KR100887870B1 - New anthracene derivatives, preparation method thereof and organic electronic device using the same - Google Patents

New anthracene derivatives, preparation method thereof and organic electronic device using the same Download PDF

Info

Publication number
KR100887870B1
KR100887870B1 KR1020060033236A KR20060033236A KR100887870B1 KR 100887870 B1 KR100887870 B1 KR 100887870B1 KR 1020060033236 A KR1020060033236 A KR 1020060033236A KR 20060033236 A KR20060033236 A KR 20060033236A KR 100887870 B1 KR100887870 B1 KR 100887870B1
Authority
KR
South Korea
Prior art keywords
compound
organic
naphthyl
light emitting
electronic device
Prior art date
Application number
KR1020060033236A
Other languages
Korean (ko)
Other versions
KR20070101722A (en
Inventor
이재철
박태윤
정동섭
홍성길
김공겸
김지은
장혜영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020060033236A priority Critical patent/KR100887870B1/en
Publication of KR20070101722A publication Critical patent/KR20070101722A/en
Application granted granted Critical
Publication of KR100887870B1 publication Critical patent/KR100887870B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/573Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with three six-membered rings
    • C07C13/58Completely or partially hydrogenated anthracenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한 유기전자소자에 관한 것이다.The present invention relates to a novel anthracene derivative, a preparation method thereof and an organic electronic device using the same.

본 발명에 따른 안트라센 유도체는 유기발광소자를 비롯한 유기전자소자에서 정공주입, 정공 수송, 전자 주입, 전자 수송, 또는 발광 물질 역할을 할 수 있으며, 특히 단독으로 발광 호스트, 바람직하게는 녹색 호스트로서 역할을 할 수 있다. 본 발명에 따른 유기전자소자는 효율, 구동전압, 안정성 면에서 우수한 특성을 나타낸다.The anthracene derivative according to the present invention may play a role of hole injection, hole transport, electron injection, electron transport, or light emitting material in organic electronic devices including organic light emitting devices, and in particular, serves as a light emitting host, preferably a green host. can do. The organic electronic device according to the present invention exhibits excellent characteristics in terms of efficiency, driving voltage, and stability.

Description

신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한 유기전자소자{New anthracene derivatives, preparation method thereof and organic electronic device using the same}Novel anthracene derivatives, preparation method thereof and organic electronic device using the same

도 1은 본 발명의 하나의 실시 상태에 따른 유기발광소자의 구조를 예시한 도이다.1 is a diagram illustrating a structure of an organic light emitting device according to an exemplary embodiment of the present invention.

본 발명은 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한 유기전자소자에 관한 것이다.The present invention relates to a novel anthracene derivative, a preparation method thereof and an organic electronic device using the same.

유기전자소자란 정공 및/또는 전자를 이용한 전극과 유기물 사이에서의 전하 교류를 필요로 하는 소자를 의미한다. 유기전자소자는 동작 원리에 따라 하기와 같이 크게 두 가지로 나눌 수 있다. 첫째는 외부의 광원으로부터 소자로 유입된 광자에 의하여 유기물층에서 엑시톤(exiton)이 형성되고 이 엑시톤이 전자와 정공으로 분리되고, 이 전자와 정공이 각각 다른 전극으로 전달되어 전류원(전압원)으로 사용되는 형태의 전자소자이다. 둘째는 2개 이상의 전극에 전압 또는 전류를 가하여 전극과 계면을 이루는 유기물 반도체에 정공 및 전자를 주입하고, 주입된 전자와 정공에 의하여 동작하는 형태의 전자 소자이다.The organic electronic device refers to a device that requires charge exchange between an electrode and an organic material using holes and / or electrons. The organic electronic device can be divided into two types according to the operation principle. First, an exciton is formed in the organic layer by photons introduced into the device from an external light source, and the exciton is separated into electrons and holes, and these electrons and holes are transferred to different electrodes to be used as current sources (voltage sources). It is an electronic device of the form. The second type is an electronic device in which holes and electrons are injected into an organic semiconductor forming an interface with the electrodes by applying voltage or current to two or more electrodes, and operated by the injected electrons and holes.

유기전자소자의 예로는 유기발광소자, 유기태양전지, 유기감광체(OPC), 유기 트랜지스터 등이 있으며, 이들은 모두 소자의 구동을 위하여 정공의 주입 또는 수송 물질, 전자의 주입 또는 수송 물질, 또는 발광 물질을 필요로 한다.Examples of the organic electronic device include an organic light emitting device, an organic solar cell, an organic photoconductor (OPC), an organic transistor, etc., all of which are used to inject or transport holes, inject or transport electrons, or light emitting materials for driving the device. need.

이하에서는 주로 유기발광소자에 대하여 구체적으로 설명하지만, 상기 유기전자소자들에서는 정공의 주입 또는 수송 물질, 전자의 주입 또는 수송 물질, 또는 발광 물질이 유사한 원리로 작용한다.Hereinafter, the organic light emitting device will be described in detail. However, in the organic electronic devices, a hole injection or transport material, an electron injection or transport material, or a light emitting material functions on a similar principle.

일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기발광소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기발광소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기발광소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기발광소자는 자발광, 고휘도, 고효율, 낮은 구동 전압, 넓은 시야각, 높은 콘트라스트, 고속 응답성 등의 특성을 갖는 것으로 알려져 있다.In general, organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material. An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode and an organic material layer therebetween. The organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer. When the voltage is applied between the two electrodes in the structure of the organic light emitting diode, holes are injected into the organic material layer at the anode and electrons are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. When it falls back to the ground, it glows. Such organic light emitting diodes are known to have characteristics such as self-luminous, high brightness, high efficiency, low driving voltage, wide viewing angle, high contrast, and high speed response.

유기발광소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다. 상기 발광 재료는 분자량에 따라 고분자형과 저분자형으로 분류될 수 있고, 발광 메커니즘에 따라 전자의 일중항 여기상태로부터 유래되는 형광 재료와 전자의 삼중항 여기상태로부터 유래되는 인광 재료로 분류될 수 있다. 또한, 발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료 등이 있다.Materials used as the organic material layer in the organic light emitting device may be classified into light emitting materials and charge transport materials such as hole injection materials, hole transport materials, electron transport materials, electron injection materials and the like depending on their functions. The light emitting material may be classified into a polymer type and a low molecular type according to molecular weight, and may be classified into a fluorescent material derived from a singlet excited state of electrons and a phosphorescent material derived from a triplet excited state of electrons according to a light emitting mechanism. . In addition, the light emitting materials include blue, green, and red light emitting materials, and yellow and orange light emitting materials required to realize better natural colors, depending on the color of light emitted.

한편, 발광 재료로서 하나의 물질만 사용하는 경우 분자간 상호 작용에 의하여 최대 발광 파장이 장파장으로 이동하고 색순도가 떨어지거나 발광 감쇄 효과로 소자의 효율이 감소되는 문제가 발생하므로, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여 발광 재료로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 형성하는 호스트 보다 에너지 대역 간극이 작은 도판트를 발광층에 소량 혼합하면, 발광층에서 발생한 엑시톤이 도판트로 수송되어 효율이 높은 빛을 내는 것이다. 이 때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.On the other hand, when only one material is used as the light emitting material, the maximum emission wavelength is shifted to a long wavelength due to the intermolecular interaction, and the color purity decreases or the efficiency of the device decreases due to the emission attenuation effect. In order to increase the light emitting efficiency through the light emitting material, a host / dopant system may be used. The principle is that when a small amount of dopant having an energy band gap smaller than that of a host forming the light emitting layer is mixed in the light emitting layer, excitons generated in the light emitting layer are transported to the dopant, thereby producing high-efficiency light. At this time, since the wavelength of the host shifts to the wavelength of the dopant, light having a desired wavelength can be obtained according to the type of dopant to be used.

유기발광소자가 전술한 우수한 특징들을 충분히 발휘하기 위해서는 소자내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정하고 효율적인 유기발광소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이다. 따라서 새로운 재료의 개발이 계속 요구되고 있으며, 이와 같은 재료 개발의 필요성은 전술한 다른 유기전자소자에서도 마찬가지이다.In order for the organic light emitting device to fully exhibit the above-mentioned excellent characteristics, it is supported that a material that forms the organic material layer in the device, such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, etc. is supported by a stable and efficient material. Although it should be preceded, the development of a stable and efficient organic material layer for an organic light emitting device has not been made yet. Therefore, the development of new materials continues to be demanded, and the necessity of such material development is the same in other organic electronic devices described above.

이에, 본 발명자들은 신규한 안트라센 유도체를 합성하였으며, 이러한 화합물들이 유기전자소자에서 정공주입, 정공 수송, 전자 주입, 전자 수송 또는 발광 물질로 사용될 수 있고, 특히 발광 호스트, 바람직하게는 녹색 호스트로 사용됨으로써, 유기전자소자의 효율 상승, 구동전압 하강, 및 안정성 상승 효과가 우수하여짐을 확인하고 본 발명을 완성하였다.Thus, the present inventors have synthesized a novel anthracene derivative, these compounds can be used as a hole injection, hole transport, electron injection, electron transport or light emitting material in organic electronic devices, in particular used as a light emitting host, preferably a green host By doing so, it was confirmed that the effects of increasing the efficiency, lowering the driving voltage, and increasing the stability of the organic electronic device were completed, and completed the present invention.

본 발명은 신규한 안트라센 유도체, 이의 제조방법 및 이를 이용한 유기전자소자를 제공하고자 한다.The present invention is to provide a novel anthracene derivative, a preparation method thereof and an organic electronic device using the same.

본 발명은 하기 화학식 1로 표시되는 안트라센 유도체를 제공한다.The present invention provides an anthracene derivative represented by the following formula (1).

Figure 112006025386879-pat00001
Figure 112006025386879-pat00001

상기 화학식 1에서,In Chemical Formula 1,

R1, R2 및 X는 서로 독립적으로, 할로겐, CN, NO2, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C6~C20의 아릴아민기, C1~C20의 알킬 티오펜기, C6~C20의 아릴 티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, C6~C20의 아릴기, -BRR', -SiRR'R", -GeRR'R", 및 치환 또는 비치환된 C5~C20의 헤테 로고리기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 또는 비치환된 C6~C20의 아릴기; 또는R1, R2 and X are independently of each other, a halogen, CN, NO 2, C 1 ~ C 20 alkyl group, C 1 ~ C 20 alkoxy group, C 1 ~ C 20 alkyl amine group, C 6 ~ C 20 of the Arylamine group, C 1 to C 20 alkyl thiophene group, C 6 to C 20 aryl thiophene group, C 2 to C 20 alkenyl group, C 2 to C 20 alkynyl group, C 3 to C 20 At least one selected from the group consisting of a cycloalkyl group, a C 6 -C 20 aryl group, -BRR ', -SiRR'R ", -GeRR'R", and a substituted or unsubstituted C 5 -C 20 hete logori group C 6 -C 20 aryl group unsubstituted or substituted with a group; or

할로겐, CN, NO2, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C6~C20의 아릴아민기, C1~C20의 알킬티오기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, C6~C20의 아릴기, -BRR', -SiRR'R", -GeRR'R", 및 치환 또는 비치환된 C5~C20의 헤테로고리기로 이루어진 군으로부터 선택된 하나 이상의 기로 치환된 또는 비치환된 C5~C20의 헤테로고리기이고,Halogen, CN, NO 2 , C 1 ~ C 20 alkyl group, C 1 ~ C 20 alkoxy group, C 1 ~ C 20 alkylamine group, C 6 ~ C 20 arylamine group, C 1 ~ C 20 alkylthio group, C 2 ~ C 20 alkenyl group, C 2 ~ C 20 alkynyl group, C 3 ~ C 20 cycloalkyl group, C 6 ~ C 20 aryl group, -BRR ', -SiRR'R "of, -GeRR'R "and a substituted or unsubstituted C 5 ~ C 20 heterocyclic group substituted or unsubstituted with one or more groups selected from the group consisting of C 5 ~ C 20 heterocyclic group,

여기서, R, R' 및 R"는 서로 독립적으로, 수소, C1~C20의 알킬기, C3~C20의 시클로알킬기, C6~C20의 아릴기 또는 C5~C20의 헤테로고리기이며,R, R 'and R "are each independently hydrogen, C 1 ~ C 20 alkyl group, C 3 ~ C 20 cycloalkyl group, C 6 ~ C 20 aryl group or C 5 ~ C 20 heterocyclic ring Qi

단, R1, R2 및 X는 동시에 페닐기일 수는 없다.However, R1, R2 and X cannot be a phenyl group at the same time.

바람직하게는, 상기 화학식 1에서Preferably, in Formula 1

R1 및 R2는 서로 독립적으로, 페닐; 1-나프틸; 2-나프틸; 바이페닐; 트리페닐; 1-테트랄리닐; 2-테트랄리닐; 스틸베닐; 플루오레닐; 또는 디페닐, 바이페닐, 1-나프틸, 2-나프틸, 안트라세닐, 페닐 또는 나프틸이 치환된 안트라세닐, 페닐티오펜일, 카바졸일 및 디페닐아민으로 이루어진 군으로부터 선택된 기로 치환된 페닐이고,R 1 and R 2 are, independently from each other, phenyl; 1-naphthyl; 2-naphthyl; Biphenyl; Triphenyl; 1-tetralinyl; 2-tetralinyl; Stilbenyl; Fluorenyl; Or phenyl substituted by a group selected from the group consisting of anthracenyl, phenylthiophenyl, carbazolyl and diphenylamine substituted with diphenyl, biphenyl, 1-naphthyl, 2-naphthyl, anthracenyl, phenyl or naphthyl ego,

X는 1-나프틸, 2-나프틸 또는 바이페닐이다.X is 1-naphthyl, 2-naphthyl or biphenyl.

본 발명에 따른 화학식 1의 화합물의 구체적인 예는 하기에 나타내었으며, 이에 한정되지 않는다.Specific examples of the compound of formula 1 according to the present invention are shown below, but are not limited thereto.

Figure 112006025386879-pat00002
Figure 112006025386879-pat00002

Figure 112006025386879-pat00003
Figure 112006025386879-pat00003

Figure 112006025386879-pat00004
Figure 112006025386879-pat00004

Figure 112006025386879-pat00005
Figure 112006025386879-pat00005

Figure 112006025386879-pat00006
Figure 112006025386879-pat00006

Figure 112006025386879-pat00007
Figure 112006025386879-pat00007

Figure 112006025386879-pat00008
Figure 112006025386879-pat00008

Figure 112006025386879-pat00009
Figure 112006025386879-pat00009

Figure 112006025386879-pat00010
Figure 112006025386879-pat00010

Figure 112006025386879-pat00011
Figure 112006025386879-pat00011

Figure 112006025386879-pat00012
Figure 112006025386879-pat00012

Figure 112006025386879-pat00013
Figure 112006025386879-pat00013

Figure 112006025386879-pat00014
Figure 112006025386879-pat00014

Figure 112006025386879-pat00015
Figure 112006025386879-pat00015

Figure 112006025386879-pat00016
Figure 112006025386879-pat00016

또한, 본 발명은 상기 화학식 1로 표시되는 안트라센 유도체의 제조방법을 제공한다.In another aspect, the present invention provides a method for producing an anthracene derivative represented by the formula (1).

본 발명에 따른 안트라센 유도체의 제조방법은Method for producing an anthracene derivative according to the present invention

1) 1-클로로안트라퀴논을 보론산 화합물(X-B(OH)2)과 반응시켜 화합물(Ⅱ)를 제조하는 단계,1) reacting 1-chloroanthraquinone with boronic acid compound (XB (OH) 2 ) to prepare compound (II),

2) 상기 화합물(Ⅱ)를 브로모 화합물(R1-Br 또는 R2-Br)과 반응시켜 디알콜 화합물(Ⅲ)을 제조하는 단계, 및2) reacting compound (II) with a bromo compound (R1-Br or R2-Br) to produce a dialcohol compound (III), and

3) 상기 디알콜 화합물(III)을 요오드화칼륨 및 차아인산나트륨과 반응시켜 화합물(Ⅰ)을 제조하는 단계를 포함하며, 하기 반응식 1로 표시된다.3) reacting the dial alcohol compound (III) with potassium iodide and sodium hypophosphite to produce compound (I), which is represented by the following Scheme 1.

Figure 112006025386879-pat00017
Figure 112006025386879-pat00017

상기 반응식 1에서, R1, R2 및 X는 상기 화학식 1에서 정의한 바와 같다.In Scheme 1, R1, R2 and X are as defined in the formula (1).

또한, 본 발명은 상기 화학식 1의 화합물을 이용한 유기전자소자를 제공한다.In addition, the present invention provides an organic electronic device using the compound of Formula 1.

본 발명의 유기전자소자는 전술한 화합물들을 이용하여 한층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기전자소자의 제조 방법 및 재료에 의하여 제조될 수 있다.The organic electronic device of the present invention may be manufactured by a conventional method and material for manufacturing an organic electronic device, except that at least one organic material layer is formed using the above-described compounds.

이하에서는 유기발광소자에 대하여 예시한다.Hereinafter, an organic light emitting diode will be exemplified.

전술한 본 발명의 화합물들은 유기발광소자에서 정공주입, 정공 수송, 전자 주입, 전자 수송, 또는 발광 물질 역할을 할 수 있으며, 특히 단독으로 발광 물질의 역할을 할 수 있을 뿐만 아니라, 적절한 발광 도판트와 함께 발광 호스트, 또는 적절한 발광 호스트와 함께 발광 도판트 역할을 할 수 있다.The compounds of the present invention described above may serve as hole injection, hole transport, electron injection, electron transport, or light emitting materials in the organic light emitting device, and in particular, may not only serve as light emitting materials alone, but also suitable light emitting dopants. Together with a light emitting host, or a suitable light emitting host.

본 발명의 하나의 실시 상태에 있어서, 유기발광소자는 제 1 전극과 제 2 전극 및 이 사이에 배치된 유기물층을 포함하는 구조로 이루어질 수 있으며, 전술한 본 발명에 따른 화합물을 유기발광소자의 유기물층 중 1층 이상에 사용한다는 것을 제외하고는 통상의 유기발광소자의 제조방법 및 재료를 사용하여 제조될 수 있다. 본 발명에 따른 유기발광소자의 구조는 도 1에 예시되어 있다.In one embodiment of the present invention, the organic light emitting device may have a structure including a first electrode and a second electrode and an organic material layer disposed therebetween, the above-described compound according to the invention the organic material layer of the organic light emitting device Except for use in at least one of the layers can be prepared using a conventional method and material for manufacturing an organic light emitting device. The structure of the organic light emitting device according to the present invention is illustrated in FIG.

예컨대, 본 발명에 따른 유기발광소자는 스퍼터링(sputtering) 이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층, 전자수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으 로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기발광소자를 제조할 수도 있다.For example, the organic light emitting device according to the present invention is a metal oxide or a metal oxide or alloy thereof having a conductivity on a substrate by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation It can be prepared by depositing the anode to form an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer thereon, and then depositing a material that can be used as a cathode thereon. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.

상기 유기물층은 정공주입층, 정공수송층, 발광층 및 전자수송층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용매 공정(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.The organic material layer may have a multilayer structure including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, but is not limited thereto and may have a single layer structure. In addition, the organic layer may be prepared by using a variety of polymer materials, and by using a method such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer, rather than a deposition method. It can be prepared in layers.

상기 양극 물질로는 통상 유기물층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐주석 산화물(ITO), 인듐아연산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.As the cathode material, a material having a large work function is usually preferred to facilitate hole injection into the organic material layer. Specific examples of the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline, and the like, but are not limited thereto.

상기 음극 물질로는 통상 유기물층으로 전자주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.It is preferable that the negative electrode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.

상기 정공주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴 헥사아자트리페닐렌, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.The hole injection material is a material capable of well injecting holes from the anode at a low voltage, and the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the positive electrode material and the HOMO of the surrounding organic material layer. Specific examples of the hole injection material include metal porphyrine, oligothiophene, arylamine-based organics, hexanitrile hexaazatriphenylene, quinacridone-based organics, perylene-based organics, Anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto.

상기 정공수송 물질로는 양극이나 정공주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.As the hole transport material, a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.

상기 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물 (Alq3); 카바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.The light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable. Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.

상기 전자수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.As the electron transport material, a material capable of injecting electrons well from the cathode and transferring the electrons to the light emitting layer is suitable. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.

본 발명에 따른 유기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type according to the material used.

본 발명에 따른 화합물은 유기태양전지, 유기감광체, 유기트랜지스터 등을 비롯한 유기전자소자에서도 유기발광소자에 적용되는 것과 유사한 원리로 작용할 수 있다.The compound according to the present invention may act on a principle similar to that applied to organic light emitting devices in organic electronic devices including organic solar cells, organic photoconductors, organic transistors, and the like.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited thereto.

실시예Example 1 One : 화합물 3의 제조 : Preparation of Compound 3

Figure 112006025386879-pat00018
Figure 112006025386879-pat00018

1. 화합물 3-1의 제조1. Preparation of Compound 3-1

1-클로로안트라퀴논(41.2 mmol, 10.0 g)을 THF 200 mL에 완전히 녹이고, 여 기에 2-나프탈렌보론산(45.3 mmol, 7.80 g, 칼륨 카보네이트(potassium carbonate) 2M 용액 50mL, 테트라키스(트리페닐포스핀)팔라듐(0) [tetrakis (triphenylphosphine)palladium(0)](1.24 mmol, 1.43 g)을 넣고 19시간 환류시켰다. 반응이 끝난 후 상온으로 냉각시키고, 여과한 후 물과 에탄올로 여러 번 세척하여 화합물 3-1 (13.2 g, 96 %)을 얻었다. MS [M] = 334Dissolve 1-chloroanthraquinone (41.2 mmol, 10.0 g) in 200 mL of THF, where 2-naphthalene boronic acid (45.3 mmol, 7.80 g, 50 mL of potassium carbonate 2M solution, tetrakis (triphenylforce) It was refluxed for 19 hours after adding pin) palladium (0) [tetrakis (triphenylphosphine) palladium (0)] (1.24 mmol, 1.43 g) After cooling the reaction to room temperature, filtered and washed several times with water and ethanol Compound 3-1 (13.2 g, 96%) was obtained MS [M] = 334

2. 화합물 3-2의 제조2. Preparation of Compound 3-2

2-브로모나프탈렌(20.4 mmol, 4.23 g)을 건조된 THF 100 mL에 넣어서 완전히 녹이고, 여기에 -78 ℃ 하에서 n-부틸리튬(8.2 ml, 헥산 중 2.5 M 용액)을 아주 천천히 넣었다. 1 시간 후에 상기 반응물에 상기 1에서 제조한 화합물 3-1(8.17 mmol, 2.73 g)을 넣었다. 30분 후에 냉각 용기를 제거하고 상온에서 3시간 반응시켰다. 반응이 끝난 후에 NH4Cl 수용액을 넣은 후 에틸에테르로 추출하였다. 추출한 반응물을 무수 마그네슘 설페이트로 건조하고 농축시켰다. 여기에 소량의 에틸에테르를 넣고 교반하다가 에탄올을 넣고 교반하였다. 이어서, 반응물을 여과하고 건조시킨 후 디알콜 화합물 3-2 (4.58g, 95%)를 얻었다. MS [M] = 572(- H2O form)2-bromonaphthalene (20.4 mmol, 4.23 g) was completely dissolved in 100 mL of dried THF, where n -butyllithium (8.2 ml, 2.5 M solution in hexane) was added very slowly under -78 ° C. After 1 hour, Compound 3-1 (8.17 mmol, 2.73 g) prepared in 1 was added to the reaction. After 30 minutes, the cooling vessel was removed and reacted at room temperature for 3 hours. After the reaction was added NH 4 Cl aqueous solution and extracted with ethyl ether. The extracted reaction was dried over anhydrous magnesium sulfate and concentrated. A small amount of ethyl ether was added thereto and stirred, followed by stirring with ethanol. Subsequently, the reaction was filtered and dried to give diall compound 3-2 (4.58 g, 95%). MS [M] = 572 (-H 2 O form)

3. 화합물 3의 제조3. Preparation of Compound 3

상기 화합물 3-2 (4.0 g, 6.77 mmol), 요오드화칼륨(1.12 g, 6.77 mmol) 및 차아인산나트륨(sodium hypophosphite)(7.18 g, 67.7mmol )을 100 mL의 아세트산에서 3시간 동안 환류시켰다. 상기 반응물을 상온으로 냉각시킨 후 여과하고, 물과 에탄올로 여러 번 씻어준 후 건조하여 상기 화합물 3(2.30 g, 62%)을 얻었다. MS [M] = 556The compound 3-2 (4.0 g, 6.77 mmol), potassium iodide (1.12 g, 6.77 mmol) and sodium hypophosphite (7.18 g, 67.7 mmol) were refluxed in 100 mL of acetic acid for 3 hours. The reaction was cooled to room temperature, filtered, washed with water and ethanol several times, and dried to obtain compound 3 (2.30 g, 62%). MS [M] = 556

실시예Example 2 2 : 화합물 4의 제조 Preparation of Compound 4

Figure 112006025386879-pat00019
Figure 112006025386879-pat00019

1, 화합물 4-1의 제조1, Preparation of Compound 4-1

상기 실시예 1의 2에서 2-브로모나프탈렌(20.4 mmol, 4.23 g) 대신 4-브로모비페닐(20.4 mmol, 4.76 g)을 사용한 것을 제외하고는, 실시예 1의 2와 동일한 방법으로 하여 화합물 4-1 (4.83g, 92%)을 얻었다. MS [M] = 624(- H2O form)In 2 of Example 1 above In the same manner as in Example 2 2, except that 4-bromobiphenyl (20.4 mmol, 4.76 g) was used instead of 2-bromonaphthalene (20.4 mmol, 4.23 g), Compound 4-1 (4.83 g, 92%). MS [M] = 624 (-H 2 O form)

2. 화합물 4의 제조2. Preparation of Compound 4

상기 실시예 1의 3에서 화합물 3-2 대신 상기 1에서 제조한 화합물 4-1을 사용한 것을 제외하고는, 실시예 1의 3과 동일한 방법으로 하여 화합물 4 (2.47 g, 60%)를 얻었다. MS [M] = 608In 3 of Example 1 above Compound 4 (2.47 g, 60%) was obtained by the same method as 3 of Example 1, except that compound 4-1 prepared in 1 was used instead of compound 3-2. MS [M] = 608

실시예Example 3 3 : 화합물 10의 제조 : Preparation of Compound 10

Figure 112006025386879-pat00020
Figure 112006025386879-pat00020

1. 화합물 10-1의 제조1. Preparation of Compound 10-1

2-티오펜 보론산 (10 g, 78.1 mmol)과 브로모 벤젠(7.48 mL, 70.3 mmol)을 무수 THF (300 mL)에 녹인 후, Pd(PPh3)4 (4.51 g, 3.91 mmol)과 K2CO3 수용액 (156 mL, 312.4 mmol)을 넣고, 3시간 동안 환류시켰다. 유기층을 에틸 아세테이트로 추출하고, 황산 마그네슘으로 수분을 제거하였다. 유기층을 감압 여과한 후 농축하여 용매를 제거하고 컬럼 크로마토그래피로 정제한 후 THF와 에탄올에서 재결정하여 흰색 고체 화합물 10-1 (10g, 80%)을 얻었다. MS [M] = 1602-thiophene boronic acid (10 g, 78.1 mmol) and bromo benzene (7.48 mL, 70.3 mmol) were dissolved in anhydrous THF (300 mL), followed by Pd (PPh 3 ) 4 (4.51 g, 3.91 mmol) and K. 2 CO 3 aqueous solution (156 mL, 312.4 mmol) was added and refluxed for 3 hours. The organic layer was extracted with ethyl acetate and water was removed with magnesium sulfate. The organic layer was filtered under reduced pressure, concentrated to remove the solvent, purified by column chromatography, and recrystallized from THF and ethanol to obtain a white solid compound 10-1 (10 g, 80%). MS [M] = 160

2. 화합물 10-2의 제조2. Preparation of Compound 10-2

상기 1에서 제조한 화합물 10-1 (5g, 31.3 mmol)을 무수 THF (200 mL)에 녹인 후, -10℃까지 온도를 내리고, n-부틸리튬(15 mL, 37.5 mmol)을 천천히 적가하였다. 1시간 동안 교반하고 다시 -78℃까지 온도를 내린후, 보론산트리메틸에스테르(10.5 mL, 93.75 mmol)를 천천히 넣어주고, 12시간 교반하였다. 0℃까지 온도를 내린 후 10 중량%의 황산 수용액 (16 mL)을 넣고 교반하여 흰색 침전을 얻었다. 유기층을 THF로 추출하고, 황산마그네슘으로 건조한 후, 감압 여과하였다. 이 여과액을 농축하여 용매를 제거하고 THF에 녹인 후, 과량의 2M NaOH 수용액을 넣고 디메틸클로로 메탄으로 유기층을 분리하였다. 분리된 수용액 층에 염산 수용액을 가하여 침전물을 생성시킨 후 여과하여 화합물 10-2 (2.7 g, 42%)를 얻었다. MS [M] = 204Compound 10-1 (5 g, 31.3 mmol) prepared in 1 was dissolved in anhydrous THF (200 mL), cooled to −10 ° C., and n-butyllithium (15 mL, 37.5 mmol) was slowly added dropwise. After stirring for 1 hour and lowering the temperature to -78 ℃ again, boronic acid trimethyl ester (10.5 mL, 93.75 mmol) was added slowly and stirred for 12 hours. After the temperature was lowered to 0 ° C., 10 wt% aqueous sulfuric acid solution (16 mL) was added thereto, followed by stirring to obtain a white precipitate. The organic layer was extracted with THF, dried over magnesium sulfate and filtered under reduced pressure. The filtrate was concentrated to remove the solvent, dissolved in THF, excess aqueous 2M NaOH solution was added and the organic layer was separated with dimethylchloromethane. An aqueous hydrochloric acid solution was added to the separated aqueous solution layer to form a precipitate, followed by filtration to obtain compound 10-2 (2.7 g, 42%). MS [M] = 204

3. 화합물 10-3의 제조3. Preparation of Compound 10-3

1,3-디브로모벤젠(5 g, 21.2 mmol)과 상기 2에서 제조한 화합물 10-2(4.3 g, 21.2 mmol)을 무수 THF (100 mL)에 녹이고, Pd(PPh3)4 (1.2 g, 1.06 mmol)을 넣고, K2CO3 (3.2 g, 23.3 mmol)을 H2O (50 mL)에 녹여 넣어준 후 교반하면서 환류시켰다. 3시간 후 소금물로 씻어주고, 유기층을 에틸 아세테이트로 추출하였다. 황산마그네슘으로 수분을 제거하고 감압 여과한 후 농축하여 용매를 제거하고 컬럼 크로마토그래피로 분리하여 화합물 10-3 (3.7 g, 55%)을 얻었다. MS [M] = 3151,3-dibromobenzene (5 g, 21.2 mmol) and compound 10-2 (4.3 g, 21.2 mmol) prepared in 2 were dissolved in anhydrous THF (100 mL), and Pd (PPh 3 ) 4 (1.2 g, 1.06 mmol) was added, K 2 CO 3 (3.2 g, 23.3 mmol) was dissolved in H 2 O (50 mL), and the mixture was refluxed with stirring. After 3 hours, the mixture was washed with brine, and the organic layer was extracted with ethyl acetate. Water was removed over magnesium sulfate, and the residue was filtered under reduced pressure, concentrated to remove the solvent, and separated by column chromatography to obtain compound 10-3 (3.7 g, 55%). MS [M] = 315

4. 화합물 10-4의 제조4. Preparation of Compound 10-4

상기 실시예 1의 2에서 2-브로모나프탈렌 대신 상기 3에서 제조한 화합물 10-3을 사용한 것을 제외하고는, 실시예 1의 2와 동일한 방법으로 하여 화합물 10-4 (2.46g, 95%)를 얻었다. MS [M] = 788(- H2O form)Compound 10-4 (2.46g, 95%) in the same manner as in Example 1 2, except that Compound 10-3, prepared in 3 above, was used instead of 2-bromonaphthalene in Example 1-2. Got. MS [M] = 788 (-H 2 O form)

5. 화합물 10의 제조5. Preparation of Compound 10

상기 실시예 1의 3에서 화합물 3-2 대신 상기 4에서 제조한 화합물 10-4를 사용한 것을 제외하고는, 실시예 1의 3과 동일한 방법으로 하여 화합물 10 (1.14g, 60%)을 얻었다. MS [M] = 772Compound 10 (1.14 g, 60%) was obtained by the same method as 3 of Example 1, except that compound 10-4 prepared in 4 was used instead of compound 3-2 in Example 1-3. MS [M] = 772

실시예Example 4 4 : 화합물 14의 제조 : Preparation of Compound 14

Figure 112006025386879-pat00021
Figure 112006025386879-pat00021

1. 화합물 14-1의 제조1. Preparation of Compound 14-1

1,4-디브로모벤젠(5 g, 21.2 mmol)과 2-나프탈렌보론산(3.65 g, 21.2 mmol)을 무수 THF (100 mL)에 녹이고, Pd(PPh3)4 (1.2 g, 1.06 mmol)을 넣고, K2CO3 (3.2 g, 23.3 mmol)을 H2O (50 mL)에 녹여 넣어준 후 교반하면서 환류시켰다. 3시간 후 소금물로 씻어주고, 유기층을 에틸 아세테이트로 추출하였다. 황산마그네슘으로 수분을 제거하고 감압 여과한 후 농축하여 용매를 제거하고 컬럼 크로마토그래피로 분리하여 화합물 14-1 (3.3 g, 55%)을 얻었다. MS [M] = 283Dissolve 1,4-dibromobenzene (5 g, 21.2 mmol) and 2-naphthaleneboronic acid (3.65 g, 21.2 mmol) in anhydrous THF (100 mL), Pd (PPh 3 ) 4 (1.2 g, 1.06 mmol) ), K 2 CO 3 (3.2 g, 23.3 mmol) was dissolved in H 2 O (50 mL), and the mixture was refluxed with stirring. After 3 hours, the mixture was washed with brine, and the organic layer was extracted with ethyl acetate. Water was removed over magnesium sulfate, and the residue was filtered under reduced pressure, concentrated to remove the solvent, and separated by column chromatography to obtain compound 14-1 (3.3 g, 55%). MS [M] = 283

2. 화합물 14-2의 제조2. Preparation of Compound 14-2

상기 실시예 1의 2에서 2-브로모나프탈렌 대신 상기 1에서 제조한 화합물 14-1을 사용한 것을 제외하고는, 실시예 1의 2와 동일한 방법으로 하여 화합물 14-2 (2.83g, 95%)를 얻었다. MS [M] = 724(- H2O form)Compound 14-2 (2.83 g, 95%) in the same manner as in Example 1 2, except that Compound 14-1 prepared in 1 was used instead of 2-bromonaphthalene in Example 1 2. Got. MS [M] = 724 (-H 2 O form)

3. 화합물 14의 제조3. Preparation of Compound 14

상기 실시예 1의 3에서 화합물 3-2 대신 상기 2에서 제조한 화합물 14-2를 사용한 것을 제외하고는, 실시예 1의 3과 동일한 방법으로 하여 화합물 14 (1.55g, 65%)를 얻었다. MS [M] = 708Compound 14 (1.55 g, 65%) was obtained in the same manner as in Example 1 3, except that Compound 14-2, prepared in 2, was used instead of Compound 3-2 in Example 1-3. MS [M] = 708

실시예Example 5 5 : 화합물 19의 제조 : Preparation of Compound 19

Figure 112006025386879-pat00022
Figure 112006025386879-pat00022

1. 화합물 19-1의 제조1. Preparation of Compound 19-1

상기 실시예 1의 1에서 제조한 화합물 3-1(29.9 mmol, 10.0 g), 57% HI(30ml), 50% H3PO2(10ml), 아세트산 (300ml)을 혼합한 후 교반하면서 24시간 동안 환류하였다. 상온으로 냉각 후 여과하여 화합물 19-1(6.37 g, 70 %)을 얻었다. MS [M] = 304Compound 3-1 prepared in Example 1 1 (29.9 mmol, 10.0 g), 57% HI (30 ml), 50% H 3 PO 2 (10 ml), acetic acid (300 ml) were mixed and then stirred for 24 hours. At reflux. After cooling to room temperature, filtered to obtain compound 19-1 (6.37 g, 70%). MS [M] = 304

2. 화합물 19-2의 제조2. Preparation of Compound 19-2

상기 1에서 제조한 화합물 19-1(19.7 mmol, 6.0 g)을 DMF에 녹이고 N-브로모숙신이미드 (8.77 g, 49.3 mmol)를 넣어준 후, 3시간 동안 교반하였다. 용액에 H2O를 넣어 침전을 형성하고 감압여과한 후, 다시 THF에 녹이고 에테르로 재결정하여 화합물 19-2 (5.74 g, 63%)를 얻었다. MS [M] = 462Compound 19-1 (19.7 mmol, 6.0 g) prepared in 1 was dissolved in DMF, and N-bromosuccinimide (8.77 g, 49.3 mmol) was added thereto, followed by stirring for 3 hours. H 2 O was added to the solution to form a precipitate, which was filtered under reduced pressure, dissolved in THF, and recrystallized with ether to obtain compound 19-2 (5.74 g, 63%). MS [M] = 462

3. 화합물 19-3의 제조3. Preparation of Compound 19-3

N2 하에서 상기 2에서 제조한 화합물 19-2 (5 g, 10.8 mmol)를 THF (70 mL)에 녹이고, 3-포밀벤젠 보론산(3.57 g, 23.8 mmol)을 에탄올 (40mL)에 녹여 첨가하였다. K2CO3 (7 g, 52 mmol)를 H2O (25 mL)에 녹여 첨가하고, 마지막으로 Pd(PPh3)4 (0.23 g, 0.3 mmol)을 넣어, 약 17시간 환류 교반시켰다. 반응이 끝난 후 상온으로 냉각시키고 반응 혼합액에서 유기층을 층 분리하고 여과하여 고체를 얻었다. 이 고체를 THF에 다시 녹인 후 컬럼 크로마토그래피로 정제한 다음 THF와 에탄올에서 재결정하여 화합물 19-3 (3.05 g, 55%)을 얻었다. MS [M] = 512Compound N-2-2 (5 g, 10.8 mmol) prepared in 2 above under N 2 was dissolved in THF (70 mL), and 3-formylbenzene boronic acid (3.57 g, 23.8 mmol) was added to ethanol (40 mL). . K 2 CO 3 (7 g, 52 mmol) was dissolved in H 2 O (25 mL) and added. Finally, Pd (PPh 3 ) 4 (0.23 g, 0.3 mmol) was added thereto, and the mixture was stirred at reflux for about 17 hours. After the reaction was completed, the mixture was cooled to room temperature, and the organic layer was separated from the reaction mixture and filtered to obtain a solid. The solid was dissolved in THF again, purified by column chromatography, and recrystallized from THF and ethanol to obtain compound 19-3 (3.05 g, 55%). MS [M] = 512

4. 화합물 19의 제조4. Preparation of Compound 19

N2 하에서 벤질포스포린산 디에틸에테르(benzylphosphoric acid diethyl ether)(2.4 mL, 11.5 mmol), 나트륨 하이드라이드(sodium hydride)(0.70 g, 17.3 mmol), 18-크라운-6(0.1 g, 0.48 mmol)를 THF (100 mL)에 넣고, 0℃에서 상기 3에서 제조한 화합물 19-3 (2.46 g, 4.8 mmol)을 넣었다. 실온에서 12시간 가량 교반시켰다. 반응이 끝난 후 반응 혼합액에 THF와 H2O를 넣었다. 유기층을 층 분리하고 MgSO4로 건조한 후 농축시켰다. THF/EtOH로 재결정하여 화합물 19 (2.90 g, 91%)를 얻었다. MS [M] = 660Benzylphosphoric acid diethyl ether (2.4 mL, 11.5 mmol), sodium hydride (0.70 g, 17.3 mmol), 18-crown-6 (0.1 g, 0.48 mmol) under N 2 ) Was added to THF (100 mL), and compound 19-3 (2.46 g, 4.8 mmol) prepared in 3 was added at 0 ° C. Stir at room temperature for 12 hours. After the reaction, THF and H 2 O were added to the reaction mixture. The organic layer was separated, dried over MgSO 4 and concentrated. Recrystallization from THF / EtOH gave compound 19 (2.90 g, 91%). MS [M] = 660

실시예Example 6 6 : 화합물 24의 제조 : Preparation of Compound 24

Figure 112006025386879-pat00023
Figure 112006025386879-pat00023

1. 화합물 24-1의 제조1. Preparation of Compound 24-1

2-나프탈렌보론산(4.0 g, 23.4 mmol)과 9-브로모안트라센 (6.0 g, 23.4 mmol)을 THF(30mL)에 녹이고, Pd(PPh3)4 (0.24 g, 0.20 mmol)을 넣고, 2M K2CO3 수용액 (8.2 mL, 16.3 mmol)을 넣어준 후 20시간 동안 환류 교반하였다. 유기층을 에틸아세테이트로 추출하였다. 황산마그네슘으로 수분을 제거하고 감압 여과한 후 농축하여 용매를 제거하고 THF에 녹이고 에테르로 재결정하여 화합물 24-1(6.74 g, 95%)을 얻었다. MS [M] = 304Dissolve 2-naphthalene boronic acid (4.0 g, 23.4 mmol) and 9-bromoanthracene (6.0 g, 23.4 mmol) in THF (30 mL), add Pd (PPh 3 ) 4 (0.24 g, 0.20 mmol), and add 2M. K 2 CO 3 aqueous solution (8.2 mL, 16.3 mmol) was added thereto, and the mixture was stirred under reflux for 20 hours. The organic layer was extracted with ethyl acetate. Water was removed over magnesium sulfate, and the residue was filtered under reduced pressure, concentrated to remove the solvent, dissolved in THF, and recrystallized with ether to obtain compound 24-1 (6.74 g, 95%). MS [M] = 304

2. 화합물 24-2의 제조2. Preparation of Compound 24-2

상기 1에서 제조한 화합물 24-1 (6.0 g, 19.7 mmol)을 DMF에 녹이고 N-브로모숙신이미드 (5.26 g, 30.0 mmol)를 넣어준 후, 3시간 동안 교반하였다. 용액에 H2O를 넣어 침전을 형성하고 감압여과한 후, 다시 THF에 녹이고 에테르로 재결정하여 화합물 24-2 (4.91 g, 65%)를 얻었다. MS [M] = 383Compound 24-1 (6.0 g, 19.7 mmol) prepared in 1 was dissolved in DMF, and N-bromosuccinimide (5.26 g, 30.0 mmol) was added thereto, followed by stirring for 3 hours. H 2 O was added to the solution to form a precipitate, which was filtered under reduced pressure, dissolved in THF, and recrystallized with ether to obtain compound 24-2 (4.91 g, 65%). MS [M] = 383

3. 화합물 24-3의 제조3. Preparation of Compound 24-3

상기 2에서 제조한 화합물 24-2 (4.90 g, 12.8 mmol)와 4-브로모페닐보론산 (2.56 g, 12.8 mmol)을 무수 THF (10 mL)에 녹이고, Pd(PPh3)4 (0.44g, 0.38 mmol)을 넣고, 2M K2CO3 수용액 (9.6 mL, 18.9 mmol)을 넣어준 후 3시간 환류 교반하였다. 유기층을 에틸아세테이트로 추출하였다. 황산마그네슘으로 수분을 제거하고 감압 여과한 후 농축하여 용매를 제거하고 컬럼 크로마토그래피로 분리하여 화합물 24-3 (2.41g, 41%)을 얻었다. MS [M] = 459Compound 24-2 (4.90 g, 12.8 mmol) and 4-bromophenylboronic acid (2.56 g, 12.8 mmol) prepared in 2 were dissolved in anhydrous THF (10 mL), and Pd (PPh 3 ) 4 (0.44 g) , 0.38 mmol) was added, 2M K 2 CO 3 aqueous solution (9.6 mL, 18.9 mmol) was added thereto, and the mixture was stirred under reflux for 3 hours. The organic layer was extracted with ethyl acetate. Water was removed over magnesium sulfate, and the residue was filtered under reduced pressure, concentrated to remove the solvent and separated by column chromatography to obtain compound 24-3 (2.41 g, 41%). MS [M] = 459

4. 화합물 24-4의 제조4. Preparation of Compound 24-4

상기 실시예 1의 2에서 2-브로모나프탈렌 대신 상기 3에서 제조한 화합물 24-3을 사용한 것을 제외하고는, 실시예 1의 2와 동일한 방법으로 하여 화합물 24-4 (2.18g, 95%)를 얻었다. MS [M] = 1076(- H2O form)Compound 24-4 (2.18g, 95%) in the same manner as in Example 1 2, except that Compound 24-3, which was prepared in 3 above, was used instead of 2-bromonaphthalene in 2 of Example 1. Got. MS [M] = 1076 (-H 2 O form)

5. 화합물 24의 제조5. Preparation of Compound 24

상기 실시예 1의 3에서 화합물 3-2 대신 상기 4에서 제조한 화합물 24-4를 사용한 것을 제외하고는, 실시예 1의 3과 동일한 방법으로 하여 화합물 24 (1.16g, 60%)를 얻었다. MS [M] = 1060Compound 24 (1.16 g, 60%) was obtained in the same manner as in Example 1 3, except that Compound 24-4, instead of Compound 3-2, was used instead of Compound 3-2 in Example 1-3. MS [M] = 1060

실시예Example 7 7 : 화합물 74의 제조 : Preparation of Compound 74

Figure 112006025386879-pat00024
Figure 112006025386879-pat00024

1. 화합물 74-1의 제조1. Preparation of Compound 74-1

상기 실시예 5의 2에서 화합물 24-1 대신 화합물 19-1을 사용한 것을 제외하고는, 실시예 5의 2와 동일한 방법으로 하여 화합물 74-1 (10.1g, 40%)을 얻었다. MS [M] = 383Compound 74-1 (10.1 g, 40%) was obtained in the same manner as in Example 5 2, except that Compound 19-1 was used instead of Compound 24-1 in 2 of Example 5. MS [M] = 383

2. 화합물 74-2의 제조2. Preparation of Compound 74-2

상기 실시예 5의 1에서 9-브로모안트라센 대신 상기 1에서 제조한 화합물 74-1을 사용한 것을 제외하고는, 실시예 5의 1과 동일한 방법으로 하여 화합물 74-2 (10.4 g, 93%)를 얻었다. MS [M] = 430Compound 74-2 (10.4 g, 93%) in the same manner as in Example 5 1, except that Compound 74-1 prepared in 1 was used instead of 9-bromoanthracene in 1 of Example 5. Got. MS [M] = 430

3. 화합물 74-3의 제조3. Preparation of Compound 74-3

상기 실시예 5의 2에서 화합물 24-1 대신 상기 2에서 제조한 화합물 74-2를 사용한 것을 제외하고는, 실시예 5의 2와 동일한 방법으로 하여 화합물 74-3 (8.05g, 68%)을 얻었다. MS [M] = 509Compound 74-3 (8.05 g, 68%) was prepared in the same manner as in Example 5 2, except that Compound 74-2 prepared in 2 was used instead of Compound 24-1 in Example 5-2. Got it. MS [M] = 509

4. 화합물 74의 제조4. Preparation of Compound 74

4-(2-나프탈렌)페닐보론산(1.07 g, 4.32 mmol)과 상기 3에서 제조한 화합물74-3 (2.0 g, 3.93 mmol)을 THF(30mL)에 녹이고, Pd(PPh3)4 (0.12 g, 0.10 mmol)을 넣고, 2M K2CO3 수용액 (8.2 mL, 16.3 mmol)을 넣어준 후 20시간 동안 환류 교반하였다. 유기층을 에틸아세테이트로 추출하였다. 황산마그네슘으로 수분을 제거하고 감압 여과한 후 농축하여 용매를 제거하고 THF에 녹이고 에테르로 재결정하여 화합물 74 (1.98 g, 80%)를 얻었다. MS [M] = 6324- (2-naphthalene) phenylboronic acid (1.07 g, 4.32 mmol) and compound 74-3 (2.0 g, 3.93 mmol) prepared in 3 were dissolved in THF (30 mL), and Pd (PPh 3 ) 4 (0.12 g, 0.10 mmol) was added thereto, followed by 2M K 2 CO 3 aqueous solution (8.2 mL, 16.3 mmol), followed by stirring under reflux for 20 hours. The organic layer was extracted with ethyl acetate. Water was removed over magnesium sulfate, and the residue was filtered under reduced pressure, concentrated to remove the solvent, dissolved in THF, and recrystallized with ether to obtain a compound 74 (1.98 g, 80%). MS [M] = 632

실시예Example 8 8 : 화합물 124의 제조 : Preparation of Compound 124

Figure 112006025386879-pat00025
Figure 112006025386879-pat00025

1. 화합물 124-1의 제조1. Preparation of Compound 124-1

1-브로모-4-요오드벤젠(70.7 mmol, 20.0 g), 디페닐아민(70.7 mmol, 12.0 g) 및 K2CO3(283 mmol, 39.1 g)을 DMAC(디메틸 아세트아미드) 200 mL에 녹이고, 150℃에서 19시간 교반하였다. 반응이 끝난 후 상온으로 냉각시키고, 여과한 후 물과 에탄올로 여러 번 세척하였다. THF에 녹이고 에테르로 재결정하여 화합물 124-1 (10.3 g, 45%)을 얻었다. MS [M] = 324Dissolve 1-bromo-4-iodobenzene (70.7 mmol, 20.0 g), diphenylamine (70.7 mmol, 12.0 g) and K 2 CO 3 (283 mmol, 39.1 g) in 200 mL of DMAC (dimethyl acetamide) It stirred at 150 degreeC for 19 hours. After the reaction was cooled to room temperature, filtered and washed with water and ethanol several times. It was dissolved in THF and recrystallized from ether to give compound 124-1 (10.3 g, 45%). MS [M] = 324

2. 화합물 124-2의 제조2. Preparation of Compound 124-2

상기 실시예 1의 2에서 2-브로모나프탈렌 대신 상기 1에서 제조한 화합물 124-1을 사용한 것을 제외하고는, 실시예 1의 2와 동일한 방법으로 하여 화합물 124-2 (4.53g, 89%)를 얻었다. MS [M] = 806(- H2O form)Compound 124-2 (4.53 g, 89%) in the same manner as in Example 1 2, except that Compound 124-1 prepared in 1 was used instead of 2-bromonaphthalene in Example 1 2. Got. MS [M] = 806 (-H 2 O form)

3. 화합물 124의 제조3. Preparation of Compound 124

상기 실시예 1의 3에서 화합물 3-2 대신 상기 2에서 제조한 화합물 124-2를 사용한 것을 제외하고는, 실시예 1의 3과 동일한 방법으로 하여 화합물 124 (2.59g, 60%)를 얻었다. MS [M] = 790Compound 124 (2.59 g, 60%) was obtained in the same manner as in Example 1 3, except that Compound 124-2 prepared in 2 was used instead of Compound 3-2 in Example 1-3. MS [M] = 790

실험예Experimental Example 1 One : :

ITO(인듐주석산화물)가 1000 Å 두께로 박막 코팅된 유리 기판 (corning 7059 glass)을, 분산제를 녹인 증류수에 넣고 초음파로 세척하였다. 분산제는 Fischer Co.의 제품을 사용하였으며, 증류수는 Millipore Co. 제품의 필터(Filter)로 2차 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후, 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후 이소프로필알콜, 아세톤, 메탄올 용제 순서로 초음파 세척을 하고 건조시킨 후, 플라즈마 세정기로 수송시켜 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate (corning 7059 glass) coated with a thin film of ITO (Indium Tin Oxide) at a thickness of 1000 Å was placed in distilled water in which a dispersant was dissolved, and washed with ultrasonic waves. Dispersant was used Fischer Co. product, distilled water was Millipore Co. Secondly filtered distilled water was used as a filter of the product. After the ITO was washed for 30 minutes, the ultrasonic cleaning was repeated twice with distilled water for 10 minutes. After the washing of distilled water, ultrasonic cleaning was performed in the order of isopropyl alcohol, acetone, and methanol solvent, followed by drying. The substrate was then transported to a plasma cleaner, and the substrate was washed for 5 minutes using an oxygen plasma, and then transported to a vacuum evaporator.

상기 ITO 전극 위에 3,6-비스-2-나프틸페닐아미노-N-[4-(2-나프틸페닐) 아미노페닐]카바졸(800 Å), 4,4'-비스[N-(1-나프틸)-N-페닐아미노]비페닐(NPB) (300 Å), 상기 실시예 1에서 제조한 화합물 3을 하기 화합물 A(4 wt%)와 함께 증착시키고 (300 Å), 그 다음 9,10-비스-2-나프틸-2-[4-(N-페닐벤조이미다조일) 페닐]안트라센 (200 Å)을 순차적으로 열 진공 증착하여 정공주입층, 정공수송층, 발광층, 전자수송층을 차례로 형성시켰다.3,6-bis-2-naphthylphenylamino-N- [4- (2-naphthylphenyl) aminophenyl] carbazole (800 Å), 4,4'-bis [N- (1) on the ITO electrode -Naphthyl) -N-phenylamino] biphenyl (NPB) (300 μs), compound 3 prepared in Example 1 was deposited together with the following compound A (4 wt%) (300 μs), and then 9 , 10-bis-2-naphthyl-2- [4- (N-phenylbenzoimidazoyl) phenyl] anthracene (200 Å) was sequentially vacuum deposited to form a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer. It was formed in turn.

상기 전자수송층 위에 순차적으로 12 Å 두께의 리튬 플루오라이드 (LiF)와 2000 Å 두께의 알루미늄을 증착하여 음극을 형성하고 유기발광소자를 제조하였다.12 Å thick lithium fluoride (LiF) and 2000 Å thick aluminum were sequentially deposited on the electron transport layer to form a cathode, thereby manufacturing an organic light emitting device.

상기의 과정에서 유기물의 증착속도는 0.6~1.0 Å/sec를 유지하였고, 음극의 리튬 플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착속도를 유지하였으며, 증착시 진공도는 2 x 10-7 ~ 5 x 10-8 torr를 유지하였다.In the above process, the deposition rate of the organic material was maintained at 0.6˜1.0 Å / sec, the lithium fluoride at the cathode was maintained at 0.3 Å / sec, and the aluminum at 2 Å / sec. -7 to 5 x 10 -8 torr was maintained.

상기에서 제조된 유기발광소자에 7.8 V의 순방향 전계를 가한 결과 100 mA/㎠의 전류밀도에서 16.1 cd/A의 녹색 발광이 관찰되었다. 이때 색좌표는 x = 0.295, y = 0.650 이었다. 이 소자에 50 mA/㎠의 일정한 전류밀도를 인가하였을 때, 휘도가 초기 휘도의 50%까지 감소하는데 걸린 시간은 약 200시간이었다.As a result of applying a forward electric field of 7.8 V to the organic light emitting device, green light emission of 16.1 cd / A was observed at a current density of 100 mA / cm 2. The color coordinates were x = 0.295 and y = 0.650. When a constant current density of 50 mA / cm 2 was applied to this device, the time taken for the luminance to decrease to 50% of the initial luminance was about 200 hours.

Figure 112006025386879-pat00026
Figure 112006025386879-pat00026

실험예Experimental Example 2 2 : :

상기 실험예 1에서 화합물 3 대신 화합물 4를 사용한 것을 제외하고는 실험예 1과 동일한 방법으로 유기발광소자를 제조하였다.An organic light emitting diode was manufactured according to the same method as Experimental Example 1 except for using compound 4 instead of compound 3 in Experimental Example 1.

상기 제조된 유기발광소자에 8.1 V의 순방향 전계를 가한 결과, 100 mA/㎠의 전류밀도에서 16.2 cd/A의 녹색 발광이 관찰되었다. 이 때 색좌표는 x = 0.310, y = 0.641 이었다. 이 소자에 50 mA/㎠의 일정한 전류밀도를 인가하였을 때, 휘도가 초기 휘도의 50%까지 감소하는데 걸린 시간은 약 300시간 이었다.As a result of applying a forward electric field of 8.1 V to the organic light emitting device, green light emission of 16.2 cd / A was observed at a current density of 100 mA / cm 2. At this time, the color coordinates were x = 0.310 and y = 0.641. When a constant current density of 50 mA / cm 2 was applied to the device, the time taken for the luminance to decrease to 50% of the initial luminance was about 300 hours.

실험예Experimental Example 3 3 : :

상기 실험예 1에서 화합물 3 대신 화합물 10을 사용한 것을 제외하고는 실험예 1과 동일한 방법으로 유기발광소자를 제조하였다.An organic light emitting diode was manufactured according to the same method as Experimental Example 1, except that compound 10 was used instead of compound 3 in Experimental Example 1.

상기 제조된 유기발광소자에 7.9 V의 순방향 전계를 가한 결과, 100 mA/㎠의 전류밀도에서 15.1 cd/A의 녹색 발광이 관찰되었다. 이 때 색좌표는 x = 0.303, y = 0.645 이었다. 이 소자에 50 mA/㎠의 일정한 전류밀도를 인가하였을 때, 휘도가 초기 휘도의 50%까지 감소하는데 걸린 시간은 약 500시간이었다.As a result of applying a forward electric field of 7.9 V to the organic light emitting device, green light emission of 15.1 cd / A was observed at a current density of 100 mA / cm 2. At this time, the color coordinates were x = 0.303 and y = 0.645. When a constant current density of 50 mA / cm 2 was applied to this device, the time taken for the luminance to decrease to 50% of the initial luminance was about 500 hours.

비교예Comparative example 1 One : :

상기 실험예 1에서 화합물 3 대신 하기 화합물 B를 사용한 것을 제외하고는 실험예 1과 동일한 방법으로 유기발광소자를 제조하였다.An organic light emitting diode was manufactured according to the same method as Experimental Example 1 except that Compound B was used instead of Compound 3 in Experimental Example 1.

Figure 112006025386879-pat00027
Figure 112006025386879-pat00027

상기 제조된 유기 발광 소자에 6.6 V의 순방향 전계를 가한 결과, 100 mA/㎠의 전류밀도에서 1931 CIE color coordinate 기준으로 x = 0.272, y = 0.610에 해당하는 7.0 cd/A 밝기의 녹색 스펙트럼이 관찰되었다. 또한, 상기 소자에 50 mA/㎠의 전류 밀도에서 일정한 직류 전류를 가하였을 때 휘도가 초기 휘도의 50%까지 내려가는데 걸리는 시간은 300 시간이었다.As a result of applying a forward electric field of 6.6 V to the fabricated organic light emitting diode, a green spectrum of 7.0 cd / A brightness corresponding to x = 0.272 and y = 0.610 based on 1931 CIE color coordinate at a current density of 100 mA / cm 2 was observed. It became. In addition, when a constant direct current was applied to the device at a current density of 50 mA / cm 2, the time taken for the luminance to fall to 50% of the initial luminance was 300 hours.

상기 실험예 1~3 및 비교예 1에서 사용한 발광층 물질 및 실험 결과를 하기 표 1에 요약하였다.The light emitting layer materials and the experimental results used in Experimental Examples 1 to 3 and Comparative Example 1 are summarized in Table 1 below.

Figure 112006025386879-pat00028
Figure 112006025386879-pat00028

본 발명에 따른 안트라센 유도체는 유기발광소자를 비롯한 유기전자소자에서 정공주입, 정공 수송, 전자 주입, 전자 수송, 또는 발광 물질 역할을 할 수 있으며, 특히 단독으로 발광 호스트, 바람직하게는 녹색 호스트로서 역할을 할 수 있다. 본 발명에 따른 유기전자소자는 효율, 구동전압, 안정성 면에서 우수한 특성을 나타낸다.The anthracene derivative according to the present invention may play a role of hole injection, hole transport, electron injection, electron transport, or light emitting material in organic electronic devices including organic light emitting devices, and in particular, serves as a light emitting host, preferably a green host. can do. The organic electronic device according to the present invention exhibits excellent characteristics in terms of efficiency, driving voltage, and stability.

Claims (9)

삭제delete 하기 화학식 1로 표시되는 안트라센 유도체.Anthracene derivative represented by the following formula (1). <화학식 1><Formula 1>
Figure 112008073992282-pat00047
Figure 112008073992282-pat00047
상기 화학식 1에서,In Chemical Formula 1, R1 및 R2는 서로 독립적으로, 페닐; 1-나프틸; 2-나프틸; 1-테트라하이드로나프틸; 2-테트라하이드로나프틸; 바이페닐; 트리페닐; 1-테트랄리닐; 2-테트랄리닐; 스틸베닐; 플루오레닐; 또는 디페닐, 바이페닐, 1-나프틸, 2-나프틸, 안트라세닐, 페닐 또는 나프틸이 치환된 안트라세닐, 페닐티오펜일, 카바졸일 및 디페닐아민으로 이루어진 군으로부터 선택된 기로 치환된 페닐이고,R 1 and R 2 are, independently from each other, phenyl; 1-naphthyl; 2-naphthyl; 1-tetrahydronaphthyl; 2-tetrahydronaphthyl; Biphenyl; Triphenyl; 1-tetralinyl; 2-tetralinyl; Stilbenyl; Fluorenyl; Or phenyl substituted by a group selected from the group consisting of anthracenyl, phenylthiophenyl, carbazolyl and diphenylamine substituted with diphenyl, biphenyl, 1-naphthyl, 2-naphthyl, anthracenyl, phenyl or naphthyl ego, X는 1-나프틸, 2-나프틸 또는 바이페닐인 안트라센 유도체.Anthracene derivative wherein X is 1-naphthyl, 2-naphthyl or biphenyl.
제 2항에 있어서, 상기 화학식 1의 화합물은 하기 구조식으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 안트라센 유도체.The anthracene derivative according to claim 2, wherein the compound of Formula 1 is selected from the group consisting of the following structural formulas.
Figure 112008073992282-pat00030
Figure 112008073992282-pat00030
Figure 112008073992282-pat00031
Figure 112008073992282-pat00031
Figure 112008073992282-pat00032
Figure 112008073992282-pat00032
Figure 112008073992282-pat00033
Figure 112008073992282-pat00033
Figure 112008073992282-pat00034
Figure 112008073992282-pat00034
Figure 112008073992282-pat00035
Figure 112008073992282-pat00035
Figure 112008073992282-pat00036
Figure 112008073992282-pat00036
Figure 112008073992282-pat00037
Figure 112008073992282-pat00037
Figure 112008073992282-pat00038
Figure 112008073992282-pat00038
Figure 112008073992282-pat00039
Figure 112008073992282-pat00039
Figure 112008073992282-pat00040
Figure 112008073992282-pat00040
Figure 112008073992282-pat00041
Figure 112008073992282-pat00041
Figure 112008073992282-pat00042
Figure 112008073992282-pat00042
Figure 112008073992282-pat00043
Figure 112008073992282-pat00043
Figure 112008073992282-pat00044
Figure 112008073992282-pat00044
1) 1-클로로안트라퀴논을 보론산 화합물(X-B(OH)2)과 반응시켜 화합물(Ⅱ)를 제조하는 단계,1) reacting 1-chloroanthraquinone with boronic acid compound (XB (OH) 2 ) to prepare compound (II), 2) 상기 화합물(Ⅱ)를 브로모 화합물(R1-Br 또는 R2-Br)과 반응시켜 디알콜 화합물(Ⅲ)을 제조하는 단계, 및2) reacting compound (II) with a bromo compound (R1-Br or R2-Br) to produce a dialcohol compound (III), and 3) 상기 디알콜 화합물(III)을 요오드화칼륨 및 차아인산나트륨과 반응시켜 화합물(Ⅰ)을 제조하는 단계를 포함하며, 하기 반응식 1로 표시되는 제 2항 또는 제 3항의 안트라센 유도체의 제조방법.3) A method for preparing the anthracene derivative according to claim 2 or 3, wherein the dialcohol compound (III) is reacted with potassium iodide and sodium hypophosphite to produce compound (I). <반응식 1><Scheme 1>
Figure 112008073992282-pat00045
Figure 112008073992282-pat00045
상기 반응식 1에서, In Scheme 1, R1 및 R2는 서로 독립적으로, 페닐; 1-나프틸; 2-나프틸; 1-테트라하이드로나프틸; 2-테트라하이드로나프틸; 바이페닐; 트리페닐; 1-테트랄리닐; 2-테트랄리닐; 스틸베닐; 플루오레닐; 또는 디페닐, 바이페닐, 1-나프틸, 2-나프틸, 안트라세닐, 페닐 또는 나프틸이 치환된 안트라세닐, 페닐티오펜일, 카바졸일 및 디페닐아민으로 이루어진 군으로부터 선택된 기로 치환된 페닐이고,R 1 and R 2 are, independently from each other, phenyl; 1-naphthyl; 2-naphthyl; 1-tetrahydronaphthyl; 2-tetrahydronaphthyl; Biphenyl; Triphenyl; 1-tetralinyl; 2-tetralinyl; Stilbenyl; Fluorenyl; Or phenyl substituted by a group selected from the group consisting of anthracenyl, phenylthiophenyl, carbazolyl and diphenylamine substituted with diphenyl, biphenyl, 1-naphthyl, 2-naphthyl, anthracenyl, phenyl or naphthyl ego, X는 1-나프틸, 2-나프틸 또는 바이페닐인 안트라센 유도체.Anthracene derivative wherein X is 1-naphthyl, 2-naphthyl or biphenyl.
제 1 전극, 제 2 전극, 및 상기 제 1 전극과 제 2 전극 사이에 배치된 1층 이상의 유기물층을 포함하는 유기전자소자로서, 상기 유기물층 중 1 층 이상은 제 2항 또는 제 3항의 안트라센 유도체를 포함하는 것을 특징으로 하는 유기전자소자.An organic electronic device comprising a first electrode, a second electrode, and at least one organic material layer disposed between the first electrode and the second electrode, wherein at least one of the organic material layers comprises the anthracene derivative according to claim 2 or 3. Organic electronic device comprising a. 제 5항에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 및 정공주입 및 정공수송을 동시에 하는 층 중 1층 이상의 층을 포함하고, 상기 층 중 하나의 층이 상기 안트라센 유도체를 포함하는 것을 특징으로 하는 유기전자소자.The method of claim 5, wherein the organic material layer comprises a hole injection layer, a hole transport layer, and at least one layer of the hole injection and hole transport at the same time, wherein one of the layers comprises the anthracene derivative An organic electronic device. 제 5항에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층이 상기 안트라센 유도체를 포함하는 것을 특징으로 하는 유기전자소자.The organic electronic device of claim 5, wherein the organic material layer comprises a light emitting layer, and the light emitting layer comprises the anthracene derivative. 제 5항에 있어서, 상기 유기물층은 전자수송층을 포함하고, 상기 전자수송층이 상기 안트라센 유도체를 포함하는 것을 특징으로 하는 유기전자소자.The organic electronic device of claim 5, wherein the organic material layer includes an electron transport layer, and the electron transport layer includes the anthracene derivative. 제 5항에 있어서, 상기 유기전자소자는 유기발광소자, 유기태양전지, 유기감광체(OPC) 및 유기트랜지스터로 이루어진 군으로부터 선택되는 것을 특징으로 하는 유기전자소자.The organic electronic device of claim 5, wherein the organic electronic device is selected from the group consisting of an organic light emitting device, an organic solar cell, an organic photoconductor (OPC), and an organic transistor.
KR1020060033236A 2006-04-12 2006-04-12 New anthracene derivatives, preparation method thereof and organic electronic device using the same KR100887870B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060033236A KR100887870B1 (en) 2006-04-12 2006-04-12 New anthracene derivatives, preparation method thereof and organic electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060033236A KR100887870B1 (en) 2006-04-12 2006-04-12 New anthracene derivatives, preparation method thereof and organic electronic device using the same

Publications (2)

Publication Number Publication Date
KR20070101722A KR20070101722A (en) 2007-10-17
KR100887870B1 true KR100887870B1 (en) 2009-03-06

Family

ID=38816922

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060033236A KR100887870B1 (en) 2006-04-12 2006-04-12 New anthracene derivatives, preparation method thereof and organic electronic device using the same

Country Status (1)

Country Link
KR (1) KR100887870B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974125B1 (en) * 2008-05-14 2010-08-04 주식회사 두산 A method for manufacturing asymmetric anthracene derivatives and application for oled device using the same
KR101317511B1 (en) * 2009-04-30 2013-10-15 주식회사 엘지화학 New compounds and organic electronic device using the same
KR101396647B1 (en) * 2009-06-24 2014-05-16 주식회사 엘지화학 New anthracene derivatives, preparation method thereof and organic electronic device using the same
KR102704439B1 (en) * 2018-10-04 2024-09-09 삼성디스플레이 주식회사 Organic light-emitting device and display including the same
KR102466029B1 (en) * 2019-06-25 2022-11-10 주식회사 엘지화학 Anthracene compound and organic light emitting device comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000048009A (en) * 1998-12-09 2000-07-25 로버트 디. 크루그 Electroluminescent device with anthracene derivatives hole transport layer
KR20050058465A (en) * 2002-08-23 2005-06-16 이데미쓰 고산 가부시키가이샤 Organic electroluminescence device and anthracene derivative
WO2005054162A1 (en) 2003-12-01 2005-06-16 Idemitsu Kosan Co., Ltd. Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same
US20050245752A1 (en) 2004-04-29 2005-11-03 Eastman Kodak Company Synthesis of unsymmetric anthracene compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000048009A (en) * 1998-12-09 2000-07-25 로버트 디. 크루그 Electroluminescent device with anthracene derivatives hole transport layer
KR20050058465A (en) * 2002-08-23 2005-06-16 이데미쓰 고산 가부시키가이샤 Organic electroluminescence device and anthracene derivative
WO2005054162A1 (en) 2003-12-01 2005-06-16 Idemitsu Kosan Co., Ltd. Asymmetric monoanthracene derivative, material for organic electroluminescent device and organic electroluminescent device utilizing the same
US20050245752A1 (en) 2004-04-29 2005-11-03 Eastman Kodak Company Synthesis of unsymmetric anthracene compounds

Also Published As

Publication number Publication date
KR20070101722A (en) 2007-10-17

Similar Documents

Publication Publication Date Title
KR100877876B1 (en) New diamine derivatives, preparation method thereof and organic electronic device using the same
KR101412437B1 (en) New compounds and organic electronic device using the same
KR100852328B1 (en) Novel anthracene derivatives, process for preparation thereof, and organic electronic light emitting device using the same
KR100872692B1 (en) New anthracene derivatives and organic electronic device using the same
KR100961821B1 (en) New anthracene derivatives and organic electronic device using the same
KR101115255B1 (en) New anthracene derivatives and organic electronic device using the same
KR100893044B1 (en) Anthracene derivatives, organic electronic devices using the same and electronic apparatuses comprising the same
KR100963378B1 (en) Organic metal complex derivative and organic light emitting device using the same
KR100864154B1 (en) New anthracene derivatives, preparation method thereof and organic electronic device using the same
KR101012578B1 (en) New diamine derivatives and organic electronic device using the same
KR101132462B1 (en) New anthracene derivatives and organic electronic device using the same
KR20100119077A (en) New compounds and organic electronic device using the same
KR20100117947A (en) Cyclic aromatic carbazole compound and organic electronic element using the same, terminal thereof
KR20110057008A (en) New diamine derivatives, preparation method thereof and organic electronic device using the same
KR100887870B1 (en) New anthracene derivatives, preparation method thereof and organic electronic device using the same
KR101396647B1 (en) New anthracene derivatives, preparation method thereof and organic electronic device using the same
KR101153095B1 (en) New cycloalkene derivatives and organic electronic diode using the same
KR20100125004A (en) Amine compound having three carbazole and organic electronic element using the same, terminal thereof
KR101380008B1 (en) New anthracene derivatives and organic electronic device using the same
KR101295492B1 (en) New anthracene derivatives and organic light emitting diode using the same
KR20110131155A (en) New dithienopyrrole derivatives and organic electronic diode using the same
KR101251656B1 (en) New anthracene derivatives and organic electronic device using the same
KR20100048107A (en) New anthracene derivatives and organic electronic device using the same
KR101182560B1 (en) New dithienopyrrole derivatives and organic electronic diode using the same
KR20140016214A (en) New anthracene derivatives, preparation method thereof and organic electronic device using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150119

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160216

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170216

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180116

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200116

Year of fee payment: 12