KR100891001B1 - Preparation method of zsm-5/sapo-34 composite catalyst and the use thereof for the conversion of oxygenates to light olefins - Google Patents

Preparation method of zsm-5/sapo-34 composite catalyst and the use thereof for the conversion of oxygenates to light olefins Download PDF

Info

Publication number
KR100891001B1
KR100891001B1 KR1020070101609A KR20070101609A KR100891001B1 KR 100891001 B1 KR100891001 B1 KR 100891001B1 KR 1020070101609 A KR1020070101609 A KR 1020070101609A KR 20070101609 A KR20070101609 A KR 20070101609A KR 100891001 B1 KR100891001 B1 KR 100891001B1
Authority
KR
South Korea
Prior art keywords
zsm
sapo
alumina
silica
range
Prior art date
Application number
KR1020070101609A
Other languages
Korean (ko)
Inventor
정순용
김철웅
정광은
채호정
Original Assignee
한국화학연구원
현대엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 현대엔지니어링 주식회사 filed Critical 한국화학연구원
Priority to KR1020070101609A priority Critical patent/KR100891001B1/en
Application granted granted Critical
Publication of KR100891001B1 publication Critical patent/KR100891001B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for manufacturing a complex catalyst for making light olefins from an oxygenated compound and a manufacturing method of the light olefins using the same complex catalyst are provided to manufacture a complex catalyst of ZSM-5/SAPO-34 by performing a hydrothermal synthesis and plastic process about the compound. A method for manufacturing a complex catalyst for making light olefins from an oxygenated compound comprises the following steps of: for manufacturing alumina-silica mixed solution of a ZSM-5 type; manufacturing a synthesis gel of the ZSM-5 type; manufacturing a slurry of the ZSM-5 type after washing filtering and hydrothermal composition of the synthesis gel; manufacturing the alumina-silica compound of a SAPO-34 type; manufacturing a combinatorial synthesis gel of a ZSM-5/SAPO-34 type; and manufacturing a complex catalyst of a ZSM-5/SAPO-34 type.

Description

함산소화합물로 부터 경질 올레핀 제조용 복합촉매의 제조방법 및 상기 복합촉매를 이용한 경질 올레핀의 제조방법{Preparation Method of ZSM-5/SAPO-34 Composite Catalyst and the Use Thereof for the Conversion of Oxygenates to Light Olefins}Preparation Method of ZSM-5 / SAPO-3 4 Composite Catalyst and the Use Thereof for the Conversion of Oxygenates to Light Olefins

본 발명은 수열합성하여 얻어진 결정질의 ZSM-5을 SAPO-34의 제조공정에 혼합하고, 이를 수열합성, 및 소성하는 일련의 공정을 수행하여 ZSM-5/SAPO-34 복합촉매를 제조하는 방법과, 상기 방법으로 얻어진 ZSM-5/SAPO-34 복합촉매하에서 함산소화합물의 경질올레핀으로 전환하는 반응을 수행하면, C2 ∼ C4 범위 경질올레핀의 선택도가 70 탄소몰% 이상이고, 에틸렌에 대한 프로필렌의 선택도[C3/C2] 비가 1.0 이상의 범위 유지가 가능한 경질 올레핀의 제조방법에 관한 것이다.The present invention is a method for producing a ZSM-5 / SAPO-34 composite catalyst by mixing a crystalline ZSM-5 obtained by hydrothermal synthesis in the manufacturing process of SAPO-34, and performing a series of processes for hydrothermal synthesis and firing; Under the ZSM-5 / SAPO-34 complex catalyst obtained by the above method, a reaction for converting an oxygen compound into a light olefin is carried out, and the selectivity of the light olefins in the C 2 to C 4 range is 70 carbon mol% or more, It relates to a process for producing light olefins in which the selectivity [C 3 / C 2 ] ratio for propylene can be maintained in a range of 1.0 or more.

ZSM-5와 실리코알루미노포스페이트(silicoaluminophosphate, SAPO) 분자체는 흡착제 및 촉매로 다양한 분야에서 널리 사용된다. 이중 촉매 분야로 사용되는 경우에는 유동층 촉매분해, 수소화분해, 이성체화, 다량체화, 알콜 또는 에테르의 전환 및 방향족 화합물의 알킬화와 같은 공정 등에 사용되고 있다. 예를 들면 알콜 또는 에테르를 올레핀 생성물 특히, 에틸렌 및 프로필렌으로 전환시키는데 ZSM-5와 SAPO-34 분자체는 모두 우수한 촉매로 알려져 있다. ZSM-5 and silicoaluminophosphate (SAPO) molecular sieves are widely used in various fields as adsorbents and catalysts. When used in the field of dual catalysts, it is used in processes such as fluidized bed catalytic cracking, hydrocracking, isomerization, multimerization, conversion of alcohols or ethers and alkylation of aromatic compounds. For example, ZSM-5 and SAPO-34 molecular sieves are known as good catalysts for the conversion of alcohols or ethers to olefin products, in particular ethylene and propylene.

이러한 두 촉매는 각기 다른 특징을 가지는데, ZSM-5는 낮은 수열안정성을 가지나 촉매 수명은 높아 고정층 반응기에 적용되며, SAPO-34와 비교할 때 상대적으로 경질올레핀에 대한 선택성이 낮은 단점이 있고 주로 프로필렌에 대한 수율이 높아 프로필렌 제조 촉매로 사용되어진다. 반면, SAPO-34는 카본 침적에 의한 활성저하가 빨라 연속 재생이 가능한 순환유동층 반응기에 적용되며, 높은 수열안정성이 요구된다. 또한 경질올레핀에 대한 선택성이 높으나 주로 에틸렌에 대한 수율이 높아 프로필렌에 대한 선택성을 높이기 위한 촉매 개선이 필요하다. These two catalysts have different characteristics. ZSM-5 has low hydrothermal stability but high catalyst life, so it is applied to fixed bed reactors, and has relatively low selectivity for light olefins compared to SAPO-34, and mainly propylene. Its high yield is used as a catalyst for propylene production. On the other hand, SAPO-34 is applied to a circulating fluidized bed reactor capable of continuous regeneration due to rapid deactivation due to carbon deposition, and requires high hydrothermal stability. In addition, although the selectivity for light olefins is high, the yield for ethylene is mainly high, and thus catalyst improvement is required to increase selectivity for propylene.

한편, ZSM-5와 SAPO-34의 촉매를 제조하는 방법을 구체적으로 살펴보면 다음과 같다.Meanwhile, a method of preparing the catalysts of ZSM-5 and SAPO-34 will be described in detail.

ZSM-5는 일반적으로 규산염(sodium silicate), 실리카 졸 등의 실리카 전구체와, 질산 알루미늄염 등의 다양한 알루미늄염이나 슈도보헤마이트(pseudoboehmite) 및 알루미나 졸 등의 알루미나 전구체의 로혼합물에 수산화나트륨(NaOH)과 테트라프로필암모늄 브로마이드(TPABr)를 첨가하고 이를 170 ℃ 정도에서 수열합성을 통하여 제조된다. ZSM-5 is generally used as a sodium hydroxide (NaOH) in a raw mixture of silica precursors such as sodium silicate and silica sol and various aluminum salts such as aluminum nitrate salts or alumina precursors such as pseudoboehmite and alumina sol. ) And tetrapropylammonium bromide (TPABr) are added and prepared through hydrothermal synthesis at about 170 ° C.

이러한 ZSM-5를 이용한 올레핀을 제조하는 방법은 Mobil[미국특허 제3,979,472호, 제4,025,575호]에서 처음 개발하였으며, 이후 촉매 및 반응기 관련 다양한 특허 및 문헌들이 제시되고 있다. 특히 동사에서 촉매의 수열안정성을 높이기 위하여 스팀처리된 ZSM-5를 동일한 반응에 적용한 특허[미국특허 제6,048,816호]를 출원하였으며, 중국 Dalian Institute of Chemical Physics는 포스포러스(phosphorous)로 변형된 ZSM-5를 메탄올로부터 올레핀 전환용 촉매로 제시한 바 있다[미국특허 제5,367,100호].The method for preparing an olefin using ZSM-5 was first developed in Mobil (US Pat. Nos. 3,979,472, 4,025,575), and various patents and literature related to catalysts and reactors have been proposed. In particular, the company applied for a patent (US Pat. No. 6,048,816) that applied steam-treated ZSM-5 to the same reaction to increase the hydrothermal stability of the catalyst, and the Chinese Dalian Institute of Chemical Physics applied ZSM- modified to phosphorous. 5 has been proposed as a catalyst for the conversion of olefins from methanol (US Pat. No. 5,367,100).

또한, SAPO는 흄드 실리카, 실리카 졸 등의 실리카 전구체와 슈도보헤마이트(pseudoboehmite), 알루미늄 이소프로폭사이드(aluminum isoprooxide) 등의 알루미나 전구체, 인산 및 분자체의 골격을 형성하는 데 쓰이는 유기주형체 구체적으로 테트라에틸암모늄 하이드록사이드(TEAOH), 몰포린, 트리에틸아민, 이소프로필아민, 디프로필아민 및 디에틸아민(diethylamine) 등이 사용하여 제조된다. In addition, SAPO is an organic template specifically used to form a skeleton of silica precursors such as fumed silica and silica sol, alumina precursors such as pseudoboehmite and aluminum isoprooxide, phosphoric acid and molecular sieves. Tetraethylammonium hydroxide (TEAOH), morpholine, triethylamine, isopropylamine, dipropylamine, diethylamine and the like are used.

이러한 SAPO 계열 분자체(molecular sieve)는 유니온 카바이드(Union Carbide Co)사에서 처음으로 합성하여 제시하였다[미국특허 제4,310,440호, 제4,440,871호]. 또한, SAPO-34 촉매를 사용하여 메탄올을 포함한 함산소화합물로부터 경질올레핀(C2 ∼ C4올레핀)을 제조하는 문헌을 공지하여[미국특허 제4,440,871호, 제4,499,327호] UOP와 Exxon Mobil 등과 같은 주요 회사들에 의해서 SAPO-34 분자체 촉매는 메탄올로부터 경질 올레핀을 제조하는 반응용 촉매로 널리 사용되고 있다. This SAPO series molecular sieve was synthesized and presented for the first time by Union Carbide Co. (US Pat. Nos. 4,310,440, 4,440,871). In addition, the literature for producing light olefins (C 2 to C 4 olefins) from oxygen-containing compounds including methanol using SAPO-34 catalyst is known [US Pat. Nos. 4,440,871, 4,499,327] such as UOP and Exxon Mobil. SAPO-34 molecular sieve catalysts are widely used by major companies as reaction catalysts for the production of light olefins from methanol.

이외에도, 메탄올로부터 경질 올레핀 전환반응용 촉매의 활성 및 수명 개선 방안으로 다양한 방법들이 연구되어 왔으며, UOP사는 일반적으로 제올라이트 촉매 에서 잘 알려진 것처럼 SAPO-34 촉매를 700 ℃ 정도의 고온에서 수열처리하여 경질 올레핀으로의 선택성과 촉매 수명이 개선됨을 제시하였으며[미국특허 제5,095,163호], Exxon Mobil사는 SAPO-34의 산처리를 통하여 경질 올레핀, 특히 에틸렌의 수율을 향상시킬 수 있음을 보고하였다[미국특허 제5,475,182호].In addition, various methods have been studied to improve the activity and lifespan of the catalyst for the conversion of light olefins from methanol, and UOP Co., Ltd. is commonly known in zeolite catalysts to hydrothermally treat SAPO-34 catalysts at a high temperature of about 700 ° C. Has been shown to improve the selectivity and catalyst life [US Pat. No. 5,095,163] and Exxon Mobil has reported that acid treatment of SAPO-34 can improve the yield of light olefins, especially ethylene [US Pat. No. 5,475,182]. number].

또한, 메탄올에서 경질 올레핀으로의 전환반응(Methanol to Olefin, MTO) 반응에서 경질 올레핀 수율을 증대시키고 촉매의 활성을 높이는 방법으로 UOP사는 다양한 금속이 치환된 알루미노포스페이트 분자체를 보고하였으며, 금속성분으로는 실리콘, 마그네슘, 코발트, 아연, 철, 니켈, 망간, 크롬 또는 이들의 혼합성분을 사용하였다[미국특허 제5,126,308호와 제5,191,141호]. 이때, 실리콘이 가장 선호되는 금속이며, 분자체 결정의 크기가 1.0 ㎛ 미만이 50 중량%를 이루고 2.0 ㎛ 보다 큰 입자는 전체의 10 중량% 미만으로 이루어져 있을 경우와, 실리콘의 함량이 0.005 ∼ 0.05 몰분율로 제한하였을 때 촉매의 활성과 내구성이 우수하다고 보고하였다. 동일한 금속 성분들이 치환된 알루미노포스페이트 분자체에 대하여 금속성분 몰분율이 0.02 ∼ 0.08일 경우와 분자체 결정의 크기가 0.1 ㎛ 이상일 때 경질 올레핀 수율이 높아진다고 보고하였다[미국특허 제6,207,872호, 제5,126,308호].In addition, UOP has reported various metal-substituted aluminophosphate molecular sieves as a method of increasing the yield of light olefins and increasing the activity of the catalyst in methanol to light olefin (Methanol to Olefin, MTO) reaction. As the silicon, magnesium, cobalt, zinc, iron, nickel, manganese, chromium or a mixture thereof is used (US Patent Nos. 5,126,308 and 5,191,141). In this case, silicon is the most preferred metal, the molecular sieve crystals of less than 1.0 ㎛ 50% by weight and particles larger than 2.0 ㎛ made of less than 10% by weight of the total, the content of silicon is 0.005 ~ 0.05 It was reported that the activity and durability of the catalyst were excellent when limited to the mole fraction. It has been reported that the yield of light olefins is increased when the mole fraction of the metal component is 0.02 to 0.08 and when the size of the molecular sieve crystal is 0.1 μm or more with respect to the aluminophosphate molecular sieve substituted with the same metal components [US Pat. No. 6,207,872,5,126,308]. ].

본 발명은 종래의 메탄올 등의 함산소화합물(oxygenates)로부터 경질올레핀 을 제조하는 함산소화합물의 전환반응용 촉매로 사용되는 대표적인 ZSM-5 및 SAPO-34 촉매가 높은 경질올레핀의 선택도 유지 및 반응생성물의 조성비 제어에 어려운 문제가 있다. 구체적으로, SAPO-34는 경질오레핀 중 에틸렌 수율이 높아 프로필렌/에틸렌 선택도비가 1.0 이상을 유지하기가 어려운 반면에 ZSM-5는 프로필렌의 수율이 높아 프로필렌/에틸렌 선택도비가 1.0 이상이 가능하나 C5 이상의 중질올레핀 수율이 높아 C2 ∼ C4 범위의 경질올레핀의 전체적인 수율이 낮은 단점이 있다. The present invention maintains and reacts the selectivity of light olefins having high ZSM-5 and SAPO-34 catalysts, which are used as catalysts for the conversion of oxygen compounds to prepare light olefins from oxygen compounds such as methanol. There is a problem in controlling the composition ratio of the product. Specifically, SAPO-34 has a high yield of ethylene in hard olefins, making it difficult to maintain a propylene / ethylene selectivity ratio of 1.0 or higher, whereas ZSM-5 has a high yield of propylene, allowing a propylene / ethylene selectivity ratio of 1.0 or higher. The high yield of heavy olefins of C 5 or higher has a disadvantage in that the overall yield of light olefins in the range of C 2 to C 4 is low.

본 발명은 C2 ∼ C4 범위의 경질올레핀 전체 수율을 향상시키면서, 동시에 프로필렌/에틸렌 선택도비 제어가 가능하여 반응생성물의 조성비가 조절되는 경질올레핀 제조용 촉매를 제시하고자 한다.The present invention aims to provide a catalyst for preparing light olefins in which the yield of light olefins in the range of C 2 to C 4 is improved, and at the same time the propylene / ethylene selectivity ratio can be controlled to control the composition ratio of the reaction product.

본 발명은 알루미나 전구체 수용액과, 실리카 전구체 수용액을 혼합하여 ZSM-5용 알루미나-실리카 혼합용액을 제조하는 1단계 ; 상기 ZSM-5용 알루미나-실리카 혼합 수용액, 테트라프로필암모늄 브로마이드(TPABr) 및 물을 혼합한 후, 알칼리수산화물 수용액을 첨가하여 ZSM-5용 합성젤을 제조하는 2단계 ; 상기 합성젤을 170 ∼ 200 ℃에서 수열합성하여 결정질 ZSM-5를 제조하는 3단계 ; 알루미나 전구체, 실리카 전구체 및 테트라에틸암모늄 하이드록사이드(TEAOH)를 혼합하여 SAPO-34용 알루미나-실리카 혼합물을 제조하는 4단계 ; 상기 4단계의 SAPO-34용 알루미나-실리카 혼합물, 3단계의 결정질 ZSM-5, 인산 및 물을 혼합하여 ZSM-5/SAPO- 34 복합 합성젤을 제조하는 5단계 ; 및 상기 ZSM-5/SAPO-34 복합 합성젤을 170 ∼ 200 ℃에서 수열합성, 100 ∼ 150 ℃에서 건조 및 500 ∼ 700 ℃에서 소성하여 ZSM-5/SAPO-34 복합 촉매를 제조하는 6단계를 포함하여 이루어진 경질 올레핀 제조용 ZSM-5/SAPO-34 복합촉매의 제조방법에 그 특징이 있다.The present invention is a step of preparing an alumina-silica mixture solution for ZSM-5 by mixing an aqueous alumina precursor solution and a silica precursor solution; Mixing the alumina-silica mixed solution for ZSM-5, tetrapropylammonium bromide (TPABr) and water, followed by adding an aqueous alkali hydroxide solution to prepare a synthetic gel for ZSM-5; Hydrothermal synthesis of the synthetic gel at 170 to 200 ° C. to produce crystalline ZSM-5; Mixing alumina precursor, silica precursor and tetraethylammonium hydroxide (TEAOH) to prepare an alumina-silica mixture for SAPO-34; A five step of preparing a ZSM-5 / SAPO-34 composite synthetic gel by mixing the alumina-silica mixture for SAPO-34 in four steps, crystalline ZSM-5 in three steps, phosphoric acid and water; And a six step of preparing a ZSM-5 / SAPO-34 composite catalyst by hydrothermally synthesizing the ZSM-5 / SAPO-34 composite gel at 170 to 200 ° C., drying at 100 to 150 ° C., and calcining at 500 to 700 ° C. It is characterized by a method for producing a ZSM-5 / SAPO-34 composite catalyst for producing light olefins.

또한, 본 발명은 상기의 제조방법으로 얻어진 ZSM-5/SAPO-34 복합촉매로, X선 회절분석(XRD)하여 얻은 2θ값이 7.9, 9.5, 15.9, 20.6, 23.1 및 30.0 이고, SAPO-34은 ZSM-5에 대하여 1 ∼ 9.9 중량비를 유지하고, 표면적이 400 ∼ 700 ㎡/g인 다중 세공구조를 갖는 ZSM-5/SAPO-34 복합촉매에 또 다른 특징이 있다. In addition, the present invention is a ZSM-5 / SAPO-34 composite catalyst obtained by the above production method, the 2θ values obtained by X-ray diffraction analysis (XRD) is 7.9, 9.5, 15.9, 20.6, 23.1 and 30.0, SAPO-34 The ZSM-5 / SAPO-34 composite catalyst has a feature of maintaining a weight ratio of 1 to 9.9 relative to ZSM-5 and having a multi-pore structure having a surface area of 400 to 700 m 2 / g.

또한, 본 발명은 상기의 제조방법으로 얻어진 ZSM-5/SAPO-34 복합촉매하에서, C1 ∼ C4의 함산소화합물(oxygenates)을 반응시켜 C2 ∼ C4 범위의 올레핀을 제조하는 경질올레핀의 제조방법에 또 다른 특징이 있다.The present invention is light olefins which under the ZSM-5 / SAPO-34 composite catalyst obtained by the production method of the above, by reacting a Oxygenated compounds of C 1 ~ C 4 (oxygenates) producing an olefin of C 2 ~ C 4 range There is another feature of the manufacturing method.

본 발명에 따른 방법으로 얻어진 ZSM-5/SAPO-34 복합촉매하에서 함산소화합물(oxygenates)의 경질올레핀 전환반응을 수행하면, 종래에 비해 전체 반응수율이 80% 이상으로 향상되고, 프로필렌/에틸렌 비가 1.0 이상을 유지하여 선택도 제어가 가능하며, 촉매의 장시간 수명 유지가 가능하여 반응의 효율성 향상이 가능하다. When the light olefin conversion of the oxygenates is carried out under the ZSM-5 / SAPO-34 complex catalyst obtained by the method according to the present invention, the overall reaction yield is improved to 80% or more, and the propylene / ethylene ratio is improved. Selectivity can be controlled by maintaining more than 1.0, and the efficiency of the reaction can be improved by maintaining the long life of the catalyst.

본 발명은 수열합성하여 제조된 결정질의 ZSM-5와, 상기 ZSM-5를 SAPO-34 제조반응에 혼합한 후 수열합성 및 소성하는 일련의 공정으로 ZSM-5/SAPO-34 복합촉매를 제조하는 방법과, 상기 ZSM-5/SAPO-34 복합촉매를 이용하여 함산소화합물(oxygenates)의 경질올레핀 전환반응을 수행하여 경질올레핀을 제조하는 방법에 관한 것이다.The present invention is to prepare a ZSM-5 / SAPO-34 composite catalyst by a series of processes of crystalline ZSM-5 prepared by hydrothermal synthesis and the ZSM-5 in the reaction of SAPO-34, hydrothermal synthesis and calcining The present invention relates to a method for preparing light olefins by performing a light olefin conversion of oxygenates using the ZSM-5 / SAPO-34 complex catalyst.

종래에 ZSM-5과 SAPO-34 등은 경질올레핀 제조용 촉매로 널리 알려져 있으나, 각각의 촉매는 높은 경질올레핀의 선택도 유지 및 반응생성물의 조성비 제어 등에 단점이 있었다. 본 발명은 이러한 단점을 개선하기 위한 것으로 단순히 이들의 촉매를 물리적으로 혼합 사용하는 것이 아니라 화학적 합성에 의해 복합촉매를 제조하는 바, 물리적 혼합의 경우 ZSM-5의 높은 산성도와 큰 세공구조로 인하여 ZSM-5의 반응 영향도가 매우 높아 중질올레핀의 생성이 많아져 상대적으로 C2 ∼ C4까지의 경질올레핀 선택도가 낮아지게 된다. 그러나 본 발명과 같은 화학적 합성으로 제조된 경우에는 촉매제조과정에서 ZSM-5의 표면 산점이 억제되고, 세공 입구가 작아지는 등의 ZSM-5의 표면 산점과 세공구조가 최적화되며 SAPO-34와의 상승효과에 의해서 C2 ∼ C4까지의 경질올레핀 선택도가 높게 된다.Conventionally, ZSM-5 and SAPO-34, etc. are widely known as catalysts for preparing light olefins, but each catalyst has disadvantages such as maintaining high selectivity of light olefins and controlling the composition ratio of reaction products. The present invention is to improve these disadvantages and to prepare a complex catalyst by chemical synthesis rather than simply using a mixture of their catalysts, ZSM-5 due to the high acidity and large pore structure of ZSM-5 in the case of physical mixing The reaction influence of -5 is very high, and the production of heavy olefins increases, so that light olefin selectivity of C 2 to C 4 is relatively low. However, when the compound is manufactured by the chemical synthesis as described above, the surface scattering point and pore structure of the ZSM-5 are optimized and the pore structure of ZSM-5 is reduced and the pore structure is optimized. By the effect, the light olefin selectivity up to C 2 to C 4 becomes high.

특히, 상기 화학적 합성을 수행함에 있어서도 특정의 공정순서를 유지하여 ZSM-5과 SAPO-34의 결정성이 동시에 나타나게 하는 것으로, 특정의 순서를 유지하지 않으면 ZSM-5와 SAPO-34 각각의 합성 조건이 상이하여 결정성이 동시에 나타나지 않게 된다.In particular, the chemical synthesis is performed to maintain a specific process order so that the crystallinity of ZSM-5 and SAPO-34 appear at the same time, if the specific order is not maintained, the synthesis conditions of each of ZSM-5 and SAPO-34 In this case, crystallinity does not appear simultaneously.

본 발명에 따른 ZSM-5/SAPO-34 복합촉매를 제조하는 방법은 수열합성하여 제조된 결정질의 ZSM-5를 SAPO-34를 제조하는 공정에 혼합한 후, 수열합성 및 소성하는 일련의 공정을 수행한다.The method for producing a ZSM-5 / SAPO-34 composite catalyst according to the present invention is a series of processes of hydrothermal synthesis and calcining after mixing the crystalline ZSM-5 prepared by hydrothermal synthesis in the process for producing SAPO-34 To perform.

먼저, 결정질 ZSM-5을 제조하는 바, 이는 당 분야에서 일반적으로 사용되는 것으로, 알루미나 전구체 수용액과, 실리카 전구체 수용액을 혼합하여 ZSM-5용 알루미나-실리카 혼합용액을 제조한다. 이때, 혼합은 10 ∼ 50 ℃에서 수행한다.First, to prepare a crystalline ZSM-5, which is generally used in the art, to prepare an alumina-silica mixture solution for ZSM-5 by mixing an aqueous alumina precursor solution and a silica precursor solution. At this time, the mixing is carried out at 10 to 50 ℃.

상기 알루미나 전구체와 실리카 전구체는 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으나, 구체적으로 알루미나 전구체는 알루미늄의 질산염, 염산염, 황산염 및 알루미늄 알콕사이드, 보헤마이트, 알루미나 졸 등이 사용될 수 있고, 실리카 전구체는 규산염, 물유리, 실리카 졸 등이 사용될 수 있다. The alumina precursor and the silica precursor are generally used in the art, but are not particularly limited. Specifically, the alumina precursor may include nitrate, hydrochloride, sulfate, aluminum alkoxide, boehmite, alumina sol, etc. of the aluminum, and the silica precursor may be used. Silicates, water glass, silica sol and the like can be used.

이들은 알루미나(Al2O3)에 대한 실리카(SiO2)가 30 ∼ 500 몰비를 유지하도록 사용하는 바, 상기 사용량이 30 몰비 미만이면 ZSM-5 합성이 어려우며 경질 올레핀 선택도를 낮출 수 있고 500 몰비를 초과하는 경우에도 ZSM-5 합성이 어려운 문제가 있으므로 상기 범위를 유지하는 것이 좋다.They are used to maintain a 30 to 500 molar ratio of silica (SiO 2 ) to alumina (Al 2 O 3 ). If the amount is less than 30 molar ratios, it is difficult to synthesize ZSM-5 and lower light olefin selectivity and 500 molar ratios. Even if it exceeds the ZSM-5 synthesis is difficult problem is good to maintain the above range.

다음으로, 상기 ZSM-5용 알루미나-실리카 혼합 수용액, 테트라프로필암모늄 브로마이드(TPABr) 및 물을 혼합한 후, 알칼리수산화물 수용액을 첨가하여 ZSM-5용 합성젤을 제조한다. 이때, 혼합 및 첨가는 10 ∼ 50 ℃에서 수행하며, 알칼리수산화물 수용액 첨가 후 30 분 ∼ 5 시간 동안 교반한다.Next, after mixing the alumina-silica mixed aqueous solution for ZSM-5, tetrapropylammonium bromide (TPABr) and water, an aqueous alkali hydroxide solution is added to prepare a synthetic gel for ZSM-5. At this time, the mixing and addition is carried out at 10 to 50 ℃, and stirred for 30 minutes to 5 hours after the addition of the aqueous alkali hydroxide solution.

상기 알칼리수산화물은 당 분야에서 일반적으로 사용되는 것을 특별히 한정 하지는 않으나 구체적으로 수산화나트륨, 수산화칼륨 등을 사용할 수 있다.The alkali hydroxide is not particularly limited to those generally used in the art, and specifically, sodium hydroxide, potassium hydroxide, and the like may be used.

다음으로, 상기 합성젤을 170 ∼ 200 ℃에서 수열합성하여 결정질 ZSM-5를 제조한다. 이때, 수열합성 시간은 10 ∼ 48 시간동안 유지한다.Next, the synthetic gel is hydrothermally synthesized at 170 to 200 ° C. to produce crystalline ZSM-5. At this time, the hydrothermal synthesis time is maintained for 10 to 48 hours.

상기 온도가 170 ℃ 미만이면 결정성장이 느려 보다 많은 결정화 시간이 필요하고 200 ℃를 초과하는 경우에는 결정크기가 커지는 문제가 발생하며, 반응시간이 10 시간 미만이면 충분한 결정성장이 이루어지지 않아 결정성이 떨어지고 48 시간을 초과하는 경우에는 촉매 합성시간이 너무 길어져 경제적이지 못한 문제가 발생하므로 상기 범위를 유지하는 것이 좋다.If the temperature is less than 170 ℃ crystal growth is slow, more crystallization time is required, if the temperature exceeds 200 ℃ problem occurs that the crystal size increases, if the reaction time is less than 10 hours, sufficient crystal growth does not occur crystallinity If it falls and exceeds 48 hours, it is preferable to maintain the above range because the catalyst synthesis time becomes too long to cause economic problems.

상기 수열합성된 ZSM-5는 세척 및 탈수 과정을 거친 ZSM-5 슬러리 또는 이를 100 ∼ 150 ℃에서 건조한 ZSM-5를 얻어 이를 SAPO-34 합성 시 첨가하여 복합촉매 제조 시 사용할 수 있다.The hydrothermally synthesized ZSM-5 can be used in the preparation of a composite catalyst by adding ZSM-5 slurry after washing and dehydration or ZSM-5 dried at 100 to 150 ° C. to synthesize SAPO-34.

SAPO-34 제조는 당 분야에서 일반적으로 사용되는 것으로 알루미나 전구체, 실리카 전구체 및 테트라에틸암모늄 하이드록사이드(TEAOH)를 혼합하여 SAPO-34 합성용 알루미나-실리카 혼합물을 제조한다. 이때, 10 ∼ 50 ℃ 온도에서 30분 ∼ 2시간 동안 교반하여 혼합한다. SAPO-34 preparation is commonly used in the art to prepare an alumina-silica mixture for SAPO-34 synthesis by mixing alumina precursor, silica precursor and tetraethylammonium hydroxide (TEAOH). At this time, the mixture is stirred and mixed for 30 minutes to 2 hours at a temperature of 10 to 50 ℃.

상기 알루미나 전구체와 실리카 전구체는 당 분야에서 일반적으로 사용되는 것으로 특별히 한정하지는 않으나, 구체적으로 알루미나 전구체는 유사보헤마이트, 알루미늄이소프로폭사이드, 알루미늄 트리에톡사이드 등의 알루미늄알콕사이드 등을 사용할 수 있고, 실리카 전구체는 실리카 졸, 흄드 실리카 등을 사용할 수 있다.The alumina precursor and the silica precursor are generally used in the art, but are not particularly limited. Specifically, the alumina precursor may be an aluminum alkoxide such as pseudoboehmite, aluminum isopropoxide, aluminum triethoxide, and the like. As the silica precursor, silica sol, fumed silica, or the like can be used.

이들은 알루미나(Al2O3)에 대한 실리카(SiO2)가 0.05 ∼ 1.0 몰비 범위를 사용하는 바, 상기 사용량이 0.05 몰비 미만이면 SAPO-34 합성이 어렵고 경질 올레핀 제조 반응성능이 낮아지며 1.0 몰비를 초과하는 경우에도 SAPO-34 합성이 어렵고 경질 올레핀의 선택성이 낮은 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.Since the silica (SiO 2 ) to the alumina (Al 2 O 3 ) is used in the range of 0.05 to 1.0 mole ratio, when the amount is less than 0.05 mole ratio, it is difficult to synthesize SAPO-34, the reactivity of light olefins production is low, and it exceeds 1.0 mole ratio. Even if it is difficult to synthesize the SAPO-34 and the problem of low selectivity of the light olefin occurs, it is preferable to maintain the above range.

상기 테트라에틸암모늄 하이드록사이드(TEAOH)는 알루미나(Al2O3)에 대하여 1.0 ∼ 3.0 몰비 범위로 사용하는 바, 사용량이 1.0 몰비 미만이면 SAPO-34가 합성이 어렵고 3.0 몰비를 초과하는 경우에는 촉매 합성이 경제적이지 못한 문제가 발생함으로 상기 범위를 유지하는 것이 바람직하다.The tetraethylammonium hydroxide (TEAOH) is used in the range of 1.0 to 3.0 molar ratio with respect to alumina (Al 2 O 3 ). When the amount is less than 1.0 molar ratio, SAPO-34 is difficult to synthesize and exceeds 3.0 molar ratio. It is desirable to maintain this range because of the problem that catalyst synthesis is not economical.

다음으로 상기 SAPO-34용 알루미나-실리카 혼합물, 수열반응하여 얻어진 ZSM-5 슬러리 또는 건조된 ZSM-5, 인산 및 물을 혼합하여 ZSM-5/SAPO-34 복합 합성젤을 제조한다. 이때, 상기 온도는 10 ∼ 50 ℃에서 30분 ∼ 2 시간동안 수행한다.Next, ZSM-5 / SAPO-34 composite gel is prepared by mixing the alumina-silica mixture for SAPO-34, ZSM-5 slurry obtained by hydrothermal reaction or dried ZSM-5, phosphoric acid and water. At this time, the temperature is carried out at 10 to 50 ℃ for 30 minutes to 2 hours.

상기 SAPO-34용 알루미나-실리카 혼합물은 수열반응하여 얻어진 ZSM-5에 대하여 1 ∼ 9.9 중량비 범위로 사용하는 바, 상기 사용량이 1 중량비 미만이면 경질올레핀 수율이 낮아지고 9.9 중량비를 초과하는 경우에는 촉매수명과 프로필렌 선택도가 낮아지는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The alumina-silica mixture for SAPO-34 is used in the range of 1 to 9.9 weight ratio with respect to ZSM-5 obtained by hydrothermal reaction. When the amount is less than 1 weight ratio, the yield of light olefin is lowered and the catalyst is greater than 9.9 weight ratio. It is desirable to maintain the above range because of the problem of low lifetime and propylene selectivity.

다음으로, 상기 ZSM-5/SAPO-34 복합 합성젤을 170 ∼ 200 ℃에서, 10 ∼ 48 시간동안 수열합성한 후, 100 ∼ 150 ℃에서 건조하고, 500 ∼ 700 ℃에서 5 ∼ 24 시간동안 소성하여 ZSM-5/SAPO-34 복합 촉매를 제조한다. 상기 수열합성 온도가 170 ℃ 미만이면 SAPO-34 결정성장이 느려 결정성이 떨어질 수 있고 200 ℃를 초과하는 경우에는 결정크기가 지나치게 크게 성장하여 반응성능이 떨어지는 문제가 있으며, 상기 소성온도가 500 ℃ 미만이면 주형체로 사용된 유기화합물들이 충분히 제거되지 않을 수 있으며, 700 ℃를 초과하는 경우에는 촉매의 결정성이 부분적으로 붕괴되는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.Next, the ZSM-5 / SAPO-34 composite gel was hydrothermally synthesized at 170 to 200 ° C. for 10 to 48 hours, then dried at 100 to 150 ° C., and calcined at 500 to 700 ° C. for 5 to 24 hours. To prepare a ZSM-5 / SAPO-34 composite catalyst. If the hydrothermal synthesis temperature is less than 170 ℃ SAPO-34 crystal growth may be slow crystallinity is lowered, if it exceeds 200 ℃ crystal size grows too large, there is a problem that the reactivity is poor, the firing temperature is 500 ℃ If it is less than the organic compounds used as a template may not be sufficiently removed, if it exceeds 700 ℃ it is preferable to maintain the above range because the problem of partial collapse of the crystallinity of the catalyst occurs.

이상과 같은 방법으로 제조된 ZSM-5/SAPO-34 복합 촉매는 X선 회절분석(XRD)하여 얻은 2θ값이 7.9, 9.5, 15.9, 20.6, 23.1 및 30.0 이고, SAPO-34은 ZSM-5에 대하여 1 ∼ 9.9 중량비를 유지하고, ZSM-5와 SAPO-34로부터 유도된 다중 세공구조를 가지며, 표면적이 400 ∼ 700 ㎡/g인 ZSM-5의 표면산점과 세공 입구가 최적화 되어 높은 C2 ∼ C4의 경질올레핀 수율, 특히 프로필렌 선택도를 나타낸다.The ZSM-5 / SAPO-34 composite catalyst prepared by the above method had 2θ values obtained by X-ray diffraction analysis (XRD) of 7.9, 9.5, 15.9, 20.6, 23.1 and 30.0, and SAPO-34 was added to ZSM-5. It maintains a weight ratio of 1 to 9.9 and has a multi-pore structure derived from ZSM-5 and SAPO-34, and the surface scattering point and pore inlet of ZSM-5 having a surface area of 400 to 700 m 2 / g are optimized and high C 2 to Light olefin yield of C 4 , in particular propylene selectivity.

한편, 본 발명은 상기와 같은 방법으로 제조된 ZSM-5/SAPO-34 복합촉매하에서, C1 ∼ C4의 함산소화합물(oxygenates)을 반응시켜 C2 ∼ C4 범위의 올레핀을 제조하는 경질올레핀의 제조방법에 또 다른 특징이 있다. 이때, 상기 반응은 당 분야에서 일반적으로 사용되는 것을 특별히 한정하지는 않으나, 구체적으로 250 ∼ 550 ℃ 온도범위, 0.5 ∼ 10 기압범위 및 시간당 공간 속도당 유량(WHSV)이 0.1 ∼ 50 hr-1 범위에서 수행하는 것이 좋다.On the other hand, the present invention is a hard to produce an olefin in the range of C 2 ~ C 4 by reacting C 1 ~ C 4 Oxygenates (oxygenates) under the ZSM-5 / SAPO-34 composite catalyst prepared by the above method There is another feature of the process for preparing olefins. In this case, the reaction is not particularly limited to those generally used in the art, but specifically, in the 250 to 550 ° C. temperature range, 0.5 to 10 atm, and the hourly space velocity per flow rate (WHSV) in the range of 0.1 to 50 hr −1 . It is good to do.

상기와 같이 본원발명의 ZSM-5/SAPO-34 복합촉매를 사용하여 함산소화합물(oxygenates)을 전환반응시켜 경질올레핀을 제조하면, C2 ∼ C4 범위 경질올레핀 의 선택도가 70 ∼ 95 탄소몰% 범위이고, 에틸렌에 대한 프로필렌의 선택도[C3/C2] 비가 1.0 ∼ 1.5 범위를 나타낸다.As described above, when a light olefin is prepared by converting oxygenated compounds using the ZSM-5 / SAPO-34 complex catalyst of the present invention, the selectivity of the light olefins in the C 2 to C 4 range is 70 to 95 carbon. It is in the mole% range, and the selectivity [C 3 / C 2 ] ratio of propylene to ethylene is in the range of 1.0 to 1.5.

이하, 본 발명을 다음의 실시예에 의거하여 구체적으로 설명하겠는 바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples, but the present invention is not limited by the following examples.

실시예 1Example 1

1.37 g의 질산 알루미늄(Al(NO3)3·9H2O, 98%, Aldrich)을 물 23.25 mL에 녹여 질산 알루미늄 용액을 제조하고, 별도로 실리카 전구체로 Ludox HS-40(40%, Aldrich) 19.15 g과 물 20 mL를 혼합하여 질산 알루미늄 용액에 천천히 첨가하였다. 다음으로 상온에서 1시간동안 교반하여 알루미나-실리카 혼합용액을 제조하였다. 이후에 테트라라프로필암모늄 브로마이드(TPABr, 98%, Aldrich) 6.93 g에 물 15 g을 첨가하여 이를 상기에서 제조된 알루미나-실리카 혼합용액에 천천히 첨가하고 상온에서 1시간동안 교반하였다. 이후에 상기 용액에, 수산화나트륨(NaOH, 99%, Jin) 1.03 g과 물 17.5 g을 혼합한 수산화나트륨 수용액을 천천히 첨가하고 1시간동안 교반하여 SiO2/Al2O3 몰비가 70인 ZSM-5 합성젤을 제조하였다.An aluminum nitrate solution was prepared by dissolving 1.37 g of aluminum nitrate (Al (NO 3 ) 3 .9H 2 O, 98%, Aldrich) in 23.25 mL of water, and separately Ludox HS-40 (40%, Aldrich) 19.15 as a silica precursor. g and 20 mL of water were mixed and slowly added to the aluminum nitrate solution. Next, the mixture was stirred at room temperature for 1 hour to prepare an alumina-silica mixed solution. Thereafter, 15 g of water was added to 6.93 g of tetralapropylammonium bromide (TPABr, 98%, Aldrich), which was slowly added to the alumina-silica mixed solution prepared above, and stirred at room temperature for 1 hour. Then, to the solution, a sodium hydroxide aqueous solution containing 1.03 g of sodium hydroxide (NaOH, 99%, Jin) and 17.5 g of water was slowly added and stirred for 1 hour, thereby ZSM- having a SiO 2 / Al 2 O 3 molar ratio of 70. 5 synthetic gels were prepared.

상기 합성젤을 오토클레브(autoclave)에 넣고 교반하면서 170 ℃에서 48 시간동안 가열하고, 미반응된 비정질 물질을 분리하고 결정질 부분의 ZSM-5를 얻기 위해 원심분리기를 이용하여 분리하고 여러 번 물로 세척하고 회수하여 결정질의 ZSM-5을 제조하였다. The synthetic gel was placed in an autoclave and heated for 48 hours at 170 ° C. with stirring, the unreacted amorphous material was separated and separated using a centrifuge to obtain the ZSM-5 of the crystalline portion, and several times with water. Washing and recovery afforded crystalline ZSM-5.

별도로, 12.5 g의 알루미늄 이소프로폭사이드(Al2(SO4)3, 98%, Aldrich)에 테트라에틸암모늄 하이드록사이드(TEAOH, 35%, Aldrich) 26.0 g를 첨가하고 상온에서 1시간 동안 충분히 교반한 후, 흄드 실리카(99.9%, Aldrich) 0.565 g을 첨가하여 상온에서 1 시간 정도 교반하면서 완전히 용해시켜 혼합용액을 제조하였다. 상기 제조된 ZSM-5 합성물을 혼합용액에 천천히 교반하면서 서서히 첨가하였다. 이후에 인산(85%, Samchun) 7.0 g과 물 28.0 mL를 교반하면서 천천히 첨가한 후 2시간 동안 교반하여 ZSM-5/SAPO-34 복합 합성젤을 제조하였다.Separately, 26.0 g of tetraethylammonium hydroxide (TEAOH, 35%, Aldrich) was added to 12.5 g of aluminum isopropoxide (Al 2 (SO 4 ) 3 , 98%, Aldrich) and allowed to stand at room temperature for 1 hour. After stirring, 0.565 g of fumed silica (99.9%, Aldrich) was added thereto, followed by complete dissolution while stirring at room temperature for 1 hour to prepare a mixed solution. The prepared ZSM-5 composite was slowly added to the mixed solution with slow stirring. Thereafter, 7.0 g of phosphoric acid (85%, Samchun) and 28.0 mL of water were slowly added with stirring, followed by stirring for 2 hours to prepare a ZSM-5 / SAPO-34 composite synthetic gel.

상기 복합물 합성젤을 오토클레브(autoclave)에 넣고 교반하면서 175 ℃에서 48 시간 동안 수열합성하고, 미반응된 비정질 물질을 분리하고 결정질 부분의 ZSM-5/SAPO-34 복합물을 얻기 위해 원심분리기를 이용하여 분리하고 여러 번 물로 세척하였다. 이후에 110 ℃에서 건조하고, 600 ℃에서 공기를 불어주면서 10 시간동안 소성 과정을 거쳐 최종 ZSM-5/SAPO-34 복합촉매을 제조하였다. 이때, 상기 ZSM-5/SAPO-34 복합물은 ZSM-5와 SAPO-34을 1 : 1 중량비를 유지하였다.The composite synthetic gel was placed in an autoclave and hydrothermally synthesized at 175 ° C. for 48 hours while stirring, to separate unreacted amorphous material and to obtain a ZSM-5 / SAPO-34 complex of crystalline portion. Separated and washed several times with water. Thereafter, dried at 110 ℃, the firing process for 10 hours while blowing air at 600 ℃ to prepare a final ZSM-5 / SAPO-34 composite catalyst. At this time, the ZSM-5 / SAPO-34 composite maintained a 1: 1 ratio of ZSM-5 and SAPO-34.

실시예 2Example 2

상기 실시예 1과 동일하게 실시하되, ZSM-5/SAPO-34 복합촉매의 함량비가 ZSM-5 : SAPO-34 = 1 : 1 중량비 대신에 ZSM-5 : SAPO-34 = 1 : 3 중량비인 ZSM-5/SAPO-34 복합촉매를 제조하였다.ZSM-5: SAPO-34 = 1: 3 weight ratio ZSM-5: SAPO-34 = 1: 1 weight ratio of ZSM-5 / SAPO-34 composite catalyst was carried out in the same manner as in Example 1 A -5 / SAPO-34 complex catalyst was prepared.

실시예 3Example 3

상기 실시예 1과 동일하게 실시하되, ZSM-5/SAPO-34 복합물의 함량비가 ZSM-5 : SAPO-34 = 1 : 1 중량비 대신에 ZSM-5 : SAPO-34 = 1 : 6 중량비인 ZSM-5/SAPO-34 복합촉매를 제조하였다.The same manner as in Example 1, except that the content ratio of the ZSM-5 / SAPO-34 composite is ZSM-5: SAPO-34 = 1: 1 weight ratio ZSM-5: SAPO-34 = 1: 6 weight ratio A 5 / SAPO-34 complex catalyst was prepared.

실시예 4Example 4

상기 실시예 1과 동일하게 실시하되, ZSM-5/SAPO-34 복합물의 함량비가 ZSM-5 : SAPO-34 = 1 : 1 중량비 대신에 ZSM-5 : SAPO-34 = 1 : 9 중량비 인 ZSM-5/SAPO-34 복합촉매를 제조하였다.In the same manner as in Example 1, ZSM-5: SAPO-34 = 1: 1 weight ratio of ZSM-5 / SAPO-34 = 1: 1 weight ratio of ZSM-5 / SAPO-34 composites instead of ZSM- A 5 / SAPO-34 complex catalyst was prepared.

실시예 5Example 5

상기 실시예 1과 동일하게 실시하되, ZSM-5 결정화, 여과 및 세척한 후에 110 ℃에서 충분히 건조한 결정질의 ZSM-5을 사용하여 ZSM-5 : SAPO-34 = 1 : 1 중량비를 유지하는 ZSM-5/SAPO-34 복합촉매를 제조하였다. ZSM-5: SAPO-34 = 1: 1 ratio of ZSM-5: SAPO-34 = 1: 1 using ZSM-5 crystallized, filtered and washed with ZSM-5 sufficiently dry at 110 ° C after ZSM-5 crystallization, filtration and washing. A 5 / SAPO-34 complex catalyst was prepared.

비교예 1Comparative Example 1

상기 실시예 1에 설명된 방법으로 각각 제조된 ZSM-5와 SAPO-34를 1 : 1 중량비로 균일하게 물리적으로 혼합하여 ZSM-5/SAPO-34 혼합 촉매를 제조하였다.ZSM-5 / SAPO-34 mixed catalysts were prepared by uniformly physically mixing ZSM-5 and SAPO-34 prepared by the method described in Example 1 in a 1: 1 weight ratio.

비교예 2Comparative Example 2

상기 실시예 1에 설명된 방법으로 각각 제조된 ZSM-5와 SAPO-34를 1 : 6 중량비로 균일하게 물리적으로 혼합하여 ZSM-5/SAPO-34 혼합 촉매를 제조하였다.The ZSM-5 / SAPO-34 mixed catalyst was prepared by uniformly physically mixing ZSM-5 and SAPO-34 prepared by the method described in Example 1 in a 1: 6 weight ratio.

비교예 3Comparative Example 3

상기 실시예 1에 설명된 방법으로 각각 제조된 ZSM-5와 SAPO-34를 1 : 9 중량비로 균일하게 물리적으로 혼합하여 ZSM-5/SAPO-34 혼합 촉매를 제조하였다.The ZSM-5 / SAPO-34 mixed catalyst was prepared by uniformly physically mixing ZSM-5 and SAPO-34 prepared by the method described in Example 1 at a weight ratio of 1: 9.

비교예 4Comparative Example 4

상기 실시예 1과 동일하게 실시하되, 결정질의 ZSM-5을 SAPO-34 제조 시 혼합하는 것이 아니라, 제조된 SAPO-34을 ZSM-5 제조시에 혼합하여 SAPO-34 : ZSM-5 = 1 : 1 중량비인 SAPO-34/ZSM-5 복합촉매를 제조하였다. In the same manner as in Example 1, except that the crystalline ZSM-5 is not mixed during the preparation of SAPO-34, but the prepared SAPO-34 is mixed during the preparation of the ZSM-5, and the SAPO-34: ZSM-5 = 1: A 1 weight ratio SAPO-34 / ZSM-5 composite catalyst was prepared.

먼저 12.5 g의 알루미늄 이소프로폭사이드(Al2(SO4)3, 98%, Aldrich)에 테트라에틸암모늄 하이드록사이드(TEAOH, 35%, Aldrich) 26.0 g를 첨가하고, 상온에서 1시간 동안 충분히 교반한 후에 흄드 실리카(99.9%, Aldrich) 0.565 g을 첨가하여 상온에서 1 시간동안 교반하면서 완전히 용해시켰다. 이후에 인산(85%, Samchun) 7.0 g과 물 28.0 mL를 혼합 용액에 교반하면서 천천히 첨가한 후, 2시간 동안 교반하여 SAPO-34 합성용액 제조하였다. 이렇게 제조된 SAPO-34 합성용액을 오토클레브(autoclave)에 넣고 교반하면서 175 ℃에서 48 시간 동안 수열합성하 였다. 이후에 미반응된 비정질 물질을 분리하고 결정질 부분의 SAPO-34를 얻기 위해 원심분리기를 이용하여 분리하고 여러 번 물로 세척하여 SAPO-34 슬러리를 얻었다. First, 26.0 g of tetraethylammonium hydroxide (TEAOH, 35%, Aldrich) is added to 12.5 g of aluminum isopropoxide (Al 2 (SO 4 ) 3 , 98%, Aldrich), and the mixture is sufficiently stirred at room temperature for 1 hour. After stirring, 0.565 g of fumed silica (99.9%, Aldrich) was added thereto and dissolved completely with stirring at room temperature for 1 hour. Thereafter, 7.0 g of phosphoric acid (85%, Samchun) and 28.0 mL of water were slowly added to the mixed solution with stirring, followed by stirring for 2 hours to prepare a SAPO-34 synthetic solution. The thus prepared SAPO-34 synthetic solution was placed in an autoclave and hydrothermally synthesized at 175 ° C. for 48 hours while stirring. Thereafter, the unreacted amorphous material was separated and separated using a centrifuge to obtain the crystalline portion of SAPO-34, washed several times with water to obtain a SAPO-34 slurry.

별도로, 1.37 g의 질산 알루미늄(Al(NO3)3·9H2O, 98%, Aldrich)을 물 23.25 mL에 녹여 질산 알루미늄 수용액을 제조하고, 실리카 전구체로 Ludox HS-40(40%, Aldrich) 19.15 g과 물 20 mL를 혼합하여 이를 질산 알루미늄 수용액에 천천히 첨가하였다. 이후에 상온에서 1시간동안 교반하여 알루미나-실리카 혼합용액을 제조하고 이를 상기 제조된 SAPO-34 슬러리와 혼합하여 혼합용액을 제조하였다. 다음으로, 테트라프로필암모늄 브로마이드(TPABr, 98%, Aldrich) 6.93 g과 물 15 g을 상기에서 제조된 혼합용액에 천천히 첨가하고 상온에서 1시간동안 교반하였다. 이후에 수산화나트륨(NaOH, 99%, Jin) 1.03 g에 물 17.5 g을 첨가한 수산화나트륨 수용액을 천천히 첨가하고 1시간동안 교반하여 SAPO-34/ZSM-5 복합물 합성젤을 제조하였다. Separately, 1.37 g of aluminum nitrate (Al (NO 3 ) 3 .9H 2 O, 98%, Aldrich) was dissolved in 23.25 mL of water to prepare an aqueous aluminum nitrate solution, and Ludox HS-40 (40%, Aldrich) as a silica precursor. 19.15 g and 20 mL of water were mixed and slowly added to an aqueous aluminum nitrate solution. Thereafter, the mixture was stirred at room temperature for 1 hour to prepare an alumina-silica mixed solution, which was mixed with the prepared SAPO-34 slurry to prepare a mixed solution. Next, 6.93 g of tetrapropylammonium bromide (TPABr, 98%, Aldrich) and 15 g of water were slowly added to the mixed solution prepared above, and stirred at room temperature for 1 hour. Thereafter, sodium hydroxide (NaOH, 99%, Jin) was added to 1.03 g of sodium hydroxide aqueous solution to which 17.5 g of water was added slowly, followed by stirring for 1 hour to prepare a SAPO-34 / ZSM-5 composite synthetic gel.

상기 복합물 합성젤을 오토클레브(autoclave)에 넣고 교반하면서 175 ℃에서 48 시간 동안 수열합성한 후 얻어진 ZSM-5/SAPO-34 복합물은 미반응된 비정질 물질을 분리하고 결정질 부분의 ZSM-5/SAPO-34 복합물을 얻기 위해 원심분리기를 이용하여 분리하고 여러 번 물로 세척하였다. 이렇게 제조된 ZSM-5/SAPO-34 복합물은 110 ℃에서 건조되고, 600 ℃에서 공기를 불어주면서 10 시간동안 소성 과정을 거쳐 최종 ZSM-5/SAPO-34 복합물로 제조되었다. The composite synthetic gel was placed in an autoclave and hydrothermally synthesized at 175 ° C. for 48 hours while stirring to obtain a ZSM-5 / SAPO-34 composite, which separates the unreacted amorphous material and ZSM-5 / of the crystalline portion. Centrifuge was used to obtain the SAPO-34 complex and washed several times with water. The ZSM-5 / SAPO-34 composite thus prepared was dried at 110 ° C. and then fired at 600 ° C. for 10 hours to prepare a final ZSM-5 / SAPO-34 composite.

비교예 5Comparative Example 5

상기 실시예 1과 동일하게 실시하되, ZSM-5의 결정화를 위한 수열합성 단계를 수행하지 않고 ZSM-5용 합성젤과 SAPO-34의 합성젤을 각각 80 ℃에서 10시간 정도 각각 숙성한 후, 혼합하고 한번에 170 ℃에서 수열합성을 통한 결정화를 수행하여 ZSM-5/SAPO-34 복합물 촉매 제조하였다. In the same manner as in Example 1, but without performing the hydrothermal synthesis step for the crystallization of ZSM-5, each of the synthetic gel for ZSM-5 and the synthetic gel of SAPO-34 each aged at 80 ℃ for about 10 hours, ZSM-5 / SAPO-34 composite catalyst was prepared by mixing and performing crystallization through hydrothermal synthesis at 170 ° C. at one time.

비교예 6Comparative Example 6

상기 실시예 1과 동일하게 실시하되, SAPO-34는 배제하고 ZSM-5만을 제조하였다.In the same manner as in Example 1, except that SAPO-34 was prepared only ZSM-5.

비교예 7 Comparative Example 7

상기 실시예 1과 동일하게 실시하되, ZSM-5는 배제하고 SAPO-34만을 제조하였다.In the same manner as in Example 1, except ZSM-5 was prepared only SAPO-34.

실험예Experimental Example

상기 실시예 1 ∼ 5 및 비교예 1, 2 및 5 ∼ 7에서 얻어진 제조된 촉매를 이용하여 메탄올의 전환반응을 수행하여 경질올레핀을 제조하였다. 이때, 반응온도 400 ℃, 상압에서, 질소로 희석된 메탄올 농도 10 부피%, 메탄올 기준 공간속 도(WHSV) 1 hr-1 조건을 유지하였으며, 1/2 인치 고정층 반응기에서 수행하였다. 상기 전환반응으로 제조된 경질올레핀의 선택도 및 메탄올의 전환율은 다음 표 1에 나타내었다. The conversion of methanol was performed using the catalysts obtained in Examples 1 to 5 and Comparative Examples 1, 2 and 5 to 7 to prepare light olefins. At this time, at a reaction temperature of 400 ° C. and atmospheric pressure, a methanol concentration of 10% by volume and a methanol reference space velocity (WHSV) of 1 hr −1 were maintained and performed in a 1/2 inch fixed bed reactor. Selectivity of the light olefins prepared by the conversion reaction and the conversion rate of methanol are shown in Table 1 below.

Figure 112007072463261-pat00001
Figure 112007072463261-pat00001

상기 표 1에 나타낸 바와 같이, 본 발명에 따라 제조된 ZSM-5/SAPO-34 복합촉매를 이용한 메탄올로부터 경질올레핀의 전환반응을 수행한 실시예 1 ∼ 5는 C2 ∼ C4까지의 경질올레핀 선택도가 80 탄소몰% 이상을 나타내었으며, ZSM-5/SAPO-34의 함량비에 따라 프로필렌/에틸렌의 비가 1.0 이상으로 다양하게 조절된다는 것을 확인할 수 있었다. As shown in Table 1, Examples 1 to 5 of the conversion of light olefins from methanol using the ZSM-5 / SAPO-34 composite catalyst prepared according to the present invention are light olefins up to C 2 to C 4 The selectivity was 80 mol% or more, and it was confirmed that the ratio of propylene / ethylene was variously adjusted to 1.0 or more according to the content ratio of ZSM-5 / SAPO-34.

이는 비교예 1 ∼ 3과 같이 ZSM-5와 SAPO-34의 단순한 물리적 혼합으로는 얻어질 수 없는 것으로, 이의 촉매는 상대적으로 중질올레핀을 많이 생성시키는 ZSM-5의 반응 영향도가 매우 높아 C2 ∼ C4까지의 경질올레핀 선택도가 낮아지는 것으로 판단된다. 이와 같이 본 발명에 따른 방법으로 제조된 ZSM-5/SAPO-34 복합촉매가 ZSM-5와 SAPO-34을 물리적으로 혼합하여 제조된 촉매에 비해 높은 경질올레핀 선택도를 나타내는 것은 촉매의 제조과정에서 ZSM-5의 표면산점과 세공구조가 작아지는 것에 의해 최적화되어 나타내는 결과로 판단된다. This is Comparative Example 1 to a simple physical mixture of ZSM-5 and SAPO-34 as shown in 3 will be unable to be obtained, and its catalyst are relatively of the ZSM-5 reaction influences much produce a heavy olefin also is very high, the C 2 the choice of light olefins to C-4 is determined that the road is decreased. As such, the ZSM-5 / SAPO-34 composite catalyst prepared by the method according to the present invention exhibits high light olefin selectivity compared to the catalyst prepared by physically mixing ZSM-5 and SAPO-34. The surface scattering point and pore structure of ZSM-5 are judged to be optimized, indicating the result.

또한, 도 1은 실시예 1 ∼ 5과 비교예 4 ∼ 5에서 제조된 촉매의 XRD 결과를 나타낸 것으로, 본 발명에 따른 실시예 1 ∼ 5은 ZSM-5(2θ = 7.9, 23.1, 30.0)와 SAPO-34 (2θ = 9.5, 15.9, 20.6) 결정성을 모두 가짐을 알 수 있다. 그러나 비교예 3과 4는 ZSM-5 결정성은 전혀 관찰되지 않고, 약하게 SAPO-34 결정성만 보이며 비정질이 많은 부분 차지함을 알 수 있다. 이는 ZSM-5의 결정화 조건이 SAPO-34와 상이하여 합성방법에 따라 적절한 ZSM-5 결정 형성 분위기가 이루어지지 않았기 때문에 나타나는 결과라 예측된다.In addition, Figure 1 shows the XRD results of the catalyst prepared in Examples 1 to 5 and Comparative Examples 4 to 5, Examples 1 to 5 according to the present invention is ZSM-5 (2θ = 7.9, 23.1, 30.0) and It can be seen that SAPO-34 (2θ = 9.5, 15.9, 20.6) has both crystallinity. However, in Comparative Examples 3 and 4, ZSM-5 crystallinity was not observed at all, and only weakly SAPO-34 crystallinity was observed, and it was found that the amorphous part occupied much. This is expected because the crystallization conditions of ZSM-5 are different from SAPO-34, and the proper ZSM-5 crystal formation atmosphere is not achieved according to the synthesis method.

도 1은 본 발명에 따른 실시예 1 ∼ 5 및 비교예 4 ∼ 5에서 제조된 촉매의 X선 회절분석(XRD) 결과를 나타낸 것이다.1 shows the results of X-ray diffraction analysis (XRD) of the catalyst prepared in Examples 1 to 5 and Comparative Examples 4 to 5 according to the present invention.

Claims (9)

알루미나 전구체 수용액과, 실리카 전구체 수용액을 혼합하여 ZSM-5용 알루미나-실리카 혼합용액을 제조하는 1단계 ;A first step of preparing an alumina-silica mixed solution for ZSM-5 by mixing an alumina precursor solution and a silica precursor solution; 상기 ZSM-5용 알루미나-실리카 혼합 수용액, 테트라프로필암모늄 브로마이드(TPABr) 및 물을 혼합한 후, 알칼리수산화물 수용액을 첨가하여 ZSM-5용 합성젤을 제조하는 2단계 ;Mixing the alumina-silica mixed solution for ZSM-5, tetrapropylammonium bromide (TPABr) and water, followed by adding an aqueous alkali hydroxide solution to prepare a synthetic gel for ZSM-5; 상기 합성젤을 170 ∼ 200 ℃에서 수열합성하고 세척여과 후 ZSM-5 슬러리를 제조하는 3단계 ; Hydrothermally synthesizing the synthetic gel at 170 to 200 ° C. and preparing a ZSM-5 slurry after washing and filtration; 알루미나 전구체, 실리카 전구체 및 테트라에틸암모늄 하이드록사이드(TEAOH)를 혼합하여 SAPO-34용 알루미나-실리카 혼합물을 제조하는 4단계 ;Mixing alumina precursor, silica precursor and tetraethylammonium hydroxide (TEAOH) to prepare an alumina-silica mixture for SAPO-34; 상기 4단계의 SAPO-34용 알루미나-실리카 혼합물, 3단계의 ZSM-5, 인산 및 물을 혼합하여 ZSM-5/SAPO-34 복합 합성젤을 제조하는 5단계 ; 및 Step 5 of preparing a ZSM-5 / SAPO-34 composite synthetic gel by mixing the alumina-silica mixture for SAPO-34 of step 4, ZSM-5, phosphoric acid and water of step 3; And 상기 ZSM-5/SAPO-34 복합 합성젤을 170 ∼ 200 ℃에서 수열합성, 100 ∼ 150 ℃에서 건조 및 500 ∼ 700 ℃에서 소성하여 ZSM-5/SAPO-34 복합 촉매를 제조하는 6단계Hydrothermal synthesis of the ZSM-5 / SAPO-34 composite gel at 170 to 200 ° C., drying at 100 to 150 ° C., and calcining at 500 to 700 ° C. to produce a ZSM-5 / SAPO-34 composite catalyst. 를 포함하여 이루어진 것을 특징으로 하는 경질 올레핀 제조용 ZSM-5/SAPO-34 복합촉매의 제조방법.Method for producing a ZSM-5 / SAPO-34 composite catalyst for producing light olefins, characterized in that consisting of. 제 1 항에 있어서, 상기 3 단계 반응 후에 100 ∼ 150 ℃에서 건조하는 단계가 추가로 포함되는 것을 특징으로 하는 경질 올레핀 제조용 ZSM-5/SAPO-34 복합촉매의 제조방법.The method of claim 1, wherein the step of drying at 100 to 150 ℃ after the three-step reaction further comprises a method for producing a light olefin ZSM-5 / SAPO-34 composite catalyst. 제 1 항에 있어서, 상기 ZSM-5용 알루미나-실리카 혼합용액은 알루미나(Al2O3)에 대한 실리카(SiO2)가 30 ∼ 500 몰비 범위를 유지하는 것을 특징으로 하는 경질 올레핀 제조용 ZSM-5/SAPO-34 복합촉매의 제조방법.The method of claim 1, wherein the alumina-silica mixture solution for ZSM-5 is ZSM-5 for producing light olefins, characterized in that the silica (SiO 2 ) to alumina (Al 2 O 3 ) is maintained in the range of 30 to 500 molar ratio. Method for preparing / SAPO-34 composite catalyst. 제 1 항에 있어서, 상기 SAPO-34용 알루미나-실리카 혼합물은 알루미나(Al2O3)에 대한 실리카(SiO2)가 0.05 ∼ 1.0 몰비 범위를 유지하는 것을 특징으로 하는 경질 올레핀 제조용 ZSM-5/SAPO-34 복합촉매의 제조방법.The method of claim 1, wherein the alumina-silica mixture for SAPO-34 is a ZSM-5 / for the production of light olefins, characterized in that the silica (SiO 2 ) to alumina (Al 2 O 3 ) maintains a range of 0.05 to 1.0 molar ratio. Process for preparing SAPO-34 complex catalyst. 제 1 항에 있어서, 상기 SAPO-34용 알루미나-실리카 혼합물은 ZSM-5에 대하여 1 ∼ 9.9 중량비 범위로 사용하는 것을 특징으로 하는 경질 올레핀 제조용 ZSM-5/SAPO-34 복합촉매의 제조방법.The method of claim 1, wherein the alumina-silica mixture for SAPO-34 is used in the range of 1 to 9.9 weight ratio based on ZSM-5. 청구항 1 내지 5 중에서 선택된 어느 한 항의 제조방법으로 얻어진 ZSM-5/SAPO-34 복합촉매로, ZSM-5 / SAPO-34 composite catalyst obtained by the method of any one of claims 1 to 5, X선 회절분석(XRD)하여 얻은 2θ값이 7.9, 9.5, 15.9, 20.6, 23.1 및 30.0 이고, SAPO-34은 ZSM-5에 대하여 1 ∼ 9.9 중량비를 유지하고, 표면적이 400 ∼ 700 ㎡/g인 다중 세공구조를 갖는 것을 특징으로 하는 ZSM-5/SAPO-34 복합촉매. 2θ values obtained by X-ray diffraction analysis (XRD) were 7.9, 9.5, 15.9, 20.6, 23.1 and 30.0, and SAPO-34 maintained a weight ratio of 1 to 9.9 with respect to ZSM-5, and the surface area was 400 to 700 m 2 / g. ZSM-5 / SAPO-34 composite catalyst comprising a multi-pore structure. 청구항 1 내지 5 중에서 선택된 어느 한 항의 제조방법으로 얻어진 ZSM-5/SAPO-34 복합촉매하에서, C1 ∼ C4의 함산소화합물(oxygenates)을 반응시켜 C2 ∼ C4 범위의 올레핀을 제조하는 것을 특징으로 하는 경질올레핀의 제조방법.Under the ZSM-5 / SAPO-34 complex catalyst obtained by the method of any one of claims 1 to 5, C 1 to C 4 oxygenated compounds (oxygenates) to react to produce an olefin in the range of C 2 ~ C 4 Method for producing a light olefin, characterized in that. 제 7 항에 있어서, 상기 반응은 250 ∼ 550 ℃ 온도범위, 0.5 ∼ 10 기압범위 및 시간당 공간 속도당 유량(WHSV)이 0.1 ∼ 50 hr-1 범위에서 수행되는 것을 특징으로 하는 경질올레핀의 제조방법.The method of claim 7, wherein the reaction is performed in a temperature range of 250 to 550 ° C., a range of 0.5 to 10 atm, and a flow rate per hour space velocity (WHSV) in a range of 0.1 to 50 hr −1. . 제 7 항에 있어서, C2 ∼ C4 범위 경질올레핀의 선택도가 70 ∼ 95 탄소몰% 범위이고, 에틸렌에 대한 프로필렌의 선택도[C3/C2] 비가 1.0 ∼ 1.5 범위인 것을 특징으로 하는 경질올레핀의 제조방법.8. The method according to claim 7, characterized in that the selectivity of the light olefins in the C 2 to C 4 range is 70 to 95 carbon mole%, and the selectivity [C 3 / C 2 ] ratio of propylene to ethylene is in the range from 1.0 to 1.5. Method for producing light olefins.
KR1020070101609A 2007-10-09 2007-10-09 Preparation method of zsm-5/sapo-34 composite catalyst and the use thereof for the conversion of oxygenates to light olefins KR100891001B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070101609A KR100891001B1 (en) 2007-10-09 2007-10-09 Preparation method of zsm-5/sapo-34 composite catalyst and the use thereof for the conversion of oxygenates to light olefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070101609A KR100891001B1 (en) 2007-10-09 2007-10-09 Preparation method of zsm-5/sapo-34 composite catalyst and the use thereof for the conversion of oxygenates to light olefins

Publications (1)

Publication Number Publication Date
KR100891001B1 true KR100891001B1 (en) 2009-03-31

Family

ID=40698820

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070101609A KR100891001B1 (en) 2007-10-09 2007-10-09 Preparation method of zsm-5/sapo-34 composite catalyst and the use thereof for the conversion of oxygenates to light olefins

Country Status (1)

Country Link
KR (1) KR100891001B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014171688A1 (en) 2013-04-18 2014-10-23 롯데케미칼 주식회사 Ethanol dehydration catalyst for energy saving and method of manufacturing ethylene using same
CN104671256B (en) * 2013-11-29 2016-08-24 神华集团有限责任公司 Preparation method of SAPO-5/SAPO-34 composite molecular sieve for preparing catalyst for preparing low-carbon olefin from organic oxygen-containing compound
US9643852B2 (en) 2012-12-10 2017-05-09 Exxonmobil Research And Engineering Company Seeded synthesis of aluminosilicate molecular sieves
CN113292081A (en) * 2021-06-08 2021-08-24 宁夏大学 Preparation method and application of composite molecular sieve
CN114262251A (en) * 2022-01-05 2022-04-01 西北大学 Process for improving methanol aromatization reaction performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110004A (en) 1997-06-25 1999-01-19 Catalysts & Chem Ind Co Ltd Contact decomposition catalyst composition of hydrocarbon
US20050070422A1 (en) 2003-09-25 2005-03-31 Tan-Jen Chen Multi component catalyst and its use in catalytic cracking
KR20070020355A (en) * 2005-08-15 2007-02-21 차이나 페트로리움 앤드 케미컬 코포레이션 Fluid-bed catalyst for the preparation of ethylene and propylene by catalytic cracking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110004A (en) 1997-06-25 1999-01-19 Catalysts & Chem Ind Co Ltd Contact decomposition catalyst composition of hydrocarbon
US20050070422A1 (en) 2003-09-25 2005-03-31 Tan-Jen Chen Multi component catalyst and its use in catalytic cracking
KR20070020355A (en) * 2005-08-15 2007-02-21 차이나 페트로리움 앤드 케미컬 코포레이션 Fluid-bed catalyst for the preparation of ethylene and propylene by catalytic cracking

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9643852B2 (en) 2012-12-10 2017-05-09 Exxonmobil Research And Engineering Company Seeded synthesis of aluminosilicate molecular sieves
WO2014171688A1 (en) 2013-04-18 2014-10-23 롯데케미칼 주식회사 Ethanol dehydration catalyst for energy saving and method of manufacturing ethylene using same
US9931619B2 (en) 2013-04-18 2018-04-03 Lotte Chemical Corporation Ethanol dehydration catalyst for energy saving and method of manufacturing ethylene using same
CN104671256B (en) * 2013-11-29 2016-08-24 神华集团有限责任公司 Preparation method of SAPO-5/SAPO-34 composite molecular sieve for preparing catalyst for preparing low-carbon olefin from organic oxygen-containing compound
CN113292081A (en) * 2021-06-08 2021-08-24 宁夏大学 Preparation method and application of composite molecular sieve
CN113292081B (en) * 2021-06-08 2022-12-30 宁夏大学 Preparation method and application of composite molecular sieve
CN114262251A (en) * 2022-01-05 2022-04-01 西北大学 Process for improving methanol aromatization reaction performance

Similar Documents

Publication Publication Date Title
US7622624B2 (en) Crystalline intergrowth material, its synthesis and its use in the conversion of oxygenates to olefins
US7148172B2 (en) High silica chabazite, its synthesis and its use in the conversion of oxygenates to olefins
US8450233B2 (en) Process for obtaining catalyst composites comprising MeAPO and their use in conversion of organics to olefins
US7067095B1 (en) Synthesis of silicoaluminophosphate molecular sieves
US7785554B2 (en) Process for manufacture of silicoaluminophosphate molecular sieves
US7528201B2 (en) Synthesis of silicoaluminophosphate molecular sieves
WO2012088854A1 (en) Method for synthesizing sapo molecular sieve by solvothermal method and catalyst prepared thereby
AU2002247078A1 (en) Silicoaluminophosphate molecular sieve
WO2002070407A1 (en) Silicoaluminophosphate molecular sieve
WO2008022532A1 (en) A method for rapidly synthesizing a silicoaluminophosphate sapo-34 molecular sieve
US20120203046A1 (en) High strength sapo-34 microsphere catalyst, method for preparing same, and method for preparing light olefins using same
KR100891001B1 (en) Preparation method of zsm-5/sapo-34 composite catalyst and the use thereof for the conversion of oxygenates to light olefins
US20140171713A1 (en) Nano sapo-35 and method of making
US8383079B2 (en) Molecular sieves having micro and mesoporosity, their synthesis and their use in the organic conversion reactions
US7622417B2 (en) Synthesis and use of AEI structure-type molecular sieves
KR20160123332A (en) Dehydration-hydrolysis processes and catalysts therefor
EP2161242A1 (en) Method for Preparing Crystalline Metalloaluminophosphate (MeAPO) Molecular Sieve from Amorphous Materials
KR100888467B1 (en) Preparation method of composite catalyst and the use thereof for the conversion of oxygenates to light olefins
KR101451296B1 (en) The method for preparing titanium containing SAPO-34 molecular sieve and the method of preparation for light olefin using titanium containing SAPO-34 molecular sieve therefrom
KR100898127B1 (en) Synthesis method of silicoaluminophosphate molecular sieve?????-???as a catalyst with high performance and stability for the production of light olefins and production method of light olefins thereof
WO2022052967A1 (en) Scm-34 molecular sieve, preparation method therefor and use thereof
KR20080114232A (en) Synthesis method of silicoaluminophosphate molecular sieve (sapo)-34 as a catalyst for a production of light olefins using mixed organic template and production method of light olefins thereof
JP2019136702A (en) Zeolite catalyst, and method for producing lower olefin using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140115

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150306

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160307

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180305

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190308

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200303

Year of fee payment: 12