KR100888628B1 - Two dimensional dispersion coefficient observation method by combining stream-tube concept and routing procedure - Google Patents
Two dimensional dispersion coefficient observation method by combining stream-tube concept and routing procedure Download PDFInfo
- Publication number
- KR100888628B1 KR100888628B1 KR1020060110243A KR20060110243A KR100888628B1 KR 100888628 B1 KR100888628 B1 KR 100888628B1 KR 1020060110243 A KR1020060110243 A KR 1020060110243A KR 20060110243 A KR20060110243 A KR 20060110243A KR 100888628 B1 KR100888628 B1 KR 100888628B1
- Authority
- KR
- South Korea
- Prior art keywords
- error
- dispersion coefficient
- concentration distribution
- downstream
- calculated
- Prior art date
Links
- 239000006185 dispersion Substances 0.000 title claims abstract description 101
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000009826 distribution Methods 0.000 claims abstract description 61
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 12
- 238000004364 calculation method Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims description 7
- 235000015145 nougat Nutrition 0.000 claims description 3
- 239000003344 environmental pollutant Substances 0.000 description 6
- 231100000719 pollutant Toxicity 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
Landscapes
- Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Development Economics (AREA)
- Educational Administration (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
본 발명은 유관개념과 추적절차를 결합한 2차원 오염분산계수 관측방법에 관한 것으로, (a) 초기값으로 설정된 임의의 종분산계수와 횡분산계수 및 측정된 상류단의 농도분포가 입력자료로 이용되어 일정한 수학식을 만족하는 하류단의 농도분포1을 산출하고 그 산출된 하류단의 농도분포1과 동일 지점에서의 측정된 하류단의 농도분포 간의 오차1을 산정하는 단계; (b) 상기 단계(a)에서 산정된 오차1보다 산출된 하류단의 농도분포와 동일 지점에서의 측정된 하류단의 농도분포 간의 오차2...오차n을 계속적으로 감소시킬 수 있도록 종분산계수와 횡분산계수를 일정한 방향성을 가지고 반복적으로 조정하여 그에 대응하고 상기 단계(a)의 수학식을 만족하는 하류단의 농도분포2...하류단의 농도분포n을 계속적으로 산출하는 단계, 및 (c) 종분산계수와 횡분산계수를 일정한 방향성을 가지고 조정하여 산출된 하류단의 농도분포n+1과 동일 지점에서의 측정된 하류단의 농도분포 간의 오차n+1이 오차n 보다 역으로 증가하면 계산을 중지하고, 오차가 최소가 되는 순간인 오차n이 산정되도록 하는 종분산계수와 횡분산계수를 관측치로 설정하는 단계를 포함하여, 하천의 오염 확산에 지대한 영향을 미치는 흐름 및 하천의 불규칙성을 포함하는 분산계수를 관측하는 방법을 제시한 것이다.The present invention relates to a method for observing a two-dimensional pollution dispersion coefficient combining a related concept and a tracking procedure, wherein (a) an arbitrary longitudinal dispersion coefficient, a transverse dispersion coefficient set as an initial value, and a measured concentration distribution of an upstream end are used as input data. Calculating a concentration distribution 1 of a downstream end satisfying a predetermined equation and calculating an error 1 between the calculated concentration distribution 1 of the downstream end and the measured concentration distribution of the downstream end at the same point; (b) Longitudinal variance so that the error 2 ... error n between the concentration distribution of the downstream end calculated from the error 1 calculated in step (a) and the measured downstream distribution at the same point can be continuously reduced. Continuously calculating coefficients and lateral dispersion coefficients with constant directionality and continuously calculating concentration distributions 2 ... downstream concentrations n corresponding to the equations of step (a) and satisfying the equation of step (a), And (c) an error n + 1 between the downstream concentration concentration n + 1 calculated by adjusting the longitudinal dispersion coefficient and the lateral dispersion coefficient with constant directionality and the measured downstream concentration concentration at the same point is inversely different from the error n. Increases the flow rate and streams that have a significant impact on the pollution spread of the stream, including the step of setting the longitudinal and lateral dispersion coefficients as observations to stop the calculation and to calculate the error n when the error is minimized. Disqualification of This paper suggests a method for observing variance coefficients including eclipticity.
유관개념, 추적절차, 2차원, 오염분산계수, 횡분산계수, 종분산계수, 오염물 Related Concepts, Tracking Procedure, 2D, Pollution Dispersion Coefficient, Lateral Dispersion Coefficient, Specimen Dispersion Factor
Description
도 1은 본 발명에 따른 추적절차를 통한 분산계수 관측 개념도이다.1 is a conceptual diagram of variance coefficient observation through a tracking procedure according to the present invention.
도 2는 본 발명에 따른 분산계수 관측방법이 적용된 하천구간의 개략도이다.2 is a schematic diagram of a river section to which the dispersion coefficient observation method according to the present invention is applied.
본 발명은 유관개념과 추적절차를 결합한 2차원 오염분산계수 관측방법에 관한 것으로, 하천에 점원형태로 유입된 오염물의 거동을 2차원으로 해석할 때에 필요한 매개변수인 종분산계수 및 횡분산계수를 관측하는 방법에 관한 것이다.The present invention relates to a method for observing a two-dimensional pollution dispersion coefficient combining a related concept and a tracking procedure. The present invention relates to a longitudinal dispersion coefficient and a lateral dispersion coefficient which are necessary parameters when analyzing the behavior of pollutants introduced into a stream in a two-dimensional manner. It is about how to observe.
종래에 하천에 점원형태로 유입되는 오염물을 추적하는 관측기술로서, 관측기술 중에서 가장 대표적인 방법이 모멘트방법(moment method)이다. 이 방법은 농도분포의 횡방향 2차 모멘트의 종방향 변화율이 횡분산계수에 비례한다는 원리를 이용하여 횡분산계수를 관측하는 방법이다. 모멘트방법은 오염물이 하천에 연속적 으로 유입되는 경우에 종분산을 무시하고 횡분산계수만을 취득할 수 있는 방법으로써, 종분산이 지배적인 역할을 하는 오염 유입조건인 경우에 적용하기는 한계가 있다. 또한 하천 및 흐름의 불규칙성으로 인하여 2차 모멘트가 왜곡되어 산정될 수 있고, 이 영향으로 분산계수가 적절히 관측되지 못하는 약점을 가지고 있다.Conventionally, as the observation technique for tracking contaminants introduced into the stream in the form of point sources, the most representative method among the observation techniques is the moment method. This method is a method of observing the lateral dispersion coefficient using the principle that the rate of change in the longitudinal secondary moment of the concentration distribution is proportional to the lateral dispersion coefficient. The moment method is a method in which the lateral dispersion coefficient can be obtained by disregarding the longitudinal dispersion when the pollutants are continuously introduced into the stream. However, the moment method has a limitation in that the longitudinal dispersion can be applied when the pollutant inflow conditions dominate. In addition, secondary moments may be distorted due to irregularities in rivers and flows, and this effect has a weakness in that dispersion coefficients are not properly observed.
더욱이 종래기술인 유관개념(stream-tube concept)은 하천에서 흐름을 유량개념으로 표현함으로써 흐름 및 하상의 불규칙성, 하천의 사행성(sinuosity)등을 고려할 수 있는 모형이다.In addition, the conventional stream-tube concept is a model that can consider the flow and stream irregularities, the stream's sinuosity by representing the flow in the stream as a flow concept.
또한 종래기술에서 쓰이는 추적절차(routing procedure)는 상류단의 홍수파를 입력자료로 하여 하류단의 홍수파를 예측하는 방법이 있다.In addition, the routing procedure used in the prior art has a method of predicting the flood wave in the downstream stage by using the upstream flood wave as input data.
본 발명은 하천에 오염원이 연속적으로 주입되는 상황에서만 적용 가능한 상기 모멘트방법의 약점을 해소하면서 순간적으로 오염원이 주입되는 상황에서도 분산계수를 관측할 수 방법을 제공하기 위한 것으로, 본 발명에서는 상기 기술한 추적절차에 유관개념을 결합시킴으로써 오염 확산에 지대한 영향을 미치는 흐름 및 하천의 불규칙성을 포함하는 분산계수를 관측하는 방법을 제공하기 위한 것이 목적이다.The present invention is to provide a method for observing the dispersion coefficient even in a situation in which the source is momentarily injected while solving the weakness of the moment method that can be applied only in the situation where the source is continuously injected into the stream, the present invention described above The objective is to provide a method for observing dispersion coefficients including flow and stream irregularities that have a significant impact on the spread of pollution by incorporating related concepts into tracking procedures.
또한 본 발명에서는 상기 추적절차를 응용하여 상류단의 농도분포를 입력 자료로 하여 하류단의 농도분포를 예측하고 예측된 농도분포를 측정된 하류단의 농도분포와 비교함으로써 분산계수를 관측하는 방법을 제시하기 위한 것이 다른 목적이 다.In addition, in the present invention, a method of observing a dispersion coefficient by applying the above-described tracking procedure to predict the concentration distribution of the downstream stage by using the concentration distribution of the upstream stage as input data and comparing the predicted concentration distribution with the measured concentration distribution of the downstream stage. The purpose is to present another purpose.
이와 같은 추적절차를 따름으로써 종래 모멘트방법의 약점인 2차 모멘트 왜곡 산정과정을 피할 수 있어 보다 정확한 분산계수를 관측할 수 있다. 또한 추적절차를 따르면 농도 대 농도를 직접 비교하여 분산계수를 역산하므로 종분산계수와 횡분산계수 모두를 동시에 관측할 수 있는 방법이다.By following such a tracking procedure, the second moment distortion calculation process, which is a weak point of the conventional moment method, can be avoided, so that a more accurate dispersion coefficient can be observed. In addition, following the tracking procedure, the dispersion coefficient is inverted by directly comparing the concentration versus the concentration, so that both the longitudinal and lateral dispersion coefficients can be observed simultaneously.
본 발명은 상기 목적을 달성하기 위하여,The present invention to achieve the above object,
(a) 초기값으로 설정된 임의의 종분산계수와 횡분산계수 및 측정된 상류단의 농도분포가 입력자료로 이용되어 일정한 수학식을 만족하는 하류단의 농도분포1을 산출하고 그 산출된 하류단의 농도분포1과 동일 지점에서의 측정된 하류단의 농도분포 간의 오차1을 산정하는 단계;(a) Any longitudinal dispersion coefficient, lateral dispersion coefficient and the measured upstream stage concentration distribution set as initial values are used as input data to calculate the
(b) 상기 단계(a)에서 산정된 오차1보다 산출된 하류단의 농도분포와 동일 지점에서의 측정된 하류단의 농도분포 간의 오차2...오차n을 계속적으로 감소시킬 수 있도록 종분산계수와 횡분산계수를 일정한 방향성을 가지고 반복적으로 조정하여 그에 대응하고 상기 단계(a)의 수학식을 만족하는 하류단의 농도분포2...하류단의 농도분포n을 계속적으로 산출하는 단계, 및(b) Longitudinal variance so that the error 2 ... error n between the concentration distribution of the downstream end calculated from the
(c) 종분산계수와 횡분산계수를 일정한 방향성을 가지고 조정하여 산출된 하류단의 농도분포n+1과 동일 지점에서의 측정된 하류단의 농도분포 간의 오차n+1이 오차n 보다 역으로 증가하면 계산을 중지하고, 오차가 최소가 되는 순간인 오차n이 산정되도록 하는 종분산계수와 횡분산계수를 관측치로 설정하는 단계를 포함하여 이루어진 것을 특징으로 하는 유관개념과 추적절차를 결합한 2차원 오염분산계수 관측방법을 제공한 것이 특징이다.(c) The error n + 1 between the concentration distribution n + 1 at the downstream end and the measured concentration distribution at the downstream point at the same point calculated by adjusting the longitudinal and lateral dispersion coefficients with constant directionality is inversely compared to the error n. Stops the calculation if it increases, and sets the longitudinal and lateral dispersion coefficients as observations so that the error n at which the error is minimized is measured. It is characterized by providing a method for observing pollution dispersion coefficients.
이하, 본 발명에 관하여 첨부된 도면을 참조하여 본 발명의 유관개념과 추적절차를 결합한 2차원 오염분산계수 관측방법에 관하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings with respect to the present invention will be described in detail with respect to the two-dimensional contamination dispersion coefficient observation method combining the concept and the tracking procedure of the present invention.
본 발명은 유관개념과 추적절차를 결합한 새로운 분산계수 관측식을 제시하 고, 제시된 관측식을 절차에 따라 실제 자연하천에서 취득한 농도자료를 바탕으로 분산계수를 관측한다.The present invention proposes a new dispersion coefficient observation formula combining the related concept and the tracking procedure, and observes the dispersion coefficient based on the concentration data obtained from the actual natural river according to the proposed observation procedure.
먼저, 유관개념과 추적절차를 결합한 분산계수 관측식을 유도한다.First, we derive the dispersion coefficient observation formula combining the related concepts and the tracking procedure.
유관개념을 도입한 2차원 이송-분산 방정식은 다음의 수학식과 같다. 즉,The two-dimensional transfer-dispersion equation introducing the related concept is as follows. In other words,
여기서, C는 농도, λ는 시간, DL은 종분산계수, ξ는 종방향 거리, η는 무차원 누가유량, ST는 유관분산계수이다.Where C is the concentration, λ is the time, D L is the longitudinal dispersion coefficient, ξ is the longitudinal distance, η is the dimensionless nougat flow rate, and S T is the tube dispersion coefficient.
상기 수학식 1에서 ST는 횡분산계수와 다음의 수학식과 같은 관계가 있다.In
여기서, Ψ는 단면형상계수, H는 평균수심, U는 평균유속, Q는 유량, DT는 횡분산계수이다.Where Ψ is the cross-sectional shape coefficient, H is the average depth, U is the average flow rate, Q is the flow rate, and D T is the lateral dispersion coefficient.
그리고 하천에 유입된 오염원의 초기 함수형태가 f(ξ,η)일 때, 상기 수학식 1의 해는 다음과 같다.And when the initial function form of the pollutant introduced into the stream is f (ξ, η), the solution of the equation (1) is as follows.
상기 f(ξ,η) 대신 상류단의 농도분포를 대입하고, 고정된 지점에서 시간에 따른 농도분포로 변환시키면 하류단의 농도분포는 다음 수학식으로 계산된다.Substituting the concentration distribution of the upstream stage instead of f (ξ, η) and converting the concentration distribution over time at a fixed point, the concentration distribution of the downstream stage is calculated by the following equation.
여기서, C(ξ2,η,λ)는 하류단인 ξ2지점에서 무차원 누가유량이 η이고 시간이 λ일 때의 농도분포, C(ξ1,η,λ)는 상류단인 ξ1지점에서 무차원 누가유량이 η이고 시간이 λ일 때의 농도분포, 와 는 상류단 및 하류단 각각의 지점에서 취득한 농도분포의 도심에 해당하는 시간이다.Where C (ξ 2 , η, λ) is the concentration distribution when the dimensionless nominal flow rate η and time is λ at the downstream ξ 2 point, and C (ξ 1 , η, λ) is the upstream end ξ 1 Concentration distribution when dimensionless nougat flow at point η and time is λ, Wow Is the time corresponding to the downtown of the concentration distribution obtained at each of the upstream and downstream ends.
이와 같이 상기 수학식 4가 본 발명에서 제시하는 분산계수의 관측식이다.Thus,
본 발명에 따른 수학식의 적용 절차는 다음과 같다.The application procedure of the equation according to the present invention is as follows.
즉 임의의 종분산계수 및 횡분산계수를 초기값으로 설정하고, 측정된 상류단의 농도분포(C(ξ1,η,λ))와 함께 수학식 4에 대입하여 하류단의 농도분포(C(ξ2,η,λ))를 계산하여 산출한다. 여기서, 상기 종분산계수 및 횡분산계수의 초기값으로 종래의 연구결과를 이용하게 되면, 본 발명의 종분산계수 및 횡분산계수의 관측치는 종래의 연구결과값을 크게 벗어나지 않으므로 계산시간을 단축할 수 있다. 즉, 종분산계수는 Fischer(1979), 횡분산계수는 Elder(1959)가 제안한 값을 초기값으로 따르는 게 바람직하다.That is, arbitrary longitudinal dispersion coefficients and lateral dispersion coefficients are set to initial values, and the concentration distribution (C (ξ 1 , η, λ)) of the upstream stage is substituted into
그리고 상기 산출된 하류단의 농도분포를 측정된 하류단의 농도분포에 잘 일치하도록 종분산계수와 횡분산계수를 조정한다. 또한 상기 산출된 농도분포와 측정된 농도분포가 최적으로 일치하도록 하는 최적의 종분산계수와 횡분산계수를 관측치로 설정한다.
즉, 상기 산출된 하류단의 농도분포와 동일 지점에서 측정된 하류단의 농도분포 간의 오차를 최소화시키기 위해 통상적인 회귀분석을 통하여 종분산계수와 횡분산계수를 결정하게 되는데, 본 발명에서는 통상적인 비선형 다중회귀법 중 하나인 Gauss-Newton법을 이용하여 하류단 ξ2 지점에서 하폭방향으로 일정 개수의 산출 농도분포와 측정 농도분포 간의 오차를 제곱한 평균치가 최소가 되게끔 종분산계수와 횡분산계수를 iteration하여 조정함이 바람직하며, 이 때 상기 오차제곱의 평균치가 최소값을 갖는 순간 입력된 종분산계수와 횡분산계수를 관측치로 설정하게 되는 것이다.
여기서, 상기 오차제곱의 평균치(이하 '오차'라 함)의 최소값에서 '최소'를 판단하는 방법에 사용되는 비선형 다중회귀법 중 하나인 Gauss-Newton법은 선형회귀법과 그 원리는 동일하므로, 아래에서는 선형회귀법의 원리를 설명하면서 '최소'를 판단하는 통상적인 방법을 제시한다.
우선, 아래의 그래프에서처럼 y= ax+b라는 선형방정식을 어떤 측정치(표2에서 점)와 잘 일치시키려 하고, 이 선형방정식에서 매개변수는 기울기 a와 절편 b이다.(본 발명에서는 매개변수가 종분산계수와 횡분산계수임.)
문제를 더 간단히 하기 위해 매개변수 중 a=1로 고정시키면 결정해야 할 매개변수는 b만 남게 되고, 매개변수 b를 2로 가정하면 y= x+2가 되어 직선 A가 되며, 직선 A는 육안으로도 확인할 수 있듯이 측정치의 점들과 많은 차이가 있어 계산치(회귀식)와 측정치 간의 오차는 크다고 할 수 있다.
다음으로, 다시 b를 줄여서 1로 가정하면 y= x+1이 되어 직선 B가 되고, 직선 B는 측정치의 점들과 잘 일치하여 오차가 적다고 할 수 있으며, 다시 b를 줄여 0으로 가정하면 y= x가 되어 직선 C가 되는데 직선 C는 계산치(회귀식)와 측정치 간의 오차가 다시 커지게 되어, 매개변수 b=1일때가 오차가 최소라고 할 수 있다.
따라서, 위와 같은 방법으로 본 발명에서는 우선 종분산계수를 고정시키고 횡분산계수를 조정하여 하류단의 산출 농도분포와 측정 농도분포 간의 오차가 최소가 되는 순간에서의 횡분산계수를 관측치로 설정하고, 다시 설정된 횡분산계수 관측치를 고정하고 종분산계수를 조정하여 하류단의 산출 농도분포와 측정 농도분포 간의 오차가 최소가 되는 순간에서의 종분산계수를 관측치로 설정하게 되는데, 이러한 방법은 축차대입법(iteration)을 이용한 비선형 다중회귀법에서는 통상적인 방법이어서 더 이상의 구체적인 과정은 생략하도록 하겠다.
본 발명에서처럼 회귀식의 방정식이 비선형이 되면 계산은 매우 복잡해지고 이런 비선형 문제를 풀기 위한 방법이 Gauss-Newton방법이고, 이상의 과정을 컴퓨터로 수행하기 위해 프로그램 언어를 통해 직접 알고리즘을 코딩한 프로그램이나 Gauss-Newton방법이 내장된 기존의 Matlab(이하 '프로그램'이라 함.)을 활용하게 된다.
따라서, 본 발명에서 종분산계수와 횡분산계수의 관측치를 컴퓨터에서 설정하는 과정을 살펴보면,
우선, 초기값으로 설정된 임의의 종분산계수와 횡분산계수 및 측정된 상류단의 농도분포가 입력자료로 입력장치에 의해 메인 메모리에 입력되고, 컴퓨터의 중앙처리장치가 상기 입력자료들과 수학식 4가 포함된 메인 메모리 내의 프로그램을 이용해 수학식 4를 만족하는 초기값 하류단의 농도분포1을 산출하고 그 산출된 하류단의 농도분포1과 동일 지점에서의 측정된 하류단의 농도분포 간의 초기값 오차1을 산정하여 저장하고,
다음으로, 중앙처리장치가 Gauss-Newton법이 내장된 메인 메모리 내의 프로그램을 이용하여, 상기에서 산정된 오차1보다 산출된 하류단의 농도분포와 동일 지점에서의 측정된 하류단의 농도분포 간의 오차2...오차n을 계속적으로 감소시킬 수 있도록 종분산계수와 횡분산계수를 일정한 방향성을 가지고 반복적으로 조정하여 그에 대응하고 수학식 4를 만족하는 하류단의 농도분포2...하류단의 농도분포n을 계속적으로 산출하되, 컴퓨터의 중앙처리장치는 오차가 계속적으로 감소하는 방향으로 종분산계수와 횡분산계수를 일정한 간격을 가지면서 자동적으로 반복하여 증가 또는 감소되게 하며,
그 다음으로, 종분산계수와 횡분산계수를 일정한 방향성을 가지고 조정하여 산출된 하류단의 농도분포n+1과 동일 지점에서의 측정된 하류단의 농도분포 간의 오차n+1이 오차n 보다 역으로 증가하면 중앙처리장치는 계산을 중지하고, 오차가 최소가 되는 순간인 오차n이 산정되도록 하는 종분산계수와 횡분산계수를 관측치로 저장하게 되는 것이다. 상기에서 반복되는 계산과정은 통상의 회귀분석에서 사용되는 방법이라 할 것이다.Then, the longitudinal dispersion coefficient and the lateral dispersion coefficient are adjusted so that the calculated concentration distribution of the downstream stage matches the measured concentration distribution of the downstream stage. In addition, the optimum longitudinal dispersion coefficient and the lateral dispersion coefficient are set as observations so that the calculated concentration distribution and the measured concentration distribution are optimally matched.
That is, the longitudinal dispersion coefficient and the lateral dispersion coefficient are determined through conventional regression analysis to minimize the error between the calculated concentration distribution of the downstream end and the concentration distribution of the downstream end measured at the same point. Using the Gauss-Newton method, one of the nonlinear multiple regression methods, the longitudinal and lateral dispersion coefficients are minimized to minimize the mean squared error between the calculated concentration distribution and the measured concentration distribution in the lower width at the downstream ξ 2 point. It is preferable to adjust by iteration, and at this time, the instantaneous longitudinal dispersion coefficient and the lateral dispersion coefficient are set as observations when the average value of the error squares has a minimum value.
Here, the Gauss-Newton method, which is one of the nonlinear multiple regression methods used for determining the 'minimum' from the minimum value of the mean square of the error square (hereinafter referred to as 'error'), is similar to the linear regression method. Explain the principles of linear regression and present common ways of judging 'minimum'.
First, we want to match the linear equation y = ax + b well with some measurement (points in Table 2), as shown in the graph below, where the parameters are the slope a and the intercept b. Longitudinal and lateral dispersion coefficients.)
To make the problem simpler, if you fix a = 1 of the parameters, only b remains to be determined, assuming that parameter b is 2, y = x + 2 becomes straight line A, and the straight line A becomes naked As can be seen, there are many differences between the measured values and the error between the calculated value and the measured value.
Next, assuming that b is reduced to 1 again, y = x + 1 to make a straight line B, and the straight line B agrees well with the points of the measured value, so that the error is small. = x becomes a straight line C. The straight line C increases the error between the calculated value (regression equation) and the measured value again. When the parameter b = 1, the error is the minimum.
Therefore, in the present invention as described above, first, the longitudinal dispersion coefficient is fixed and the horizontal dispersion coefficient is adjusted to set the lateral dispersion coefficient at the instant when the error between the calculated concentration distribution and the measured concentration distribution at the downstream end becomes the minimum, and By resetting the observed lateral dispersion coefficient observation and adjusting the longitudinal dispersion coefficient, the longitudinal dispersion coefficient at the moment when the error between the calculated concentration distribution and the measured concentration distribution at the downstream end becomes minimal is determined. In the nonlinear multiple regression method using iteration, it is a conventional method, and further detailed steps will be omitted.
When the equation of the regression equation becomes nonlinear as in the present invention, the calculation is very complicated and the method for solving this nonlinear problem is the Gauss-Newton method, and a program or a Gauss coded algorithm directly through a programming language to perform the above process by a computer. -Use existing Matlab (hereinafter referred to as 'program') with Newton method.
Therefore, the process of setting the observation values of the longitudinal dispersion coefficient and the lateral dispersion coefficient in the computer in the present invention,
First, any longitudinal dispersion coefficient, lateral dispersion coefficient, and measured upstream concentration distribution set as initial values are input to the main memory by the input device as input data, and the central processing unit of the computer is Using the program in the main memory including 4, the
Next, the central processing unit uses a program in the main memory incorporating the Gauss-Newton method, and the error between the concentration distribution of the downstream stage and the measured downstream concentration distribution at the same point calculated from the
Next, the error n + 1 between the downstream concentration concentration n + 1 calculated by adjusting the longitudinal dispersion factor and the lateral dispersion coefficient with constant directionality and the measured downstream concentration concentration at the same point is inversely different from the error n. If it increases, the central processing unit stops the calculation and stores the longitudinal and lateral dispersion coefficients as observations so that the error n at which the error becomes the minimum is calculated. The calculation process repeated above will be referred to as a method used in a conventional regression analysis.
이를 개념적으로 도시하면 도 1과 같다.Conceptually, this is illustrated in FIG. 1.
다음은 본 발명에서 제시한 수학식을 적용하여 분산계수를 산정하는 예를 설명하면 다음과 같다.The following describes an example of calculating the dispersion coefficient by applying the equation presented in the present invention.
본 발명에서는 상기 제시된 기술을 검증 및 검토하기 위해 자연하천에 적용하여 종분산 및 횡분산계수를 관측해 보았다. 적용하천은 국내에서 유일하게 2차원 추적자 실험이 수행되어 농도자료가 존재하는 섬강 및 청미천 그리고 홍천강이며, 모두 7개 구간을 적용하였고, 적용하천 및 구간의 개략도는 도 2와 같다.In the present invention, the species dispersion and the lateral dispersion coefficients were observed by applying to natural rivers in order to verify and examine the above-described techniques. Applied rivers are the only two-dimensional tracer experiments in Korea, where the concentration data exist, Seomgang, Cheongmicheon, and Hongcheongang, all seven sections were applied, and the schematic diagram of the applied streams and sections is shown in FIG.
본 발명에서 개발한 관측법과 기존방법인 모멘트 방법을 통해 관측한 분산계수를 정리하여 표 1에 도시하였다. Table 1 summarizes the dispersion coefficients observed through the observation method developed in the present invention and the existing moment method.
표 1의 횡분산계수 관측결과를 살펴보면 만곡이 교호하는 구간인 S-Expt 2 와 급격한 만곡부인 H-Expt 1에서 큰 값이 나타나고 있다. 반면에 직선부로 구성된 S-Expt 3은 여타 실험 구간에 비해 그 값이 작다. 만곡이 심한 경우에는 이에 기인한 불균등 주흐름 분포 및 2차류는 중간역에서 횡방향 확산을 증대시키는 효과를 가져다주기 때문에 횡분산계수가 커지고 있다.In the observation results of the lateral dispersion coefficient in Table 1, the large values are found in the S-Expt 2 which is the intersection of the curves and the H-
또한 교호하는 만곡부에서는 2차류의 생성 및 소멸이 단일 만곡부에 비해 더 활발히 진행되므로 이의 영향으로 인해 S-Expt 2에서의 횡분산계수 값이 크다. 이러한 효과를 본 발명에서 개발한 관측법은 잘 반영하고 있다. 반면에 하천의 불규칙성 및 유속장을 고려할 수 없는 기존 기술인 모멘트법은 작은 값들을 산출하고 있다.In addition, since the generation and disappearance of the secondary flow in the alternating bends is more active than the single bends, the lateral dispersion coefficient in S-Expt 2 is large due to its influence. The observation method developed in the present invention reflects this effect well. On the other hand, the moment method, which is a conventional technique that cannot take into account river irregularities and velocity fields, produces small values.
또한 모멘트법으로는 종분산계수를 산정할 수 없으나, 본 발명에서의 관측법은 상기 표 1과 같이 종분산계수 및 횡분산계수 모두를 산정할 수 있다.In addition, although the longitudinal dispersion coefficient cannot be calculated by the moment method, the observation method in the present invention can calculate both the longitudinal dispersion coefficient and the lateral dispersion coefficient as shown in Table 1 above.
상술한 바와 같이, 본 발명의 유관개념과 추적절차를 결합한 2차원 오염분산계수 관측방법은 하천에 점원상태로 오염물이 유입되었을 경우에 적절한 분산계수의 관측을 수행함으로써, 중간역(intermediate)에서 2차원적 거동을 보이는 오염물의 확산현상을 정확하게 파악할 수 있는 효과가 있다.As described above, the two-dimensional pollution dispersion coefficient observation method combining the related concept and the tracking procedure of the present invention performs an observation of an appropriate dispersion coefficient when a contaminant is introduced into a stream in a point source state, thereby performing two observations in the intermediate region. It is effective to accurately grasp the diffusion phenomenon of pollutants with dimensional behavior.
또한 본 발명을 통한 오염물의 거동 해석은 취수장 운영이나 수질예보 및 경보 시스템 개발 등에 기초적인 정보를 제공할 수 있는 효과가 있다.In addition, the behavior analysis of the pollutants through the present invention has the effect of providing the basic information, such as the operation of the intake station, water quality prediction and alarm system development.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060110243A KR100888628B1 (en) | 2006-11-09 | 2006-11-09 | Two dimensional dispersion coefficient observation method by combining stream-tube concept and routing procedure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060110243A KR100888628B1 (en) | 2006-11-09 | 2006-11-09 | Two dimensional dispersion coefficient observation method by combining stream-tube concept and routing procedure |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080042194A KR20080042194A (en) | 2008-05-15 |
KR100888628B1 true KR100888628B1 (en) | 2009-03-11 |
Family
ID=39648949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060110243A KR100888628B1 (en) | 2006-11-09 | 2006-11-09 | Two dimensional dispersion coefficient observation method by combining stream-tube concept and routing procedure |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100888628B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101064564B1 (en) * | 2009-03-13 | 2011-09-14 | 서울대학교산학협력단 | Method for analyzing one-dimensional dispersion behavior of pollutant through estimation of the longitudinal dispersion coefficient using the basic hydraulic data in a river |
CN114819773B (en) * | 2022-06-29 | 2022-09-09 | 天津大学 | Enterprise green production management and control method and system based on big data |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080041933A (en) * | 2006-11-08 | 2008-05-14 | 재단법인서울대학교산학협력재단 | Simulation method of instantaneous injection for numerical simulation of pollutant mixing in the river |
-
2006
- 2006-11-09 KR KR1020060110243A patent/KR100888628B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080041933A (en) * | 2006-11-08 | 2008-05-14 | 재단법인서울대학교산학협력재단 | Simulation method of instantaneous injection for numerical simulation of pollutant mixing in the river |
Non-Patent Citations (1)
Title |
---|
오염물 이송 및 확산 거동 해석모형의 특성비교연구 (한국수자원학회 2007 학술발표회논문집 pp1407-1411) |
Also Published As
Publication number | Publication date |
---|---|
KR20080042194A (en) | 2008-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4216117B1 (en) | Method and apparatus for training water-and-sediment prediction model for reservoir and method and apparatus for predicting water-and-sediment in reservoir | |
Azimi et al. | A highly efficient gene expression programming model for predicting the discharge coefficient in a side weir along a trapezoidal canal | |
Azamathulla et al. | Genetic programming for predicting longitudinal dispersion coefficients in streams | |
KR20090059451A (en) | Method for analyzing pollutant behavior through estimation of the transverse dispersion coefficient using the basic hydraulic data in a river | |
Khozani et al. | An analysis of shear stress distribution in circular channels with sediment deposition based on Gene Expression Programming | |
Mousavi et al. | Uncertainty-based automatic calibration of HEC-HMS model using sequential uncertainty fitting approach | |
CN108319788A (en) | A method of the identification in line pollution sources of Storm Sewer Network sewage | |
KR100888628B1 (en) | Two dimensional dispersion coefficient observation method by combining stream-tube concept and routing procedure | |
CN117371325B (en) | Method, equipment and medium for calculating contribution degree of pollutant discharged from port into river section | |
CN114858207A (en) | Soft measurement-based gridding source tracing investigation method for drain outlet of river channel | |
KR100978786B1 (en) | Method for identifying uncertainty in fitting rating curve with bayesian regression | |
Vatankhah et al. | General stage–discharge relationship for sharp‐crested power‐law weirs: analytical and experimental study | |
KR100882844B1 (en) | Method for analyzing pollutant behavior through estimation of the transverse dispersion coefficient incorporating the velocity profile of the secondary flow in a river | |
Okeya et al. | Locating pipe bursts in a district metered area via online hydraulic modelling | |
Wu et al. | Study of pollutant transport in depth-averaged flows using random walk method | |
KR102292637B1 (en) | Estimation method to analyze parameter and prediction uncertainty of River Storage Mode using the Bayesian inference and segment mixture likelihood | |
Guymer et al. | One-dimensional mixing model for surcharged manholes | |
CN108197426B (en) | Method for estimating pollutant carrying capacity of small riverway with uncertain coefficient by planning any multi-point generalized descent of sewage discharge outlet | |
KR101064564B1 (en) | Method for analyzing one-dimensional dispersion behavior of pollutant through estimation of the longitudinal dispersion coefficient using the basic hydraulic data in a river | |
Warwick et al. | Determining the likelihood of obtaining a reliable model | |
Shao et al. | Water quality model parameter identification of an open channel in a long distance water transfer project based on finite difference, difference evolution and Monte Carlo | |
CN109558652B (en) | Auxiliary correction method for river network water quality model calculation result | |
CN108345990B (en) | Reasonable planning method for generalization of pollutant carrying capacity of river channel under condition of uncertain degradation coefficient | |
Boshnakov et al. | Evaluation of Key Indicators Based on Automatically Measured Variables and Forecasting the Spread of Pollutants | |
KR102614520B1 (en) | Method and Device for Predicting Time-Concentration Curves using Its Reach-Length Dependence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130306 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20140228 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20150212 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20160122 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20170303 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |