KR100878944B1 - Control method of reducing agent for ag/al2o3 - Google Patents

Control method of reducing agent for ag/al2o3 Download PDF

Info

Publication number
KR100878944B1
KR100878944B1 KR1020070083453A KR20070083453A KR100878944B1 KR 100878944 B1 KR100878944 B1 KR 100878944B1 KR 1020070083453 A KR1020070083453 A KR 1020070083453A KR 20070083453 A KR20070083453 A KR 20070083453A KR 100878944 B1 KR100878944 B1 KR 100878944B1
Authority
KR
South Korea
Prior art keywords
reducing agent
catalyst
nox
silver
temperature
Prior art date
Application number
KR1020070083453A
Other languages
Korean (ko)
Inventor
길정기
남인식
박주형
강호철
윤달영
차문순
Original Assignee
현대자동차주식회사
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 포항공과대학교 산학협력단 filed Critical 현대자동차주식회사
Priority to KR1020070083453A priority Critical patent/KR100878944B1/en
Application granted granted Critical
Publication of KR100878944B1 publication Critical patent/KR100878944B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1614NOx amount trapped in catalyst

Abstract

A reducing agent control device and method of the silver deposition alumina catalyst is provided to improve the fuel economy by controlling the optimum C1/NOx ratio according to temperature and spraying the reducing agent on the front of a catalyst. A reducing agent control device of the silver deposition alumina catalyst comprises a temperature and the NOx sensor(11) sensing the exhaust temperature and NOx; a controller(12) controlling amount of the reducing agent calculated through the C1/NOx ratio according to the exhaust temperature; a reducing agent tank(14) storing the reducing agent for returning the NOx to the nitrogen; a nozzle(16) spraying the reducing agent on front of the catalyst; and a flow controlling valve(19) supplying the reducing agent of the reducing agent tank to the nozzle.

Description

은 담지 알루미나 촉매의 환원제 조절장치 및 방법{Control method of reducing agent for Ag/Al2O3}Reducing agent control method and method of silver-supported alumina catalyst {Control method of reducing agent for Ag / Al2O3}

본 발명은 은 담지 알루미나 촉매의 환원제 조절장치 및 방법에 관한 것으로서, 더욱 상세하게는 차량의 배기가스 중 질소산화물을 제거하기 위한 Ag/Al2O3 촉매의 반응온도에 따른 C1/NOx 비를 조절하는 방법을 통해 deNOx(NOx를 N2로 환원) 활성의 극대화 및 환원제로 사용되는 연료를 절감할 수 있도록 한 은 담지 알루미나 촉매의 환원제 조절장치 및 방법에 관한 것이다.The present invention relates to an apparatus and a method for controlling a reducing agent of a silver-supported alumina catalyst, and more particularly, to control the C1 / NOx ratio according to the reaction temperature of the Ag / Al 2 O 3 catalyst to remove nitrogen oxides in the exhaust gas of the vehicle. The present invention relates to a reductant control apparatus and method for reducing silver supported alumina catalysts to maximize deNOx (reduce NOx to N 2 ) activity and reduce fuel used as a reducing agent.

경유 자동차의 특성상 배기가스 중 CO와 탄화수소의 문제는 비교적 적으나, 입자상 물질(PM)과 질소산화물(NOx)은 다양한 환경문제와 질병을 야기하고 있어 유럽을 비롯하여 선진국들은 강력한 규제를 마련하고 있다. Due to the characteristics of diesel vehicles, CO and hydrocarbons in the exhaust gas are relatively small, but particulate matter (PM) and nitrogen oxides (NOx) cause various environmental problems and diseases, and developed countries including Europe have strong regulations.

유럽은 EURO-Ⅳ 와 Ⅴ, 그리고 미국은 SULEV 와 ZEV로 대별되는 환경규제를 채택하고 있으며, 이러한 규제는 엔진의 개량만으로는 만족시킬 수 없게 되었다. 이에 엔진의 개량과 더불어 배기가스의 후처리 기술을 발전시킬 필요가 있다. In Europe, EURO-IV and Ⅴ, and the United States adopt environmental regulations, which are classified as SULEV and ZEV, which can not be satisfied by engine modification alone. Accordingly, it is necessary to develop an exhaust gas aftertreatment technology along with an improvement of the engine.

NOx를 제거하는 기술로는, 유럽에서는 실용화 측면에서 가장 부각되고 있는 요소(urea)(또는 암모니아) SCR기술이 가장 유망한 기술로 대두되고 있으나, 요소 운송, 주입, 분사 장치를 자동차에 직접 설치해 주어야 하며, 주유소처럼 요소를 공급할 수 있는 인프라 구조(infrastructure)도 구축해야 하는 문제점을 가지고 있다. As a technology to remove NOx, urea (or ammonia) SCR technology, which is the most prominent in practical use in Europe, is emerging as the most promising technology, but urea transportation, injection, and injection devices must be installed directly in a vehicle. However, there is a problem in that an infrastructure such as a gas station can be provided to supply an element.

그리고 도요타 자동차에서 개발한 DPNR(Diesel Particulate NOx Reduction)은 PM과 NOx를 동시에 저감할 수 있는 장치로서, 간헐적으로 과부하 조건에서 운전이 되어야 하는 제한점과 연료 속에 포함된 황에 취약한 면을 보이고 있다. In addition, DPNR (Diesel Particulate NOx Reduction), developed by Toyota Motor Co., is a device that can reduce PM and NOx at the same time.

이러한 난점을 극복하는 기술로 경유 자동차의 디젤 연료를 환원제로 사용하는 HC-SCR 기술이 주목을 받게 되었다. Cleaire의 Longview와 Lonestar는 기존 차량을 용이하게 갱신(retrofit)할 수 있는 HC-SCR 촉매 기술을 개발하였으나, 낮은 활성과 연료에 대한 제한점이 있는 것으로 알려져 있다. As a technology for overcoming these difficulties, attention has been paid to the HC-SCR technology using diesel fuel of diesel vehicles as a reducing agent. Cleaire's Longview and Lonestar have developed HC-SCR catalyst technology to easily retrofit existing vehicles, but are known for their low activity and fuel limitations.

최근에 알려진 HC-SCR 촉매는 Ag/Al2O3이 있으며 Burch 등 [S. Satokawa, J. Shibata, K.-I. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 42 (2003) 179., R. Burch, J. P. Breen, C. J. Hill, B. Krutzsch, B. Konrad, E. Jobson, L. Cider, K. Eranen, F. Klingstedt, L-E. Lindfors, Capoc6 meeting (2003)]에 의하면 Ag/Al2O3촉매는 n-옥탄(n-octane)과 같은 장쇄(long chain) 탄화수소를 환원제로 사용한 시스템의 경우 350 ℃ 이상의 조건에서 좋은 활성을 얻을 수 있음을 확인 하였고, Niwa [T. Nakatsuji, R. Yasukawa, K. Tabata, K. Ueda, M. Niwa, Appl. Catal. B, 17 (1998) 333]는 Ag/Al2O3를 촉매로 이용하여 2차연료 주입(secondary fuel injection)을 가진 디젤(diesel) 엔진에서 NOx 제거연구를 하여 가솔린의 린번(lean burn)엔진이나 디젤 엔진에 적용할 수 있음을 확인하였다. Recently known HC-SCR catalysts include Ag / Al 2 O 3 and Burch et al. [S. Satokawa, J. Shibata, K.-I. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 42 (2003) 179., R. Burch, JP Breen, CJ Hill, B. Krutzsch, B. Konrad, E. Jobson, L. Cider, K. Eranen, F. Klingstedt, LE. According to Lindfors, Capoc6 meeting (2003)], Ag / Al 2 O 3 catalysts have good activity at temperatures above 350 ° C in systems using long chain hydrocarbons such as n-octane as reducing agents. Niwa [T. Nakatsuji, R. Yasukawa, K. Tabata, K. Ueda, M. Niwa, Appl. Catal. B, 17 (1998) 333] investigated the removal of NOx from diesel engines with secondary fuel injection using Ag / Al 2 O 3 as a catalyst. It was confirmed that it can be applied to diesel engines.

그러나 아직도 NOx를 N2로 환원시키는 활성의 측면에서는 여전히 많은 연료를 환원제로 사용하며, 이에 따른 저온에서 탄소 침적으로 인한 낮은 활성을 나타내는 문제점을 가지고 있다.However, in terms of the activity of reducing NOx to N 2 , still many fuels are used as reducing agents, and thus have a problem of low activity due to carbon deposition at low temperatures.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 은 담지 알루미나 촉매 전단에 온도 및 녹스를 감지하고 온도에 따라 최적의 C1/NOx 비를 제어하여 환원제를 촉매 전단에 분사함으로써, NOx를 N2로 환원시키는 DeNOx 활성을 극대화할 수 있고, 연비를 향상시킬 수 있도록 한 은 담지 알루미나 촉매의 환원제 조절장치 및 방법를 제공하는데 그 목적이 있다.The present invention has been made in view of the above, by detecting the temperature and rust on the silver-supported alumina catalyst front end and controlling the optimum C1 / NOx ratio according to the temperature, by spraying a reducing agent to the front end of the catalyst, NOx is N 2 It is an object of the present invention to provide an apparatus and a method for controlling a reducing agent of a silver-supported alumina catalyst capable of maximizing DeNOx activity and reducing fuel efficiency.

상기한 목적을 달성하기 위한 본 발명은 은 담지 알루미나 촉매의 환원제 조절장치에 있어서,In the present invention for achieving the above object in the reducing agent control device of the silver-supported alumina catalyst,

질소산화물 제거를 위한 촉매 전단에 설치되어 배기온도 및 녹스(NOx)를 감지하는 온도 및 녹스센서; 상기 온도 및 녹스센서로부터 감지신호를 입력받아 배기온도에 따른 C1/NOx 비를 통해 계산된 C1(환원제)의 양을 제어하는 제어부; 녹스를 질소로 환원시키기 위한 환원제를 저장하는 환원제 탱크; 상기 환원제를 촉매 전단에 분사해 주는 분사구; 및 상기 제어부로부터 제어신호를 입력받아 환원제 탱크의 환원제를 분사구에 공급하는 유량조절밸브;를 포함하여 구성되는 것을 특징으로 한다.A temperature and rusty sensor installed at the front end of the catalyst for removing nitrogen oxides and detecting exhaust temperature and NOx; A control unit which receives the detection signal from the temperature and the Knox sensor and controls the amount of C1 (reducing agent) calculated through the C1 / NOx ratio according to the exhaust temperature; A reducing agent tank for storing a reducing agent for reducing the knox to nitrogen; An injection hole for injecting the reducing agent in front of the catalyst; And a flow rate control valve for receiving a control signal from the control unit and supplying a reducing agent of the reducing agent tank to the injection port.

바람직한 구현예로서, 상기 질소산화물 제거를 위한 촉매는 은 1 ~ 5 중량% 및 알루미나 95 ~ 99 중량%를 포함하는 것을 특징으로 한다.In a preferred embodiment, the catalyst for removing nitrogen oxides is characterized in that it comprises 1 to 5% by weight of silver and 95 to 99% by weight of alumina.

더욱 바람직한 구현예로서, 상기 C1/NOx 비는 200 ~ 300℃에서 1 ~ 4, 300 ~ 450 ℃에서 3 ~ 7, 450 ~ 550℃에서 7 ~ 10 인 것을 특징으로 한다.In a more preferred embodiment, the C1 / NOx ratio is characterized in that 1 to 4 at 200 to 300 ℃, 3 to 7, at 300 to 450 3 to 7, 450 to 550 7 to 10.

특히, 상기 환원제는 탄소수 6 ~ 16 범위의 탄화수소 화합물인 것을 특징으로 한다.In particular, the reducing agent is characterized in that the hydrocarbon compound of 6 to 16 carbon atoms.

본 발명의 다른 측면은 은 담지 알루미나 촉매의 환원제 조절방법에 있어서,Another aspect of the present invention is a method for controlling a reducing agent of a silver-supported alumina catalyst,

질소산화물 제거를 위한 촉매 전단의 배기온도 및 녹스(NOx)를 감지하는 단계; 제어부에서 상기 온도 및 녹스센서로부터 감지신호를 입력받아 배기온도에 따른 C1/NOx 비를 통해 계산된 C1(환원제)의 양을 제어하는 단계; 및 상기 제어부로부터 제어신호를 입력받아 촉매 전단에 설치된 분사구를 통해 촉매 입구에 상기 환원제를 공급하는 단계;를 포함하여 이루어지는 것을 특징으로 한다.Sensing exhaust temperature and NOx at the front end of the catalyst for nitrogen oxide removal; Controlling the amount of C1 (reducing agent) calculated through the C1 / NOx ratio according to the exhaust temperature by receiving the detection signal from the temperature and the Knox sensor in the control unit; And receiving the control signal from the control unit and supplying the reducing agent to the catalyst inlet through the injection port installed in the front end of the catalyst.

바람직한 구현예로서, 상기 분사구를 통해 촉매입구에 공급되는 환원제의 양을 제어하는 단계에서 온도에 따른 C1/NOx 비는 200 ~ 300℃에서 1 ~ 4, 300 ~ 450 ℃에서 3 ~ 7, 450 ~ 550℃에서 7 ~ 10 인 것을 특징으로 한다.In a preferred embodiment, the C1 / NOx ratio according to the temperature in the step of controlling the amount of reducing agent supplied to the catalyst inlet through the injection port is 1 ~ 4, 200 ~ 300 3 ~ 7, 450 ~ ~ 300 ~ 450 ℃ It is characterized in that 7 to 10 at 550 ℃.

이상에서 본 바와 같이, 본 발명에 따른 은 담지 알루미나 촉매의 환원제 조절장치 및 방법에 의하면, Ag/Al2O3 를 포함한 촉매 시스템에서 탄화수소화합물을 환원제로 사용하는 경우에 반응온도에 따른 환원제의 양을 조절함으로써, NOx를 N2 로 환원 시키는 DeNOx 활성을 극대화 시킬 수 있다.As described above, according to the apparatus and method for controlling a reducing agent of a silver-supported alumina catalyst according to the present invention, the amount of reducing agent according to the reaction temperature when using a hydrocarbon compound as a reducing agent in a catalyst system containing Ag / Al 2 O 3 By regulating, it is possible to maximize the DeNOx activity of reducing NOx to N 2 .

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도 1은 본 발명의 일실시예에 따른 은 담지 알루미나 촉매의 환원제 조절장치를 나타내는 구성도이고, 도 2는 Ag/γ-Al2O3 촉매의 정해진 C1/NOx 비에서 반응온도에 따른 deNOx 활성을 나타내는 그래프이고, 도 3은 특정 반응 온도에서 Ag/γ-Al2O3 촉매의 C1/NOx 비에 따른 deNOx 활성을 나타내는 그래프이고, 도 4는 각 반응온도에서 최고 활성을 보이는 C1/NOx 비를 나타내는 그래프이다.FIG. 1 is a block diagram showing a reductant control apparatus for a silver-supported alumina catalyst according to an embodiment of the present invention, and FIG. 2 is a reaction diagram according to a reaction temperature at a predetermined C1 / NOx ratio of an Ag / γ-Al 2 O 3 catalyst. 3 is a graph showing deNOx activity, FIG. 3 is a graph showing deNOx activity according to the C1 / NOx ratio of Ag / γ-Al 2 O 3 catalyst at a specific reaction temperature, and FIG. 4 is C1 / showing the highest activity at each reaction temperature. A graph showing the NOx ratio.

본 발명은 은(Ag)담지 알루미나(γ-Al2O3)을 이용하는 경우 다른 C1/NOx 비에서 Ag/Al2O3 촉매가 반응온도에 따라 다른 활성결과를 나타내며, 이로써 각각의 반응온도에 적합한 C1/NOx 비를 조절함으로써 deNOx 활성을 극대화 할 수 있으며, 이 경우 환원제를 고정하는 경우보다 질소산화물 제거효율이 월등히 향상된 결과를 얻을 수 있으며, 이를 통해 연비를 상당히 개선할 수 있도록 한 점에 주안점이 있다.In the present invention, when Ag (Al) -supported alumina (γ-Al 2 O 3 ) is used, the Ag / Al 2 O 3 catalyst exhibits different results depending on the reaction temperature at different C1 / NOx ratios. By controlling the appropriate C1 / NOx ratio, the deNOx activity can be maximized. In this case, the nitrogen oxide removal efficiency can be significantly improved compared to the case of fixing the reducing agent. There is this.

본 발명의 일실시예에 따른 질소산화물 제거용 은(Ag) 담지 알루미나(γ-Al2O3) 촉매의 환원제 조절장치는 엔진(17)의 배기관(18)에 설치된 은 담지 알루미나 촉매(10)(이하, "촉매"라고 함)와, 엔진(17)에서 배출되는 가스의 온도와 NOx 농도를 촉매전단에서 감지하는 온도 및 녹스 센서(11)와, 센서로부터 신호를 입력받아 최적의 C1 량을 제어하는 제어부(12)와, 촉매전단에 환원제를 분사해 주는 분사구(16)를 포함한다.Reducing agent control apparatus for nitrogen oxide removal silver (Ag) -supported alumina (γ-Al 2 O 3 ) catalyst according to an embodiment of the present invention is a silver-supported alumina catalyst 10 installed in the exhaust pipe 18 of the engine 17 (Hereinafter referred to as " catalyst "), the temperature and NOx sensor 11 for detecting the temperature and NOx concentration of the gas discharged from the engine 17 at the catalyst shear, and the optimum amount of C1 received from the sensor The control part 12 to control, and the injection port 16 which injects a reducing agent to a catalyst shear.

상기 분사구(16)를 통해 촉매전단에 환원제를 공급하기 위해 분사구(16)에는 환원제 공급튜브 또는 연결관(15)이 연결 설치되고, 튜브 또는 연결관의 단부에는 환원제탱크(14)가 연결된다. 이때, 상기 튜브 또는 연결관(15)에는 유량조절밸브(19)가 설치되고, 상기 제어부(12)로부터 제어신호를 입력받아 유량조절밸브(19)가 환원제의 양을 조절하게 된다. In order to supply the reducing agent to the catalyst shear through the injection port 16, the injection port 16 is connected to the reducing agent supply tube or connecting tube 15, the reducing agent tank 14 is connected to the end of the tube or connecting tube. At this time, the tube or connecting pipe 15 is provided with a flow control valve 19, the flow control valve 19 receives the control signal from the control unit 12 to adjust the amount of the reducing agent.

상기 Ag/γ-Al2O3 촉매(10)는 Ag 함량에 따라 질소산화물 제거활성[deNOx 활성(NOx를 N2로 환원)]이 다양하며, 이때 Ag 함량은 1 ~ 5 중량%, 바람직하게는 2 ~ 3 중량% 범위인 것이 좋다. The Ag / γ-Al 2 O 3 catalyst 10 has a variety of nitrogen oxide removal activity [deNOx activity (reduction of NOx to N 2 )] according to the Ag content, wherein the Ag content is 1 to 5% by weight, preferably Is preferably in the range of 2 to 3% by weight.

이때, Ag 함량이 1 중량% 미만이면 질소산화물 제거활성이 약하고, 5 중량%를 초과하면 고온에서 질소산화물 제거활성이 낮은 경향을 보이는데, 촉매의 적용처에 따라 Ag 함량을 달리 조성할 수 있다. At this time, when the Ag content is less than 1% by weight, the nitrogen oxide removal activity is weak, and when the Ag content is more than 5% by weight, the nitrogen oxide removal activity tends to be low at high temperatures. The Ag content may be differently formed depending on the application of the catalyst.

상기 Ag/γ-Al2O3 촉매(10) 중 알루미나(γ-Al2O3)의 함량은 95 ~ 99 중량% 범위로 조절됨은 자명하다.It is apparent that the content of alumina (γ-Al 2 O 3 ) in the Ag / γ-Al 2 O 3 catalyst 10 is controlled in the range of 95 to 99% by weight.

본 발명에 따른 C1/NOx 비는 1 ~ 12 이며, 가장 바람직하기로는 2 ~ 9 사이에서 조절하는 경우 질소산화물 제거활성 즉 NOx를 N2로 환원시키는 활성이 우수하다. The C1 / NOx ratio according to the present invention is 1 to 12, and most preferably, the nitrogen oxide removal activity, that is, when NOx is reduced to N 2 when controlled between 2 and 9, is excellent.

왜냐하면, C1/NOx 비가 1 보다 작게 되면 낮은 deNOx 활성을 보이고, 12 보다 크게 되면 연료 페널티(fuel penalty) 로 인해 경제성에 문제가 발생하기 때문이고, 특히 2 보다 작거나 9보다 크게 되면 질소산화물 제거활성의 향상에 실익이 크지 않은 경향을 보이기 때문이다.This is because when the C1 / NOx ratio is less than 1, it shows low deNOx activity, and when it is larger than 12, there is a problem in economics due to the fuel penalty. This is because the profit tends not to be large.

본 발명의 질소산화물 제거용 Ag/Al2O3 촉매(10)는 C1/NOx 비에 따라 특정 반응온도의 활성이 달라지는데, 상기 반응 온도에 따른 C1/NOx 비는 200 ~ 300℃ 이하에서는 1 ~ 4, 300 ~ 450℃ 사이에서는 4 ~ 7, 450 ~ 550℃ 이상에서는 7 ~ 10 으로 하는 것이 바람직하다.Ag / Al 2 O 3 catalyst 10 for removing nitrogen oxides of the present invention, the activity of a specific reaction temperature varies depending on the C1 / NOx ratio, the C1 / NOx ratio according to the reaction temperature is 200 ~ 300 ℃ below 1 ~ It is preferable to set it as 7-10 in 4-7, 450-550 degreeC or more between 4 and 300-450 degreeC.

상기 C1/NOx 비를 통해 C1의 량을 계산하기 위해 우선 배출되는 NOx농도를 촉매전단에서 온도 및 녹스센서를 이용하여 온도와 NOx 농도를 측정 한다. In order to calculate the amount of C1 through the C1 / NOx ratio, the temperature and NOx concentration are first measured by using the NOx concentration at the catalyst shear and the NOx concentration.

일반적으로 자동차에서 배출되는 NOx 는 주로 NO 와 NO2 로 이루어져 있으며, 그 중 대략90% 정도가 NO의 형태로 배출되는 것으로 알려져 있다. 상기에서 언급한 온도에 따른 최적 C1/NOx 비를 통해 계산된 C1의 량을 분사구를 통해 촉매전단에 주입한다. 이때 화학반응식은 다음과 같다.NOx is generally discharged from the car consists primarily of NO and NO 2, is known to have approximately 90% of the NO emissions in the form of those. The amount of C1 calculated through the optimum C1 / NOx ratio according to the temperature mentioned above is injected into the catalyst shear through the injection port. The chemical reaction formula is as follows.

CpH2q + 2NOx + rO2 → N2 + pCO2 + qH2OC p H 2q + 2NOx + rO 2 → N 2 + pCO 2 + qH 2 O

[r = (2p + q → 2x)/2][r = (2p + q → 2x) / 2]

또한, 본 발명의 질소산화물 제거용 Ag/Al2O3 촉매가 탄화수소 화합물을 환 원제로 사용하는 경우에 탄소수 6 ~ 16 범위의 장쇄(long chain) 탄화수소 화합물을 사용하는 것이 바람직하고, 구체적으로 탄소수 10 ~ 16 범위의 알칸을 사용할 수 있다. In addition, when the Ag / Al 2 O 3 catalyst for nitrogen oxide removal of the present invention uses a hydrocarbon compound as a reducing agent, it is preferable to use a long chain hydrocarbon compound having a carbon number in the range of 6 to 16, and specifically, carbon number. Alkanes ranging from 10 to 16 can be used.

또한 산소가 첨가된(oxygenated) 단쇄 (short chain) 탄화수소와 방향족이 포함된 혼합상태로 사용될 수 있으며, 흔히 디젤유가 환원제로 사용될 수 있다.In addition, it can be used in a mixed state containing oxygenated short chain hydrocarbons and aromatics, and often diesel oil can be used as a reducing agent.

이하, 본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to Examples.

실시예 1Example 1

Ag/γ-Al2O3 촉매를 만들기 위해 γ-Al2O3 (BET = 204 m2/g)에 AgNO3를 전구체로 이용하였으며 Ag의 함량을 2 중량%로 함침하여 제조하였다. AgNO 3 was used as a precursor to γ-Al 2 O 3 (BET = 204 m 2 / g) to prepare an Ag / γ-Al 2 O 3 catalyst, and was prepared by impregnating the Ag content to 2% by weight.

실험예 1Experimental Example 1

상기 실시예 1에서 제조된 Ag/γ-Al2O3 촉매의 질소산화물 제거효율을 측정하기 위하여, 550℃에서 He 밸런스(balance)로 5% H2O 과 10 % O2 가 포함되어 있는 상태에서 1시간 동안 전 처리하고, 700 ppm NO, 10% O2, 5% H2O, 그리고 환원제로 디젤유의 모조물(stimulant)인 n-dodecane(n-C12H26)을 C1 기준으로 700 ~ 8400 ppm 주입하여, 공간속도 30,000 h-1 로 200 ~ 500℃ 에서 deNOx 반응을 실시하였으며, 질소산화물 제거 비율을 질소로의 제거비율로 환산하여 나타내었으며, 반응온도에 따른 결과를 다음 도 2에 나타내었다. In order to measure the nitrogen oxide removal efficiency of the Ag / γ-Al 2 O 3 catalyst prepared in Example 1, 5% H 2 O and 10% O 2 in a He balance (balance) at 550 ℃ Pretreated for 1 hour at 700 ppm NO, 10% O 2 , 5% H 2 O, and the stimulant of diesel oil n-dodecane (nC 12 H 26 ) as a reducing agent from 700 to 8400 By injecting ppm, deNOx reaction was carried out at 200 ~ 500 ℃ at a space velocity of 30,000 h -1 , the removal rate of nitrogen oxides was shown in terms of the removal rate to nitrogen, the results according to the reaction temperature is shown in Figure 2 .

반응 후 생성되는 N2 를 정량적으로 분석하기 위해 온라인 가스크로마토그래피(on-line GC; HP 6890 series)에 충전탑(packed column; molecular sieve 5A)을 설치하여 분석하였다.In order to quantitatively analyze N2 generated after the reaction, packed column (molecular sieve 5A) was installed in an on-line GC (HP 6890 series).

비교예 1 Comparative Example 1

실험예 1에서 얻은 2 중량% Ag/γ-Al2O3 촉매의 deNOx 활성을 특정 반응 온도에서 C1/NOx 비에 따른 deNOx 활성으로 도 3에 다시 도시하였다. The deNOx activity of the 2 wt% Ag / γ-Al 2 O 3 catalyst obtained in Experimental Example 1 is shown again in FIG. 3 as the deNOx activity according to the C1 / NOx ratio at a specific reaction temperature.

본 발명에서 반응온도에 따른 C1/NOx 비 조절을 이용한 질소산화물을 질소로 제거하는 방법의 유용성을 확인하기 위하여 실시예와 비교예의 결과를 대비하였다.In the present invention, in order to confirm the usefulness of the method for removing nitrogen oxides with nitrogen by controlling the C1 / NOx ratio according to the reaction temperature, the results of Examples and Comparative Examples were compared.

즉, 도 3에 도시한 바와 같이 2 중량% Ag/γ-Al2O3 는 C1/NOx 비에 따라 같은 촉매 반응온도에서도 다른 활성을 보이고 있음을 확인할 수 있다.That is, as shown in FIG. 3, it can be seen that 2 wt% Ag / γ-Al 2 O 3 shows different activities at the same catalytic reaction temperature depending on the C1 / NOx ratio.

300 ℃에서 2 중량% Ag/γ-Al2O3 의 deNOx 활성의 경우 낮은 C1/NOx 비에서 우수함을 확인할 수 있었다. 300℃ 에서 450℃ 이하에서는 2중량% Ag/γ-Al2O3 촉매의 deNOx 활성은 복잡한 양상을 보이지만 대체적으로 C1/NOx 비가 4 ~ 6부근에서 우수하였으며, 450℃ 이상에서는 C1/NOx 비가 9에서 우수한 deNOx 활성을 관찰하였다. It was confirmed that the deNOx activity of 2 wt% Ag / γ-Al 2 O 3 at 300 ° C. was excellent at a low C1 / NOx ratio. The deNOx activity of the 2 wt% Ag / γ-Al 2 O 3 catalyst at 300 ° C and below 450 ° C showed a complex pattern, but the C1 / NOx ratio was excellent at around 4 to 6, and the C1 / NOx ratio was above 9 at 450 ° C. Excellent deNOx activity was observed at.

상기의 설명과 같이 반응온도에 따라 C1/NOx 비를 조절하는 것이 deNOx 활성 의 극대화하는 방법임을 확인할 수 있다. As described above, it can be seen that controlling the C1 / NOx ratio according to the reaction temperature is a method of maximizing deNOx activity.

또한 촉매 반응온도에서 최적의 C1/NOx 비를 구하기 위해 도 4에 도시한 바와 같이 각 반응온도에서 최고 활성을 보이는 C1/NOx 비를 나타내었으며, 이 결과를 이용하여 통계적 회귀분석인 최소자승법을 통해 최적으로 조정(fitting)을 하여 최적 C1/NOx 비를 구할 수 있는 1차 식을 얻었다. In addition, in order to obtain the optimal C1 / NOx ratio at the catalytic reaction temperature, as shown in FIG. The first-order equation for optimal C1 / NOx ratio can be obtained by optimally fitting.

얻어진 1차 식은 기울기가 0.0276, 절편이 -4.2104 이고 이때 R2 값은 0.9489 이다. 이 1 차식을 이용하여 촉매 전단 온도를 얻는 경우 최적의 C1/NOx 비를 간단하게 구할 수 있으며 이를 통해 극대화된 deNOx 활성과 최소의 환원제사용을 달성 할 수 있음을 확인하였다. The resulting linear equation has a slope of 0.0276 and an intercept of -4.2104, with an R2 value of 0.9489. When the catalyst shear temperature is obtained using this first equation, the optimum C1 / NOx ratio can be obtained simply, and it is confirmed that the maximum deNOx activity and the use of the minimum reducing agent can be achieved.

이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and has been claimed by those of ordinary skill in the art to which the invention pertains. It includes all the various forms of embodiments that can be carried out without departing from the spirit.

도 1은 본 발명의 일실시예에 따른 은 담지 알루미나 촉매의 환원제 조절장치를 나타내는 구성도이고,1 is a block diagram showing a reducing agent control device of a silver-supported alumina catalyst according to an embodiment of the present invention,

도 2는 Ag/γ-Al2O3 촉매의 정해진 C1/NOx 비에서 반응온도에 따른 deNOx 활성을 나타내는 그래프이고,2 is a graph showing deNOx activity according to reaction temperature at a predetermined C1 / NOx ratio of Ag / γ-Al 2 O 3 catalyst,

도 3은 특정 반응 온도에서 Ag/γ-Al2O3 촉매의 C1/NOx 비에 따른 deNOx 활성을 나타내는 그래프이고,3 is a graph showing deNOx activity according to the C1 / NOx ratio of the Ag / γ-Al 2 O 3 catalyst at a specific reaction temperature,

도 4는 각 반응온도에서 최고 활성을 보이는 C1/NOx 비를 나타내는 그래프이다.Figure 4 is a graph showing the C1 / NOx ratio showing the highest activity at each reaction temperature.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : Ag/γ-Al2O3 촉매 11 : 온도 및 녹스센서10: Ag / γ-Al 2 O 3 catalyst 11: Temperature and Knox sensor

12 : 제어부 14 : 환원제탱크12 control unit 14 reducing agent tank

15 : 연결관 16 : 분사구15 connector 16 nozzle

17 : 엔진 18 : 배기관17 engine 18 exhaust pipe

19 : 유량조절밸브19: flow control valve

Claims (6)

은 담지 알루미나 촉매의 환원제 조절장치에 있어서,In the reducing agent control device of the silver-supported alumina catalyst, 질소산화물 제거를 위한 촉매 전단에 설치되어 배기온도 및 녹스(NOx)를 감지하는 온도 및 녹스센서;A temperature and rusty sensor installed at the front end of the catalyst for removing nitrogen oxides and detecting exhaust temperature and NOx; 상기 온도 및 녹스센서로부터 감지신호를 입력받아 배기온도에 따른 C1/NOx 비를 통해 계산된 C1(환원제)의 양을 제어하는 제어부;A control unit which receives the detection signal from the temperature and the Knox sensor and controls the amount of C1 (reducing agent) calculated through the C1 / NOx ratio according to the exhaust temperature; 녹스를 질소로 환원시키기 위한 환원제를 저장하는 환원제 탱크;A reducing agent tank for storing a reducing agent for reducing the knox to nitrogen; 상기 환원제를 촉매 전단에 분사해 주는 분사구; 및An injection hole for injecting the reducing agent in front of the catalyst; And 상기 제어부로부터 제어신호를 입력받아 환원제 탱크의 환원제를 분사구에 공급하는 유량조절밸브;A flow rate control valve receiving a control signal from the control unit and supplying a reducing agent of a reducing agent tank to an injection hole; 를 포함하여 구성되는 것을 특징으로 하는 은 담지 알루미나 촉매의 환원제 조절장치.Reducing agent control device of the silver-supported alumina catalyst, characterized in that comprising a. 청구항 1에 있어서,The method according to claim 1, 상기 질소산화물 제거를 위한 촉매는 은 1 ~ 5 중량% 및 알루미나 95 ~ 99 중량%를 포함하는 것을 특징으로 하는 은 담지 알루미나 촉매의 환원제 조절장치.The catalyst for removing nitrogen oxides is a reducing agent control device of a silver-supported alumina catalyst, characterized in that containing 1 to 5% by weight of silver and 95 to 99% by weight of alumina. 청구항 1에 있어서,The method according to claim 1, 상기 C1/NOx 비는 200 ~ 300℃에서 1 ~ 4, 300 ~ 450 ℃에서 3 ~ 7, 450 ~ 550℃에서 7 ~ 10 인 것을 특징으로 하는 은 담지 알루미나 촉매의 환원제 조절장치.The C1 / NOx ratio is 1 ~ 4, 200 ~ 300 ℃ 1 ~ 4, 300 ~ 450 ℃ 3 ~ 7, 450 ~ 550 ℃ 7 ~ 10 Reducing agent regulator of the silver supported alumina catalyst, characterized in that 7 to 10. 청구항 1에 있어서,The method according to claim 1, 상기 환원제는 탄소수 6 ~ 16 범위의 탄화수소 화합물인 것을 특징으로 하는 은 담지 알루미나 촉매의 환원제 조절장치.The reducing agent is a reducing agent control device for a silver-supported alumina catalyst, characterized in that the hydrocarbon compound of 6 to 16 carbon atoms. 은 담지 알루미나 촉매의 환원제 조절방법에 있어서,In the reducing agent control method of the silver-supported alumina catalyst, 질소산화물 제거를 위한 촉매 전단의 배기온도 및 녹스(NOx)를 감지하는 단계;Sensing exhaust temperature and NOx at the front end of the catalyst for nitrogen oxide removal; 제어부에서 상기 배기온도 및 녹스의 감지신호를 입력받아 배기온도에 따른 C1/NOx 비를 통해 계산된 C1(환원제)의 양을 제어하는 단계; 및Controlling the amount of C1 (reducing agent) calculated through the C1 / NOx ratio according to the exhaust temperature by receiving the exhaust temperature and the Knox sensing signal; And 상기 제어부로부터 제어신호를 입력받아 촉매 전단에 설치된 분사구를 통해 촉매 입구에 상기 환원제를 공급하는 단계;Receiving the control signal from the controller and supplying the reducing agent to the catalyst inlet through an injection hole installed at the front end of the catalyst; 를 포함하여 이루어지는 것을 특징으로 하는 은 담지 알루미나 촉매의 환원제 조절방법.Reducing agent control method of a silver-supported alumina catalyst, characterized in that comprises a. 청구항 5에 있어서,The method according to claim 5, 상기 분사구를 통해 촉매입구에 공급되는 환원제의 양을 제어하는 단계에서 온도에 따른 C1/NOx 비는 200 ~ 300℃에서 1 ~ 4, 300 ~ 450 ℃에서 3 ~ 7, 450 ~ 550℃에서 7 ~ 10 인 것을 특징으로 하는 은 담지 알루미나 촉매의 환원제 조절방법.The C1 / NOx ratio according to the temperature in the step of controlling the amount of reducing agent supplied to the catalyst inlet through the injection port is 1 ~ 4 at 200 ~ 300 ℃, 3 ~ 7, at 450 ~ 550 ℃ 7 ~ 7 ~ A reducing agent control method for a silver-supported alumina catalyst, characterized in that 10.
KR1020070083453A 2007-08-20 2007-08-20 Control method of reducing agent for ag/al2o3 KR100878944B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070083453A KR100878944B1 (en) 2007-08-20 2007-08-20 Control method of reducing agent for ag/al2o3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070083453A KR100878944B1 (en) 2007-08-20 2007-08-20 Control method of reducing agent for ag/al2o3

Publications (1)

Publication Number Publication Date
KR100878944B1 true KR100878944B1 (en) 2009-01-19

Family

ID=40482734

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070083453A KR100878944B1 (en) 2007-08-20 2007-08-20 Control method of reducing agent for ag/al2o3

Country Status (1)

Country Link
KR (1) KR100878944B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293740A (en) 2002-04-05 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
KR20040095629A (en) * 2003-05-07 2004-11-15 주식회사 코캣 Catalytic Process of Nitrogen Oxides Reduction by Multi-Injection and Use Thereof
JP2006242094A (en) 2005-03-03 2006-09-14 Hino Motors Ltd Exhaust emission control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293740A (en) 2002-04-05 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
KR20040095629A (en) * 2003-05-07 2004-11-15 주식회사 코캣 Catalytic Process of Nitrogen Oxides Reduction by Multi-Injection and Use Thereof
JP2006242094A (en) 2005-03-03 2006-09-14 Hino Motors Ltd Exhaust emission control device

Similar Documents

Publication Publication Date Title
Shin et al. NOx abatement and N2O formation over urea-SCR systems with zeolite supported Fe and Cu catalysts in a nonroad diesel engine
AU2007338356B2 (en) Method for the selective catalytic reduction of nitrogen oxides in exhaust gases of vehicles
Nova et al. Urea-SCR technology for deNOx after treatment of diesel exhausts
US20100000202A1 (en) Dual catalyst NOx reduction system for exhaust from lean burn internal combustion engines
US7937933B2 (en) Exhaust gas post treatment system
KR101542754B1 (en) Exhaust gas purification system for the treatment of engine exhaust gases by means of a scr catalyst
CA2582935C (en) Method of decomposing nitrogen dioxide
Kröcher Aspects of catalyst development for mobile urea-SCR systems—From Vanadia-Titania catalysts to metal-exchanged zeolites
CN100510335C (en) Engine-driven vehicle with exhaustemission control
US20100192545A1 (en) Exhaust aftertreatment system
KR100993364B1 (en) System for control urea injection quantity of vehicle and method thereof
US20180038298A1 (en) Method for controlling an exhaust gas treatment system
KR101316856B1 (en) System for control urea injection quantity of vehicle and method thereof
Braun et al. Potential technical approaches for improving low‐temperature NOx conversion of exhaust aftertreatment systems
US8776499B2 (en) Emission treatment systems and methods using passivated surfaces
US10167758B2 (en) Product for the depollution of exhaust gases, especially from an internal combustion engine, and method for the depollution of exhaust gases using said product
KR102157717B1 (en) Method and exhaust treatment system for treatment of an exhaust gas stream
US20160230631A1 (en) Selective catalytic reduction device
RU2573547C2 (en) System for postprocessing of used gases with addition of activating material to be added to catalytic neutraliser
US10072548B2 (en) Method for injecting reductant into an exhaust gas of an engine
KR100878944B1 (en) Control method of reducing agent for ag/al2o3
Vignesh et al. Selective catalytic reduction for NOx reduction
Maunula et al. NO x reduction by urea in the presence of NO₂ on metal substrated SCR catalysts for heavy-duty vehicles
Schmieg et al. Catalysts for lean-burn engine exhaust aftertreatment using hydrocarbon selective catalytic reduction
Kim et al. Hydrogen Effect on the DeNO X Efficiency Enhancement of Fresh and Aged Ag/Al 2 O 3 HC-SCR in a Diesel Engine Exhaust

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131218

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141212

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20151229

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20171227

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181213

Year of fee payment: 11