarm reported by the alarm detector 121, and reports the current reception state of the GPS receiver 10 to the system. The reception state may be set to a FF (Function Failure) state, a PF (Power Failure) state, a Normal state, an Abnormal state, or a Holdover state.

상기 발진기(150)는 OCXO(Oven Controlled X-tal(crystal) Oscillator) 또 는 TCXO(Temperature-Compensated X-tal(crystal) Oscillator)로 구성되어 기계적이나 물리적으로 안정적인 발진 주파수를 갖는 출력 신호를 제공한다. OCXO는 수정(crystal)이 온도에 민감하게 변화하는 특성을 이용한 것으로, 오븐(oven)을 사용하여 수정 주변의 온도를 일정하게 유지시켜 오차가 발생하지 않도록 하는 방식을 사용한다. OCXO는 수정 응용 제품들 중에서 가장 정밀도가 높지만 부피가 크고 12V, 24V, 30V의 다양한 전원을 사용하고 있어 개인 휴대 통신보다 중계기(Repeater)나 미사일이나 인공위성 등의 국방용으로 주로 사용된다. TCXO는 OCXO에 비하여 상대적으로 저가이기 때문에 일반적인 GPS 수신기에 많이 사용된다. The oscillator 150 is composed of OCXO (Oven Controlled X-tal (crystal) Oscillator) or TCXO (Temperature-Compensated X-tal (crystal) Oscillator) to provide an output signal having a mechanical or physically stable oscillation frequency . OCXO uses a property that the crystal changes temperature sensitively, and uses an oven to maintain a constant temperature around the crystal so that an error does not occur. OCXO is the most accurate of the modified applications, but it is bulky and uses various power sources of 12V, 24V, 30V, so it is mainly used for defense such as repeater, missile or satellite than personal mobile communication. TCXOs are often used in general GPS receivers because they are relatively inexpensive compared to OCXOs.

상기 입출력부(160)는 디버그 포트(Debug port)와 TOD(Time Of Day) 포트를 포함하는 UART(Universal Asynchronous Receiver/Transmitter) 포트를 사용자에게 제공하여, TOD 포트를 이용하여 현재의 TOD 데이터의 실시간 모니터링을 가능하게 하고 또한 원격 제어 및 다운로드(download) 기능을 제공할 수 있다. The input / output unit 160 provides a UART (Universal Asynchronous Receiver / Transmitter) port including a debug port and a time of day (TOD) port to a user, thereby real-time the current TOD data using the TOD port. It can also monitor and provide remote control and download functions.

상기 TOD는 일정 기준 예컨대, 1980년 1월 6일 자정(Midnight January, 6, 1980)을 기준으로 첫 번째 GPS 1PPS부터 계산하여 현재 수신되고 있는 1PPS가 몇 번째 1PPS인지를 알려주어 이를 통해 정확한 시간정보를 제공할 수 있다. 또한 상기 1PPS는 정확한 타이밍(timing)신호로서 각 노드에서는 상기 1PPS 신호에 시스템에서 사용하는 모든 클럭을 동기시켜 사용하게 된다. The TOD calculates from the first GPS 1PPS based on a certain criterion, for example, midnight January, 6, 1980, and informs the user how many 1PPS are currently being received. Can be provided. In addition, the 1PPS is an accurate timing signal, and each node synchronizes all clocks used in the system with the 1PPS signal.

종래의 무선 통신망의 동기화 방법은 상기에서 설명한 GPS 수신기를 구비하여 GPS 위성으로부터 GPS 정보를 수신하여 동기화하는 방식을 사용한다. 그러나 그러한 방식은 고층 건물이나 장애물이 많은 도심 또는 GPS 수신이 어려운 실내의 경 우에는 GPS 위성으로부터 GPS 정보를 수신하기가 어려워 시스템의 동기화에 문제가 발생할 수 있다.Conventional wireless communication network synchronization method using the above-described GPS receiver using a method of receiving and synchronizing GPS information from the GPS satellites. However, such a scheme may cause problems in synchronizing the system because it is difficult to receive GPS information from a GPS satellite in a high-rise building, a city with a lot of obstacles, or a room where GPS reception is difficult.

한편, 중계기에서 기지국과 단말기 간의 무선 신호를 중계하기 위해서는 하향 신호와 상향 신호를 구분할 수 있어야 한다. 통신 시스템에의 중계기에서 FDD(Frequency Division Duplex) 방식을 이용하는 경우에는 듀플렉서를 사용하여 하향 신호와 상향 신호를 구분하게 되나, TDD 방식을 이용하는 경우에는 동일 주파수를 하향 및 상향 신호의 전송을 위해 사용하며 시간 구간을 나누어 하향 신호와 상향 신호를 구분하기 때문에, 듀플렉서를 사용하여 하향 신호와 상향 신호를 구분할 수 없다. 따라서, TDD 방식을 이용하는 중계기는 스위치를 사용하여 하향 신호와 상향 신호를 구분하고, 각각의 신호에 대한 경로를 선택적으로 제공할 수 있다. 이를 위해서는, 하향 신호의 시작점과 상향 신호의 시작점을 정확히 판별하고 각각의 신호에 따라 스위치의 개폐를 조절하여 신호의 이동 경로를 바꿀 수 있는 제어 신호가 필요하다.On the other hand, in the relay in order to relay the radio signal between the base station and the terminal should be able to distinguish the downlink signal and the uplink signal. In case of using FDD (Frequency Division Duplex) in the communication system, the duplexer is used to distinguish the downlink signal from the uplink signal.However, in the case of using the TDD method, the same frequency is used for the transmission of the downlink and uplink signals. Since the downlink signal and the uplink signal are divided by time intervals, the downlink signal and the uplink signal cannot be distinguished using a duplexer. Accordingly, a repeater using a TDD scheme may use a switch to distinguish a downlink signal from an uplink signal and selectively provide a path for each signal. To this end, a control signal capable of accurately determining the start point of the downlink signal and the start point of the uplink signal and controlling the opening and closing of the switch according to each signal is required.

TDD 방식의 중계기는 전송 신호 프레임을 분석하여 하향 신호 구간과 상향 신호 구간 사이에서 스위칭 동작이 일어나도록 스위치를 제어하는 스위치 제어 신호를 생성하는 기능을 갖추고 있어야 한다. 따라서 정확한 스위치 제어 신호를 생성하기 위하여 GPS 신호를 이용한 시간 동기화 방식을 사용하여 GPS 수신기를 구비한 TDD 방식의 중계기의 스위칭 제어 방법이 제안되었으나 이러한 방법은 각 중계기가 GPS 수신장치를 구비하고 있어야 하기 때문에 GPS 정보를 수신하기 어려운 빌딩 등의 내부 또는 차폐되어 있는 실내 등에 중계기를 설치하기 어렵다는 단점이 있으며, GPS 수신기가 상대적으로 고가이기 때문에 비용상의 문제점도 발생한다. The TDD repeater must have a function of analyzing a transmission signal frame and generating a switch control signal for controlling a switch so that a switching operation occurs between a down signal section and an up signal section. Therefore, in order to generate an accurate switch control signal, a switching control method of a TDD repeater having a GPS receiver using a time synchronization method using a GPS signal has been proposed, but since such a repeater must have a GPS receiver There is a disadvantage in that it is difficult to install a repeater in a building or a shielded room where GPS information is difficult to receive, and a cost problem occurs because a GPS receiver is relatively expensive.

본 발명은 GPS(Global Positioning System) 수신기를 구비한 기지국에서 GPS 정보를 이용하여 GPS 수신기를 구비하지 않은 중계기와의 시간을 동기화(Synchronization)하고, 상기 동기화 정보를 이용하여 시분할 양방향 전송 (TDD: Time Division Duplex) 방식을 사용하는 무선 또는 유선중계기가 기지국 및 단말기와의 송수신시 상향신호와 하향신호에 따라 스위치를 제어하는 방법 및 장치를 제공하고자 한다. The present invention synchronizes time with a repeater without a GPS receiver using GPS information in a base station having a GPS (Global Positioning System) receiver, and time-division bidirectional transmission (TDD) using the synchronization information. The present invention provides a method and apparatus for controlling a switch according to an uplink signal and a downlink signal when a wireless or wired repeater using a division duplex method transmits and receives a base station and a terminal.

이를 달성하기 위한 본 발명의 일 형태에 따르면, 시분할 양방향 전송(TDD: Time Division Duplex) 방식을 사용하는 중계기에서 전송 신호를 분리하는 스위치 제어 방법에 있어서, 기지국에 위치하여, GPS 수신기를 구비한 그랜드 마스터 노드가, 상기 GPS 수신기로부터 전송받은 GPS 신호를 사용하여 슬레이브 노드의 시간 동기화를 위한 동기 메시지를 생성하여 상기 적어도 하나 이상의 슬레이브 노드로 전송하는 과정과, 상기 TDD 방식을 사용하는 중계기에 위치하는, 슬레이브 노드가 상기 그랜드 마스터 노드 또는 다른 슬레이브 노드로부터 시간 동기화를 위한 상기 동기 메시지를 수신하고, 타임 오프셋 및 주파수 분리 보상을 지원하는 OFCC(Offset & Frequency Compensation Clock) 동기화 기술을 사용하여 시간 동기화 연산을 수행하고, 또 다른 슬레이브 노드의 시간 동기화를 위해 동기 메시지를 생성하는 과정과, 상기 슬레이브 노드에서 상기 시간 동기화 연산을 수행하여 동기된 시각 정보를 미리 설정된 인터페이스를 통해 중계기 내의 스위치 제어기로 전달 하는 과정과, 상기 스위치 제어기는 상기 동기된 시각 정보를 기준으로 상향 전송과 하향 전송을 구분하는 스위치 제어 신호를 스위치로 전달하여 상기 스위치를 제어하는 과정을 포함함을 특징으로 한다.According to one aspect of the present invention, a switch control method for separating a transmission signal from a repeater using a time division duplex (TDD) method is provided. The master node, using the GPS signal received from the GPS receiver to generate a synchronization message for time synchronization of the slave node to transmit to the at least one slave node, and located in the repeater using the TDD scheme, A slave node receives the synchronization message for time synchronization from the grand master node or another slave node and performs a time synchronization operation using an offset & frequency compensation clock (OFCC) synchronization technique that supports time offset and frequency separation compensation. Time on another slave node Generating a synchronization message for transmitting the synchronization message; transmitting the synchronized time information to the switch controller in the repeater through a preset interface by performing the time synchronization operation on the slave node; And controlling the switch by transmitting a switch control signal for distinguishing uplink and downlink based on information to the switch.

본 발명의 다른 형태에 따르면, 시분할 양방향 전송(TDD: Time Division Duplex) 방식을 사용하는 중계기에서 전송 신호를 분리하는 스위치 제어 장치에 있어서, 기지국에 위치하여, GPS 수신기를 구비하고 상기 GPS 수신기로부터 전송받은 GPS 신호를 사용하여 슬레이브 노드의 시간 동기화를 위한 동기 메시지를 생성하여 상기 슬레이브 노드로 전송하는 그랜드 마스터 노드와, 상기 TDD 방식을 사용하는 중계기에 위치하여, 상기 그랜드 마스터 노드 또는 다른 슬레이브 노드로부터 시간 동기화를 위한 상기 동기 메시지를 수신하고, 타임 오프셋 및 주파수 분리 보상을 지원하는 OFCC(Offset & Frequency Compensation Clock) 동기화 기술을 사용하여 시간 동기화 연산을 수행하고, 또 다른 슬레이브 노드의 시간 동기화를 위해 동기 메시지를 생성하는 적어도 하나 이상의 슬레이브 노드와, 상기 슬레이브 노드에서 상기 시간 동기화 연산을 수행하여 동기된 시각 정보를 미리 설정된 인터페이스를 통해 수신하여 상기 수신한 동기된 시각 정보를 기준으로 상향 전송(Uplink)과 하향 전송(Downlink)을 구분하는 스위치 제어 신호를 생성하여 스위치로 전송하는 스위치 제어기를 포함함을 특징으로 한다.According to another aspect of the present invention, a switch control apparatus for separating a transmission signal from a repeater using a time division duplex (TDD) method, comprising: a base station, provided with a GPS receiver and transmitted from the GPS receiver It is based on the grand master node which generates a synchronization message for time synchronization of the slave node using the received GPS signal and transmits it to the slave node, and is located in the repeater using the TDD scheme, and the time is received from the grand master node or another slave node. Receive the synchronization message for synchronization, perform time synchronization operation using OFCC (Offset & Frequency Compensation Clock) synchronization technology that supports time offset and frequency separation compensation, and synchronize message for time synchronization of another slave node At least one sled to generate The node and the slave node perform the time synchronization operation to receive synchronized time information through a preset interface to distinguish uplink and downlink based on the received synchronized time information. It characterized in that it comprises a switch controller for generating a switch control signal to transmit to the switch.

이하 본 발명에 따른 바람직한 실시예를 첨부한 도면을 참조하여 상세히 설명한다. 하기 설명에서는 구체적인 구성 소자 등과 같은 특정 사항들이 나타나고 있는데 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐 이러한 특정 사항들이 본 발명의 범위 내에서 소정의 변형이나 혹은 변경이 이루어질 수 있음은 이 기술 분야에서 통상의 지식을 가진 자에게는 자명하다 할 것이다. 또한, 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에 그 상세한 설명을 생략하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description, specific details such as specific components are shown, which are provided to help a more general understanding of the present invention, and the specific details may be changed or changed within the scope of the present invention. It is self-evident to those of ordinary knowledge in Esau. In addition, in describing the present invention, when it is determined that the detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.

본 발명은 시분할 양방향 전송(TDD: Time Division Duplex, 이하 'TDD'라 칭하기로 한다) 방식을 사용하는 중계기에 관한 것이다. 특히, 본 발명의 일 실시예에서는 GPS(Global Positioning System) 수신기를 구비한 기지국에서 GPS 수신기를 구비하지 않은 중계기의 시간을 동기화하는 방법을 제안하고, 또한 상기 시간 동기화 정보를 이용하여 TDD 방식의 중계기가 기지국 및 단말기와의 송수신시 상향(Uplink) 신호와 하향(Downlink) 신호에 따라 스위치를 제어하는 방법 및 장치를 제안한다. The present invention relates to a repeater using a time division duplex (TDD) scheme. In particular, an embodiment of the present invention proposes a method for synchronizing the time of a repeater without a GPS receiver in a base station having a GPS (Global Positioning System) receiver, and also uses a TDD repeater using the time synchronization information. The present invention proposes a method and apparatus for controlling a switch according to an uplink signal and a downlink signal during transmission and reception with a base station and a terminal.

본 발명의 일 실시예에 따른 TDD 방식의 중계기의 스위치 제어 방법 및 장치는 GPS 수신기를 구비한 그랜드 마스터 노드와, GPS 수신기를 구비하지 않은 슬레이브 노드로 구성된다. 본 발명에서 그랜드 마스터 노드는 기지국에 위치하여 구성되고, 슬레이브 노드는 중계기에 위치하여 멀티 노드로 구성될 수 있다. 슬레이브 노드는 시간 동기화 동작을 거쳐 동기화된 TOD(Time Of Day) 정보를 추출하여 중계기의 TDD 스위치 제어기를 제공하며, TDD 스위치 제어기는 TOD 정보를 이용하여 정확한 스위칭 컨트롤 시점을 제공한다. The switch control method and apparatus of a TDD repeater according to an embodiment of the present invention are composed of a grand master node having a GPS receiver and a slave node having no GPS receiver. In the present invention, the grand master node is configured to be located in the base station, the slave node is located in the repeater may be configured as a multi-node. The slave node extracts the synchronized time of day (TOD) information through a time synchronization operation to provide a TDD switch controller of the repeater, and the TDD switch controller provides an accurate switching control time point using the TOD information.

시간 동기화 기술은 IEEE 1588 표준에 기반을 두고 있으나, 본 발명에서는 멀티 홉(Multi-hop) 환경에서 더욱 향상된 지터(Jitter Variation) 값을 얻을 수 있는 OFCC(Offset & Frequency Compensation Clock) 동기 기술을 적용한다. 상기의 OFCC 기술은 기 출원된 특허(국내특허 출원번호: 10-2006-0039606, 출원인: 삼성전자, 출원일: 2006.5.2)에 기반한다. 본 발명에서 참조하는 OFCC 기술은 뒷부분에 따로 설명하기로 한다. The time synchronization technique is based on the IEEE 1588 standard, but the present invention applies an offset & frequency compensation clock (OFCC) synchronization technique that can obtain more improved jitter (Vitter) value in a multi-hop environment. . The OFCC technology is based on a previously filed patent (Domestic Patent Application No .: 10-2006-0039606, Applicant: Samsung Electronics, Filed: 2006.5.2). OFCC technology referred to in the present invention will be described later.

도 2는 본 발명의 일 실시예에 따른 그랜드 마스터 노드의 블록 구성도이다. 도 2의 그랜드 마스터 노드는 도 1에서 설명한 GPS 수신기에 본 발명의 특징에 따른 시간 동기화 장치를 추가한 구성이다. 따라서 도 2의 그랜드 마스터 노드는 도 1에서 설명한 일반적인 GPS 수신기가 제공하는 10MHz, PP2S(Pulse Per 2 Second), 1PPS(1 Pulse Per Second)신호와 UART 포트(디버그 포트, TOD 포트)를 동일하게 제공한다.2 is a block diagram of a grand master node according to an embodiment of the present invention. The grand master node of FIG. 2 is a configuration in which a time synchronization device according to a feature of the present invention is added to the GPS receiver described in FIG. 1. Therefore, the grand master node of FIG. 2 provides the same 10MHz, Pulse Per 2 Second (PP2S), 1 Pulse Per Second (1PPS) signal and UART port (debug port, TOD port) provided by the general GPS receiver described in FIG. do.

도 2를 참조하면, 본 발명의 일 실시예에 따른 그랜드 마스터 노드는 GPS 수신 장치부(21)와 시간 동기화 장치부(22)를 포함하여 구성된다. 상기 GPS 수신 장치부(21)는 상기에 설명한 도 1의 GPS 수신기(10)의 구성과 동일하다. Referring to FIG. 2, the grand master node according to an embodiment of the present invention includes a GPS receiver 21 and a time synchronizer 22. The GPS receiver 21 is the same as the configuration of the GPS receiver 10 of FIG. 1 described above.

본 발명의 일 실시예에 따른 시간 동기화 장치는 FPGA(Field-Programable Gate Array)형태로 구성된다. 구체적으로 설명하면 본 발명의 일 실시예에 따른 시간 동기화 장치는 GPS 수신기로부터 전송받은 TOD 정보를 PTP(Precision Time Protocol) 방식으로 캡슐화하는 PTP 제너레이터(Generator)(271)와, IEEE 1588 표준을 따라 시간 동기화 동작을 위한 타임스탬프를 생성하는 타임스탬프(Timestamp) 제너레이터(272)와, 타임스탬프된 정보를 처리하는 타임스탬프 체커(Checker)(273)와, 시간 동기화 동작시 상기 각 구성들을 제어하는 CPU(271)를 포함한다. 덧붙여 상기 시간 동기화 장치(22)는 자체적으로 생성하는 동기신호를 제공하기 위한 클럭(265)을 포함한다. 또한 이더넷 PHY(280)는 일명, 이더넷 물리 레이어 또는 이더넷 송수신기로써 이더넷 표준 인터페이스를 포함한다. Time synchronization device according to an embodiment of the present invention is configured in the form of a field-programmable gate array (FPGA). Specifically, the apparatus for synchronizing time according to an embodiment of the present invention includes a PTP generator 271 that encapsulates TOD information received from a GPS receiver using a Precision Time Protocol (PTP) method, and a time according to the IEEE 1588 standard. A timestamp generator 272 for generating a timestamp for the synchronization operation, a timestamp checker 273 for processing the timestamped information, and a CPU for controlling the respective components in the time synchronization operation; 271). In addition, the time synchronization device 22 includes a clock 265 for providing a synchronization signal generated by itself. Ethernet PHY 280 also includes an Ethernet standard interface, also known as Ethernet physical layer or Ethernet transceiver.

상기에 설명한 그랜드 마스터 노드의 구성을 참조하여 그랜드 마스터 노드의 시간 동기화 동작을 살펴보기로 한다.A time synchronization operation of the grand master node will be described with reference to the configuration of the grand master node described above.

본 발명의 일 실시예에 따른 그랜드 마스터 노드(20)는 GPS 수신 장치부(21)에서 일반적인 GPS 수신기와 동일한 동작을 수행하여 시간 동기화 장치부(22)로 GPS 정보를 제공하고, 시간 동기화 장치부(22)는 GPS 수신기에서 수신한 정보를 사용하여 시간 동기화 동작을 수행한다. The grand master node 20 according to an embodiment of the present invention performs the same operation as the general GPS receiver in the GPS receiver 21 to provide GPS information to the time synchronizer 22 and the time synchronizer unit. 22 performs a time synchronization operation using the information received from the GPS receiver.

구체적으로 설명하면, GPS 수신 장치부(21)의 CPU(240)에서 시간 동기화 장치부(22)의 FPGA(270)로 TOD(Time Of Day) 정보를 전달하면, 시간 동기화 장치부(22)내의 CPU(260)의 제어에 따라 PTP 제너레이터(Generator)(271)에서 상기 TOD 정보를 사용하여 슬레이브 노드의 시간 동기를 위한 동기 메시지를 PTP 방식으로 캡슐화(Encapsulation)하고, 타임스탬프 제너레이터(272)는 IEEE 1588 표준을 따라 상기 동기 메시지에 타임스탬프를 생성(Generation)한다. 상기의 PTP 제너레이터(271)와 타임스탬프 제너레이터(272)를 거친 동기 메시지는 통신 망을 통하여 슬레이브 노드로 전송된다. Specifically, when the CPU 240 of the GPS receiver unit 21 transfers TOD (Time Of Day) information to the FPGA 270 of the time synchronizer unit 22, the time synchronizer unit 22 Under the control of the CPU 260, the PTP generator 271 uses the TOD information to encapsulate a synchronization message for time synchronization of a slave node in a PTP manner, and the timestamp generator 272 uses the IEEE. Generate a timestamp in the sync message according to the 1588 standard. The synchronization message passing through the PTP generator 271 and the timestamp generator 272 is transmitted to the slave node through the communication network.

도 3은 본 발명의 일 실시예에 따른 슬레이브 노드의 블록 구성도이다. 도 3을 참조하면, 3 is a block diagram of a slave node according to an embodiment of the present invention. Referring to Figure 3,

본 발명의 일 실시예에 따른 슬레이브 노드는 TOD 정보를 사용하여 슬레이브 노드의 시간 동기를 위한 동기 메시지를 PTP 방식으로 캡슐화하는 PTP 제너레이터(331)와, IEEE 1588 표준을 따라 시간 동기화 동작을 위한 타임스탬프를 생성하는 타임스탬프 제너레이터(332)와, 그랜드 마스터 노드 혹은 다른 슬레이브 노드로부터 수신한 동기 메시지의 타임스탬프된 정보를 처리하는 타임스탬프 체커(333)와, 슬레이브 노드(30) 자체적으로 생성하는 시스템 동기 신호를 제공하기 위한 클럭(360)과, 시간 동기화를 위한 1PPS, PP2S 출력 신호를 생성하는 클럭 및 타이밍 생성기(CLK & Timing Generator)(334)와, 클럭 및 타이밍 생성기(334)에서 생성된 10MHz, 1PPS, PP2S 신호 및 TCXO(350)에서 생성된 아날로그 10MHz 신호를 출력하고, UART 포트를 사용하여 TOD 데이터의 입출력 동작을 수행하는 입출력부(340)와 슬레이브 노드(30)의 시간 동기화 동작 수행시 상기 슬레이브 노드(30)의 각 구성들을 제어하며 OFCC 동기화 기법으로 슬레이브 노드의 시간 동기화 연산을 수행하는 CPU(320)를 포함한다. 또한 안정적인 발진 주파수를 갖는 출력신호를 제공하기 위하여 TCXO(350)가 더 포함될 수 있다.A slave node according to an embodiment of the present invention uses a PTP generator 331 for encapsulating a synchronization message for time synchronization of a slave node in a PTP manner using TOD information, and a timestamp for time synchronization operation according to the IEEE 1588 standard. A timestamp generator 332 for generating a time stamp, a timestamp checker 333 for processing timestamped information of a sync message received from a grand master node or another slave node, and a system synchronization generated by the slave node 30 itself. A clock 360 for providing a signal, a clock and timing generator 334 for generating a 1PPS, PP2S output signal for time synchronization, a 10 MHz signal generated by the clock and timing generator 334, Outputs 1PPS, PP2S signal and analog 10MHz signal generated by TCXO 350, and performs input / output operation of TOD data using UART port. The CPU 320 controls the components of the slave node 30 when performing the time synchronization operation between the input / output unit 340 and the slave node 30 and performs a time synchronization operation of the slave node using the OFCC synchronization technique. In addition, the TCXO 350 may be further included to provide an output signal having a stable oscillation frequency.

상기의 구성을 참조하여, 본 발명의 일 실시예에 따른 슬레이브 노드의 동작을 설명하기로 한다. 슬레이브 노드는 상기 그랜드 마스터 노드 또는 다른 슬레이브 노드로부터 시간 동기를 위한 PTP 방식의 동기 메시지를 수신하여 타임스탬프 체커(333)에서 타임스탬프 정보를 처리한다. 상기 타임스탬프 정보를 사용하여 FPGA(340)내에 위치한 CPU(320)에서 OFCC 기법을 사용하는 연산과정을 거쳐 시간 동기화 연산을 수행하고 슬레이브 노드의 TOD 정보를 수정한다. 상기 FPGA(340)에서는 상기 TOD 정보를 이용하여 1초에 한 번 또는 2초에 한 번씩 펄스를 발생하도록 하여 1PPS 또는 PP2S 신호를 생성한다. 또한 외부의 TCXO(350)에서 제공하는 아날로그 10MHz 클럭(clock)을 이용하여 동기화된 디지털 10MHz 클럭을 생성할 수 있다. 또한 상기에 OFCC 동기화 연산을 사용하여 수정된 TOD 정보를 사용하여 또 다른 슬레이브 노드의 시간 동기화를 위해 PTP 제너레이터(331)와 타임 스탬프 제어레이터(332)를 거쳐 동기 메시지를 생성한다. 또한 상기 TOD 정보는 특정 인터페이스(UART 또는 이더넷등)를 사용하여 중계기의 스위칭 제어부로 제공된다.With reference to the above configuration, the operation of the slave node according to an embodiment of the present invention will be described. The slave node receives the PTP type synchronization message for time synchronization from the grand master node or another slave node and processes time stamp information in the time stamp checker 333. Using the time stamp information, the CPU 320 located in the FPGA 340 performs a time synchronization operation through an OFCC scheme and modifies the TOD information of the slave node. The FPGA 340 generates a 1PPS or PP2S signal by generating a pulse once per second or once every 2 seconds using the TOD information. In addition, a synchronized digital 10MHz clock may be generated using an analog 10MHz clock provided by an external TCXO 350. In addition, the synchronization message is generated through the PTP generator 331 and the time stamp controller 332 for time synchronization of another slave node using the modified TOD information using the OFCC synchronization operation. In addition, the TOD information is provided to the switching control unit of the repeater using a specific interface (UART or Ethernet, etc.).

도 4는 본 발명의 일 실시예에 따른 TDD(Time Division Duplex) 방식의 무선 중계기의 스위치 제어 장치의 블록 구성도이다. 도 4를 참조하면, 본 발명의 일 실시예에 따른 TDD 방식의 무선 중계기는 대역 필터링을 수행하는 밴드 패스 필터(BPF: Band Pass Filter, 이하 'BPF'라 칭하기로 한다)(420, 450)와, 상향 전송과 하향 전송을 구분하는 스위치(480, 490)와, 신호의 잡음 성분을 줄이고 신호 성분을 증폭하는 저잡음 증폭기(LNA: Low Noise Amplifiers, 이하 'LNA'라 칭하기로 한다)(430, 460)와, 신호를 무선으로 송출하기 위한 실효 출력까지 증폭하는 고출력 증폭기(HPA: High Power Amplifiers, 이하 'HPA'라 칭하기로 한다)(440, 470)와, 상기 스위치(480, 490)를 제어하는 스위치 제어기(410)와, 중계기의 시간 동기화를 제공하며 스위치 제어 신호를 전달하는 슬레이브 노드(30)을 포함한다. 4 is a block diagram of a switch control apparatus of a wireless repeater of a time division duplex (TDD) method according to an embodiment of the present invention. Referring to FIG. 4, a TDD wireless repeater according to an embodiment of the present invention may include a band pass filter (BPF) 420 and 450 for performing band filtering. And switches 480 and 490 for distinguishing uplink and downlink transmissions, and low noise amplifiers (LNAs) 430 and 460 to reduce noise components of the signal and amplify the signal components. ), A high power amplifier (HPA: High Power Amplifiers) (440, 470) for amplifying an effective output for transmitting a signal wirelessly, and the switches (480, 490) for controlling the Switch controller 410, and slave node 30 to provide time synchronization of the repeater and to convey switch control signals.

중계기에 위치하는 시간 동기화를 제공하는 슬레이브 노드(30)는 특정 인터페이스를 통해 TOD 정보를 스위치 제어기(410)에 제공하고, 이를 수신한 스위치 제 어기(410)는 TOD의 시간 정보를 기준으로 상향 신호와 하향 신호의 타이밍을 결정한다. The slave node 30 providing the time synchronization located in the relay provides the TOD information to the switch controller 410 through a specific interface, and the switch controller 410 receiving the uplink signal is an uplink signal based on the time information of the TOD. Determine the timing of the downlink signal.

기지국에서 단말로 향하는 하향 전송의 경우, 기지국으로부터의 신호는 BPF(420)에서 필터링을 수행하고 스위치(480)를 거쳐 LNA(430)로 전달된다. LNA(430)에서 신호의 잡음 성분을 줄이고 신호 성분을 증폭하여 HPA(440)로 전달되고, HPA(440)에서 신호를 무선으로 송출하기 위한 실효 출력까지 증폭하여 스위치(490)로 전달되고, 스위치(490)를 거쳐서 다시 BPF(450)로 전달되어 대역 필터링을 수행하고 최종적으로 단말로 전송된다.In the case of downlink transmission from the base station to the terminal, the signal from the base station performs filtering at the BPF 420 and is transmitted to the LNA 430 through the switch 480. In the LNA 430, the noise component of the signal is reduced and the signal component is amplified and delivered to the HPA 440, and the HPA 440 is amplified to an effective output for transmitting the signal wirelessly and transmitted to the switch 490, and the switch After passing through 490, the BPF 450 is transmitted to the BPF 450 to perform band filtering and finally transmitted to the terminal.

단말에서 기지국으로 향하는 상향 전송의 경우에는, 단말로부터 시작된 신호는 BPF(450)에서 필터링을 수행하고 스위치(490)를 거쳐 LNA(460)로 전달된다. LNA(460)에서 신호의 잡음 성분을 줄이고 신호 성분을 증폭하여 HPA(470)로 전달되고, HPA(470)에서 신호를 무선으로 송출하기 위한 실효 출력까지 증폭하여 스위치(480)로 전달되고, 스위치(480)를 거쳐서 다시 BPF(420)로 전달되어 대역 필터링을 수행하고 기지국으로 전송된다.In the case of uplink transmission from the terminal to the base station, the signal originating from the terminal is filtered by the BPF 450 and transferred to the LNA 460 via the switch 490. In the LNA 460, the noise component of the signal is reduced and the signal component is amplified and transmitted to the HPA 470, and the HPA 470 is amplified to an effective output for transmitting the signal wirelessly and transmitted to the switch 480, and the switch The data is passed back to the BPF 420 through 480 to perform band filtering and transmitted to the base station.

도 5는 본 발명의 일 실시예에 따른 TDD 방식의 광 중계기의 스위치 제어 장치의 블록 구성도이다. 도 5를 참조하면, 본 발명의 일 실시예에 따른 TDD 방식의 광 중계기는 대역 필터링을 수행하는 밴드 패스 필터(BPF: Band Pass Filter, 이하 'BPF'라 칭하기로 한다)(570)와, 상향 전송과 하향 전송을 구분하는 스위치(560)와, 신호의 잡음 성분을 줄이고 신호 성분을 증폭하는 저잡음 증폭기(LNA: Low Noise Amplifiers, 이하 'LNA'라 칭하기로 한다)(540, 580)와, 신호를 무선으 로 송출하기 위한 실효 출력까지 증폭하는 고출력 증폭기(HPA: High Power Amplifiers, 이하 'HPA'라 칭하기로 한다)(550)와, 상기 스위치(560)를 제어하는 스위치 제어기(510)와, 전광변환을 수행하는 전광 변환 모듈(E/O)(590)과, 광전변환을 수행하는 광전 변환 모듈(O/E)(530)과, 중계기의 시간 동기화를 제공하며 스위치 제어 신호를 전달하는 슬레이브 노드(30) 그리고 WDM(length Division Multiplexer)(520)을 포함한다.5 is a block diagram of a switch control device of an optical repeater of the TDD type according to an embodiment of the present invention. Referring to FIG. 5, a TDD optical repeater according to an embodiment of the present invention is a band pass filter (BPF) 570 that performs band filtering (hereinafter, referred to as a 'BPF') 570 and an upward direction. A switch 560 that distinguishes transmission from downlink transmission, low noise amplifiers (LNAs) 540 and 580 for reducing noise components of the signal and amplifying the signal components; A high power amplifier (HPA: High Power Amplifiers, hereinafter referred to as HPA) 550 for amplifying an effective output for wirelessly transmitting the signal, a switch controller 510 for controlling the switch 560, An all-optical conversion module (E / O) 590 that performs all-optical conversion, a photoelectric conversion module (O / E) 530 that performs photoelectric conversion, and a slave that provides time synchronization of the repeater and transfers switch control signals Node 30 and a length division multiplexer (WDM) 520.

상기 WDM(520)은 광섬유 채널을 빛의 파장에 의해 다수의 채널로 분할하여 복수의 통신로로 사용할 수 있게 하는 장치로서, 광신호를 전송하는 경우에는 여러 광파장의 신호를 하나의 광섬유에 실어 전송하는 파장 분할 다중화기로서 동작하고, 광신호를 전송받는 경우에는 하나의 광섬유에 실린 여러 광파장의 신호를 각각 분기하는 파장 분할 역다중화기로서 동작할 수 있다. 또한 상기 전광 변환 모듈(590)은 레이저 다이오드(LaserDiode)를 사용하여 구현할 수 있으며, 광전 변환 모듈(530)은 포토 다이오드(PhotoDiode)를 사용하여 구현할 수 있다.The WDM 520 is a device for dividing an optical fiber channel into a plurality of channels by wavelengths of light and using the same in a plurality of communication paths. When the optical signal is transmitted, the optical signal may be operated as a wavelength division demultiplexer for branching signals of various optical wavelengths carried in one optical fiber. In addition, the all-optical conversion module 590 may be implemented using a laser diode (LaserDiode), the photoelectric conversion module 530 may be implemented using a photodiode (PhotoDiode).

본 발명의 일 실시예에 따른 광 중계기는 기지국에서 단말로 향하는 하향 전송의 경우, 기지국으로부터의 광신호는 WDM(520)을 거쳐 광전 변환 모듈(O/E Conversion)(530)로 전달되고, 광전 변환 모듈(530)에서 신호가 광전 변환되어 LNA(540)로 전달된다. LNA(540)에서 RF 신호의 잡음 성분을 줄이고 신호 성분을 증폭하여 HPA(550)로 전달한다. HPA(550)에서는 RF 신호를 무선으로 송출하기 위한 실효 출력까지 증폭하여 스위치(560)로 전달하고 스위치(560)를 거친 신호는 다시 BPF(570)에서 대역 필터링을 거쳐 단말로 전송된다. In the case of the downlink transmission from the base station to the terminal in accordance with an embodiment of the present invention, the optical signal from the base station is transmitted to the photoelectric conversion module (O / E Conversion) 530 via the WDM (520), In the conversion module 530, the signal is photoelectrically converted and transferred to the LNA 540. The LNA 540 reduces the noise component of the RF signal, amplifies the signal component, and delivers the signal component to the HPA 550. The HPA 550 amplifies the effective output for wirelessly transmitting the RF signal to the switch 560, and the signal passed through the switch 560 is transmitted to the terminal through the band filtering in the BPF 570.

단말에서 기지국으로 향하는 상향 전송의 경우, 단말로부터 시작된 신호는 BPF(570)에서 대역 필터링을 수행하고 스위치(560)를 거쳐서 LNA(580)로 전달된다. LNA(580)에서 신호의 잡음 성분을 줄이고 신호 성분을 증폭하여 전광 변환 모듈(590)로 전달하고 전광 변환 모듈(590)에서 전광변환을 통해 광신호로 변환하여 WDM(520)을 거쳐서 기지국으로 광전송된다.In the case of uplink transmission from the terminal to the base station, the signal originating from the terminal performs band filtering at the BPF 570 and is transmitted to the LNA 580 via the switch 560. The LNA 580 reduces the noise component of the signal, amplifies the signal component, and transmits the signal component to the all-optical conversion module 590. do.

상기에서 설명한 것처럼 무선 중계기와 광 중계기의 하향 전송 방향과 상향 전송 방향의 신호처리 패스(Path)가 다르기 때문에 무선 중계기의 경우 2개의 스위치를 가지고 있고, 광 중계기의 경우 1개의 RF 스위치를 가지고 있다. As described above, since the signal processing paths of the downlink transmission direction and the uplink transmission direction of the wireless repeater and the optical repeater are different, the wireless repeater has two switches, and the optical repeater has one RF switch.

상기 RF 스위치의 제어에 따라 TDD 시스템에서 상향 링크와 하향 링크의 구간을 나누고 송수신을 제어할 수 있다. 본 발명의 일 실시예에서는 시간 동기화 기술을 응용하여 동기화된 TOD 정보를 이용하여 ns 단위의 정확한 기준 시간을 추출하여 하향 전송과 상향 전송의 타이밍을 제어할 수 있는 스위치 제어기(Switch Controller)를 제안하고자 한다. 상기 스위치 제어기는 하향 전송과 상향 전송의 타이밍을 제어하기 위해 시간 동기 정보를 사용하여 정확한 스위치 제어 신호를 발생한다. 따라서 스위치 제어기는 FPGA(Field Programmable Fate Array) 형태로 구성되어 '초기(Initial)상태', 'DL(Downlink)상태', 'UL(Uplink)상태', 'TTG(Tx Transition Gap)상태', 'RTG(Rx Transition Gap)상태'를 포함하는 FSM(Finite State Machine)을 구성하여 각 상태들의 시작시간 및 지속시간을 검사하여 현재 TOD 시간이 어떤 상태에 해당하는지 판단하여 스위치를 제어한다. According to the control of the RF switch, a TDD system may divide uplink and downlink sections and control transmission and reception. In one embodiment of the present invention to propose a switch controller that can control the timing of downlink transmission and uplink transmission by extracting the accurate reference time in ns unit using the synchronized TOD information by applying the time synchronization technology do. The switch controller generates an accurate switch control signal using time synchronization information to control timing of downlink transmission and uplink transmission. Therefore, the switch controller is configured in the field of FPGA (Field Programmable Fate Array) and is composed of 'Initial State', 'DL (Downlink) State', 'UL (Uplink) State', 'Tx Transition Gap State', ' It configures a finite state machine (FSM) that includes an Rx transition gap (RTG) state and examines the start time and duration of each state to determine which state the current TOD time corresponds to and controls the switch.

도 6은 본 발명의 일 실시예에 따른 시간 동기화 방법을 이용한 TDD 중계기 의 스위치 제어 동작 흐름도이다. 도 6을 참조하면 605단계에서 스위치 제어기는 RS-232 포트(Ethernet) 등으로부터 TOD 정보를 추출하고 또한 TDD 방식의 다운링크(DL), 업링크(UL), TTG(Tx Transition Gap), RTG(Rx Transition Gap)의 시작 및 지속 시간에 대한 정보를 추출한다. 다음 610단계에서 FPGA 등으로 구성된 스위치 제어기(Switch Controller)는 유한 상태 기계(FSM: Finite State Machine)를 구성하여 각각의 상태(State)를 초기(initial), 다운링크(DL), 업링크(UL), TTG, RTG로 구성한다. 다음 615단계로 진행하여, 현재 상태(state)가 초기(initial)상태 인지 판단하여 초기상태가 맞다면 640단계로 진행하여 00(OPEN)의 TDD 스위치 제어신호를 출력하고, 655단계로 진행하여 스위치 제어신호에 따라 스위치를 제어한다. 상기 615단계에서 초기상태가 아니면, 620단계로 진행하여 상태가 TTG상태인지 판단한다. TTG 상태가 맞으면 640단계로 진행하여 00(OPEN)의 TDD 스위치 제어신호를 출력하고, 655단계로 진행하여 스위치 제어신호에 따라 스위치를 제어한다. 상기 620단계에서 상태가 TTG 상태가 아니면, 625단계로 진행하여 상태가 RTG 상태인지 판단한다. 상태가 RTG 상태라면 640단계로 진행하여 00(OPEN)의 TDD 스위치 제어신호를 출력하고, 655단계로 진행하여 스위치 제어신호에 따라 스위치를 제어한다. 상기 625단계에서 상태가 RTG 상태가 아니면, 630단계로 진행하여 상태가 DL 상태인지 판단한다. 상기 630단계에서 상태가 DL 상태가 맞다면 645단계로 진행하여 01(DL_side)의 스위치 제어신호를 출력하고, 655단계로 진행하여 스위치 제어신호에 따라 스위치를 제어한다. 상기 630단계에서 상태가 DL 상태가 아니면, 635단계로 진행하여 상태가 UL 상태인지 판단하고, UL 상태가 맞으면 650단계로 진행하여 10(UL_side)의 스위치 제어신호를 출력하고, 655단계로 진행하여 스위치 제어신호에 따라 스위치를 제어한다. 상기와 같은 동작 절차로 TDD 기반의 스위치 제어기의 구성이 가능하다. 6 is a flowchart illustrating a switch control operation of a TDD repeater using a time synchronization method according to an embodiment of the present invention. Referring to FIG. 6, in step 605, the switch controller extracts TOD information from an RS-232 port (Ethernet) and the like, and further includes TDD downlink (DL), uplink (UL), TTG (Tx Transition Gap), and RTG ( Rx Transition Gap) extracts information about the start and duration. Next, in step 610, a switch controller composed of an FPGA or the like configures a finite state machine (FSM) to initialize each state (initial), downlink (DL), and uplink (UL). ), TTG and RTG. In step 615, the controller determines whether the current state is the initial state. If the initial state is correct, the controller proceeds to step 640 to output a TDD switch control signal of 00 (OPEN), and proceeds to step 655. Control the switch according to the control signal. If it is not the initial state in step 615, go to step 620 to determine whether the state is a TTG state. If the TTG state is correct, the control proceeds to step 640 to output a TDD switch control signal of 00 (OPEN), and proceeds to step 655 to control the switch according to the switch control signal. If the state is not the TTG state in step 620, the process proceeds to step 625 to determine whether the state is an RTG state. If the status is RTG, the controller proceeds to step 640 to output a TDD switch control signal of 00 (OPEN), and proceeds to step 655 to control the switch according to the switch control signal. If the state is not the RTG state in step 625, the process proceeds to step 630 to determine whether the state is a DL state. If the DL state is correct in step 630, the process proceeds to step 645 to output the switch control signal of 01 (DL_side), and the process proceeds to step 655 to control the switch according to the switch control signal. If the state is not the DL state in step 630, the process proceeds to step 635 to determine whether the state is a UL state. Control the switch according to the switch control signal. It is possible to configure a TDD-based switch controller by the operation procedure as described above.

본 발명에서 사용하는 OFCC(Offset & Frequency Compensation Clock) 동기화 방식에 대해서 설명하기로 한다. OFCC 방식은 종래의 일명 타임 오프셋 및 주파수 동시 결합 보상 대신에 일명 타임 오프셋 및 주파수 분리 보상을 지원하도록 개선된 방법을 사용한다. 도 7을 참조하여 보다 상세히 설명하면, 도 7은 OFCC(Offset & Frequency Compensation Clock) 타임 동기화를 위한 타임 오프셋 및 주파수 보상 간격을 나타낸 기본적인 동작 절차 흐름도이다. 도 7을 참조하면, 본 발명의 일 실시예에 따른 타임 동기화 방식은 마스터 클록에서는 자신의 착수 타임(launching time)을 포함하는 동기 메시지 [Sync]를 주기적으로 슬레이브 클록으로 전송함으로써, 일정한 주기를 두고 타임 동기화를 위한 동작을 수행한다. 이때 본 발명은 동기 메시지(Sync), 후속 메시지(Follow Up), 지연 요청 메시지(Delay Request) 및 지연 응답 메시지(Delay Response)의 통신을 포함하는 IEEE 1588의 기본 절차를 그대로 사용한다. 그런데, 슬레이브 클록에서 주파수 업데이트 방식은 종래의 일명 타임 오프셋 및 주파수 동시 결합 보상 대신에 본 발명의 특징에 따라 일명 타임 오프셋 및 주파수 분리 보상을 지원하도록 개선된다. The Offset & Frequency Compensation Clock (OFCC) synchronization method used in the present invention will be described. The OFCC scheme uses an improved method to support so-called time offset and frequency separation compensation instead of the conventional so-called time offset and frequency simultaneous combining compensation. Referring to FIG. 7, FIG. 7 is a flowchart illustrating a basic operation procedure showing a time offset and a frequency compensation interval for offset & frequency compensation clock (OFCC) time synchronization. Referring to FIG. 7, in the time synchronization method according to an embodiment of the present invention, the master clock periodically transmits a synchronization message [Sync] including its own starting time to the slave clock, thereby maintaining a predetermined period. Performs an operation for time synchronization. In this case, the present invention uses the basic procedure of IEEE 1588 including communication of a sync message, a follow up message, a delay request message, and a delay response message. By the way, the frequency update scheme in the slave clock is improved to support so-called time offset and frequency separation compensation according to the features of the present invention instead of the conventional so-called time offset and frequency simultaneous combining compensation.

즉, 본 발명에서는 동기화 사이클에 따라 두 개의 간격(interval), 즉 타임 오프셋 보상 간격(TCI: Time offset Compensation Interval) 및 주파수 보상 간격(FCI: Frequency Compensation Interval)이 있게 되며, 해당 간격에 따른 주기로 타임 오프셋 보상 및 주파수 보상 동작을 수행하게 된다. 타임 오프셋 보상 간격은 두개의 인접한 동기 메시지간의 간격이다. 그리고 주파수 보상 간격은 이보다 길며, 예를 들어 다수의 타임 오프셋 보상 간격들로 설정될 수 있다. That is, according to the present invention, there are two intervals according to a synchronization cycle, that is, a time offset compensation interval (TCI) and a frequency compensation interval (FCI), and a time according to the interval. Offset compensation and frequency compensation operations are performed. The time offset compensation interval is the interval between two adjacent sync messages. And the frequency compensation interval is longer than this, for example, can be set to a plurality of time offset compensation intervals.

타임 오프셋 및 주파수 보상 간격의 정의는 도 7에 도시된다. 도 7에서 'm'은 주파수 보상 간격 대 타임 오프셋 보상 간격의 비율이다. 이러한 파라미터 m은 타임 의존적이도록 설정할 수도 있지만, 이는 보다 간단하게 또한 실제 적용시에는 적절하게 고정된 수로 미리 설정될 수 있다. The definition of the time offset and frequency compensation interval is shown in FIG. 'M' in FIG. 7 is a ratio of frequency compensation interval to time offset compensation interval. This parameter m can also be set to be time dependent, but it can be preset to a simpler, more simply and suitably fixed number in practical application.

이와 같이 상기한 두 간격(TCI, FCI)에 대응하여, 본 발명에서는 두개의 주파수 스케일링 계수를 구하는 방식이 슬레이브 클록을 위한 동작 절차로서 제공된다. As described above, corresponding to the above two intervals (TCI, FCI), in the present invention, a method of obtaining two frequency scaling coefficients is provided as an operation procedure for the slave clock.

1. 타임 오프셋 보상 간격(TCI). 1. Time Offset Compensation Interval (TCI).

일단 슬레이브가 동기 메시지를 수신하면, 일반적인 경우에는 수신한 동기 메시지를 하기 수학식 1과 같은 주파수 스케일링 계수(FreqScaleFactor) 계산 방식을 사용하여 단지 타임 오프셋 보상을 위해 자신의 주파수를 업데이트하는데 사용한다. Once the slave receives the sync message, the received sync message is used to update its frequency only for time offset compensation using a frequency scaling factor (FreqScaleFactor) calculation scheme as shown in Equation 1 below.

FreqScaleFactorn = MasterClockCountn / SlaveClockCountn FreqScaleFactor n = MasterClockCount n / SlaveClockCount n

상기 수학식 1에서 FreqScaleFactorn는 주파수 스케일링 계수, MasterClockCountn = MasterClockTimen - MasterClockTimen -1, MasterClockTimen = MasterSyncTimen + MasterToSlaveDelay, MasterSyncTimen은 마스터에서 슬레이브로 동기 메시지를 전송한 시간, MasterToSlaveDelay는 마스터에서 슬레이브로 동기 메시지 전송시 전송 지연 시간, SlaveClockCountn = SlaveClockTimen - SlaveClockTimen-1, SlaveClockTimen은 슬레이브가 마스터로부터 동기 메시지를 수신한 시간임.In Equation 1, FreqScaleFactor n is a frequency scaling factor, MasterClockCount n = MasterClockTime n -MasterClockTime n -1 , MasterClockTime n = MasterSyncTime n + MasterToSlaveDelay, MasterSyncTime n is a time when a synchronization message is transmitted from master to slave, and MasterToSlaveDelay is slave from master to slave. SlaveClockCount n = SlaveClockTime n -SlaveClockTime n-1 , SlaveClockTime n is the time when the slave received the sync message from the master.

2. 주파수 보상 간격(FCI). 2. Frequency Compensation Interval (FCI).

일단 슬레이브가 본 발명의 특징에 따라 이전 주파수 및 타임 오프셋 동시 보상 타임 시점에서부터 n번째 수신한 동기 메시지(현재 동기 메시지)가 mn번째 동기 메시지일 경우에, 하기 수학식 2와 같은 주파수 스케일링 계수 계산 방식을 사용하여 타임 오프셋 및 주파수 보상 모두를 위해 자신의 주파수를 업데이트하게 된다. Once the n-th received sync message (current sync message) from the previous frequency and time offset co-compensation time point according to the characteristics of the present invention is the m- n sync message, the frequency scaling factor is calculated as in Equation 2 below. The method is used to update its frequency for both time offset and frequency compensation.

Figure 112007028803316-pat00001
Figure 112007028803316-pat00001

상기 수학식 2에서 FreqScaleFactorn는 주파수 스케일링 계수, MasterClockCountn = MasterClockTimen - MasterClockTimen -1, MasterClockTimen = MasterSyncTimen + MasterToSlaveDelay, MasterSyncTimen은 마스터에서 슬레이브로 동기 메시지를 전송한 시간, MasterToSlaveDelay는 마스터에서 슬레이브로 동기 메시지 전송시 전송 지연 시간, SlaveClockCountn = SlaveClockTimen - SlaveClockTimen-1, SlaveClockTimen은 슬레이브가 마스터로부터 동기 메시지를 수신한 시간, ClockDiffCountn = MasterClockTimen - SlaveClockTimen임. In Equation 2, FreqScaleFactor n is a frequency scaling factor, MasterClockCount n = MasterClockTime n -MasterClockTime n -1 , MasterClockTime n = MasterSyncTime n + MasterToSlaveDelay, MasterSyncTime n is a time when a synchronization message is transmitted from master to slave, and MasterToSlaveDelay is slave from master to slave. SlaveClockCount n = SlaveClockTime n -SlaveClockTime n-1 , SlaveClockTime n is the time the slave received the sync message from the master, and ClockDiffCount n = MasterClockTime n -SlaveClockTime n .

만약 상기 m이 미리 설정된 상수이며 타임 독립적이면, 상기 수학식 3은 하기 수학식 3과 같게 된다. If m is a predetermined constant and is time independent, Equation 3 becomes as Equation 3 below.

Figure 112007028803316-pat00002
Figure 112007028803316-pat00002

상기 수학식 3에서 모든 파라미터는 종래에서 기술한 것과 동일한 정의를 가진다.In Equation 3, all parameters have the same definitions as those described in the related art.

상기의 OFCC 방식에 따른 타임 동기화 방식은 주파수 및 오프셋 보상을 분리되게 지원하는 방식을 사용하여, 슬레이브의 주파수 및 타임 오프셋이 개별적으로 보상되도록 하므로, 단계적인 브리지(스위치)들을 가지는 네트워크에서, 그랜드 마스터에서 슬레이브로 동기화 경로를 따라 축적되는 대부분의 에러가 보상될 수 있다. In the time synchronization scheme according to the OFCC scheme, a frequency and time offset of a slave is individually compensated by using a scheme that separately supports frequency and offset compensation. Most of the errors accumulated along the synchronization path from the slave to the slave can be compensated for.

상기와 같이 본 발명의 일 실시예에 따른 시분할 양방향 전송 방식을 사용하는 중계기의 스위치 제어 방법 및 장치의 동작 및 구성이 이루어질 수 있으며, 한편 상기한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나 여러 가지 변형이 본 발명의 범위를 벗어나지 않고 실시될 수 있다. 따라서 본 발명의 범위는 설명된 실시예에 의하여 정할 것이 아니고 청구범위와 청구범위의 균등한 것에 의하여 정하여져야 할 것이다.As described above, the operation and configuration of a switch control method and apparatus of a repeater using a time division bidirectional transmission method according to an embodiment of the present invention can be made. Meanwhile, in the above description of the present invention, specific embodiments have been described. Branch modifications may be made without departing from the scope of the present invention. Therefore, the scope of the present invention should not be defined by the described embodiments, but by the claims and equivalents of the claims.

상술한 바와 같이 본 발명에서 제안하는 시분할 양방향 전송 방식(TDD: Time Division Duplex)을 사용하는 중계기의 스위치 제어 방법 및 장치는 GPS 수신기를 구비하여 GPS 신호에 포함된 시각 정보를 사용하여 GPS 수신기를 구비하지 않은 노드(중계기)의 시간 동기화를 수행하고, 이러한 동기화 정보를 이용하여 TDD 방식을 사용하는 기지국과 중계기의 기준 시각을 동기 시켜 스위치 제어 신호를 이용하여 상향 전송과 하향 전송에 따라 정확한 스위칭 제어를 제공할 수 있다. 따라서 GPS 신호의 수신이 어려운 도심이나 건물 내의 실내 환경에서도 소형 기지국 또는 중계기를 설치할 수 있는 장점이 있다. 상기와 같이 GPS 수신기의 장착 없이 소형 기지국의 구현이 가능함에 따라 시스템 설계의 비용 측면에서 매우 큰 이점을 가질 수 있다. 또한 이러한 동기화 기술을 이용한 중계기의 경우 멀티 홉(Multi-Hop) 구성이 가능하다. As described above, the method and apparatus for controlling a switch of a repeater using a time division duplex (TDD) proposed by the present invention include a GPS receiver and a GPS receiver using visual information included in a GPS signal. Synchronize the time of the non-node (relay) and synchronize the reference time between the base station using the TDD method and the repeater using this synchronization information, and use the switch control signal to perform accurate switching control according to uplink and downlink transmission. Can provide. Therefore, there is an advantage in that a small base station or repeater can be installed even in an indoor environment in a city or a building where it is difficult to receive a GPS signal. As described above, since a small base station can be implemented without mounting a GPS receiver, it can have a great advantage in terms of system design. In addition, in the case of the repeater using this synchronization technology it is possible to configure a multi-hop (Multi-Hop).

Claims (17)

시분할 양방향 전송(TDD: Time Division Duplex) 방식을 사용하는 중계기에서 전송 신호를 분리하는 스위치 제어 방법에 있어서, In the switch control method for separating a transmission signal in a repeater using a time division duplex (TDD) method, 기지국에 위치하여, GPS(Global Positioning System) 수신기를 구비한 그랜드 마스터 노드가, 상기 GPS 수신기로부터 전송받은 GPS 신호를 사용하여 슬레이브 노드의 시간 동기화를 위한 동기 메시지를 생성하여 적어도 하나 이상의 슬레이브 노드로 전송하는 과정과, Located in the base station, the grand master node having a Global Positioning System (GPS) receiver generates a synchronization message for time synchronization of the slave node using the GPS signal received from the GPS receiver and transmits it to at least one slave node. Process, 상기 TDD 방식을 사용하는 중계기에 위치하는, 슬레이브 노드가 상기 그랜드 마스터 노드 또는 다른 슬레이브 노드로부터 시간 동기화를 위한 상기 동기 메시지를 수신하고, 타임 오프셋 및 주파수 분리 보상을 지원하는 OFCC(Offset & Frequency Compensation Clock) 동기화 기술을 사용하여 시간 동기화 연산을 수행하고, 또 다른 슬레이브 노드의 시간 동기화를 위해 동기 메시지를 생성하는 과정과,Offset & Frequency Compensation Clock (OFCC), which is located in a repeater using the TDD scheme, receives the synchronization message for time synchronization from the grand master node or another slave node and supports time offset and frequency separation compensation. Performing a time synchronization operation using a synchronization technique and generating a synchronization message for time synchronization of another slave node; 상기 슬레이브 노드에서 상기 시간 동기화 연산을 수행하여 동기된 시각 정보를 미리 설정된 인터페이스를 통해 중계기 내의 스위치 제어기로 전달하는 과정과,Transmitting the synchronized time information to the switch controller in the repeater through a preset interface by performing the time synchronization operation at the slave node; 상기 스위치 제어기는 상기 동기된 시각 정보를 기준으로 상향 전송과 하향 전송을 구분하는 스위치 제어 신호를 스위치로 전달하여 상기 스위치를 제어하는 과정을 포함함을 특징으로 하는 스위치 제어 방법.The switch controller comprises the step of controlling the switch by transmitting a switch control signal for distinguishing the uplink and downlink transmission based on the synchronized time information to the switch. 제 1항에 있어서, 상기 슬레이브 노드가 사용하는 타임 오프셋 및 주파수 분리 보상을 지원하는 OFCC(Offset & Frequency Compensation Clock) 동기화 기술은, The offset and frequency compensation clock (OFCC) synchronization technology of claim 1, wherein the offset and frequency separation compensation used by the slave node is supported. 마스터측으로부터 동기 메시지의 수신시, 해당 동기 메시지의 수신 시점을 이전 주파수 보상 시점과 확인함으로 미리 설정된 주파수 보상 간격에 도달하였는지 확인하는 과정과,When the synchronization message is received from the master, confirming that the reception time of the synchronization message has been reached with the previous frequency compensation time to confirm whether a preset frequency compensation interval has been reached; 상기 확인 결과 상기 미리 설정된 주파수 보상 간격에 도달하지 않았을 경우에는 타임 오프셋 보상 동작만을 수행하는 과정과,Performing only a time offset compensation operation when the preset frequency compensation interval has not been reached as a result of the checking; 상기 확인 결과 미리 설정된 주파수 보상 간격에 도달하였을 경우에는 타임 오프셋 및 주파수 보상 동작을 모두 수행하는 과정을 포함하는 것을 특징으로 하는 스위치 제어 방법.And when both of the check result and the preset frequency compensation interval have been reached, performing both a time offset and a frequency compensation operation. 제 1항에 있어서, 상기 그랜드 마스터 노드가 상기 슬레이브 노드의 시간 동기화를 위해 생성하는 동기 메시지는 상기 GPS 수신기로부터 전송받은 TOD(Time Of Day) 정보를 사용하여 PTP(Precision Time Protocol) 방식으로 캡슐화되고, IEEE 1588 표준을 따라 타임스탬프(TimeStamp) 되는 것을 특징으로 하는 스위치 제어 방법.The synchronization message generated by the grand master node for time synchronization of the slave node is encapsulated in a precision time protocol (PTP) method using time of day (TOD) information received from the GPS receiver. And a time stamped according to the IEEE 1588 standard. 제 1항에 있어서, 상기 슬레이브 노드가 상기 그랜드 마스터 노드 또는 다 른 슬레이브 노드로부터 수신한 동기 메시지는 상기 슬레이브 노드에서 IEEE 1588 표준을 따라 타임스탬프 정보가 처리되는 것을 특징으로 하는 스위치 제어 방법.The method of claim 1, wherein the slave node receives time stamp information from the grand master node or another slave node in accordance with the IEEE 1588 standard. 제 1항에 있어서, 상기 슬레이브 노드가 상기 또 다른 슬레이브 노드의 시간 동기화를 위해 생성하는 동기 메시지는 상기 슬레이브 노드의 TOD 정보를 사용하여 PTP 방식으로 캡슐화하고, IEEE 1588 표준을 따라 타임스탬프 되는 것을 특징으로 하는 스위치 제어 방법.The synchronization message generated by the slave node for time synchronization of another slave node is encapsulated in a PTP scheme using the TOD information of the slave node, and time stamped according to the IEEE 1588 standard. Switch control method. 제 1항에 있어서, 상기 스위치 제어기는 RS-232 포트를 사용하여 상기 슬레이브 노드로부터 동기된 시각 정보를 수신하는 것을 특징으로 하는 스위치 제어 방법.The switch control method of claim 1, wherein the switch controller receives synchronized time information from the slave node using an RS-232 port. 제 1항에 있어서, 상기 스위치 제어기는 '초기(Initial)상태', 'DL(Downlink)상태', 'UL(Uplink)상태', 'TTG(Tx Transition Gap)상태', 'RTG(Rx Transition Gap)상태'를 포함하는 유한 상태 기계(FSM: Finite State Machine)를 구성하여 각 상태들의 시작시간 및 지속시간을 검사하여 현재 TOD 시간이 어떤 상태에 해당하는지 판단하여 스위치를 제어하는 것을 특징으로 하는 스위치 제어 방법.2. The switch controller of claim 1, wherein the switch controller includes an initial state, a downlink (DL) state, an uplink (UL) state, a tx transition state (TTG), and an rx transition gap (RTG). A switch comprising a finite state machine (FSM) including a 'state' to check the start time and duration of each state to determine which state the current TOD time corresponds to and control the switch. Control method. 시분할 양방향 전송(TDD: Time Division Duplex) 방식을 사용하는 중계기에 서 전송 신호를 분리하는 스위치 제어 장치에 있어서, A switch control apparatus for separating a transmission signal from a repeater using a time division duplex (TDD) method, 기지국에 위치하여, GPS(Global Positioning System) 수신기를 구비하고 상기 GPS 수신기로부터 전송받은 GPS 신호를 사용하여 슬레이브 노드의 시간 동기화를 위한 동기 메시지를 생성하여 상기 슬레이브 노드로 전송하는 그랜드 마스터 노드와,A grand master node positioned at a base station, having a global positioning system (GPS) receiver and generating a synchronization message for time synchronization of a slave node using a GPS signal received from the GPS receiver, and transmitting the generated synchronization message to the slave node; 상기 TDD 방식을 사용하는 중계기에 위치하여, 상기 그랜드 마스터 노드 또는 다른 슬레이브 노드로부터 시간 동기화를 위한 상기 동기 메시지를 수신하고, 타임 오프셋 및 주파수 분리 보상을 지원하는 OFCC(Offset & Frequency Compensation Clock) 동기화 기술을 사용하여 시간 동기화 연산을 수행하고, 또 다른 슬레이브 노드의 시간 동기화를 위해 동기 메시지를 생성하는 적어도 하나 이상의 슬레이브 노드와,OFCC (Offset & Frequency Compensation Clock) synchronization technology located in a repeater using the TDD scheme, receiving the synchronization message for time synchronization from the grand master node or another slave node, and supporting time offset and frequency separation compensation At least one slave node for performing a time synchronization operation and generating a synchronization message for time synchronization of another slave node, 상기 슬레이브 노드에서 상기 시간 동기화 연산을 수행하여 동기된 시각 정보를 미리 설정된 인터페이스를 통해 수신하여 상기 수신한 동기된 시각 정보를 기준으로 상향 전송(Uplink)과 하향 전송(Downlink)을 구분하는 스위치 제어 신호를 생성하여 스위치로 전송하는 스위치 제어기를 포함하는 스위치 제어 장치.A switch control signal for performing the time synchronization operation at the slave node to receive synchronized time information through a preset interface and distinguishing uplink and downlink based on the received synchronized time information. Switch control device comprising a switch controller for generating and transmitting to the switch. 제 8항에 있어서, 상기 OFCC(Offset & Frequency Compensation Clock) 동기화 기술은, 마스터 노드 측으로부터 동기 메시지의 수신시, 해당 동기 메시지의 수신 시점을 이전 주파수 보상 시점과 확인함으로 미리 설정된 주파수 보상 간격에 도달하였는지 확인하여, 상기 확인 결과 상기 미리 설정된 주파수 보상 간격에 도 달하지 않았을 경우에는 타임 오프셋 보상 동작만을 수행하며, 상기 확인 결과 미리 설정된 주파수 보상 간격에 도달하였을 경우에는 타임 오프셋 및 주파수 보상 동작을 모두 수행하는 것을 특징으로 하는 스위치 제어 장치.10. The method of claim 8, wherein the offset & frequency compensation clock (OFCC) synchronization technique reaches a preset frequency compensation interval by checking a reception time of the synchronization message with a previous frequency compensation timing when receiving a synchronization message from a master node. When the check result does not reach the preset frequency compensation interval, only the time offset compensation operation is performed. When the check result reaches the preset frequency compensation interval, both the time offset and the frequency compensation operation are performed. Switch control device, characterized in that. 제 8항에 있어서, 상기 그랜드 마스터 노드는 The method of claim 8, wherein the grand master node 상기 GPS 수신기로부터 전송받은 TOD(Time Of Day) 정보를 사용하여 슬레이브 노드의 시간 동기화를 위한 동기 메시지를 생성하기 위해 상기 TOD 정보를 PTP(Precision Time Protocol) 방식으로 캡슐화하는 PTP 제너레이터와,A PTP generator for encapsulating the TOD information in a Precision Time Protocol (PTP) scheme to generate a synchronization message for time synchronization of a slave node using time of day (TOD) information received from the GPS receiver; 상기 동기 메시지에 IEEE 1588 표준을 따르는 타임스탬프를 생성하는 타임스탬프(Timestamp) 제너레이터(Generator)와,A timestamp generator for generating a timestamp in accordance with the IEEE 1588 standard in the synchronization message; 타임스탬프된 정보를 처리하는 타임스탬프 체커(Checker)와, A timestamp checker that processes the timestamped information, 상기 그랜드 마스터 노드의 각 구성을 제어하는 CPU(Central Processing Unit)를 포함함을 특징으로 하는 스위치 제어 장치.And a central processing unit (CPU) for controlling each configuration of the grand master node. 제 8항에 있어서, 상기 슬레이브 노드는, The method of claim 8, wherein the slave node, 상기 슬레이브 노드의 TOD 정보를 사용하여 또 다른 슬레이브 노드의 시간 동기화를 위한 동기 메시지를 생성하기 위해 상기 TOD 정보를 PTP 방식으로 캡슐화하는 PTP 제너레이터와,A PTP generator for encapsulating the TOD information in a PTP manner to generate a synchronization message for time synchronization of another slave node using the TOD information of the slave node; 상기 또 다른 슬레이브 노드의 시간 동기화를 위한 동기 메시지에 IEEE 1588 표준을 따라 타임스탬프를 생성하는 타임스탬프 제너레이터와,A timestamp generator for generating a timestamp in accordance with the IEEE 1588 standard in a synchronization message for time synchronization of the another slave node; 상기 그랜드 마스터 노드 또는 다른 슬레이브 노드로부터 전송받은 동기 메시지의 타임스탬프 정보를 IEEE 1588 표준을 따라 처리하는 타임스탬프 체커와, A timestamp checker for processing timestamp information of a synchronization message received from the grand master node or another slave node according to the IEEE 1588 standard; 동기화된 TOD 정보를 이용하여 1PPS(1 Pulse Per Second), PP2S(Pulse Per 2 Second), 10MHz 출력 신호를 생성하는 클럭 및 타이밍 생성부와,A clock and timing generator for generating 1 pulse per second (PPS), pulse per 2 second (PP2S) and 10 MHz output signals using the synchronized TOD information; 슬레이브 노드의 각 구성을 제어하고 OFCC 동기화 기술을 사용하여 시간 동기화 연산을 수행하는 CPU를 포함함을 특징으로 하는 스위치 제어 장치.And a CPU controlling each configuration of the slave nodes and performing time synchronization operations using OFCC synchronization technology. 제 8항에 있어서, 상기 스위치 제어기는 RS-232 포트를 사용하여 상기 슬레이브 노드로부터 동기된 시각 정보를 수신하는 것을 특징으로 하는 스위치 제어 장치.9. The switch control apparatus of claim 8, wherein the switch controller receives synchronized time information from the slave node using an RS-232 port. 제 8항에 있어서, 상기 스위치 제어기는 '초기(Initial)상태', 'DL(Downlink)상태', 'UL(Uplink)상태', 'TTG(Tx Transition Gap)상태', 'RTG(Rx Transition Gap)상태'를 포함하는 유한 상태 기계(FSM: Finite State Machine)를 구성하여 각 상태들의 시작시간 및 지속시간을 검사하여 현재 TOD 시간이 어떤 상태에 해당하는지 판단하여 스위치를 제어하는 것을 특징으로 하는 스위치 제어 장치.The switch controller of claim 8, wherein the switch controller includes an initial state, a downlink state, an uplink state, a txg state, and a rx transition gap. A switch comprising a finite state machine (FSM) including a 'state' to check the start time and duration of each state to determine which state the current TOD time corresponds to and control the switch. controller. 제 8항에 있어서, 상기 TDD 방식을 사용하는 중계기는 무선 중계기 또는 광 중계기인 것을 특징으로 하는 스위치 제어 장치. The apparatus of claim 8, wherein the repeater using the TDD scheme is a wireless repeater or an optical repeater. 제 11항에 있어서, 상기 슬레이브 노드는 아날로그 10MHz 클럭을 상기 클럭 및 타이밍 생성부로 제공하는 TCXO(Temperature-Compensated X-tal(crystal) Oscillator)를 더 포함하는 것을 특징으로 하는 시간 동기화 장치.12. The apparatus of claim 11, wherein the slave node further comprises a Temperature-Compensated X-tal (crystal) oscillator (TCXO) for providing an analog 10 MHz clock to the clock and timing generator. 제 11항에 있어서, 상기 슬레이브 노드는 시스템 동기 신호를 제공하기 위한 클럭을 더 포함하는 것을 특징으로 하는 시간 동기화 장치.12. The time synchronization device of claim 11, wherein the slave node further comprises a clock for providing a system synchronization signal. 제 15항에 있어서, 상기 클럭 및 타이밍 생성부에서 출력되는 10MHz 클럭은 시스템 동기 클럭으로 사용하기 위해 상기 TCXO에서 제공하는 아날로그 10MHz 클럭을 이용하여 동기화된 디지털 10MHz 클럭을 생성하는 것을 특징으로 하는 시간 동기화 장치.The time synchronization of claim 15, wherein the 10 MHz clock output from the clock and timing generator generates a synchronized digital 10 MHz clock using an analog 10 MHz clock provided by the TCXO for use as a system synchronization clock. Device.
KR1020070036947A 2007-04-16 2007-04-16 Method and apparatus controlling switching timing for separating transmission signal in repeater using time division duplex KR100895177B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070036947A KR100895177B1 (en) 2007-04-16 2007-04-16 Method and apparatus controlling switching timing for separating transmission signal in repeater using time division duplex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070036947A KR100895177B1 (en) 2007-04-16 2007-04-16 Method and apparatus controlling switching timing for separating transmission signal in repeater using time division duplex

Publications (2)

Publication Number Publication Date
KR20080093257A KR20080093257A (en) 2008-10-21
KR100895177B1 true KR100895177B1 (en) 2009-05-04

Family

ID=40153862

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070036947A KR100895177B1 (en) 2007-04-16 2007-04-16 Method and apparatus controlling switching timing for separating transmission signal in repeater using time division duplex

Country Status (1)

Country Link
KR (1) KR100895177B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039287A1 (en) * 2011-09-16 2013-03-21 (주)케이티 Mobile communication repeater integrated monitor device, and method and system for mobile communication relay and information provision
WO2018199461A1 (en) * 2017-04-28 2018-11-01 주식회사 케이티 Radio relay apparatus and operating method therefor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576900B2 (en) 2008-06-15 2013-11-05 Lg Electronics Inc. Method and apparatus for transmitting and receiving signal from relay station in radio communication system
KR101595131B1 (en) 2009-02-16 2016-02-18 엘지전자 주식회사 Method and apparatus of transmitting or receiving signal for relay station in wireless communication system
CN102318229B (en) * 2009-02-16 2015-11-25 Lg电子株式会社 Send and the method and apparatus of Received signal strength from relay station in a wireless communication system
KR101498561B1 (en) * 2014-03-10 2015-03-04 국방과학연구소 System and method for can communication based tdma digital technology for global synchronization
KR102264091B1 (en) * 2019-02-01 2021-06-14 주식회사 유캐스트 Method and Apparatus for Obtaining TDD Synchronization at Relay
US11297606B2 (en) 2020-09-08 2022-04-05 Pivotal Commware, Inc. Installation and activation of RF communication devices for wireless networks
CA3208262A1 (en) 2021-01-15 2022-07-21 Pivotal Commware, Inc. Installation of repeaters for a millimeter wave communications network
KR20240041939A (en) 2021-07-07 2024-04-01 피보탈 컴웨어 인코포레이티드 Multipath repeater systems
US11937199B2 (en) 2022-04-18 2024-03-19 Pivotal Commware, Inc. Time-division-duplex repeaters with global navigation satellite system timing recovery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040108468A (en) * 2003-06-17 2004-12-24 유호상 Method and device for attaining synchronization from base station signals in time division duplex system
KR20060034937A (en) * 2004-10-20 2006-04-26 (주)텔레세스 Apparatus generating synchronizing signal between base station and repeaters in the high-speed packet transmission system and method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040108468A (en) * 2003-06-17 2004-12-24 유호상 Method and device for attaining synchronization from base station signals in time division duplex system
KR20060034937A (en) * 2004-10-20 2006-04-26 (주)텔레세스 Apparatus generating synchronizing signal between base station and repeaters in the high-speed packet transmission system and method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013039287A1 (en) * 2011-09-16 2013-03-21 (주)케이티 Mobile communication repeater integrated monitor device, and method and system for mobile communication relay and information provision
KR101408031B1 (en) * 2011-09-16 2014-07-03 주식회사 케이티 Apparatus, Method and System for providing information and mobile communication service
US9571197B2 (en) 2011-09-16 2017-02-14 Kt Corporation Mobile communication repeater integrated monitor device, and method and system for mobile communication relay and information provision
WO2018199461A1 (en) * 2017-04-28 2018-11-01 주식회사 케이티 Radio relay apparatus and operating method therefor
US20200204249A1 (en) * 2017-04-28 2020-06-25 Kt Corporation Radio relay apparatus and operating method therefor
US10985830B2 (en) 2017-04-28 2021-04-20 Kt Corporation Radio relay apparatus and operating method therefor

Also Published As

Publication number Publication date
KR20080093257A (en) 2008-10-21

Similar Documents

Publication Publication Date Title
KR100895177B1 (en) Method and apparatus controlling switching timing for separating transmission signal in repeater using time division duplex
KR100895175B1 (en) Method and apparatus for synchronizing time in a communication system using gps information
KR100876776B1 (en) Method and apparatus for synchronizing time in a communication system using gps information
US8244304B2 (en) Method for synchronization of assemblies in a base station
US11239906B2 (en) Beam hopping synchronization system
CN101123465B (en) Method and device for synchronization of network devices in wireless communication system
US8126333B2 (en) Optical transmission system and synchronization method using time reference pulse
EP2416519B1 (en) Time synchronization device, method and system
CN102546071A (en) Clock synchronization method and system
CN103931122A (en) System and method for network synchronization and frequency dissemination
KR20060032205A (en) Bi-directional synchronization forwarding method and device for wireless signals
WO2011149994A1 (en) Network system with synchronization and method of operation thereof
US11683150B2 (en) Methods, apparatus and computer-readable media for synchronization over an optical network
WO2012062080A1 (en) Method and system for realizating delay compensation in a distributed base station system
JPWO2009118878A1 (en) PON system
WO2017071276A1 (en) Relay systems air interface time synchronization method and device
JP5913067B2 (en) Time synchronization system, transmission path delay time correction method, time synchronization device
US11419084B1 (en) Time synchronization in hybrid wired-wireless time-sensitive networking
KR100673868B1 (en) Time division duplex optic repeater which could transmit and receive the data with single wavelength in fiber-optic
KR20160024782A (en) network synchronization apparatus and method on passive optical access network
CN217010881U (en) Clock synchronization system
JP2000224091A (en) Satellite communications equipment and circuit for maintaining synchronization thereof
WO2014203449A1 (en) Communication system, method for controlling communication system, transmission device, and reception device
JP2023117659A (en) Communication device, communication method, program, and communication system
JP2009105775A (en) Time synchronization device and protective relay system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment
FPAY Annual fee payment

Payment date: 20160330

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170330

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee