KR100888559B1 - Method of production of high purity silver particles - Google Patents

Method of production of high purity silver particles Download PDF

Info

Publication number
KR100888559B1
KR100888559B1 KR1020077008295A KR20077008295A KR100888559B1 KR 100888559 B1 KR100888559 B1 KR 100888559B1 KR 1020077008295 A KR1020077008295 A KR 1020077008295A KR 20077008295 A KR20077008295 A KR 20077008295A KR 100888559 B1 KR100888559 B1 KR 100888559B1
Authority
KR
South Korea
Prior art keywords
silver
surfactant
surfactants
oxalate
particles
Prior art date
Application number
KR1020077008295A
Other languages
Korean (ko)
Other versions
KR20070073775A (en
Inventor
인수 김
창군 이
상호 김
2세 찰스 이. 스미스
영진 김
Original Assignee
토쿠센, 유.에스.에이. 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 토쿠센, 유.에스.에이. 인코포레이티드 filed Critical 토쿠센, 유.에스.에이. 인코포레이티드
Publication of KR20070073775A publication Critical patent/KR20070073775A/en
Application granted granted Critical
Publication of KR100888559B1 publication Critical patent/KR100888559B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Colloid Chemistry (AREA)

Abstract

본 발명은 표면활성제 또는 환원제의 첨가가 불필요하거나 최소량의 표면활성제만이 요구되는, 고순도 은 입자 및 콜로이드의 합성방법에 관한 것이다. 당해 합성방법은, 옥살산은을 합성하는 단계(i), 옥살산은을 적절한 캐리어 속에 분산시키는 단계(ii) 및 캐리어 속에 분산된 옥살산은을 100℃ 이상으로 가열하는 단계(iii)를 포함한다. 반응 조건, 캐리어, 및 표면활성제 형태에 따라, 각종 형태 인자와 크기를 갖는 은 입자 및 콜로이드를 합성할 수 있다.The present invention relates to a process for the synthesis of high purity silver particles and colloids, in which no addition of surfactant or reducing agent is required or only a minimum amount of surfactant is required. The synthesis method comprises the steps of (i) synthesizing silver oxalate, dispersing silver oxalate in a suitable carrier, and heating (iii) the silver oxalate dispersed in the carrier to at least 100 ° C. Depending on the reaction conditions, carrier, and surfactant form, silver particles and colloids having various form factors and sizes can be synthesized.

옥살산, 옥살산은, 은 입자, 고순도, 박테리아 내성 Oxalic acid, silver oxalic acid, silver particles, high purity, bacteria resistance

Description

고순도 은 입자의 제조방법 {Method of production of high purity silver particles}Method of production of high purity silver particles

본 발명은 옥살산은(silver oxalate)을 적절한 캐리어 속에 분산시키고 100℃ 이상의 열을 가하여 옥살산은을 분해시킴으로써 은 입자를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing silver particles by dispersing silver oxalate in a suitable carrier and decomposing silver oxalate by applying heat of 100 ° C. or higher.

화학적 환원법, 광화학 반응, 초음파 화학반응 및 기체 증발법을 포함하되 이로써 제한되지 않는, 은 입자의 합성방법이 다수 개발되어 있다. 이들 방법 중에서, 화학적 환원법이 제조 용이성으로 인하여 광범위하게 사용되고 있다. 그러나, 화학적 환원법을 사용하여 제조된 은 분말은 환원 공정 동안에 사용되는 환원제, 표면활성제 및 불순물 이온에 의해 오염될 수 있으며, 이는 높은 전도도를 요하는 전자 공학 분야 또는 고순도를 요하는 박테리아 내성 분야에서 제한 인자로서 제공될 수 있다.Many methods of synthesizing silver particles have been developed, including but not limited to chemical reduction methods, photochemical reactions, ultrasonic chemical reactions and gas evaporation methods. Among these methods, chemical reduction methods are widely used because of their ease of manufacture. However, silver powders prepared using chemical reduction methods can be contaminated by reducing agents, surfactants and impurity ions used during the reduction process, which is limited in the field of electronic engineering requiring high conductivity or bacterial resistance requiring high purity. May be provided as an argument.

이러한 문제를 해결하기 위해, 표면활성제 또는 환원제가 불필요하거나 최소량의 표면활성제만이 요구되는, 고순도 은 분말 및 은 콜로이드의 제조방법이 바람직하다.In order to solve this problem, a method of producing high purity silver powder and silver colloid, in which no surfactant or reducing agent is required or only a minimum amount of surfactant is required is preferred.

본 발명의 목적은 표면활성제 또는 환원제가 불필요하거나 최소량의 표면활성제만이 요구되는 방법으로 고순도 은 입자 및 콜로이드를 합성하는 것이다. 본 발명에서, 당해 목적은 옥살산은을 적절한 캐리어 속에 분산시키고 100℃ 이상의 온도에서 옥살산은을 열적 분해시켜 고순도 은 입자 및 콜로이드를 제조함으로써 달성된다.It is an object of the present invention to synthesize high purity silver particles and colloids in such a way that no surfactant or reducing agent is required or only a minimum amount of surfactant is required. In the present invention, this object is achieved by dispersing silver oxalate in a suitable carrier and thermally decomposing silver oxalate at a temperature of 100 ° C. or higher to produce high purity silver particles and colloids.

본 발명의 방법에 따르는 은 입자 및 콜로이드의 합성방법은, 옥살산은을 합성하는 단계(i), 옥살산은을 적절한 캐리어, 예를 들면, 물, 알코올 등 및 하나 이상의 캐리어의 배합물 속에 분산시키는 단계(ii) 및 캐리어 속에 분산된 상기 옥살산은을 대기압을 초과하는 압력하에 100℃ 이상으로 가열하는 단계(iii)를 포함한다.The method for synthesizing silver particles and colloids according to the method of the present invention comprises the steps of (i) synthesizing silver oxalate, dispersing silver oxalate in a combination of a suitable carrier such as water, alcohol and the like and one or more carriers ( ii) and heating (iii) the silver oxalic acid dispersed in the carrier to at least 100 ° C. under a pressure above atmospheric pressure.

이와 같은 사항 및 기타의 본 발명의 특징, 목적 및 이점들은 바람직한 양태에 관한 상세한 설명 및 청구의 범위 및 이와 관련된 도면에 의해 더욱 용이하게 이해될 것이다.These and other features, objects, and advantages of the present invention will be more readily understood by the detailed description of the preferred embodiments, the claims, and the accompanying drawings.

도 1은 실시예 1에 기재된 조건하에 수득된 은 입자의 현미경 사진이다.1 is a micrograph of silver particles obtained under the conditions described in Example 1. FIG.

도 2는 실시예 2에 기재된 조건하에 수득된 은 입자의 현미경 사진이다.2 is a micrograph of silver particles obtained under the conditions described in Example 2. FIG.

도 3은 실시예 3에 기재된 조건하에 수득된 은 입자의 현미경 사진이다.3 is a micrograph of silver particles obtained under the conditions described in Example 3. FIG.

도 4는 실시예 4에 기재된 조건하에 수득된 은 입자의 현미경 사진이다.4 is a micrograph of silver particles obtained under the conditions described in Example 4. FIG.

도 5는 실시예 5에 기재된 조건하에 수득된 은 입자의 현미경 사진이다.5 is a micrograph of silver particles obtained under the conditions described in Example 5. FIG.

도 6은 실시예 6에 기재된 조건하에 수득된 은 입자의 현미경 사진이다.6 is a micrograph of silver particles obtained under the conditions described in Example 6. FIG.

[본 발명을 수행하기 위한 최적의 방식][Optimum way for carrying out the present invention]

도 1 내지 도 6을 참조하여 본 발명의 바람직한 양태를 다음과 같이 기술할 수 있다.Referring to Figures 1 to 6, a preferred embodiment of the present invention can be described as follows.

본 발명에서, 은 입자 및 콜로이드의 제조방법은 옥살산은(Ag2C2O4)의 합성 단계(i), 옥살산은을 적절한 캐리어, 예를 들면, 물, 알코올 등 및 하나 이상의 캐리어의 배합물 속에 분산시키는 단계(ii) 및 캐리어 속에 분산된 상기 옥살산은을 대기압을 초과하는 압력하에 100℃ 이상으로 가열하여 상기 옥살산은을 분해시켜 은 입자 또는 콜로이드를 형성시키는 단계(iii)를 포함한다.In the present invention, the method for producing silver particles and colloids comprises the step (i) of the synthesis of silver oxalate (Ag 2 C 2 O 4 ), silver oxalate in a combination of a suitable carrier, for example water, alcohol, etc. and one or more carriers. Dispersing (ii) and heating the silver oxalate dispersed in the carrier to at least 100 ° C. under a pressure above atmospheric pressure to decompose the silver oxalate to form silver particles or colloids.

수용성 은 화합물로 이루어진 제1 용액 및 옥살산염 화합물로 이루어진 제2 용액을 함께 혼합하여 옥살산은을 침강시킨다. 은 화합물은 AgNO3일 수 있다. 옥살산염 화합물은 옥살산나트륨 또는 옥살산일 수 있다. 그러나, 본 발명은 이들 특정 화합물에 한정되지 않으며, 혼합하에 옥살산은을 형성시키는 화합물들로 이루어진 임의의 두 가지 용액이 포함될 수 있다. 물 세정 단계, 바람직하게는 2회 이상의 물 세정 단계 후에, 불순물 이온을 침전된 옥살산으로부터 제거하며, 당해 옥살산은은 은 분말 또는 콜로이드 합성의 출발 재료로서 사용한다.The first solution of the water-soluble silver compound and the second solution of the oxalate compound are mixed together to precipitate the silver oxalate. The silver compound may be AgNO 3 . The oxalate compound may be sodium oxalate or oxalic acid. However, the present invention is not limited to these specific compounds, and any two solutions consisting of compounds which form silver oxalate under mixing may be included. After a water washing step, preferably two or more water washing steps, impurity ions are removed from the precipitated oxalic acid, which silver oxalate is used as a starting material for silver powder or colloidal synthesis.

합성된 옥살산 은을 적절한 캐리어 속에 분산시킨다. 옥살산은은 캐리어에 임의의 상당한 정도로 용해되지 않지만, 초음파 처리에 의해 고형 입자로서 분산된다. 적절한 캐리어로는, 열을 효과적으로 전달하기 위해 옥살산은을 분산시킬 수 있는 모든 유형의 캐리어가 포함될 수 있다. 상기 캐리어는, 표면활성제와 유사하게 거동하여, 옥살산은의 열분해로부터 제조된 은 입자의 응집을 방지하는 특성을 갖도록 선택된다. 예를 들면, 알코올은 알킬 및 하이드록시 그룹으로 이루어진다. 일반적으로, 알킬 그룹은 소수성이고 하이드록시 그룹은 친수성이다. 소수성과 친수성을 둘 다 갖는 유기 재료가 표면활성제로서 중요한 역할을 할 수 있다. 그러나, 탄소수가 많은 유기 재료는 주로 소수성으로 되는 경향이 있어서, 본 발명의 방법에서 표면활성제로서 작용하는 능력이 손실되는 경향이 있을 수 있다. 일반적으로, 탄소수가 많은 유기 재료는 더 우수한 표면활성제 특성을 갖는다. 그러나, 본 발명에서, 탄소수가 많은 유기 재료는 은 입자를 응집시키는 것으로 관찰된다. 추가로, 탄소수가 많은 유기 재료는 물과 잘 혼합되지 않는다. 따라서, 본 발명에서는 탄소수가 적은 메틸, 에틸 및 프로필 알코올로 한정된다. 또한, 물이 본 발명의 수행에 효과적이다. 따라서, 적절한 캐리어는 에틸 알코올, 메틸 알코올, 프로필 알코올, 물 또는 하나 이상의 이들의 배합물로 이루어질 수 있다.The synthesized silver oxalate is dispersed in a suitable carrier. Oxalic acid does not dissolve in the carrier to any significant extent but is dispersed as solid particles by sonication. Suitable carriers may include any type of carrier capable of dispersing silver oxalate to effectively transfer heat. The carrier behaves similarly to the surface active agent and is selected to have properties that prevent aggregation of silver particles produced from pyrolysis of silver oxalate. For example, alcohols consist of alkyl and hydroxy groups. Generally, alkyl groups are hydrophobic and hydroxy groups are hydrophilic. Organic materials having both hydrophobicity and hydrophilicity can play an important role as surfactants. However, organic materials having a high carbon number tend to be mainly hydrophobic, so that the ability to act as a surfactant in the process of the present invention may tend to be lost. In general, organic materials having a higher carbon number have better surfactant properties. However, in the present invention, an organic material having a high carbon number is observed to aggregate silver particles. In addition, organic materials having a high carbon number do not mix well with water. Therefore, in the present invention, it is limited to methyl, ethyl and propyl alcohol having low carbon number. In addition, water is effective for carrying out the present invention. Thus, a suitable carrier may consist of ethyl alcohol, methyl alcohol, propyl alcohol, water or one or more combinations thereof.

본 발명의 수행을 위해 선택된 캐리어는 모두 비점이 낮다. 예를 들면, 물은 100℃, 메틸 알코올은 64.65℃, 에틸 알코올은 78.3℃, 프로필 알코올은 82℃이다. 따라서, 분산된 옥살산은을 갖는 캐리어를 용기 중에서 100℃ 이상으로 가열하는 경우, 압력은 항상 대기압을 초과한다. 통상적인 반응 압력은, 물을 캐리어로 사용하는 경우 약 1.86 ×105N/㎡이고, 에틸 알코올을 캐리어로 사용하는 경우 약 5.31 ×105N/㎡이다. 옥살산은의 열 분해 과정에서, 옥살산은(Ag2C2O4)은 Ag2C2O4 = 2Ag + 2CO2에 따라 은(Ag) 및 이산화탄소(CO2)로 분해된다. 상기 이산화탄소 기체는 옥살산은의 열분해 동안 방출되고, 캐리어 증기는 필요한 만큼 배출될 수 있지만, 약 6.89 ×104N/㎡ 미만의 압력 강하는 은 입자의 품질에 영향을 끼치지 않는다.The carriers selected for the practice of the invention all have low boiling points. For example, water is 100 ° C, methyl alcohol is 64.65 ° C, ethyl alcohol is 78.3 ° C, and propyl alcohol is 82 ° C. Thus, when the carrier with dispersed silver oxalate is heated in the vessel to 100 ° C. or higher, the pressure always exceeds atmospheric pressure. Typical reaction pressures are about 1.86 × 10 5 N / m 2 when water is used as the carrier and about 5.31 × 10 5 N / m 2 when ethyl alcohol is used as the carrier. In the thermal decomposition process of silver oxalate, silver oxalate (Ag 2 C 2 O 4 ) is decomposed into silver (Ag) and carbon dioxide (CO 2 ) according to Ag 2 C 2 O 4 = 2Ag + 2CO 2 . The carbon dioxide gas is released during the pyrolysis of silver oxalate and the carrier vapor can be discharged as needed, but the pressure drop below about 6.89 × 10 4 N / m 2 does not affect the quality of the silver particles.

상기 캐리어에 분산된 옥살산은을 폐쇄된 반응기 속에 넣고, 분산된 옥살산은과 상기 캐리어를 100℃ 이상으로 가열하여 각종 형태 인자의 은 분말 또는 콜로이드를 합성한다.Silver oxalate dispersed in the carrier is placed in a closed reactor, and the dispersed oxalic acid and the carrier are heated to 100 ° C. or more to synthesize silver powder or colloid of various form factors.

당해 방법에서는 임의로 표면활성제를 사용하여 은 입자의 응고 또는 응집을 방지할 수 있다. 표면활성제를 옥살산은의 제조에 사용되는 수용성 은 또는 옥살산염 용액에 가할 수 있거나, 두 가지 용액을 혼합함으로써 옥살산은이 제조된 후에 가할 수 있다. 당해 방법에서 사용되는 표면활성제로는 음이온성 표면활성제, 양이온성 표면활성제, 양쪽성 표면활성제, 비이온성 표면활성제, 형광화학적 표면활성제, 중합체성 표면활성제 및 이들의 배합물이 포함될 수 있으며, 표면활성제는 은 입자의 형성을 돕기 위해, 은 플레이트를 파쇄시키기 위해 또는 은 플레이트가 응고되는 것을 방지하기 위해 가할 수 있다. 본 발명에 사용하기 적합한 표면활성제로는 PVP(폴리비닐 피롤리돈) 및 젤라틴이 포함된다.In this method, surface active agents may optionally be used to prevent solidification or aggregation of silver particles. The surfactant may be added to the water-soluble silver or oxalate solution used for the production of silver oxalate, or may be added after the silver oxalate has been prepared by mixing the two solutions. Surfactants used in the process may include anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, fluorescent chemical surfactants, polymeric surfactants, and combinations thereof. It may be added to aid in the formation of silver particles, to break the silver plate or to prevent the silver plate from solidifying. Suitable surfactants for use in the present invention include PVP (polyvinyl pyrrolidone) and gelatin.

표면활성제의 첨가량과는 무관하게 본 발명의 방법으로 은 입자 또는 콜로이드를 수득할 수 있지만, 표면활성제의 첨가량을 은의 80중량% 이하로 제한하는 것이 바람직하다. 예를 들면, 은 10g을 반응기에 넣는 경우, PVP 및 젤라틴과 같은 표면활성제 중량은 8g 이하여야 한다.Regardless of the amount of surfactant added, silver particles or colloids can be obtained by the method of the present invention, but it is preferable to limit the amount of surfactant added to 80% by weight or less of silver. For example, when 10 g of silver is put into the reactor, the weight of the surfactant such as PVP and gelatin should be 8 g or less.

실시예Example 1 One

옥살산은 2.8g을 증류수 300cc에 넣고 10분 동안 초음파 처리하여 옥살산은 입자를 분산시켰다. 분산된 옥살산은을 130℃에서 15분 동안 반응시켜, 도 1에 나타낸 바와 같은 은 입자를 함유하는 용액을 수득하였다.Oxalic acid was 2.8g in 300cc distilled water and sonicated for 10 minutes to disperse the silver oxalic acid particles. The dispersed silver oxalic acid was reacted at 130 ° C. for 15 minutes to obtain a solution containing silver particles as shown in FIG. 1.

실시예Example 2 2

옥살산은 28g을 에틸 알코올 1000cc에 넣고 10분 동안 초음파 처리하여 옥살산은 입자를 분산시켰다. 분산된 옥살산은을 134℃에서 15분 동안 반응시켜, 도 2에 나타낸 바와 같은 은 분말을 수득하였다.28 g of oxalic acid was put in 1000 cc of ethyl alcohol and sonicated for 10 minutes to disperse the silver oxalic acid particles. The dispersed silver oxalic acid was reacted at 134 ° C. for 15 minutes to obtain a silver powder as shown in FIG. 2.

실시예Example 3 3

옥살산은 70mg을 에틸 알코올 1000cc에 넣고 10분 동안 초음파 처리하여 옥살산은 입자를 분산시켰다. 분산된 입자를 135℃에서 25분 동안 반응시켜, 도 3에 나타낸 바와 같은 나노크기의 은 입자를 수득하였다.70 mg of oxalic acid was added to 1000 cc of ethyl alcohol and sonicated for 10 minutes to disperse the silver oxalic acid particles. The dispersed particles were reacted at 135 ° C. for 25 minutes to obtain nano-sized silver particles as shown in FIG. 3.

실시예Example 4 4

옥살산은 4.2g을 물(50용적%)과 에틸 알코올(50용적%)의 혼합 용액에 넣고 당해 용액을 130℃에서 15분 동안 반응시켜, 도 4에 나타낸 바와 같은 0.5㎛ 크기의 은 입자를 합성하였다.Oxalic acid was added 4.2 g of a mixed solution of water (50% by volume) and ethyl alcohol (50% by volume) and the solution was reacted at 130 ° C. for 15 minutes to synthesize 0.5 μm-sized silver particles as shown in FIG. 4. It was.

실시예Example 5 5

물 1ℓ 중의 옥살산은 4.2g에 PVP(폴리비닐 피롤리돈) 30중량%를 넣고 초음파 처리하여 옥살산은 입자를 분산시켰다. 분산된 입자를 135℃에서 20분 동안 반응시켜, 도 5에 나타낸 바와 같은 0.5㎛ 이하의 은 입자를 합성하였다.Oxalic acid in 1 L of water was added with 30% by weight of PVP (polyvinyl pyrrolidone) to 4.2 g and sonicated to disperse the silver oxalic acid particles. The dispersed particles were reacted at 135 ° C. for 20 minutes to synthesize silver particles of 0.5 μm or less as shown in FIG. 5.

실시예Example 6 6

물 1ℓ 중의 옥살산은 28g에 젤라틴 10g을 넣고 초음파 처리하여 옥살산은 입자를 분산시켰다. 분산된 입자를 135℃에서 15분 동안 반응시켜, 도 6에 나타낸 바와 같은 50nm 이하의 은 입자를 합성하였다.10 g of oxalic acid in 1 L of water was added with 10 g of gelatin and sonicated to disperse the silver oxalic acid particles. The dispersed particles were reacted at 135 ° C. for 15 minutes to synthesize silver particles of 50 nm or less as shown in FIG. 6.

높은 전도성 및 박테리아 내성과 같은 고유의 특성으로 인하여, 은 입자는 전자 공학 산업 뿐만 아니라 박테리아 내성이 요구되는 다른 산업에서 광범위하게 사용된다.Due to inherent properties such as high conductivity and bacterial resistance, silver particles are widely used in the electronics industry as well as in other industries where bacterial resistance is required.

본 발명은, 본 발명을 예시하기 위한 것일 뿐이며 청구의 범위에 명시된 바와 같은 본 발명의 요지를 전혀 제한하지 않는 특정한 바람직한 양태들 및 또 다른 양태들에 의해 기술된다.The present invention is described by way of specific and preferred embodiments, which are intended only to illustrate the invention and do not in any way limit the gist of the invention as specified in the claims.

Claims (19)

고체 옥살산은 입자를 캐리어에 분산시키는 단계(a) 및Solid oxalic acid dispersing the particles in a carrier (a) and 상기 분산된 옥살산은을 대기압을 초과하는 압력하에 100℃ 이상으로 가열하여 상기 옥살산은을 은 입자로 분해시키는 단계(b)를 포함하는, 은 입자의 제조방법.And (b) heating the dispersed silver oxalate to at least 100 ° C. under a pressure exceeding atmospheric pressure to decompose the silver oxalate into silver particles. 제1항에 있어서, 단계(a) 전에, 은 화합물로 이루어진 제1 용액과 옥살산염 화합물로 이루어진 제2 용액을 혼합하여 상기 옥살산은을 제조하는 단계를 추가로 포함하는, 은 입자의 제조방법.The method of claim 1, further comprising preparing the silver oxalate by mixing a first solution of a silver compound and a second solution of an oxalate compound before step (a). 제1항 또는 제2항에 있어서, 단계(b)의 가열 단계 전에, 표면활성제(surfactant)를 상기 분산된 옥살산은에 가하는 단계를 추가로 포함하는, 은 입자의 제조방법.3. The method of claim 1, further comprising adding a surfactant to the dispersed silver oxalate prior to the heating step of step (b). 4. 제3항에 있어서, 상기 표면활성제가 음이온성 표면활성제, 양이온성 표면활성제, 양쪽성 표면활성제, 비이온성 표면활성제, 형광화학적 표면활성제, 중합체성 표면활성제 및 이들의 배합물로 이루어진 그룹으로부터 선택되는, 은 입자의 제조방법.The method of claim 3, wherein the surfactant is selected from the group consisting of anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, fluorescent chemical surfactants, polymeric surfactants, and combinations thereof. Method for producing silver particles. 제2항에 있어서, 상기 혼합 단계 전에, 표면활성제를 상기 제1 용액에 가하는 단계를 추가로 포함하는, 은 입자의 제조방법.The method of claim 2, further comprising adding a surfactant to the first solution prior to the mixing step. 제5항에 있어서, 상기 표면활성제가 음이온성 표면활성제, 양이온성 표면활성제, 양쪽성 표면활성제, 비이온성 표면활성제, 형광화학적 표면활성제, 중합체성 표면활성제 및 이들의 배합물로 이루어진 그룹으로부터 선택되는, 은 입자의 제조방법.The method of claim 5, wherein the surfactant is selected from the group consisting of anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, fluorescent chemical surfactants, polymeric surfactants, and combinations thereof. Method for producing silver particles. 제2항에 있어서, 상기 혼합 단계 전에, 표면활성제를 상기 제2 용액에 가하는 단계를 추가로 포함하는, 은 입자의 제조방법.The method of claim 2, further comprising adding a surfactant to the second solution prior to the mixing step. 제7항에 있어서, 상기 표면활성제가 음이온성 표면활성제, 양이온성 표면활성제, 양쪽성 표면활성제, 비이온성 표면활성제, 형광화학적 표면활성제, 중합체성 표면활성제 및 이들의 배합물로 이루어진 그룹으로부터 선택되는, 은 입자의 제조방법.The method of claim 7, wherein the surfactant is selected from the group consisting of anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants, fluorescent chemical surfactants, polymeric surfactants and combinations thereof. Method for producing silver particles. 제1항 또는 제2항에 있어서, 상기 분산 단계(a)가, 옥살산은을 상기 캐리어에 가하고 옥살산은과 캐리어의 혼합물을 초음파 처리하는 단계를 포함하는, 은 입자의 제조방법.3. The method of claim 1, wherein the dispersing step (a) comprises adding silver oxalic acid to the carrier and sonicating the mixture of silver oxalate and the carrier. 4. 제1항 또는 제2항에 있어서, 상기 캐리어가 물, 메틸 알코올, 에틸 알코올, 프로필 알코올 및 이들의 혼합물로 이루어진 그룹으로부터 선택되는, 은 입자의 제조방법.3. The method of claim 1, wherein the carrier is selected from the group consisting of water, methyl alcohol, ethyl alcohol, propyl alcohol, and mixtures thereof. 제2항에 있어서, 상기 은 화합물이 AgNO3인, 은 입자의 제조방법.The method for producing silver particles according to claim 2, wherein the silver compound is AgNO 3 . 제2항에 있어서, 상기 옥살산염 화합물이 옥살산나트륨 및 옥살산으로 이루어진 그룹으로부터 선택되는, 은 입자의 제조방법.The compound of claim 2 wherein the oxalate compound is A method for producing silver particles, selected from the group consisting of sodium oxalate and oxalic acid. 제2항에 있어서, 옥살산은의 제조 후에, 상기 옥살산은을 물로 세정하여 불순물을 제거하는 단계를 추가로 포함하는, 은 입자의 제조방법.The method of claim 2, further comprising, after the production of silver oxalate, washing the silver oxalate with water to remove impurities. 제4항에 있어서, 상기 표면활성제가 PVP(폴리비닐 피롤리돈) 및 젤라틴으로 이루어진 그룹으로부터 선택되는, 은 입자의 제조방법.The method of claim 4, wherein the surfactant is selected from the group consisting of PVP (polyvinyl pyrrolidone) and gelatin. 제6항에 있어서, 상기 표면활성제가 PVP(폴리비닐 피롤리돈) 및 젤라틴으로 이루어진 그룹으로부터 선택되는, 은 입자의 제조방법.The method of claim 6, wherein the surfactant is selected from the group consisting of PVP (polyvinyl pyrrolidone) and gelatin. 제8항에 있어서, 상기 표면활성제가 PVP(폴리비닐 피롤리돈) 및 젤라틴으로 이루어진 그룹으로부터 선택되는, 은 입자의 제조방법.The method of claim 8, wherein the surfactant is selected from the group consisting of PVP (polyvinyl pyrrolidone) and gelatin. 제3항에 있어서, 상기 표면활성제가 단계(b)의 은의 80중량% 이하인, 은 입자의 제조방법.The method of claim 3, wherein the surfactant is 80% by weight or less of the silver of step (b). 제5항에 있어서, 상기 표면활성제가 단계(b)의 은의 80중량% 이하인, 은 입자의 제조방법.The method of claim 5, wherein the surfactant is 80% by weight or less of the silver of step (b). 제7항에 있어서, 상기 표면활성제가 단계(b)의 은의 80중량% 이하인, 은 입자의 제조방법.8. The method of claim 7, wherein the surfactant is no greater than 80% by weight of the silver of step (b).
KR1020077008295A 2004-10-14 2005-10-13 Method of production of high purity silver particles KR100888559B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US61887604P 2004-10-14 2004-10-14
US60/618,876 2004-10-14
PCT/US2005/036727 WO2006049831A1 (en) 2004-10-14 2005-10-13 Method of production of high purity silver particles

Publications (2)

Publication Number Publication Date
KR20070073775A KR20070073775A (en) 2007-07-10
KR100888559B1 true KR100888559B1 (en) 2009-03-16

Family

ID=36319502

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077008295A KR100888559B1 (en) 2004-10-14 2005-10-13 Method of production of high purity silver particles

Country Status (6)

Country Link
US (1) US20080105085A1 (en)
EP (1) EP1819467A4 (en)
JP (1) JP2008517153A (en)
KR (1) KR100888559B1 (en)
CN (1) CN101065205A (en)
WO (1) WO2006049831A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080064592A1 (en) * 2004-10-14 2008-03-13 Insoo Kim Method for Synthesizing Nano-Sized Titanium Dioxide Particles
KR101396803B1 (en) * 2006-09-21 2014-05-21 토쿠센, 유.에스.에이. 인코포레이티드 Low temperature process for producing nano-sized titanium dioxide particles
JP4978242B2 (en) * 2007-03-05 2012-07-18 昭栄化学工業株式会社 Method for producing silver ultrafine particles
TW201100185A (en) * 2009-05-01 2011-01-01 Du Pont Silver particles and a process for making them
CN102470441B (en) * 2009-07-30 2013-10-30 国立大学法人京都大学 Metal nanoparticles, dispersion containing same, and process for production of same
CN102740997B (en) * 2009-11-27 2016-02-24 特线工业株式会社 Composition containing small metal particles
KR20110113877A (en) * 2010-04-12 2011-10-19 서울대학교산학협력단 Process for large-scale production of uniform silver nanoparticle
US20110088593A1 (en) * 2010-12-23 2011-04-21 Mansour Hemmati Silver dz nano-fluid composition for nano-fin formation and a method of producing the same
JP6182294B2 (en) * 2011-01-28 2017-08-16 宣政 奥田 Bactericidal composition and medicine
FR2977178B1 (en) * 2011-06-30 2014-05-16 Thales Sa METHOD FOR MANUFACTURING A DEVICE COMPRISING BRASURES REALIZED FROM METAL OXALATE
JP5872440B2 (en) * 2012-02-13 2016-03-01 Dowaエレクトロニクス株式会社 Spherical silver powder and method for producing the same
CN104884193B (en) * 2012-08-30 2017-03-08 康宁股份有限公司 Not solvent-laden silver synthesis and the silver-colored product thus prepared
US9637806B2 (en) 2012-08-31 2017-05-02 Corning Incorporated Silver recovery methods and silver products produced thereby
CN104685076B (en) 2012-08-31 2017-05-31 康宁股份有限公司 Silver synthesis and the silver-colored product for thus preparing based on low temperature dispersion
TWI508799B (en) * 2012-12-06 2015-11-21 China Steel Corp A Method for Synthesis of Silver Powder with Adjustable Particle Size
JP6157104B2 (en) * 2012-12-14 2017-07-05 田中貴金属工業株式会社 Silver precursor for producing silver compound, method for producing the same, and method for producing silver compound
CN103602019B (en) * 2013-11-15 2015-12-02 三河市京纳环保技术有限公司 A kind of novel method preparing high transparency plastics silver-containing inorganic antibacterial matrices on a large scale

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0179371B1 (en) * 1990-05-18 1999-02-18 후지무라 마사야 Moldable mixture for use in the manufacturing of precious metal articles

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB591670A (en) * 1943-08-28 1947-08-26 Honorary Advisory Council Sci Silver catalyst and method of preparing same
US3377160A (en) * 1964-12-31 1968-04-09 Allis Chalmers Mfg Co Process of making a high surface area silver catalyst
JPS491153B1 (en) * 1970-07-31 1974-01-11
US3702259A (en) * 1970-12-02 1972-11-07 Shell Oil Co Chemical production of metallic silver deposits
US4186244A (en) * 1977-05-03 1980-01-29 Graham Magnetics Inc. Novel silver powder composition
US4463030A (en) * 1979-07-30 1984-07-31 Graham Magnetics Incorporated Process for forming novel silver powder composition
JPH02275718A (en) * 1988-11-30 1990-11-09 Ceskoslovenska Akad Ved Production of precursor for high-temperature superconducting material
US5250101A (en) * 1991-04-08 1993-10-05 Mitsubishi Gas Chemical Company, Inc. Process for the production of fine powder
US5369429A (en) * 1993-10-20 1994-11-29 Lasermaster Corporation Continuous ink refill system for disposable ink jet cartridges having a predetermined ink capacity
KR0139437B1 (en) * 1995-06-19 1998-06-01 윤덕용 A process for preparine crystalling titania powder from a solution of titanium salt in mixde solvent of water and alcohol
JP2822317B2 (en) * 1996-04-15 1998-11-11 日鉄鉱業株式会社 Antibacterial titania and method for producing the same
US5973175A (en) * 1997-08-22 1999-10-26 E. I. Du Pont De Nemours And Company Hydrothermal process for making ultrafine metal oxide powders
TW408034B (en) * 1997-12-16 2000-10-11 Nippon Catalytic Chem Ind Silver catalyst for production of ethylene oxide, method for production thereof, and method for production of ethylene oxide
US6444189B1 (en) * 1998-05-18 2002-09-03 E. I. Du Pont De Nemours And Company Process for making and using titanium oxide particles
KR100277164B1 (en) * 1998-07-16 2001-01-15 장인순 A preparing method for crystalline micropowder of Titania from aqueous Titanium(Ⅳ) chloride by homogeneous precipitation process at low temperature
WO2000046153A1 (en) * 1999-02-04 2000-08-10 Kawasaki Jukogyo Kabushiki Kaisha Method for producing anatase type titanium dioxide and titanium dioxide coating material
US6440383B1 (en) * 1999-06-24 2002-08-27 Altair Nanomaterials Inc. Processing aqueous titanium chloride solutions to ultrafine titanium dioxide
KR100350226B1 (en) * 2000-02-29 2002-08-27 나노케미칼 주식회사 Photocatalytic TiO2 powder with large specific surface area by homogeneous precipitation process at low temperature and method for manufacturing
CN1217862C (en) * 2000-07-31 2005-09-07 住友化学工业株式会社 Method for prepn. of titanium oxide
US6660058B1 (en) * 2000-08-22 2003-12-09 Nanopros, Inc. Preparation of silver and silver alloyed nanoparticles in surfactant solutions
DE60109704D1 (en) 2000-10-25 2005-05-04 Mitsubishi Chem Corp Process for the oxidation of olefins using a catalyst containing silver and alkali metal (s)
DE10107777A1 (en) * 2001-02-16 2002-09-05 Bayer Ag Continuous process for the synthesis of nanoscale precious metal particles
ATE399740T1 (en) * 2001-03-24 2008-07-15 Evonik Degussa Gmbh DOPPED OXIDE PARTICLES SURROUNDED WITH A SHELL
US7045005B2 (en) * 2001-07-19 2006-05-16 Sumitomo Chemical Company, Limited Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
US20030185889A1 (en) * 2002-03-27 2003-10-02 Jixiong Yan Colloidal nanosilver solution and method for making the same
US20040055420A1 (en) * 2002-05-30 2004-03-25 Arkady Garbar Method for enhancing surface area of bulk metals
JP2004196626A (en) * 2002-12-20 2004-07-15 Sumitomo Chem Co Ltd Method for producing titanium oxide
TW200420499A (en) * 2003-01-31 2004-10-16 Sumitomo Chemical Co A method for producing titanium oxide
US6969690B2 (en) * 2003-03-21 2005-11-29 The University Of North Carolina At Chapel Hill Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles
US7208126B2 (en) * 2004-03-19 2007-04-24 E. I. Du Pont De Nemours And Company Titanium dioxide nanopowder manufacturing process
US7270695B2 (en) * 2004-04-01 2007-09-18 Dong-A University Synthesis of nanosized metal particles
US7205049B2 (en) * 2004-04-16 2007-04-17 Tioxoclean Inc. Metal peroxide films
US20050265918A1 (en) * 2004-06-01 2005-12-01 Wen-Chuan Liu Method for manufacturing nanometer scale crystal titanium dioxide photo-catalyst sol-gel
US20080064592A1 (en) * 2004-10-14 2008-03-13 Insoo Kim Method for Synthesizing Nano-Sized Titanium Dioxide Particles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0179371B1 (en) * 1990-05-18 1999-02-18 후지무라 마사야 Moldable mixture for use in the manufacturing of precious metal articles

Also Published As

Publication number Publication date
KR20070073775A (en) 2007-07-10
EP1819467A1 (en) 2007-08-22
JP2008517153A (en) 2008-05-22
WO2006049831A1 (en) 2006-05-11
CN101065205A (en) 2007-10-31
EP1819467A4 (en) 2010-01-20
US20080105085A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
KR100888559B1 (en) Method of production of high purity silver particles
Ren et al. Hydroxylated boron nitride materials: From structures to functional applications
US9845245B2 (en) Foams of graphene, method of making and materials made thereof
TWI616250B (en) Articles containing copper nanoparticles and methods for production and use thereof
WO2019243602A1 (en) Nanoreactors for the synthesis of porous crystalline materials
US20150307666A1 (en) Multi-Component Particles Comprising Inorganic Nanoparticles Distributed in an Organic Matrix and Processes for Making and Using Same
JP2000327312A (en) Production of spherical boron nitride and its precursor substance, production facility and product
JPS63258642A (en) Hollow inorganic powder and grain materials and preparation of same
Itoh et al. Direct transformation into silver nanoparticles via thermal decomposition of oxalate-bridging silver oleylamine complexes
KR101416913B1 (en) Synthesis of stabilized zero valent iron on alginate and alginate-silicate beads and its application
Rai et al. Nanofunctionalized pulse-electroformed copper/graphene oxide tubular composite for efficient textile dye degradation under visible light irradiation
Ko et al. Catalytic activity for reduction of 4-nitrophenol with [C60] fullerene nanowhisker-silver nanoparticle composites
Payamifar et al. Recent advances in β‐cyclodextrin‐based catalysts for reducing toxic nitroaromatic: An overview
Xie et al. Recent advances in the synthesis of layered double hydroxides nanosheets
Bagchi et al. In situ synthesis of environmentally benign montmorillonite supported composites of Au/Ag nanoparticles and their catalytic activity in the reduction of p-nitrophenol
Pradysti et al. Synthesis of Pd–AuAg trimetal nanohybrids with controlled heterostructures and their application in the continuous flow catalytic reduction of Cr (vi)
CN105540577B (en) Method for preparing graphene and graphene composite material by reducing graphene oxide at room temperature
Dulski et al. Impact of temperature on the physicochemical, structural and biological features of copper-silica nanocomposites
Banon et al. Fabrication of Silver-Silica Composite using the Carbo-thermal Degradation of Oil Palm Leaves for the Reduction of p-nitrophenol.
KR100768004B1 (en) Method For Manufacturing Metal Nano Particle
KR20180108537A (en) Method for manufacturing silver nanocube-particles and silver nanocube-particles manufactured by the same
KR20100055133A (en) Transition metal oxidation catalytic membrane having a multi-porous structure and method for the preparation thereof
CN115445610B (en) Preparation method of silver nano catalyst with high catalytic activity, product and application thereof
Palchik et al. New Method for Nanofabrication of Structures Analogous to “Core–Shell” Vesicles
JPH03215399A (en) Method for preparing fibrous aluminum nitride

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121221

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140306

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141224

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160303

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161227

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180306

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200303

Year of fee payment: 12